This application is a 371 U.S. National Phase of International Application No. PCT/DE2018/100137, filed on Feb. 15, 2018, which claims the benefit of German Application No. 10 2017 106 541.5, filed on Mar. 27, 2017 and German Application No. 10 2017 114 094.8, filed on Jun. 26, 2017. The entire disclosures of the above applications are incorporated herein by reference.
This section provides background information related to the present disclosure which is not necessarily prior art.
The invention relates to a push rod lock for a switch cabinet housing and a corresponding method. Such a push rod lock is known, for example, from WO 99/36654 A1 and WO 99/16994 A1. Similar push rod locks are also described in WO 2016/095897 A1 and DE 100 49 637 C2.
To mount the push rod lock, it is necessary to mount a door lock plate on the front of the switch cabinet door and mechanically couple an actuating element of the door lock plate to the push rod, the push rod being arranged on the inner side of the switch cabinet door and linearly adjustable in vertical direction. For the assembly of the door lock plate on the switch cabinet door, push rod locks known from the art require several screw connections between the door lock plate and the door or push rod lock, so that the assembly of the door lock plate is rather cumbersome. The snap-on handle known from the WO 2016/095897 A1 can be mounted quite conveniently on a switch cabinet door, but has a relatively complex snap-on mechanism to achieve this end.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
Based on the known state of the art, it is therefore the objective of the invention to further develop a push rod lock as described above such that it can be conveniently mounted on a switch cabinet door, on the one hand, and does not require complex mechanics, on the other, and is therefore low-maintenance and cost-effective to manufacture.
Accordingly, it is provided that the push rod lock has a linearly adjustable push rod arranged on an inner side of a switch cabinet door, which projects through the switch cabinet door from the inner side via a coupling piece. A door lock plate which is mounted via an outer side of the switch cabinet door opposite the inner side is fixed to the switch cabinet door via an actuating element coupled to the coupling piece by means of a mushroom pin connection. The push rod is adjustable between a second open position and a second closed position via the actuating element, which is adjustable between a first open position and a first closed position. The mushroom pin connection is arranged in a release position in which the door lock plate is removable from the switch cabinet door at least when the push rod is arranged in the second closed position and the actuating element is arranged in an intermediate position between the first open position and the first closed position. The mushroom pin connection assumes a locking position when the actuating element is transferred from the intermediate position to the second closed position when the door lock plate is placed on the switch cabinet door in the release position.
This provides that the push rod lock can be fixed on the outer side of the switch cabinet door in the course of a single actuation of the actuating element. For this purpose, the door lock plate can, for example, be arranged in a fully open position of the actuating element (first open position) or in an intermediate position between the first open position and the first closed position, while the push rod is, for example, in the second closed position. In other words, the door lock plate can be placed on the outer side of the switch cabinet door in an unsynchronized position between the actuating element and the push rod, whereby the coupling piece of the push rod is brought into engagement with the actuating element. For this purpose, the actuating element can, for example, have a form-fit receptacle for the coupling piece on its side facing the outer side of the switch cabinet door.
If now the door lock plate and the push rod are aligned in the unsynchronized position relative to each other and the coupling piece is in engagement with the actuating element, a mushroom pin connection, via which the door lock plate is to be fixed on the outer side of the switch cabinet door, can be arranged in a release position. In particular, mushroom pins which align with widened sections, for example of a keyhole in the outer side of the switch cabinet door, can be arranged on the side of the door lock plate facing the outer side of the switch cabinet door.
In the course of moving the actuating element from the first open position or the intermediate position to the second closed position, the door lock plate can be moved in vertical direction relative to the switch cabinet door so that the mushroom pin connection is transferred to a locking position. This can be achieved, for example, by preventing the push rod from moving further in the first closed position, i.e. beyond its closed position, e.g. because the push rod rests against a stop, so that the actuation of the actuating element is translated into a vertical displacement movement of the door lock plate with respect to the switch cabinet door, thus transferring the mushroom pin connection from the release position into the locking position, in which undercut mushroom pins engage behind the switch cabinet door.
The mushroom pin connection may have at least one keyhole-shaped opening through the switch cabinet door, in particular a door leaf plate thereof, and the door lock plate may have at least one mushroom pin projecting from a support side, via which the door lock plate is placed on the outer side. In order to prepare the push rod lock for the optional left or right stop, it may in particular be provided that the switch cabinet door has a correspondingly higher number of keyhole-shaped openings in comparison with the number of mushroom head pins on the support side of the door lock plate and, for example, the support side may have two mushroom head pins arranged diametrically to a form-fit receptacle for the coupling piece, while the switch cabinet door has two diametrically opposed keyhole-shaped openings or four keyhole-shaped openings arranged around the coupling piece at the corners of a rectangle. However, more than four keyhole-shaped openings can also be provided. The geometry of the keyhole-shaped openings is not limited to any particular geometry. A keyhole-shaped opening is each characterized by a widened region which has a dimension which allows a mushroom pin to enter the keyhole with its mushroom head, while the keyhole further has a narrow portion which opens into the widened portion and which may be in the form of an elongated hole, the narrow portion having a width perpendicular to its longitudinal direction which is less than the clear width of the mushroom head of the mushroom pin. For example, the width of the elongated section may correspond to the diameter of a pin of the mushroom pin, at the end of which the mushroom head widened with respect to the pin is located. In order to permit both the left and right stop, the keyhole-shaped openings may, in particular, have a central widened portion for receiving the mushroom pin and a slot-like portion opposite each other in the vertical direction which opens each into the widened region.
The coupling piece can project through the switch cabinet door through an elongated hole extending in adjustment direction of the push rod, the coupling piece bearing against a longitudinal end of the elongated hole when the push rod is in the second closed position, so that the longitudinal end forms a stop for the coupling piece. This embodiment has the particular advantage that in the second closed position of the push rod, the door lock mechanism is not loaded during locking of the door lock plate on the outer side of the of the switch cabinet when displacing the door lock plate.
However, the invention shall also cover the kinematic reversal of the previously described coupling between the coupling piece and the adjusting element. For this purpose, for example, the adjusting element may have a coupling piece in the form of a bolt or the like, which extends through the switch cabinet door and into a form-fit receptacle on the inside of the push rod.
The mushroom pin connection may further comprise a locking bolt which is aligned with a recess in the switch cabinet door precisely when the mushroom pin connection assumes the locking position. In particular, it may be provided that the locking bolt in the locking position of the mushroom pin connection is received in a keyhole-shaped opening in the mushroom pin.
The locking bolt can be received in a bolt guide of the door lock plate, wherein the locking bolt has a spring-loaded bias relative to the bolt guide, or is held in the bolt guide by frictional engagement. The preload can be set so that the locking bolt automatically engages in the recess in the switch cabinet door as soon as the door lock plate has reached its end position opposite the switch cabinet door, i.e. the mushroom pin connection assumes its locking position.
In particular if the actuating member has a lever which can be pivoted or rotated relative to a base of the door lock plate, it may be provided that, in its release position, the locking bolt projects with an actuating pin from the base of the door lock plate over a side opposite the support side, wherein a free end of the actuating pin is displaced in the direction of said side when the lever is transferred from the first open position, in which it is pivoted or rotated relative to said side, to the first closed position, in which the lever rests on said side. It may be provided that the lever collides with the actuating pin of the locking bolt during pivoting or rotating on or into the base, so that the locking bolt is driven by the lever movement and is consequently driven into the recess, in particular the keyhole-shaped opening.
The door lock plate can be fixed on the outer side of the switch cabinet door via a support side of a base of the door lock plate, the support side having a circumferentially closed sealing, and at least one mushroom pin of the mushroom pin connection as well as an adjusting element, via which the actuating element is coupled to the coupling piece, being arranged in an area enclosed by the sealing. The adjusting element can have a form-fit receptacle via which the adjusting element can be coupled to the coupling piece of the push rod.
In particular, the sealing may be designed to have a coefficient of friction as low as possible compared to a surface coating of the switch cabinet door, e.g. an dip and/or powder coating, so that the sealing is a sliding bearing between the door lock plate and the switch cabinet door. This embodiment facilitates that the sealing, with which the door lock plate is guided over the outer side of the switch cabinet door, is not damaged during the relocation of the mushroom pin connection from the release position to the locking position.
A mushroom pin of the mushroom pin connection can be a threaded bolt screwed into a threaded receptacle in a support side of the door lock plate, wherein a mushroom head of the mushroom pin has a tool receptacle which is arranged to be accessible for a screwing tool via the inner side of the switch cabinet door. This embodiment can further facilitate the assembly and disassembly of the door lock plate in that only when the door lock plate has assumed its end position opposite the switch cabinet door, i.e. the mushroom pin connection is in its locking position, a seal for the IP protection class can be provided by an increase in the contact force between the door lock plate and the control cabinet door by further screwing of the threaded bolts into the threaded receptacles. Thus, the seal between the door lock plate and the switch cabinet door can also be preserved by not yet guiding the door lock plate over the switch cabinet door with the full contact force required for sealing between the door lock plate and the switch cabinet door, if the door lock plate is shifted in the vertical direction for locking the door lock plate on the switch cabinet door. According to another aspect, an arrangement comprising of a push rod lock of the type described above and a switch cabinet door is described, which has a door hole pattern via which the door lock plate can be fixed to the switch cabinet door, wherein the door hole pattern has a first and a second keyhole-shaped opening as well as an elongated hole, wherein the first keyhole-shaped opening is arranged below and in alignment with the elongated hole, and the second keyhole-shaped opening is arranged above the elongated hole and offset from the elongated hole, the door hole pattern preferably further comprising a cable passageway arranged below the second keyhole-shaped opening and laterally of the first keyhole-shaped opening, and wherein the door hole pattern is concealed by the door lock plate when secured to the switch cabinet door.
According to yet another aspect, the invention relates to a method for mounting a door lock plate on a switch cabinet door. The door lock plate, when mounted on the switch cabinet door, is fixed via a mushroom pin connection by vertically displacing the door lock plate relative to the switch cabinet door. The method is characterized by the following steps:
In the end position, a locking bolt can be inserted in the keyhole-shaped opening of the switch cabinet door or in a further recess in the switch cabinet door, so that the door lock plate is fixed in vertical direction relative to the switch cabinet door.
In the course of transferring the actuating element into the first closed position, wherein a lever of the actuating element is pivoted or rotated into a receptacle in the base of the door lock plate, an actuating pin, via which the locking bolt projects into the receptacle, can be moved out of the receptacle in the direction of the switch cabinet door. In particular, the lever can be swiveled in a plane perpendicular to the outer side of the switch cabinet door. Accordingly, the actuating pin and with it the locking bolt can also be moved vertically relative to the outer side of the switch cabinet door.
To unlock the door lock plate, the actuating element can first be brought into the first open position and a lever which can be swiveled and/or rotated relative to a base of the door lock plate can be swiveled or rotated out of a receptacle in which the lever is received in the first closed position, wherein in the following the locking bolt is pressed into a bolt guide of the door lock plate from the inner side of the switch cabinet door, wherein the locking bolt is disengaged from the keyhole-shaped opening or the further recess and projects into the receptacle with an actuating pin. If the door lock plate has an access control, for example a cylinder lock, it can thus also be avoided that the door lock plate is disassembled by unauthorized persons, since for disassembly of the door lock plate the lever must be swiveled out of the first closed position or rotated, for which the lever must be released, however, which is usually limited by a lock to authorized persons only, see for example the disclosure of WO 99/36654 A1.
It may also be provided that in the end position the mushroom pin is further screwed into the door lock and thus the door lock plate is sealingly fixed to the switch cabinet door under compression of a sealing between the switch cabinet door and the door lock plate.
A door lock plate in the sense of the present invention is not limited to any particular embodiment and in particular both lever locks (see WO 99/36654 A1) and toothed rack locks (see WO 99/16994 A1) are to be included by the invention.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure
Further details of the invention are explained in the following figure description, where the respective figures show:
Example embodiments will now be described more fully with reference to the accompanying drawings.
An actuating element 7 of the door lock plate 6 has, on the support side 10 facing the switch cabinet door, an adjusting element 22 with a form-fit adapter 28 via which the actuating element 7 can be brought into engagement with a coupling piece 4 of a push rod 3 of the push rod lock 1 (see
One of the two mushroom pins 11 is provided with a locking bolt 14. The locking bolt 14 is guided in a bolt receiver 15 perpendicular to the support side 10. In an end position of the door lock plate in relation to the switch cabinet door, i.e. in an assembly position, the locking bolt 14 can engage in a recess in the switch cabinet door to fix the door lock plate 6 in its end position.
While the door lock plate shown in
Analogous to the door lock plate shown in
The actuating element 7 shown in
The locking method is explained in detail with reference to
The switch cabinet door 100 has a vertical elongated hole 12, along which the coupling piece 4 can be adjusted in vertical direction. Corresponding centering notches 37 in the coupling piece 4 and on a boundary side of the elongated hole 12 serve to pre-align the coupling piece 4 and thus the push rod lock 1 in order to facilitate the mounting of the door lock plate 6 on the switch cabinet door 100. As can be seen, the lower cabinet door notch 37 is closer to the lower elongated hole end 13 than the upper elongated hole end 13, and conversely the switch cabinet door upper notch 37 is closer to the upper elongated hole end 13 than the lower elongated hole end 13.
Thus, in the case of the right stop of the door 100 shown in
In the end position shown in
Accordingly, for dismantling the door lock plate 6 from the switch cabinet door, in a first step the mushroom pin 11 can be unscrewed from the door lock plate 6 again, if necessary, in order to release the pretension between the switch cabinet door and the door lock plate. The locking bolt 14, which can be particularly accommodated in the bolt receptacle of the door lock plate by means of friction engagement, can then be pressed from the inner side 2 in the direction of the door lock plate 6, so that the locking pin 14 is disengaged from the keyhole-shaped opening 9. Then, the mushroom pin connection can be released by manually moving the door lock plate in the vertical direction relative to the switch cabinet door 100.
In a variation of the door hole pattern shown in
The features disclosed in the above description, drawings and claims may be essential to the realization of the invention, either individually or in any combination.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
10 2017 106 541.5 | Mar 2017 | DE | national |
10 2017 114 094.8 | Jun 2017 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DE2018/100137 | 2/15/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/177454 | 10/4/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1515611 | O'Connor | Nov 1924 | A |
3296842 | Auerbach | Jan 1967 | A |
4486040 | Strangward | Dec 1984 | A |
4493499 | Stenglein | Jan 1985 | A |
4614374 | Lannert | Sep 1986 | A |
4838054 | Weinerman | Jun 1989 | A |
4850209 | Weinerman | Jul 1989 | A |
4934800 | Choi | Jun 1990 | A |
5642909 | Swan | Jul 1997 | A |
5685181 | Ramsauer | Nov 1997 | A |
6485067 | Root | Nov 2002 | B1 |
6497437 | Münch et al. | Dec 2002 | B1 |
6564598 | Segawa | May 2003 | B2 |
6679088 | Hartel et al. | Jan 2004 | B2 |
10396531 | Reuter et al. | Aug 2019 | B2 |
11162279 | Wernlund | Nov 2021 | B1 |
20020104341 | Hartel et al. | Aug 2002 | A1 |
20100117384 | Cole | May 2010 | A1 |
20110198867 | Hagemeyer | Aug 2011 | A1 |
20130140833 | Hagemeyer | Jun 2013 | A1 |
20140159387 | Hagemeyer | Jun 2014 | A1 |
20160177603 | Sims | Jun 2016 | A1 |
20170074011 | Chang | Mar 2017 | A1 |
20170081882 | Lin | Mar 2017 | A1 |
20170122014 | Andrasfi | May 2017 | A1 |
20180119462 | Hagemeyer | May 2018 | A1 |
20180375302 | Reuter et al. | Dec 2018 | A1 |
20190214798 | Schindler et al. | Jul 2019 | A1 |
20200032561 | Brück | Jan 2020 | A1 |
20200332576 | De Barros | Oct 2020 | A1 |
20210102417 | Doring | Apr 2021 | A1 |
20210293062 | Doring | Sep 2021 | A1 |
Number | Date | Country |
---|---|---|
101778984 | Jul 2010 | CN |
201608428 | Oct 2010 | CN |
103066518 | Apr 2013 | CN |
29823344 | Apr 1999 | DE |
19806690 | Sep 1999 | DE |
10049637 | Oct 2002 | DE |
202007014083 | Feb 2009 | DE |
202011108844 | May 2013 | DE |
102013222691 | May 2015 | DE |
102015206908 | Oct 2016 | DE |
1061208 | Dec 2000 | EP |
1598508 | Nov 2005 | EP |
1881140 | Jan 2008 | EP |
2241016 | Aug 1991 | GB |
2503954 | Jan 2014 | GB |
2001518586 | Oct 2001 | JP |
200250216 | Feb 2002 | JP |
2002509213 | Mar 2002 | JP |
WO-9842938 | Oct 1998 | WO |
WO-9916994 | Apr 1999 | WO |
WO-9936654 | Jul 1999 | WO |
2009049711 | Apr 2009 | WO |
WO-2016095897 | Jun 2016 | WO |
2018177454 | Oct 2018 | WO |
WO-2018192603 | Oct 2018 | WO |
WO-2018192605 | Oct 2018 | WO |
Entry |
---|
International Search Report (in English and German) and Written Opinion (in German) issued in PCT/DE2018/100137, dated May 2, 2018; ISA/EP. |
Number | Date | Country | |
---|---|---|---|
20200032561 A1 | Jan 2020 | US |