Kitesurfing is a recreational activity in which the user employs a large kite to harness the wind in order to pull him/herself across the surface of the water/snow while riding on a board or other device. It is fair to think of this sport as basically water skiing behind a powerful kite, although this sport has been adapted to be used on snow/ice as well. The most popular type of kite is the inflatable kite. The kite structure consists of a framework of inflated tubes that give the kite its structure (See FIG. 1). A canopy skin is then attached to the inflated structure. This structure allows the kite to relaunch off of the water's surface, and maintains the proper shape of the kite in the air. Ram air kites are the other type of kite and are similar to the rectangular parachutes that employ a series of cells filled with air (not under high pressure) as a structure, and an intricate bridle system comprising of many lines. Ram air kites typically have a flat shape, and the inflatable kites have a distinctive “C” shape in the air. This invention can be applied equally well to both types of kites.
When participating in the sport of kitesurfing, the user typically wears a harness fitted with a spreader bar. The spreader bar generally consists of a metal bar that spans the width of the user's hips. The middle of this bar has a hook on it, preferably with the opening facing downwardly. The harness is worn around the user's midsection, and its purpose is to retain a loop 67 that is connected to the kite. The user engages this loop into the hook on the spreader bar. The kite's pull is transferred through the loop into the spreader bar and then on to the user. Basically, the user is being pulled around by the loop 67.
The kite typically has four flying lines. The front lines 55 are the ones that transmit the vast majority of the kite's pull. The back lines 57 are connected to the ends of the control bar 63 and are used for steering and power control. The front two lines are tied to the top end of an adjuster strap 59, which typically has a buckle 61 which provides for the length adjustment of the front lines. The bottom end of the adjuster strap attaches to a rope 65 called a trim line. Of course, the terms “rope” and “line” refer to ropes, straps and other equivalent structures that perform the same functions. The trim line goes through a hole in the center of the control bar.
The other end of this line creates the loop. While the loop is engaged in the hook on the spreader bar, the user can move the control bar up and down the rope between the loop 67 and the adjuster strap 59. Moving the bar in this manner creates a discrepancy in the length of the front lines with respect to the back lines. This difference in length changes the angle of attack (pitch) of the kite's airfoil, influencing the amount of power generated by the kite. The loop is often referred to as a trim loop because when hooked into the loop, it is possible to change the trim of the kite by moving the control bar up and down the trim line. Push the bar away and less power is generated; pull the bar towards your body and the angle of attack is increased, thus generating more power.
When the hook on the spreader bar retains the loop on the end of the trim line, the user is directly connected to the power of the kite. A vast majority of the kite's pulling force is transferred through the loop and into the spreader bar. If the user employs only the hook and loop as described above, he/she cannot free him/herself from the pull of the kite without removing (unhooking) the loop from the spreader bar on the harness. An inherent problem is that in order to unhook the loop, the user must pull the control bar towards the body until it comes in contact with the loop. The user cannot let the control bar go because the user's hands must remain on the control bar in order to maintain steering control of the kite. When the control bar comes in contact with the loop, the user must then overcome the pulling force of the kite in order to unhook the loop from the spreader bar. Problematically, the movement of the control bar towards the body increases the angle of attack of the airfoil, and generates more power in the kite. If the user desires to disconnect himself from the kite because of impending danger resulting from the kite pulling too much, he/she must generate even more power (and pull against that increased power) to free himself/herself. Depending on the situation and the strength of the person he/she may not posses the arm strength necessary to unhook and disconnect the kite. There have been documented deaths and serious injuries resulting from the inability to unhook and release the loop.
In an emergency situation, the user must both be aware of the kite's position in the sky, and also worry about disconnecting him/herself from the kite. Kiting is often practiced in radical conditions. Novices typically only should kitesurf in light to moderate conditions, but experts have been known to go out in winds in excess of 60 mph. Even in winds of 15-20 mph, the kites used are powerful enough to drag the person into serious trouble. One documented death involved a lady who was lifted up and over a house and killed when impacting a concrete wall on the far side of the house. People have been dragged into roadways, into boats, bridges and into trees because of the inability to disconnect themselves from the pull of their kite. This sport is potentially dangerous because the user can potentially be dragged violently into hard objects or into other people.
The problems described above can be overcome by a loop that has an easy to find trigger (no hard to find handle), and can reliably disengage the user from the kite while under load by activating a mechanical device. Several prior art quick release loops exist and are documented in the attached drawings. The ideal quick release loop should be reliable, easy to open while under load, quick to deploy, and should not require locating a special handle or trigger to activate the release mechanism. It is also not ideal for the release mechanism to rely on hook and loop fasteners to secure the loop in the closed position. Hook and loop fasteners (widely known as Velcro) are unreliable because of the degradation of effectiveness experienced over time. Often times the hook and loop fasteners are fouled by things like sand, seaweed, fabric threads, hair etc.
It is important to recognize that in order to avoid danger in an emergency situation, one often has less than one second to:
1. Realize that danger is impending; and
2. Activate the quick release mechanism
In order to activate the prior art types of quick release loops, one must first locate a special handle, obtain a good grip, and then pull the handle, sometimes with cold, stiff and wet hands, which may be slippery. A big problem of all prior art is that the handle is not always in the same place. Sometimes it is most easily accessed with the right hand, but often it is equally likely to be most accessible with the left hand.
In many prior art devices, the release mechanism can be activated by pulling in various directions. Thus, if snagged on a piece of equipment, the handle may inadvertently get pulled out to the side, or in some cases inwardly, away from the kite, and towards the user.
This problem is further exacerbated by the fact that during normal use of kitesurfing equipment, it is not unusual to lose your board and be dragged (while in control and out of danger) fairly rapidly through the water. The handle will therefore be in the water, and the passing water or objects rushing by the handle would apply a force rearwardly, away from the kite, a direction that potentially could unintentionally activate the quick release mechanism. If the kite were released by an inadvertent opening of the quick release loop, other people could be put in harm's way by a powerful kite that is tumbling downwind, out of control. An optional safety leash can be used to keep the kite tethered to the user after the kite is released, but these systems are presently wrought with problems that cause many people to choose not to employ this type of system.
Referring to
Referring to
It is therefore an object of this invention is to provide for the reliable opening of the loop while under load, thus freeing the user from the pull of the kite.
It is a further object to avoid the need to find a specially located handle in order to operate the mechanical device.
It is a further object for the entire device to be compact in nature, and be substantially rigid so as to facilitate easy hooking and unhooking of the spreader bar.
It is a further object of this invention to have the loop self orient to provide for easy engagement into the hook on the spreader bar.
The foregoing and other objects are achieved by a retainer that retains a user end of a rope abutting against an intermediate portion of the rope to form a loop, with the retainer slidable along the rope so that pushing the slidable portion along the rope and away from the user releases the user end of the rope from the retainer, so that the loop opens up. Preferably the device is activated ONLY when pushed outwardly towards the kite, so that the device comprises a “push release loop.”
Preferably, the retainer comprises a sleeve (having any shaped cross section) mounted on the rope, and the user end of the rope is maintained abutting against the intermediate portion of the rope by a frame mounted on the rope that holds a pivotable pivot pin, and a ring mounted on the user end of the rope that is engageable by the pivot pin. Of course, the frame can be provided by the rope itself, such as by intertwining a rotatable pivot pin in the rope: the term “frame” includes any means for pivotably retaining the pivot pin on the rope. When the ring is engaged with the pivot pin and the pivot pin is pivoted into the closed position, a loop is formed. The retainer then can slide over the pivot pin to maintain it in the closed position. When the retainer is pushed beyond the pivot pin, the pivot pin is released and can pivot to the open position, thus releasing the ring and thereby opening the loop.
Previous designs all have a special handle to find, and the direction of pull necessary for activation is not limited to only the ideal direction. In addition, none of the prior art addresses the need for a self-orienting loop, and many do not remain rigid for easy engagement with the hook.
According to the broadest aspect of the invention, the push release loop provides an easy and reliable deployment mechanism designed to open the loop while under load in a manner in which the end result is the user being quickly and easily released from the pull of the kite, and avoids accidental opening. The direction of motion needed to activate the quick release mechanism is ideally limited to a specific direction, preferably outwardly towards the kite.
The push release loop as embodied in this invention and detailed in the attached illustrations labeled
The “sleeve” can be any appropriate shape, such as a ring, which is merely a truncated sleeve.
The “sleeve” 107 is equally accessible by both left and right-handed users. It is also reliably in the same place each time it needs to be activated. In order to activate the release mechanism, one only needs to slide a hand down the trim line 105 until the body of the loop is found. Grasping anywhere except for part 111 and pushing outwardly towards the kite will open the loop. This feature facilitates quick deployment of the system, which is critical in an emergency situation. The ambidextrous nature of the “trigger” is an important and novel feature of this invention.
The invention is a device that push releasably retains a user end of a rope abutting against an intermediate part of the rope to form a push releasable loop. Referring to
If the retainer 107 is pushed outwardly beyond the pivot pin 101, then the metal ring 102 attached to the end of the rope slips off the pivot pin 101, thus opening the loop.
It is very useful for the loop to automatically orient itself with respect to the user. This auto-orientation presents the loop in the ideal position so that it is easy to hook into the hook on the spreader bar. The collar 108 (preferably plastic) is shown in a close up view in
Of course, the plugs can also be integrally formed with the ropes, such as knots.
While the invention has been disclosed in connection with the presently preferred embodiments described herein, it should be understood that there may be other embodiments that fall within the spirit and scope of the invention. For example, the device can be practiced using other materials or using other push releasable retainers that open up the loop. Accordingly, no limitations are to implied or inferred in this patent except as specifically and explicitly set forth in the claims.
This invention is applicable anywhere it is necessary to provide a loop that can be reliably, easily and ambidextrously released while under load, yet cannot be inadvertently released by being pulled in the wrong direction. For example, this invention can be used for the trapeze on catamarans (such as Hobie Cats), sail skiffs (49er Olympic sailing boats) and harnesses for sport fishing poles. Other applications include parachute, hang gliding and rock climbing harnesses, as well as harnesses for climbing poles and trees.
This application claims the benefit of Provisional Application No. 60/380,777, filed May 14, 2002.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US03/15433 | 5/14/2003 | WO | 00 | 5/14/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/095033 | 11/20/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6513759 | Starbuck | Feb 2003 | B2 |
6581879 | Bellacera | Jun 2003 | B2 |
6691954 | Harrington et al. | Feb 2004 | B1 |
6745713 | Starbuck | Jun 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20040140393 A1 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
60380777 | May 2002 | US |