Push-pump for dispensing soap or other liquids

Information

  • Patent Grant
  • 11918156
  • Patent Number
    11,918,156
  • Date Filed
    Friday, February 4, 2022
    3 years ago
  • Date Issued
    Tuesday, March 5, 2024
    a year ago
Abstract
Disclosed herein are embodiments of a manually operated liquid dispenser. In any embodiments disclosed herein, the dispenser can include a housing with a volume of space therein, the volume of space having a first end and a second end, a pump sleeve extending into the space of the housing and nearly to a bottom, inside surface of the space, a pump head, a push rod coupled with the pump head and configured to be axially movable within an axial opening extending through the pump sleeve, a passageway extending through at least the pump head and the push rod, the passageway being in fluid communication with the axial opening extending through the pump sleeve and with the volume of space within the housing, and a first valve configured to control a passage of a liquid substance within the volume of space in the housing through a passageway.
Description
BACKGROUND OF THE DISCLOSURE
Field of the Disclosure

This disclosure relates to manually operated liquid dispensers including, without limitation, manually operated liquid soap dispensers.


SUMMARY OF SOME EXEMPLIFYING EMBODIMENTS

The systems, methods and devices of this disclosure each have several innovative aspects, implementations, or aspects, no single one of which is solely responsible for the desirable attributes disclosed herein.


Disclosed herein are embodiments of a manually operated liquid dispenser. In any embodiments disclosed herein, the dispenser can include a housing with a volume of space therein, the volume of space having a first end and a second end, a pump sleeve extending into the space of the housing and nearly to a bottom, inside surface of the space, a pump head, a push rod coupled with the pump head and configured to be axially movable within an axial opening extending through the pump sleeve, a passageway extending through at least the pump head and the push rod, the passageway being in fluid communication with the axial opening extending through the pump sleeve and with the volume of space within the housing, and a first valve configured to control a passage of a liquid substance within the volume of space in the housing through a passageway.


Any embodiments of the manually operated dispenser or methods of using same disclosed herein can include, in additional embodiments, one or more of the following steps, features, components, and/or details, in any combination with any of the other steps, features, components, and/or details of any other embodiments disclosed herein: wherein the dispenser does not have a dip tube; wherein the dispenser can be configured to fully depress and dispense a liquid substance with 1 kg or less of force applied to the pump head; wherein the pump sleeve extends toward the second end of the volume of space such that a distance between a distal end of the pump sleeve and the second end of the volume of space can be less than approximately 5% of the distance from the first end of the volume of space of the housing to the second end of the volume of space of the housing; wherein the pump sleeve extends toward the second end of the volume of space such that a distance between a distal end of the pump sleeve and the second end of the volume of space can be less than or equal to the average diameter or cross-sectional width of a majority of a length of the pump sleeve; comprising a spring configured to axially bias the push rod toward the pump head; wherein the first valve can be configured to close or inhibit a flow of liquid through the first valve when the pump head is depressed; comprising a second valve configured to control a passage of a liquid substance within the passageway through a passageway in the pump head; wherein the first valve can be positioned at a distal end of the pump sleeve and the second valve can be positioned at a proximal end of the pump sleeve; and/or wherein the second valve can be configured to prevent a passage of air past the second valve when the pump head is returning from a depressed position to an undepressed position.


Also disclosed herein are embodiments of a manually operated liquid dispenser that can include a housing with a volume of space therein, the volume of space having a first end and a second end, a pump sleeve extending into the space of the housing, a pump head, a push rod coupled with the pump head and configured to be axially movable within an axial opening extending through the pump sleeve, a passageway extending through at least the pump head and the push rod, the passageway being in fluid communication with the axial opening extending through the pump sleeve and with the volume of space within the housing, a first valve configured to control a passage of a liquid substance within the volume of space in the housing through a passageway, and a second valve configured to control a passage of a liquid substance within the volume of space in the housing through a passageway. In some embodiments, the first valve can be positioned at a distal end of the pump sleeve and the second valve can be positioned at a proximal end of the pump sleeve.


Any embodiments of the manually operated dispenser or methods of using same disclosed herein can include, in additional embodiments, one or more of the following steps, features, components, and/or details, in any combination with any of the other steps, features, components, and/or details of any other embodiments disclosed herein: wherein the first valve can be configured to close or inhibit a flow of liquid through the first valve when the pump head is depressed; wherein the first valve can be positioned at a distal end of the pump sleeve and the second valve can be positioned at a proximal end of the pump sleeve; and/or wherein the second valve can be configured to prevent a passage of air past the second valve when the pump head is returning from a depressed position to an undepressed position.


Also disclosed herein are embodiments of a manually operated liquid dispenser that can include a housing with a liquid reservoir configured to contain liquid, the liquid reservoir comprising a top and a bottom, and an upper half and a lower half, a pump sleeve extending into the liquid reservoir of the housing such that the distance between a distal end of the pump sleeve and the bottom of the reservoir can be less than or equal to about the average diameter or cross-sectional width of a majority of the length of the pump sleeve, the pump sleeve having an inner diameter or cross-sectional width, a pump head, a push rod coupled with the pump head and configured to be axially movable within an axial opening extending through the pump sleeve, the push rod comprising a distal end with an outer diameter or cross-sectional width that can be about the same size as the inner diameter or cross-sectional width of the pump sleeve, and a passageway extending through at least the pump head and the push rod, the passageway being in fluid communication with the axial opening extending through the pump sleeve and with the volume of space within the housing. In some embodiments, in the fully actuated position, the distal end of the push rod can extend into the lower half of the liquid reservoir.


Also disclosed herein are embodiments of a method of dispensing a liquid from a manually operated liquid dispenser that can include exerting a force of less than 2 kg on a pump head to depress the pump head to dispense a liquid from the dispenser. Also disclosed herein are embodiments of a device configured to dispense a controlled amount of a liquid soap substantially as hereinbefore described or shown in the accompanying drawings, embodiments of a device configured to dispense a liquidus product substantially as hereinbefore described or shown in the accompanying drawings, embodiments of a method of dispensing a liquidus product substantially as hereinbefore described or shown in the accompanying drawings, and embodiments of a method of dispensing a controlled amount of a liquid soap substantially as hereinbefore described or shown in the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a first perspective view of an embodiment of a liquid substance dispenser before actuation of the dispenser by pushing downward on the dispenser.



FIG. 2 is a second perspective view of the embodiment of the liquid substance dispenser shown in FIG. 1.



FIG. 3 is a back view of the embodiment of the liquid substance dispenser shown in FIG. 1.



FIG. 4 is a front view of the embodiment of the liquid substance dispenser shown in FIG. 1.



FIG. 5 is a side view of the embodiment of the liquid substance dispenser shown in FIG. 1.



FIG. 6 is a top view of the embodiment of the liquid substance dispenser shown in FIG. 1.



FIG. 7 is a bottom view of the embodiment of the liquid substance dispenser shown in FIG. 1.



FIG. 8 is a section view of the embodiment of the liquid substance dispenser shown in FIG. 1, taken through line 8-8 in FIG. 6.



FIG. 9 is a section view of the embodiment of the liquid substance dispenser shown in FIG. 1, taken through line 9-9 in FIG. 6.



FIG. 10 is a section view of the embodiment of the liquid substance dispenser shown in FIG. 1, taken through line 10-10 in FIG. 8.



FIG. 11 is a section view of the embodiment of the liquid substance dispenser shown in FIG. 1, taken through line 11-11 in FIG. 8.



FIG. 12 is a first exploded view of the embodiment of the liquid substance dispenser shown in FIG. 1.



FIG. 13 is a second exploded view of the embodiment of the liquid substance dispenser shown in FIG. 1.



FIG. 14 is a partial section view of the embodiment of the liquid substance dispenser shown in FIG. 1.



FIG. 15 is a perspective view of the embodiment of the liquid substance dispenser shown in FIG. 1, showing a second valve of the liquid substance dispenser.



FIG. 16 is a section view of the embodiment of the liquid substance dispenser shown in FIG. 1, showing the liquid substance dispenser in a partially disassembled state wherein at least the pump head and pump sleeve are removed from the housing.



FIG. 17 is a perspective view of the embodiment of the liquid substance dispenser shown in FIG. 1, showing the liquid substance dispenser in a partially disassembled state wherein at least the pump head and pump sleeve are removed from the housing.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Disclosed herein are embodiments of an improved liquid substance dispenser 100. Any of the dispenser embodiments disclosed herein can be configured to dispense any suitable liquid or viscous substance 101, including for example and without limitation, soap, lotion, detergent, shampoo, conditioner, and other hair care products, oil, food products such as but not limited to condiments and sauces, and any other similar or desired liquid and/or viscous substances or any combinations thereof. Therefore, as used herein, the terms liquid and/or liquid substance are meant to include and refer to any aforementioned or desired liquid or viscous substances or any combinations thereof.


Some embodiments of the improved liquid dispenser disclosed herein have significant improvements over conventional manually operated soap and/or liquid dispensers. For example and without limitation, by virtue of the improvements to the components of the liquid dispensers disclosed herein, some embodiments of the liquid dispensers are configured to substantially reduce the amount of force needed to actuate the dispenser to dispense the liquid substance as compared to conventional manually operated soap and/or liquid dispensers—e.g., some embodiments of the liquid dispensers are configured to substantially reduce the amount of force needed to depress a pump head component of the dispenser to dispense the liquid substance.


For example, and without limitation, some conventional dispensers dispensing a first liquid substance typically require approximately 2.5 kg of downward force to depress a pump head component of the dispenser or to dispense the liquid substance within the dispenser. In some embodiments of the dispensers disclosed herein, the dispenser can be configured so that less than or equal to about 1 kg of downward force, or approximately 1 kg of force, or 0.7 kg of force (or approximately 0.7 kg of force), or 0.8 kg of force (or approximately 0.8 kg of force), or from 0.7 kg of force (or approximately 0.7 kg of force) to 1 kg of force (or approximately 1 kg of force, or from 0.8 kg of force (or approximately 0.8 kg of force) to 1 kg of force (or approximately 1 kg) of force is required to depress a pump head component of the dispenser having a liquid substance therein or to dispense the same quantity of the first liquid substance within the dispenser, wherein the liquid substance in the improved dispenser is the same as or has approximately the same viscosity as the liquid substance in the conventional dispenser requiring approximately 2.5 kg of downward force.


Without limitation, some embodiments of the dispensers disclosed herein can be configured such that an actuation force of the dispenser (e.g., the downward force required to fully depress the pump head component of the dispenser or to dispense the same quantity of the liquid substance within the dispenser) is approximately 68%-72% lower than the actuation force required to fully depress the pump head component of a conventional dispenser or to dispense the same quantity of the liquid substance within the dispenser, or from 30% (or approximately 30%, or less than 30%) to 70% (or approximately 70%, or at least 70%) lower than the actuation force required to fully depress the pump head component of a conventional dispenser or to dispense the same quantity of the liquid substance within the dispenser, or from 50% (or approximately 50%) to 70% (or approximately 70%, or at least 70%) lower than the actuation force required to fully depress the pump head component of a conventional dispenser or to dispense the same quantity of the liquid substance within the dispenser, or from 50% (or approximately 50%) to 60% (or approximately 60%, or at least 60%) lower than the actuation force required to fully depress the pump head component of a conventional dispenser or to dispense the same quantity of the liquid substance within the dispenser, or of any values within any of the foregoing ranges, or from and to any values within any of the foregoing ranges.


Some embodiments of the improved soap or liquid dispenser disclosed herein can include a housing or container body 102, a top cover 103, an opening 104 through the top cover 103 at a first end 102a of the housing 102 and a volume or space 106 (also referred to herein as a volume of space) within the housing 102, a pump head 108 having a passageway 109 therethrough, a push rod 110 that can have a passageway 111 axially extending therethrough that can be in fluid communication with the passageway 109, and a pump sleeve 112 that can extend toward a second end 102b of the housing 102. The space 106 can have a first end portion 106a and a second end portion 106b that is distal to, or further away from the pump head 108 than the first end portion 106a. Though not required, some embodiments of the push rod 110 can include a first push rod portion 114 and a second push rod portion 116 coupled with and axially aligned with the first push rod portion 114—which can be for manufacturing reasons. The first push rod portion 114 can have a first end portion 114a and a second end portion 114b, and the second push rod portion 116 can have a first end portion 116a and a second end portion 116b. In some embodiments, the second end portion 114b can be coupled with the first end portion 116a. In other embodiments, the push rod 110 can be made from a single, integral piece.


The second push rod portion 116 can have one or more annular protrusions at the second end portion 116b. The annular protrusions at the second end portion 116b of the second push rod portion 116 can be configured to engage with an inner wall surface 112c of the pump sleeve 112 to ensure radial alignment of the second end portion 116b of the second push rod portion 116 within the passageway 118 extending axially through the pump sleeve 112, and/or to provide a seal to prevent or inhibit the liquid substance 101 from advancing within the passageway 118 proximal to the second end portion 116b of the second push rod portion 116. In some embodiments, the pump head 108 can be in fluid communication with at least the passageway 111, the passageway 109, and the space 106.


In some embodiments, the push rod 110 can be coupled with the pump head 108 and be configured to slide within an inner space 118 of the pump sleeve 112. Therefore, in some embodiments, the passageway 118 of the pump sleeve 112 can have a larger size or diameter than an outer size or diameter of at least the second push rod portion 116. In some embodiments, the size or outside diameter of the annular protrusions at the second end portion 116b of the second push rod portion 116 can be about the same as or slightly larger than an inside size or diameter of the inner space 118 of the pump sleeve 112 to provide an interference fit between the annular protrusions at the second end portion 116b of the second push rod portion 116 and the inner wall surface of the inner space 118 of the pump sleeve 112.


In some embodiments, in an operative position, e.g., on a table, countertop, or on another surface that supports the liquid substance dispenser 100 in a generally vertical or upright orientation, the first end 102a of the housing 102 can be an upper end of the housing 102 or the end that is further away from the support surface, and the second end 102b can be a lower end of the housing 102 or the end that is closer to the support surface, opposite to the upper end of the housing 102. The second end 102b can be configured to support the liquid substance dispenser 100 in a generally vertical or upright orientation when the liquid substance dispenser 100 is at rest on a table, countertop, or other generally horizontal surface.


A spring or other axially resilient component or element 130 (referred to hereinafter as the spring) having a first end portion 130a and a second end portion 130b, such as a compressible elastomeric component (that can be axially hollow or otherwise have openings therein that the liquid substance can pass through) can be positioned axially within the passageway 118. The liquid substance dispenser 100 can be configured such that the second end portion 116b contacts or is engaged with a first end portion 130a of the spring 130. In this configuration, when the second push rod portion 116 is moved axially toward the second end portion 106b of the space 106, such as by depressing the pump head 108, the second end portion 116b can contact the first end portion 130a and cause the first end portion 130a to move toward the second end portion 106b of the space 106, thereby causing the spring 130 to compress. As the push rod 110 and/or the pump head 108 are relaxed, the liquid substance dispenser 100 can be configured such that the push rod 110 and the pump head 108 are biased to move away from the second end 102b, for example and without limitation by the resilient tensile force of the spring 130. In some embodiments, the pump sleeve 112 can have or support a flange or ledge 131 that can support and/or prevent an axial movement of the second end portion 130b of the spring 130. The ledge 131 can have one or more openings therein to permit a passage of the liquid substance 101 therethrough.


Further, in some embodiments, the second end portion 116b of the second push rod portion 116 can have one or more recesses or walls 117 formed therein or coupled therewith, configured to receive and at least partially surround the first end portion 130a of the spring 130 to limit a movement of a first end portion 130a of the spring 130 in the axial direction. In some embodiments, the second end portion 116b of the second push rod portion 116 can have one or more flanges or ledges 119 formed therein, configured to provide an axial support surface for the first end portion 130a of the spring 130. In some embodiments, the spring 130 can have a tapering diameter along a length thereof, or can otherwise be configured such that the first end portion 130a of the spring 130 has a smaller radial size or diameter as compared to the second end portion 130b of the spring 130.


The space 106 can have a first end 106a and a second end 106b. With reference to FIG. 8, which shows internal components of the dispenser before it is actuated by pushing downward on the push rod 110, in some embodiments the space 106 can have a downwardly curved or downwardly angled surface at the second end portion 106b of the space 106 so that a depth of the space 106 is greater in a central portion of the second end portion 106b of the space 106 than at a peripheral portion of the second end portion 106b of the space 106. The pump sleeve 112 can have a first end or proximal end 112a and a second end or distal end 112b. In some embodiments, the liquid substance dispenser 100 can be configured such that the distal end 112b can be positioned within the central portion of the second end portion 106b of the space 106 where the depth of the space 106 is increased. This can increase the amount of the liquid substance 101 that can be dispensed from the space 106.


In some embodiments, with reference to FIGS. 8 and 9, the pump sleeve 112 can have a proximal end 112a and a distal end 112b and can be configured to extend nearly all the way through the space 106 so that the distal end 112b of the pump sleeve 112 is positioned adjacent to or proximate to the second end 102b of the housing 102, or so that a distal end 112b of the pump sleeve 112 is positioned adjacent to or proximate to the second end 106b of the space 106.


Some embodiments of the liquid substance dispenser 100 can have a first valve 132. In some embodiments, the first valve 132 can be positioned at or adjacent to the distal end 112b of the pump sleeve 112, or at any other position along a length of the pump sleeve 112, such as near the distal end 112b, or in a portion of the pump sleeve 112 proximal to the distal end 112b. In some embodiments, the first valve 132 can include a spherical ball or other suitably shaped plug 134 that can move (for example, at least axially) within a space 136 within the first valve 132. In some embodiments, a retainer 140 can be coupled with the distal end 112b of the pump sleeve 112 and be configured to retain the plug 134 within the space 136. The retainer 140 can be integrally formed with the pump sleeve 112 or as part of the pump sleeve 112, or can be separately formed and coupled with the pump sleeve 112. The retainer 140 can have an opening 142 therein that is in fluid communication with the passageway 118 and the space 106 through which the liquid substance can pass but which is smaller than an outside diameter or size of the plug 134, so that the plug 134 is retained at least in part by the retainer 140 within the space 136. In some embodiments, the retainer 140 can have inwardly tapering or sloping walls to direct the plug 134 toward the opening 142. Though not required, a protrusion or projection 144 can extend toward the plug 134 to limit a range of motion of the plug 134 in an upward or proximal axial direction of the pump sleeve 112.


In operation, the liquid substance dispenser 100 can be configured to cause a portion of the liquid substance 101 to be advanced or dispensed through the passageway 118 of the pump sleeve 112 when the pump head 108 is depressed. With reference to FIGS. 8 and 9, moving the pump head 108 and, consequently, the push rod 110 axially toward the second end portion 106b of the space 106 (e.g., in a distal axial or downward direction when the housing is resting on a horizontal surface), such as by depressing the pump head 108 can cause the first valve 132 to close. In the actuated position, the distal end of the push rod 110 can extend distally into the lower half of the inner reservoir of the housing 100, and the distal end of the push rod 110 can have an outer diameter or outer cross-sectional width that is about the same as and/or slightly smaller than the inner diameter or inner cross-sectional width of the distal end of the pump sleeve 112. A positive pressure built up within the passageway 118 of the pump sleeve 112, and/or within other internal passages or spaces within the liquid substance dispenser 100 in fluid communication with the passageway 118 (collectively, herein referred to as the internal passageways 150, which can include the space within the pump sleeve 112 proximal to the first valve 132, the passageway 109 of the pump head 108, the internal passageway 111 of the push rod 110, and other passageways, if any, in fluid communication with the passageway 118 of the pump sleeve 112), can force or bias the plug 134 to move toward the opening 142, thereby causing the space 136 to plug or substantially inhibit flow of the liquid substance 101 through the opening 142. With the valve 132 and the opening 142 substantially or completely closed or at least inhibited, as the pump head 108 is further advanced toward the second end portion 106b of the space 106, thereby further reducing a volume of space within the internal passageways 150, any of the liquid substance 101 within the internal passageways 150 can be caused to advance away from the second end portion 106b of the space 106 and out through the passageway 109 of the pump head 108 that is in fluid communication with the passageway 118 of the pump sleeve 112.


As the push rod 110 and/or the pump head 108 are relaxed (e.g., when any external force exerted on the pump head 108 are removed, when the pump head 108 and the push rod 110 are in a distal position that is further toward the second end portion 106b of the space 106 than when the pump head 108 is in a fully relaxed or proximal position), the spring 130 can bias or force the pump head 108 and the push rod 110 to move away from the second end portion 106b of the space 106, thereby causing a suction force or vacuum to be created within the internal passageways 150 proximal to the first valve 132. The suction force or vacuum can draw the plug 134 out of contact with the retainer 140 and the opening 142 so that at least a portion of the liquid substance 101 within the space 106 can be drawn into the internal passageways 150 distal to the first valve 132 by the suction force or vacuum. Any embodiments of the liquid substance dispenser 100 can be configured such that, when the internal passageways 150 are at least partially filled with the liquid substance 101, depressing the pump head 108 will cause the valve 132 to close and the liquid substance 101 to advance through the internal passageways 150 and out through the passageway 109 of the pump head 108, as described above.


In some embodiments, the opening 142 can have a diameter of 6 mm, or approximately 6 mm, or from 4 mm (or approximately 4 mm, or less than 4 mm) to 8 mm (or approximately 8 mm, or more than 8 mm), or of any values within the aforementioned range, or from and to any values with the aforementioned range. Further, in some embodiments, the plug 134 and the plug 174 described below can have a diameter or cross-sectional size of 7 mm, or approximately 7 mm, or from 5 mm (or approximately 5 mm, or less than 5 mm) to 9 mm (or approximately 9 mm, or more than 9 mm), or of any values within the aforementioned range, or from and to any values with the aforementioned range. The size of the plug 134 can be greater than a size or diameter of the opening 142.


In some embodiments, the pump sleeve 112 can be configured to extend toward the second end 102b or the second end portion 106b of the space 106 such that the distal end 112b of the pump sleeve 112 (which can be the distal end of the retainer 140) is within 0.25 in or less, or 0.5 in or less, or from 0.1 in (or approximately 0.1 in) to 0.25 in (or approximately 0.25 in) of the second end portion 106b of the space 106. In some embodiments, the pump sleeve 112 can be configured to extend toward the second end 102b or the second end portion 106b of the space 106 such that the a distance D1 (as shown in FIG. 8) between the distal end 112b and the second end portion 106b of the space 106 below the distal end 112b is less than 5% (or less than approximately 5%) of the distance D2 (as also shown in FIG. 8) from the first end portion 106a to the second end portion 106b of the space 106, or less than 10% (or less than approximately 10%) of the distance D2 from the first end portion 106a to the second end portion 106b of the space 106, or from 1% (or approximately 1%, or less than 1%) to 30% (or approximately 30%) of the distance D2, or from 1% (or approximately 1%, or less than 1%) to 15% (or approximately 15%) of the distance D2, or of any of the values within any of the foregoing ranges, or from and to any of the values within any of the foregoing ranges. In some embodiments, the pump sleeve 112 can extend nearly to the bottom of the liquid reservoir inside of the housing 100. For example, in some embodiments, the distance between the distal end of the pump sleeve 112 and the bottom of the liquid reservoir can be less than or equal to about the diameter or cross-sectional width of the pump sleeve 112, or the distance between the distal end 112b of the pump sleeve 112 and the bottom of the liquid reservoir can be less than or equal to about the diameter or cross-sectional width of the opening 142 at the distal end 112b of the pump sleeve 112. In some embodiments, the distance between a distal end of the pump sleeve and the bottom of the reservoir is less than or equal to about the average diameter or cross-sectional width of a majority of the length of the pump sleeve.


Given that, in some embodiments, the pump sleeve 112 can extend distally to or near the second end portion 106b of the space 106, as described herein, some embodiments of the liquid substance dispenser 100 do not need a separately formed dip tube that, in conventional designs, typically extends from the pump sleeve 112 toward the second end portion 106b of the space 106 and therefore do not have a separately formed dip tube. This advantageously reduces the number of parts within the liquid substance dispenser 100 and the space 106 and also can result in a larger cross-sectional area within the flow passageway of the internal passageways 150 within the space 106 compared to conventional liquid dispenser devices. For example and without limitation, a dip tube of a conventional liquid or soap dispenser typically has an inner diameter of 1.7-2 mm, making the conventional dispenser with such a dip tube harder to pump as compared to at least some of the embodiments of the liquid substance dispenser 100 disclosed herein that are comparably sized or made for a comparable purpose as compared to the conventional liquid or soap dispenser typically has an inner diameter of 1.7-2 mm. In some embodiments, an inside diameter of the dip tube can be two times greater than a conventional liquid or soap dispenser, and/or can be greater than 6 mm or approximately 6 mm, or from 5 mm or approximately 5 mm to 8 mm or approximately 8 mm, or from 6 mm or approximately 6 mm to 7 mm or approximately 7 mm. The larger cross-sectional area within the flow passageway of the internal passageways 150 and the openings in the pump sleeve 112, for example the opening 142 at the distal end 112b of the pump sleeve 112 (which can be 6 mm or approximate 6 mm), as compared to conventional liquid dispenser devices, can result in a lower force required to depress the pump head 108 and dispense the liquid substance 101 in some embodiments.


In some embodiments, with reference to FIG. 8, the liquid substance dispenser 100 can have a second valve 172. In some embodiments, the second valve 172 can be positioned at or adjacent to the first end portion 114a of the first push rod portion 114, or within a proximal end portion 114a of the first push rod portion 114, or at any other position along a length of the first push rod portion 114. In any embodiments disclosed herein, the second valve 172 can be positioned proximal to the first end portion 114a, such as within a space or passage within the pump head 108. In any embodiments, the second valve 172 can include a ball or other suitably shaped plug 174 that can move (for example, at least axially) within a space 176 within the first end portion 114a of the first push rod portion 114. The liquid substance dispenser 100 and/or the second valve 172 can be configured to limit an axial movement of the plug 174. For example and without limitation, the first push rod portion 114 can have a restriction 175 in the first end portion 114a of the first push rod portion 114 or at any suitable position along a length of the first push rod portion 114, wherein the restriction 175 is configured to prevent the plug 174 from passing therethrough.


In some embodiments, the restriction 175 can have a size or diameter that is less than a size or diameter of the space 176 adjacent to the restriction 175, and that is less than a size or diameter of the plug 174. In some embodiments, the restriction 175 can have a conically shaped tapered surface to guide the plug 174 into alignment with an opening 177 within the restriction 175 and the first push rod portion 114. In this configuration, when the plug 174 is positioned in contact with the opening 177, liquid and/or air within the passageway 109 of the pump head 108 can be prevented or inhibited from advancing past the plug 174 through the opening 177. In some embodiments, the plug 174 can be moved into contact with the opening 177, thereby effectively closing the second valve 172, when the pump head 108 is moving in a second or proximal axial direction (e.g., away from the second end portion 106b of the space 106), such as when the pump head 108 is being released. The plug 174 can be moved into contact with the opening, for example and without limitation, due to a vacuum or suction force being created within the portion of the passageway 111 of the push rod 110 that is distal to the plug 174. When the plug 174 is moved out of contact with the restriction 175 and the opening 177, liquid and/or air within the passageway 111 of the push rod 110 can be permitted to advance through the opening 177 past the plug 174 and out through the passageway 109 of the pump head 108. In some embodiments, the plug 174 can be moved out of contact with the restriction 175 and the opening 177, thereby effectively opening the second valve 172, when the pump head 108 is moving in a first or distal axial direction (e.g., toward the second end portion 106b of the space 106), such as when the pump head 108 is being depressed.


In this configuration, the second valve 172 can be configured so that releasing the pump head 108 or moving the pump head 108 in the second direction away from the second end portion 106b of the space 106 can close the valve 172 and cause a suction force or vacuum to be created within the internal passageways 150 distal to the second valve 172, thereby drawing the liquid substance 101 into the internal passageways 150 distal to the second valve 172. Again, when the pump head 108 is depressed in the first direction toward the second end portion 106b of the space 106, at least a portion of the liquid substance 101 within the internal passageways 150 will be caused to advance through the open valve 172 and be dispensed through the passageway 109 of the pump head 108.


With reference to FIGS. 15 and 16, some embodiments of the second valve 172 can have one or more restrictors 180 (three being shown) that can be configured to prevent an axial movement of the plug 174 in a proximal direction (e.g., away from the second end portion 106b of the space 106). The one or more restrictors 180 can extend in an inward radial direction and can have a point or inwardly projecting protrusion 182 that is configured to prevent the plug 174 from moving past the point or protrusion 182 of each of the one or more restrictors 180. In some embodiments, the inwardly projecting protrusions 182 can have an inner diameter that is less than an outer diameter of the plug 174. A radially inwardly facing surface of the one or more restrictors can be smoothly curved. In this configuration, the plug 174 can be permitted to move axially within the space 176 between the one or more restrictors 180 and the restriction 175.


Some embodiments of the liquid substance dispenser 100 can be configured to create a small suction force in the passageway 109 of the pump head 108 when the pump head 108 is released from a position that is distal to the initial or proximal most position of the pump head 108 to draw into the passageway 109 through the opening 179 of the pump head 108 any of the liquid substance 101 that is outside of the opening 179 of the pump head 108 but which still may be in contact with the opening 179 of the pump head 108 (e.g., to draw into the passageway 109 any drips that may still be clinging to the opening 179 of the pump head 108). For example and without limitation, the movement or seating of the plug 174 into sealing contact with the restriction 175 can be delayed (for example, due to the impedance and/or viscosity of the liquid substance 101), thereby causing the aforementioned suction force within at least the passageway 111 of the push rod 110 to also exert a suction force on the passageway 109 within the pump head 108 before the valve 172 is closed that can draw any drips back into the passageway 109 of the pump head 108. In some arrangements, the opening 179 can be formed in a lower component 183 of the pump head.


In some embodiments, the housing 102 can have an outer sleeve member 200 that encloses an inner reservoir for containing liquid, an inner container member 202, an inside of which can provide the space 106, and a bottom end member 204. In some embodiments, the top cover 103 can have an outside surface 103a around a perimeter thereof that can have a similar size and shape that aligns with an outside surface 200a of the outer sleeve member 200. In any embodiments disclosed herein, the top cover 103 can have a cover portion 206 and an inner body member 208. In some embodiments, the outer sleeve member 200 and the cover portion 206 can be formed from a decorative material, a tile or stone material, a metal such as stainless steel, or otherwise. The inner container member 202 and the inner body member 208 can be made from a molded plastic, a metal material, or any other suitable material.


Any embodiments of the liquid substance dispenser 100 can be configured to provide an opening into or access to the space 106 within the housing 102 for refilling of the liquid substance 101 within the space 106. For example and without limitation, some embodiments of the liquid substance dispenser 100 can have a movable latch 210 having an actuator 212 (that can be a button or other similar part) that can be moved from a first, latched position (as shown in FIGS. 1, 2, and 8, among others) to a second, unlatched position. The latch 210 can also have a spring or other biasing member 214 configured to bias the actuator 212 toward the first, latched position. The latch 210 can also have a protrusion or latching element 216 configured to selectively engage with a lip or flange 218 of a first inner support member 220. In some embodiments, the latching element 216 can be integrally formed with and protrude away from a body portion of the actuator 212. When the actuator 212 is in the first position, the latching element 216 can extend into a recess 219 formed in the first inner support member 220 so that the flange 218 overlaps or extends over a portion of the latching element 216 and selectively secures the latching element 216 to the first inner support member 220, thereby securing the top cover 103 to the first inner support member 220 and the rest of the housing 102. In some embodiments, the actuator 212 and the biasing member 214 can be supported by a removable support member 234 or positioned within a recess of the removable support member 234. A gasket 236 can provide a seal between the inner body member 208 and the removable support member 234. The first inner support member 220 can be coupled with a second inner support member 221, which can be coupled with a first end portion 202a of the inner container member 202. Other gaskets 237 can be used to seal between the various components. A collar 239


In some embodiments, with reference to FIGS. 14 and 15, a collar member 260 can surround an outside surface of the pump sleeve 112 and be configured to fit within an opening or recess 262 in the pump head 108 such that the pump head 108 can be positioned over and around a portion of the collar member 260. In this configuration, by depressing the actuator 212 in a radial inward direction—e.g., to the second, unlatched position, the top cover 103 can be unsecured from the first inner support member 220 and at least the top cover 103 (which can include the cover portion 206 and the inner body member 208), the pump head 108, the push rod 110 (which can include the first push rod portion 114 and the second push rod portion 116), the second valve 172, the latch 210, the removable support member 234, and the collar member 260 can be removed from the housing 102 and/or the rest of the components of the liquid substance dispenser 100, as shown in FIG. 16 and FIG. 17. In this open or partially disassembled state, the space 106 can be filled or refilled with the liquid substance 101 by pouring the liquid substance 101 through the opening 286 in the first inner support member 220. The inwardly and downwardly sloping walls 288 of the first inner support member 220 can facilitate the filling of the space 106.


In some embodiments, the liquid substance dispenser 100 can have additional fasteners, seals, components, and other features such as is shown in the figures or would otherwise be apparent to one of ordinary skill in the art. Further, any components disclosed herein can be made from any suitable material, include plastic (such as, without limitation, polypropylene), any metal, or any other suitable material. In some embodiments, the push rod 110 and the pump sleeve 112 can be made from polypropylene, and certain surfaces or components can have a silicone coating to reduce friction thereof.


While certain embodiments of the inventions have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosure. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the systems and methods described herein may be made without departing from the spirit of the disclosure. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the disclosure. Accordingly, the scope of the present inventions is defined only by reference to the appended claims as presented here or as amended in the future or as presented or amended in one or more continuing or divisional applications.


Features, materials, characteristics, or groups described in conjunction with a particular aspect, embodiment, or example are to be understood to be applicable to any other aspect, embodiment or example described in this section or elsewhere in this specification unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The protection is not restricted to the details of any foregoing embodiments. The protection extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.


Furthermore, certain features that are described in this disclosure in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can, in some cases, be excised from the combination, and the combination may be claimed as a subcombination or variation of a subcombination.


Moreover, while operations may be depicted in the drawings or described in the specification in a particular order, such operations need not be performed in the particular order shown or in sequential order, or that all operations be performed, to achieve desirable results. Other operations that are not depicted or described can be incorporated in the example methods and processes. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the described operations. Further, the operations may be rearranged or reordered in other implementations. Those skilled in the art will appreciate that in some embodiments, the actual steps taken in the processes illustrated and/or disclosed may differ from those shown in the figures. Depending on the embodiment, certain of the steps described above may be removed, others may be added. Furthermore, the features and attributes of the specific embodiments disclosed above may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure. Also, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described components and systems can generally be integrated together in a single product or packaged into multiple products.


For purposes of this disclosure, certain aspects, advantages, and novel features are described herein. Not necessarily all such advantages may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the disclosure may be embodied or carried out in a manner that achieves one advantage or a group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.


Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements, and/or steps are included or are to be performed in any particular embodiment.


Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.


Language of degree used herein, such as the terms “approximately,” “about,” “generally,” and “substantially” as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof, and any specific values within those ranges. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers and values used herein preceded by a term such as “about” or “approximately” include the recited numbers. For example, “approximately 7 mm” includes “7 mm” and numbers and ranges preceded by a term such as “about” or “approximately” should be interpreted as disclosing numbers and ranges with or without such a term in front of the number or value such that this application supports claiming the numbers, values and ranges disclosed in the specification and/or claims with or without the term such as “about” or “approximately” before such numbers, values or ranges such, for example, that “approximately two times to approximately five times” also includes the disclosure of the range of “two times to five times.” The scope of the present disclosure is not intended to be limited by the specific disclosures of preferred embodiments in this section or elsewhere in this specification, and may be defined by claims as presented in this section or elsewhere in this specification or as presented in the future. The language of the claims is to be interpreted broadly based on the language employed in the claims and not limited to the examples described in the present specification or during the prosecution of the application, which examples are to be construed as non-exclusive.

Claims
  • 1. A manually operated liquid dispenser, comprising: a housing with a volume of space therein, the volume of space having a first end and a second end;a pump sleeve extending into the space of the housing and nearly to a bottom, inside surface of the space;a pump head;a push rod coupled with the pump head and configured to be axially movable within an axial opening extending through the pump sleeve;a passageway extending through at least the pump head and the push rod, the passageway being in fluid communication with the axial opening extending through the pump sleeve and with the volume of space within the housing;a first valve configured to control a passage of a liquid substance within the volume of space in the housing through a passageway, the first valve comprising a first plug configured to be axially movable within a space within the first valve;a second valve configured to control a passage of a liquid substance within the volume of space in the housing through a passageway in the pump head, the second valve comprising a second plug configured to be axially movable within a space within the second valve; andan inner support member having one or more inwardly and downwardly sloping walls configured to facilitate filling the volume of space with the liquid substance;wherein the second valve is located in a space within the pump head.
  • 2. The dispenser of claim 1, wherein the dispenser does not have a dip tube.
  • 3. The dispenser of claim 1, wherein the dispenser is configured to fully depress and dispense a liquid substance with 1 kg or less of force applied to the pump head.
  • 4. The dispenser of claim 1, wherein the pump sleeve extends toward the second end of the volume of space such that a distance between a distal end of the pump sleeve and the second end of the volume of space is less than approximately 5% of the distance from the first end of the volume of space of the housing to the second end of the volume of space of the housing.
  • 5. The dispenser of claim 1, wherein the pump sleeve extends toward the second end of the volume of space such that a distance between a distal end of the pump sleeve and the second end of the volume of space is less than or equal to an average diameter or cross-sectional width of a majority of a length of the pump sleeve.
  • 6. The dispenser of claim 1, comprising a spring configured to axially bias the push rod toward the pump head.
  • 7. The dispenser of claim 1, wherein the first valve is configured to close or inhibit a flow of liquid through the first valve when the pump head is depressed.
  • 8. The dispenser of claim 1, wherein the first valve is positioned at a distal end of the pump sleeve and the second valve is positioned at a proximal end of the pump sleeve.
  • 9. The dispenser of claim 1, wherein the second valve is configured to prevent a passage of air past the second valve when the pump head is returning from a depressed position to an undepressed position.
  • 10. The dispenser of claim 1, wherein a suction force or vacuum moves the first plug axially within the space within the first valve to allow the liquid substance to be drawn into the passageway.
  • 11. The dispenser of claim 1, further comprising a retainer in fluid communication with the axial opening extending through the pump sleeve, wherein the retainer retains the first plug within the space within the first valve.
  • 12. The dispenser of claim 11, wherein the retainer comprises an opening in fluid communication with the axial opening, the opening of the retainer having a smaller diameter or cross-sectional width than a diameter the first plug.
  • 13. The dispenser of claim 11, wherein the retainer comprises an opening in fluid communication with the axial opening, wherein the opening of the retainer has a smaller average diameter or cross-sectional width than an average diameter or cross-sectional width of a majority of a length of the pump sleeve.
  • 14. The dispenser of claim 1, wherein the second valve comprises one or more restrictors configured to prevent an axial movement of the second plug in a proximal direction.
  • 15. The dispenser of claim 14, wherein the one or more restrictors extend in a radial direction and comprise an inwardly projecting protrusion, the inwardly projecting protrusion is configured to prevent the second plug from moving past the inwardly projecting protrusion.
  • 16. The dispenser of claim 1, further comprising a projection, wherein the projection extends towards the first plug to limit a range of motion of the first plug in a proximal axial direction of the pump sleeve.
  • 17. The dispenser of claim 1, wherein in a fully actuated position, a distal end of the push rod extends into a lower half of the space of the housing.
  • 18. The dispenser of claim 1, comprising a spring tapered from a first end portion of the spring to a second end portion of the spring, the first end portion of the spring has a smaller diameter of the second end portion of the spring.
  • 19. A manually operated liquid dispenser, comprising: a housing with a volume of space therein, the volume of space having a first end and a second end;a pump sleeve extending into the space of the housing;a pump head;a push rod coupled with the pump head and configured to be axially movable within an axial opening extending through the pump sleeve;a passageway extending through at least the pump head and the push rod, the passageway being in fluid communication with the axial opening extending through the pump sleeve and with the volume of space within the housing;a first valve configured to control a passage of a liquid substance within the volume of space in the housing through a passageway, the first valve comprising a first plug configured to be axially movable within a space within the first valve;a second valve configured to control a passage of a liquid substance within the volume of space in the housing through a passageway, the second valve comprising a second plug configured to be axially movable within a space within the second valve; andan inner support member having one or more inwardly and downwardly sloping walls configured to facilitate filling the volume of space with the liquid substance;wherein the first valve is positioned at a distal end of the pump sleeve and the second valve is positioned at a proximal end of the pump sleeve;wherein the first valve and second valve independently control the passage of the liquid substance within the volume of space in the housing.
  • 20. The dispenser of claim 19, wherein the first valve is configured to close or inhibit a flow of liquid through the first valve when the pump head is depressed.
  • 21. The dispenser of claim 19, wherein the second valve is configured to prevent a passage of air past the second valve when the pump head is returning from a depressed position to an undepressed position.
  • 22. The dispenser of claim 19, further comprising a projection, wherein the projection extends towards the first plug to limit a range of motion of the first plug in a proximal axial direction of the pump sleeve.
  • 23. The dispenser of claim 19, wherein the push rod has a substantially cylindrical first push rod portion and a second push rod portion, the second push rod portion coupled with and axially aligned with the first push rod portion.
  • 24. The dispenser of claim 23, wherein a proximal end portion of the first push rod portion includes the second plug, wherein the second plug is configured to move with the proximal end portion.
  • 25. The dispenser of claim 19, further comprising a retainer in fluid communication with the axial opening extending through the pump sleeve, the retainer having an opening with an inner diameter at a distal end thereof about the same as an inner diameter of the push rod or a width of an internal passageway through the push rod.
  • 26. A manually operated liquid dispenser, comprising: a housing with a liquid reservoir configured to contain liquid, the liquid reservoir comprising a top and a bottom, and an upper half and a lower half;a pump sleeve extending into the liquid reservoir of the housing such that a distance between a distal end of the pump sleeve and the bottom of the reservoir is less than or equal to about an average diameter or cross-sectional width of a majority of a length of the pump sleeve, the pump sleeve having an inner diameter or cross-sectional width;a pump head;a push rod coupled with the pump head and configured to be axially movable within an axial opening extending through the pump sleeve, the push rod comprising a distal end with an outer diameter or cross-sectional width that is about a same size as the inner diameter or cross-sectional width of the pump sleeve;a passageway extending through at least the pump head and the push rod, the passageway being in fluid communication with the axial opening extending through the pump sleeve and with a volume of space within the housing;a first valve configured to control a passage of a liquid substance within the volume of space in the housing through a passageway, the first valve comprising a first plug configured to be axially movable within a space within the first valve; andan inner support member having one or more inwardly and downwardly sloping walls configured to facilitate filling the volume of space with the liquid substance;wherein the dispenser is configured to dispense a viscous substance;wherein the dispenser is configured to fully depress and dispense the viscous substance with about 1 kg or less of force applied to the pump head;wherein in a fully actuated position, the distal end of the push rod extends into the lower half of the liquid reservoir.
  • 27. The dispenser of claim 26, wherein the viscous substance is a lotion or a liquid soap.
  • 28. The dispenser of claim 26, wherein the dispenser is configured to fully depress and dispense a liquid substance with 1 kg or less of force applied to the pump head.
  • 29. The dispenser of claim 26, wherein the distal end of the push rod comprises one or more walls configured to at least partially surround a tapered first end portion of a spring.
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

The present application claims the benefit under 35 U.S.C. § 119(e) to U.S. Patent Application No. 63/146,270, filed on Feb. 5, 2021. The contents of each of these priority applications are hereby incorporated by reference herein in their entirety as if fully set forth herein for all purposes. Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference herein in their entirety and made a part of this specification.

US Referenced Citations (272)
Number Name Date Kind
1598970 Anton Sep 1926 A
1852821 Rambo Apr 1932 A
2017867 Nantz Oct 1935 A
2106043 Urquhart et al. Jan 1938 A
2294236 Levernier Aug 1942 A
2628744 Mowbray Feb 1953 A
2651545 Shotton Sep 1953 A
2697446 Harrington Dec 1954 A
2772817 Jauch Dec 1956 A
3023922 Arrington et al. Mar 1962 A
3149754 Kogan et al. Sep 1964 A
3159317 Mini Dec 1964 A
3220954 Malbe Nov 1965 A
3531021 Bassett Sep 1970 A
3631736 Saari Jan 1972 A
3701482 Sachnik Oct 1972 A
4046289 Teranishi Sep 1977 A
4056050 Brown Nov 1977 A
4113147 Frazier et al. Sep 1978 A
4202387 Upton May 1980 A
4217993 Jess et al. Aug 1980 A
4280638 Keihm Jul 1981 A
4457455 Meshberg Jul 1984 A
4498843 Schneider et al. Feb 1985 A
4524805 Hoffman Jun 1985 A
4693854 Yau Sep 1987 A
4722372 Hoffman et al. Feb 1988 A
4801249 Kakizawa Jan 1989 A
4915347 Iqbal et al. Apr 1990 A
4921131 Binderbauer et al. May 1990 A
4938384 Pilolla Jul 1990 A
4946070 Albert et al. Aug 1990 A
4967935 Celest Nov 1990 A
5028328 Long Jul 1991 A
5082150 Steiner et al. Jan 1992 A
D325771 Di Maggio Apr 1992 S
5105992 Fender et al. Apr 1992 A
5169040 Wiley Dec 1992 A
5186360 Mease et al. Feb 1993 A
5199118 Cole et al. Apr 1993 A
5255822 Mease et al. Oct 1993 A
5271528 Chien Dec 1993 A
5305916 Suzuki et al. Apr 1994 A
5381932 Humphrey Jan 1995 A
5449280 Maki et al. Sep 1995 A
5466131 Altham et al. Nov 1995 A
5472719 Favre Dec 1995 A
5477984 Sayama et al. Dec 1995 A
5509578 Livingstone Apr 1996 A
5632414 Merriweather, Jr. May 1997 A
5732741 Shiery Mar 1998 A
5771925 Lewandowski Jun 1998 A
5806721 Tada Sep 1998 A
5823390 Muderlak et al. Oct 1998 A
5829636 Vuong et al. Nov 1998 A
5836482 Ophardt et al. Nov 1998 A
5855356 Fait Jan 1999 A
5868311 Cretu-petra Feb 1999 A
5960991 Ophardt Oct 1999 A
D416154 Diehl Nov 1999 S
5988451 Hanna Nov 1999 A
6021705 Dijs Feb 2000 A
6021960 Kehat Feb 2000 A
6036056 Lee et al. Mar 2000 A
6048183 Meza Apr 2000 A
D426093 Cayouette Jun 2000 S
D426413 Kreitemier et al. Jun 2000 S
6126290 Veigel Oct 2000 A
D433944 Bernard Nov 2000 S
6142340 Watanabe et al. Nov 2000 A
6152327 Rhine et al. Nov 2000 A
D438041 Huang Feb 2001 S
6209752 Mitchell et al. Apr 2001 B1
RE37173 Jefferson, Jr. et al. May 2001 E
6269735 Rolfes Aug 2001 B1
6279460 Pope Aug 2001 B1
6279777 Goodin et al. Aug 2001 B1
6311868 Krietemeier et al. Nov 2001 B1
6325604 Du Dec 2001 B1
6375038 Daansen et al. Apr 2002 B1
6390329 Maddox May 2002 B1
6443328 Fehl et al. Sep 2002 B1
6444956 Witcher et al. Sep 2002 B1
D471047 Gordon et al. Mar 2003 S
6557584 Lucas et al. May 2003 B1
6594105 Brittner Jul 2003 B1
D477956 Grisdale et al. Aug 2003 S
6619938 Woodruff Sep 2003 B2
D483974 Reed Dec 2003 S
D484573 Haug et al. Dec 2003 S
D486335 Sonneman Feb 2004 S
6698616 Hidle et al. Mar 2004 B2
6722265 Priley Apr 2004 B2
D490262 Graves et al. May 2004 S
6748850 Kraan Jun 2004 B1
6777007 Cai Aug 2004 B2
6805042 Mordini et al. Oct 2004 B2
6824369 Raymond Nov 2004 B2
D499295 Grisdale et al. Dec 2004 S
6832542 Hu et al. Dec 2004 B2
6892899 Minard et al. May 2005 B2
6929150 Muderlak et al. Aug 2005 B2
6971549 Leifheit et al. Dec 2005 B2
6988897 Belongia et al. Jan 2006 B2
7008073 Stuhlmacher Mar 2006 B2
D530954 Snell Oct 2006 S
D531440 Lo Nov 2006 S
D531441 Soriano Nov 2006 S
D531845 Christianson Nov 2006 S
D534753 Christianson Jan 2007 S
7178746 Gross Feb 2007 B2
7213593 Hochrainer May 2007 B2
D554412 Yang et al. Nov 2007 S
7296765 Rodrian Nov 2007 B2
D560942 Hanna Feb 2008 S
D564273 Yang et al. Mar 2008 S
7337635 Cerruti et al. Mar 2008 B2
D565878 Krus Apr 2008 S
7354015 Byrd et al. Apr 2008 B2
D569736 Oates et al. May 2008 S
D581193 Ghiorghie Nov 2008 S
D582187 Yang et al. Dec 2008 S
7479000 Klassen Jan 2009 B2
D593784 Chan Jun 2009 S
7540397 Muderlak et al. Jun 2009 B2
D604544 Daams Nov 2009 S
7637893 Christensen et al. Dec 2009 B2
D608578 Yang et al. Jan 2010 S
D610917 Ho Mar 2010 S
D622991 MacDonald et al. Sep 2010 S
7815074 Clavarella et al. Oct 2010 B2
D626365 Yang et al. Nov 2010 S
D644523 Howell et al. Sep 2011 S
D644529 Padain et al. Sep 2011 S
D644530 Padain et al. Sep 2011 S
D644531 Padain et al. Sep 2011 S
8087543 Yang et al. Jan 2012 B2
8096445 Yang et al. Jan 2012 B2
8109301 Denise Feb 2012 B1
8109411 Yang et al. Feb 2012 B2
8152027 Baker Apr 2012 B1
D658915 Fernandes et al. May 2012 S
D659452 Yang et al. May 2012 S
D659454 Fritz et al. May 2012 S
D660061 Fernandes et al. May 2012 S
D661531 Tompkin Jun 2012 S
D661933 Delgigante et al. Jun 2012 S
D663143 Delgigante et al. Jul 2012 S
D663983 Yang et al. Jul 2012 S
D664387 Kennedy Jul 2012 S
D672177 Zeng Dec 2012 S
D674636 Yang et al. Jan 2013 S
8360285 Grbesic Jan 2013 B2
D676116 Judd Feb 2013 S
D682589 Cheng May 2013 S
D688488 Wang Aug 2013 S
D689299 Kassem Llano et al. Sep 2013 S
D690129 Clough et al. Sep 2013 S
D690130 Clough et al. Sep 2013 S
D690131 Clough et al. Sep 2013 S
D690530 Clough et al. Oct 2013 S
8550378 Mazooji et al. Oct 2013 B2
D693597 Yang et al. Nov 2013 S
D699047 Lissoni Feb 2014 S
D699475 Yang et al. Feb 2014 S
D699574 Cox et al. Feb 2014 S
8662356 Padain et al. Mar 2014 B2
8678244 Yang et al. Mar 2014 B2
D706549 Cho Jun 2014 S
8740019 Clavarella et al. Jun 2014 B1
D717066 Deacon Nov 2014 S
8893928 Proper Nov 2014 B2
D721279 Van Handel et al. Jan 2015 S
D727653 Bjerre-poulsen et al. Apr 2015 S
D731203 Watson et al. Jun 2015 S
D731204 Watson et al. Jun 2015 S
D732308 Enga et al. Jun 2015 S
D733454 Von Heifner et al. Jul 2015 S
D746136 Liu Dec 2015 S
9265383 Yang et al. Feb 2016 B2
9375741 Turner Jun 2016 B2
D765440 Clough et al. Sep 2016 S
D770798 Yang et al. Nov 2016 S
D773847 Judd Dec 2016 S
D773848 Yang et al. Dec 2016 S
D785970 Yang et al. May 2017 S
D786579 Beck et al. May 2017 S
9763546 Yang et al. Sep 2017 B2
D815855 Bos et al. Apr 2018 S
D818741 Yang et al. May 2018 S
10076216 Yang et al. Sep 2018 B2
D829465 Yang et al. Oct 2018 S
D832414 Sharma et al. Oct 2018 S
10150127 Tepas et al. Dec 2018 B2
D842121 Lee Mar 2019 S
D854134 Jessup Jul 2019 S
D876955 Atalay Mar 2020 S
10588467 Yang et al. Mar 2020 B2
D881367 Kihm et al. Apr 2020 S
D882056 Baillie et al. Apr 2020 S
D884480 Karekar May 2020 S
D897721 Jia Oct 2020 S
10806305 Yang et al. Oct 2020 B2
D906723 Chen Jan 2021 S
D916262 Wang et al. Apr 2021 S
D916499 Chen Apr 2021 S
11064846 Yang et al. Jul 2021 B2
11141026 Yang et al. Oct 2021 B2
D936196 Xu Nov 2021 S
D962672 Yang et al. Sep 2022 S
D967650 Yang et al. Oct 2022 S
20020179643 Knight et al. Dec 2002 A1
20020185002 Herrmann Dec 2002 A1
20030068242 Yamakawa Apr 2003 A1
20040032749 Schindler et al. Feb 2004 A1
20040050875 Kobayashi Mar 2004 A1
20040077187 Belongia et al. Apr 2004 A1
20040103792 Cirigliano et al. Jun 2004 A1
20040134924 Hansen et al. Jul 2004 A1
20040226962 Mazursky et al. Nov 2004 A1
20050006407 Lawson et al. Jan 2005 A1
20050127099 Chou Jun 2005 A1
20050139612 Matthews et al. Jun 2005 A1
20050279783 Lo Dec 2005 A1
20060067546 Lewis et al. Mar 2006 A1
20060086760 Cohen Apr 2006 A1
20060173576 Goerg et al. Aug 2006 A1
20060243740 Reynolds et al. Nov 2006 A1
20070000941 Hadden et al. Jan 2007 A1
20070138202 Evers Jun 2007 A1
20070138208 Scholz et al. Jun 2007 A1
20070158359 Rodrian Jul 2007 A1
20070274853 Merendeiro et al. Nov 2007 A1
20080149669 Nicholson et al. Jun 2008 A1
20080277411 Beland et al. Nov 2008 A1
20080277421 Zlatic et al. Nov 2008 A1
20080283556 Snodgrass Nov 2008 A1
20090026225 Lickstein Jan 2009 A1
20090088836 Bishop et al. Apr 2009 A1
20090140004 Scorgie Jun 2009 A1
20090184134 Ciavarella et al. Jul 2009 A1
20090200340 Ophardt et al. Aug 2009 A1
20100031982 Hornsby et al. Feb 2010 A1
20100051642 Wong et al. Mar 2010 A1
20100282772 Ionidis Nov 2010 A1
20100320227 Reynolds Dec 2010 A1
20110017769 Ophardt Jan 2011 A1
20110114669 Yang et al. May 2011 A1
20110253744 Pelfrey Oct 2011 A1
20110272432 Baughman Nov 2011 A1
20110303695 Fern Dec 2011 A1
20120097711 Xianzhi et al. Apr 2012 A1
20120111895 Fitzpatrick et al. May 2012 A1
20120138632 Li et al. Jun 2012 A1
20120138637 Ciavarella et al. Jun 2012 A1
20120248149 Pelfrey et al. Oct 2012 A1
20120285992 Ciavarella et al. Nov 2012 A1
20120318820 Amsel et al. Dec 2012 A1
20130119083 Ophardt et al. May 2013 A1
20130140323 Yun et al. Jun 2013 A1
20130200097 Yang et al. Aug 2013 A1
20130200109 Yang et al. Aug 2013 A1
20130214011 Vandekerchkhove et al. Aug 2013 A1
20140103072 Pelfrey Apr 2014 A1
20140137982 Nicholls et al. May 2014 A1
20140231450 Rosko et al. Aug 2014 A1
20150265106 Rospierski Sep 2015 A1
20170015541 Vulpitta et al. Jan 2017 A1
20170113237 Scott Apr 2017 A1
20210378459 Yang et al. Dec 2021 A1
20220133095 Yang et al. May 2022 A1
20220248915 Yang et al. Aug 2022 A1
Foreign Referenced Citations (29)
Number Date Country
141847 Apr 2012 CA
144016 Apr 2012 CA
1285899 Feb 2001 CN
101606828 Dec 2009 CN
102058336 May 2011 CN
306917043 Nov 2021 CN
3718967 Dec 1987 DE
3718967 May 1994 DE
19927230 Dec 2000 DE
0455431 Nov 1991 EP
0493865 Jul 1992 EP
2135538 Dec 2009 EP
2322068 May 2011 EP
2546523 Jan 2013 EP
2738387 Jun 2014 EP
008517734-0001 Apr 2021 EP
9004350817-0001 Sep 2017 GB
H07-23876 Jan 1995 JP
D1117308 Jun 2001 JP
2002-130153 May 2002 JP
D1266683 Feb 2006 JP
2013-133754 Jul 2013 JP
3002845520000 Nov 2001 KR
WO 2008095187 Aug 2008 WO
WO 2008103300 Aug 2008 WO
WO 2012122056 Sep 2012 WO
WO 2012154642 Nov 2012 WO
WO 2013119642 Aug 2013 WO
WO 2013119874 Aug 2013 WO
Non-Patent Literature Citations (11)
Entry
Simplehuman® Sensor Pump Max Liquid Soap or Sanitizer Dispenser, https://www.officedepot.com/a/products/8839133/simplehuman-Sensor-Pump-Max-Liquid-Soap/#Reviews, available Aug. 2021, retrieved Mar. 29, 2022, in 2 pages.
Simplehuman Pulse Pump Brushed Stainless Steel 10 oz. Capacity Freestanding Soap and Lotion Dispenser, available in lowes.com, customer review oldest date Mar. 24, 2021, retrieved on Mar. 24, 2022, https://www.lowes.com/pd/simplehuman-simplehuman-10-oz-Pulse-Pump-Brushed-Stainless, in 7 pages.
Extended Search Report in corresponding European Patent Application No. 22155297.9, dated Jun. 10, 2022, in 9 pages.
U.S. Appl. No. 29/756,158, filed Aug. 26, 2020, Yang et al.
U.S. Appl. No. 29/747,947, filed Aug. 26, 2020, Yang et al.
U.S. Appl. No. 17/666,377, filed Feb. 7, 2022, Yang et al.
Manring et al., “The Theoretical Flow Ripple of an External Gear Pump,” Transactions of the ASME, vol. 125, Sep. 2003, pp. 396-404.
The Sharper Image Soap Genie SI335, Mar. 2006, in 8 pages.
Simplehuman® Rechargeable Sensor Soap Dispenser, Item No. 201881, https://www.sharperimage.com/si/view/product/Rechargeable-Sensor-Soap-Dispenser/201881?trail, published on Sep. 3, 2013, in 3 pages.
Simplehuman Push Pump with Caddy image, 2016.
Mechanics drawing of a generic pump, publication date of 2019.
Related Publications (1)
Number Date Country
20220248914 A1 Aug 2022 US
Provisional Applications (1)
Number Date Country
63146270 Feb 2021 US