PUSH SWITCH

Information

  • Patent Application
  • 20200194197
  • Publication Number
    20200194197
  • Date Filed
    August 27, 2018
    5 years ago
  • Date Published
    June 18, 2020
    3 years ago
Abstract
A push switch includes: a case that has a depression that opens in a first direction, and an enlarging depression that is adjacent to the depression; a movable component disposed in the depression; a first stationary contact that is provided on a bottom surface of the depression, the first stationary contact is located in a second direction that is opposite to the first direction from the movable component; and a second stationary contact exposed at the bottom surface of the depression. When the movable component is deformed, the movable component comes into contact with the first stationary contact. The second stationary contact has a contact portion with which the movable component is in contact. The enlarging depression is more apart from a center of the case than the depression is apart from the center of the case when viewed in the first direction. The depression and the enlarging depression are integrally made. The enlarging depression is adjacent to the contact portion.
Description
TECHNICAL FIELD

The present disclosure generally relates to push switches. The present disclosure specifically relates to a push switch closed or opened by deformation of a movable component.


BACKGROUND ART

Some known push switches each include a case that includes switch contacts, and a protective sheet that covers the case (see PTL 1, for example).


A push switch disclosed in PTL 1 includes a case (switch case) that has a depression that opens upward. A bottom surface (inner bottom surface) of the depression of the case includes a stationary contact (central stationary contact). Further, a movable component (a second movable contact) is disposed in the depression. The movable component is an elastic metal sheet that is curved like a dome that protrudes upward. The movable component is substantially circular. A protective sheet is disposed on the case to cover the depression.


When the push switch is operated, force is applied to a top surface of the protective sheet. The force is transferred to the movable component. Consequently, the movable component deforms (elastic reversal). Consequently, an underside of the movable component comes into contact with the stationary contact. Consequently, the push switch is closed. If the force ceases to be applied to the protective sheet, the movable component deforms into an original shape (a shape like a dome that protrudes upward) (elastic restoration). Consequently, the push switch is opened.


CITATION LIST
Patent Literature

PTL 1: Unexamined Japanese Patent Publication No. 2008-41603


SUMMARY OF THE INVENTION

A push switch according to an aspect of the present disclosure includes: a case that has a depression that opens in a first direction, and an enlarging depression that is adjacent to the depression; a movable component disposed in the depression; a first stationary contact that is provided on a bottom surface of the depression, the first stationary contact is located in a second direction that is opposite to the first direction from the movable component; and a second stationary contact exposed at the bottom surface of the depression. The movable component is deformed, the movable component comes into contact with the first stationary contact. The second stationary contact has a contact portion with which the movable component is in contact. The enlarging depression is more apart from a center of the case than the depression is apart from the center of the case when viewed in the first direction. The depression and the enlarging depression are integrally made. The enlarging depression is adjacent to the contact portion.


The present disclosure has an advantage that scraped powder is less likely to vary tactility and electrical properties of a push switch.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an exploded perspective view of a push switch according to an exemplary embodiment of the present disclosure.



FIG. 2A is a plan view of the push switch according to the exemplary embodiment of the present disclosure.



FIG. 2B is an elevation view of the push switch according to the exemplary embodiment of the present disclosure.



FIG. 3A is a plan view of the push switch according to the exemplary embodiment of the present disclosure. In FIG. 3A, a protective sheet, a pressing component, and a movable component are removed from the push switch.



FIG. 3B is an enlarged view of area Z1 in FIG. 3A.



FIG. 4A is a plan view of the push switch according to the exemplary embodiment of the present disclosure. In FIG. 4A, the protective sheet is removed from the push switch.



FIG. 4B is an enlarged view of area Z1 in FIG. 4A.



FIG. 5A is a schematic cross-sectional view of the push switch according to the exemplary embodiment of the present disclosure. In FIG. 5A, the push switch is not operated.



FIG. 5B is a schematic cross-sectional view of the push switch according to the exemplary embodiment of the present disclosure. In FIG. 5B, the push switch is operated.



FIG. 6 is a schematic cross-sectional view of the push switch according to the exemplary embodiment of the present disclosure taken along line X2-X2 in FIG. 2A.



FIG. 7A is a schematic cross-sectional view of an aspect of one of enlarging depressions of the push switch according to the exemplary embodiment of the present disclosure.



FIG. 7B is a schematic cross-sectional view of an aspect of one of enlarging depressions of the push switch according to the exemplary embodiment of the present disclosure.



FIG. 8A is a plan view of an important part that illustrates an aspect of one of enlarging depressions of the push switch according to the exemplary embodiment of the present disclosure.



FIG. 8B is a plan view of an important part that illustrates an aspect of one of enlarging depressions of the push switch according to the exemplary embodiment of the present disclosure.



FIG. 9 is a perspective view of an important part that illustrates a stationary contact of the push switch according to the exemplary embodiment of the present disclosure.



FIG. 10A is an enlarged view of area Z1 in FIG. 5A.



FIG. 10B is an enlarged schematic view of area Z1 in FIG. 10A.



FIG. 10C is an enlarged schematic view of area Z1 in FIG. 10B.



FIG. 11A is a schematic view that illustrates an example of a method for manufacturing a stationary contact of the push switch according to the exemplary embodiment of the present disclosure.



FIG. 11B is a schematic view that illustrates an example of the method for manufacturing the stationary contact of the push switch according to the exemplary embodiment of the present disclosure.



FIG. 11C is a schematic view that illustrates an example of the method for manufacturing the stationary contact of the push switch according to the exemplary embodiment of the present disclosure.



FIG. 12A is a schematic cross-sectional view of an aspect of the stationary contact of the push switch according to the exemplary embodiment of the present disclosure.



FIG. 12B is a schematic cross-sectional view of an aspect of the stationary contact of the push switch according to the exemplary embodiment of the present disclosure.



FIG. 12C is a schematic cross-sectional view of an aspect of the stationary contact of the push switch according to the exemplary embodiment of the present disclosure.



FIG. 13A is a plan view of an important part that illustrates an aspect of the stationary contact of the push switch according to the exemplary embodiment of the present disclosure.



FIG. 13B is a plan view of an important part that illustrates an aspect of the stationary contact of the push switch according to the exemplary embodiment of the present disclosure.



FIG. 13C is a plan view of an important part that illustrates an aspect of the stationary contact of the push switch according to the exemplary embodiment of the present disclosure.



FIG. 14A is a plan view of a push switch according to a first example of modifications of the exemplary embodiment of the present disclosure. In FIG. 14A, a protective sheet is removed from the push switch.



FIG. 14B is a plan view of a push switch according to a second example of modifications of the exemplary embodiment of the present disclosure. In



FIG. 14B, a protective sheet is removed from the push switch.





DESCRIPTION OF EMBODIMENT

In a conventional push switch configured as described above, a movable component that deforms may rub against a bottom surface of a depression of a case. If excessive force (load) is applied to the movable component, for example, powder may be scraped from the case. Scraped powder that has been generated as described above may accumulate at contact portions with which the movable component is in contact. The contact portions are portions of the bottom surface of the depression of the case. If scraped powder accumulates at the contact portions, tactility and electrical properties of the push switch may vary.


A push switch according to an aspect of the present disclosure allows scraped powder to be less likely to vary tactility and electrical properties of the push switch.


Exemplary Embodiment
(1) Outline

As illustrated in FIGS. 1 to 4B, push switch 1 according to a present exemplary embodiment includes case 2, movable component 3, and contacts 4.


Case 2 has depression 21. Movable component 3 has pressure receiving portion 33, and is disposed in depression 21. When pressure receiving portion 33 is pushed toward bottom surface 211 of depression 21, movable component 3 deforms. Consequently, contacts 4 are closed or opened. Contacts 4 include (first) stationary contact 7 and movable contact 8. Stationary contact 7 is fixed to case 2. Movable component 3 has movable contact 8 that is disposed opposite contact surface 73 of stationary contact 7. Deformation of movable component 3 moves movable contact 8 between a closed position (first position) where movable contact 8 is in contact with contact surface 73 and an open position (second position) where movable contact 8 is apart from contact surface 73. That is to say, contacts 4 are closed while movable contact 8 is at the closed position (first position). Alternatively, contacts 4 are open while movable contact 8 is at the open position (second position).


In such push switch 1, movable component 3 deforms and may rub against bottom surface 211 of depression 21 of case 2. If excessive force is applied to movable component 3, powder P1 may be scraped from case 2 (see FIG. 3B). Although details will be described later, in the present exemplary embodiment, contact portions 212 of bottom surface 211 of depression 21 expose one of metal components 9. Movable component 3 is in contact with contact portions 212. Therefore, movable component 3 rubs against the one of metal components 9 at contact portions 212. Therefore, powder P1 may be scraped from the one of metal components 9. Scraped powder P1 that has been generated as described above may accumulate at contact portions 212 with which movable component 3 is in contact. Contact portions 212 are portions of bottom surface 211 of depression 21 of case 2. If scraped powder P1 accumulates at contact portions 212, tactility and electrical properties of push switch 1 may vary.


In the present disclosure, bottom surface 211 of depression 21 of case 2 exposes metal component 92. Part of metal component 92 functions as stationary contact 921. In the following description, metal component 92 that is exposed forms part of the bottom surface of depression 21. In the description of the present disclosure, stationary contact 921 exposed by bottom surface 211 of depression 21 of case 2 (a top surface of metal component 92) is part of bottom surface 211 of depression 21 of case 2, as illustrated in FIGS. 7A and 7B, for example. Similarly, in the description, part of a top surface of metal component 92 exposed by bottom surfaces 221 of enlarging depressions 22 is part of bottom surfaces 221 of enlarging depressions 22 of case 2. Details of FIGS. 7A and 7B will be described later.


As a countermeasure against scraped powder P1 described above, push switch 1 according to the present exemplary embodiment includes enlarging depressions 22 in case 2, as illustrated in FIGS. 3A and 3B. Enlarging depressions 22 are adjacent to depression 21. That is to say, case 2 also has enlarging depressions 22. Enlarging depressions 22 are adjacent to respective contact portions 212 of bottom surface 211 of depression 21. Movable component 3 is in contact with contact portions 212. Further, depression 21 and enlarging depressions 22 are integrally made. That is to say, a depression of case 2 is depression 21 enlarged by enlarging depressions 22. In the present disclosure, the expression “are adjacent to” means that “are adjacent to and connect with”. That is to say, the expression “are adjacent to” means that “are adjacent to each other”. Further, in the present disclosure, the term “enlarging” means that “enlarging an extent”. That is to say, in the present exemplary embodiment, case 2 has enlarging depressions 22. Each of enlarging depressions 22 extends outward relative to corresponding one of contact portions 212. Movable component 3 is in contact with contact portions 212. Contact portions 212 are portions of bottom surface 211 of depression 21. Therefore, if powder P1 is scraped from case 2 or the one of metal components 9 at contact portions 212, scraped powder P1 moves into enlarging depressions 22 from contact portions 212 in depression 21. Therefore, in push switch 1, scraped powder P1 is less likely to accumulate at contact portions 212 with which movable component 3 is in contact. Contact portions 212 are portions of bottom surface 211 of depression 21 of case 2. Therefore, push switch 1 has an advantage that scraped powder P1 is less likely to vary tactility and electrical properties of push switch 1.


In push switch 1 according to the present exemplary embodiment, stationary contact 7 has contact surface 73 that is opposite movable contact 8, and grooves 74 that divide contact surface 73 into a plurality of areas 731, as illustrated in FIG. 9. Since grooves 74 divide contact surface 73 into the plurality of areas 731, a structure-for-contact-at-a-plurality-of-positions is made for contacts 4. The structure-for-contact-at-a-plurality-of-positions allows movable contact 8 to be in contact with a plurality of positions of stationary contact 7. Therefore, for example, even if foreign matter enters between stationary contact 7 and movable contact 8, electrical properties of push switch 1 are less likely to deteriorate, compared with a case in which contact surface 73 of stationary contact 7 is one flat plane.


In case of push switch 1 that has the structure-for-contact-at-a-plurality-of-positions, however, if excessive force is applied to movable component 3, part of conductive layer 72 of stationary contact 7 (see FIG. 10B) is likely to be removed from base material 71 of stationary contact 7 (see FIG. 10B). If part of conductive layer 72 is removed, electrical properties of push switch 1 may vary.


In push switch 1 according to the present exemplary embodiment, each of grooves 74 has connection surfaces 753 that connect respective opening edges 751 of each of grooves 74 with bottom 752 of each of grooves 74, as illustrated in FIGS. 10A to 10C. Each of connection surfaces 753 has slope 754, as a countermeasure against the removal of conductive layer 72 described above. Each of slopes 754 is inclined at acute angles 0 relative to contact surface 73 (see FIG. 10C). The configuration allows conductive layer 72 to be less likely to be damaged at opening edges 751 of grooves 74. Further, the configuration allows a stress concentration to be less likely to occur at opening edges 751 of grooves 74 when movable contact 8 is pushed against stationary contact 7. Therefore, push switch 1 has an advantage that conductive layer 72 is less likely to be removed, and thus electrical properties of push switch 1 are less likely to vary though push switch 1 has the structure-for-contact-at-a-plurality-of-positions.


(2) Details

Push switch 1 that will be described later is applied to controls of various devices, such as personal digital assistants, devices in a vehicle, and home appliances. For example, push switch 1 is attached to a printed circuit board in a housing of such a device. In that case, the housing includes an operational button, for example, at a position that corresponds to push switch 1. Consequently, a user indirectly operates push switch 1 through the operational button by pressing down the operational button.


Hereinafter, a top surface of case 2 is a surface of case 2 where depression 21 is made, unless otherwise specified. Further, an “upward direction” and a “downward direction” are along a depth of depression 21, unless otherwise specified. Further, a “rightward direction” is a direction in which first terminal 11 that will be described later protrudes from case 2. A “leftward direction” is a direction in which second terminal 12 that will be described later protrudes from case 2. A forward direction and a backward direction (directions that are perpendicular to a paper surface of FIG. 2B) are perpendicular to all the upward direction, the downward direction, the rightward direction, and the leftward direction. That is to say, the upward direction, the downward direction, the leftward direction, the rightward direction, the forward direction, and the backward direction are defined as represented by an arrow that points “upward”, an arrow that points “downward”, an arrow that points “leftward”, an arrow that points “rightward”, an arrow that points “forward”, and an arrow that points “backward”, respectively, in FIG. 1, for example. However, the directions do not limit a direction in which push switch 1 is used. Further, the arrows that point the respective directions are illustrated only for explanation in the drawings. The arrows are unsubstantial.


(2.1) Basic Configuration

As illustrated in FIGS. 1 to 4B, push switch 1 according to the present exemplary embodiment also includes protective sheet 5, pressing component 6, and metal components 9, in addition to case 2, movable component 3, and contacts 4. In the following description, push switch 1 is not operated. That is to say, push switch 1 is not pushed, unless otherwise specified.


Case 2 is made of a synthetic resin that possesses electrical insulation. Case 2 has a shape like a cuboid. Case 2 has a thin thickness and has a flat top surface and a flat underside. Top surface 23 of case 2 is a surface in a thickness direction of case 2. Top surface 23 has depression 21. Depression 21 opens upward (in a first direction). In the present exemplary embodiment, depression 21 has a shape like an ellipse whose lateral length is longer than a vertical length of the ellipse, in a top view. A center of depression 21 corresponds to a center of top surface 23. Bottom surface 211 of depression 21 is not flat. In depression 21, there is a difference in depth at least between a central portion of bottom surface 211 and a periphery of bottom surface 211. In the present exemplary embodiment, there is a step between the central portion of bottom surface 211 and the periphery of bottom surface 211, and the central portion of bottom surface 211 is lower than the periphery of bottom surface 211. In other words, in depression 21, the central portion is deeper than the periphery. Four corners of case 2 are chamfered, in a top view. However, the chamfering is not essential to push switch 1, and case 2 may not be appropriately chamfered.


Bottom surface 211 of depression 21 has contact portions 212 at a periphery of bottom surface 211 (see FIGS. 3A and 3B). Contact portions 212 are portions of bottom surface 211 of depression 21. Movable component 3 is in contact with contact portions 212. In the present exemplary embodiment, a plurality of areas (four areas in the present exemplary embodiment) of movable component 3 are in contact with bottom surface 211 of depression 21. Therefore, case 2 has the plurality of (four in the present exemplary embodiment) contact portions 212. Four contact portions 212 are at four corners of bottom surface 211 of depression 21.


Top surface 23 of case 2 is a surface in a thickness direction of case 2. Top surface 23 also has enlarging depressions 22. Enlarging depressions 22 are adjacent to respective contact portions 212 of bottom surface 211 of depression 21. Enlarging depressions 22 each have a shape that enlarges depression 21. Enlarging depressions 22 are outside respective contact portions 212 (are opposite a center of bottom surface 211), and thus enlarges depression 21. In FIGS. 3A and 3B, imaginary lines L1 represent boundaries between depression 21 and enlarging depressions 22. That is to say, depression 21 is inside imaginary lines L1 (is on a side of a center of bottom surface 211 relative to imaginary lines L1) in FIG. 3A. Further, enlarging depressions 22 are outside imaginary lines L1 (are opposite the center of bottom surface 211) in FIG. 3A.


The plurality of (four in the present exemplary embodiment) enlarging depressions 22 are adjacent to the plurality of (four in the present exemplary embodiment) respective contact portions 212. That is to say, in the present exemplary embodiment, case 2 has depression 21 and the plurality of enlarging depressions 22. Further, depression 21 and enlarging depressions 22 are integrally made. The plurality of enlarging depressions 22 are outside four corners of a periphery of depression 21, in a top view. The plurality of enlarging depressions 22 increase an area of an opening of depression 21. Enlarging depressions 22 form spaces where scraped powder P1 that has been generated in depression 21 enters. The details will be described in section “(2.3) Countermeasure against scraped powder”.


Metal components 9 include first metal component 91 and second metal component 92. First metal component 91 and second metal component 92 are each a conductive metal sheet. Case 2 retains first metal component 91 and second metal component 92. In the present exemplary embodiment, first metal component 91 and second metal component 92, and case 2 are integrally made by insert molding. That is to say, case 2 that contains inserts that are metal components 9 (first metal component 91 and second metal component 92) is made by insert molding.


First metal component 91 has (first) stationary contact 7 and first terminal 11. Stationary contact 7 protrudes upward from a top surface of first metal component 91. Stationary contact 7 is substantially circular, in a top view. Second metal component 92 has (second) stationary contact 921 and second terminal 12. Bottom surface 211 of depression 21 exposes stationary contact 7 and stationary contact 921. Depression 21 exposes stationary contact 7 at a central portion of depression 21. Depression 21 exposes stationary contact 921 at a periphery of depression 21. Stationary contact 7 protrudes upward from bottom surface 211 of depression 21. An area of first metal component 91 around stationary contact 7 is substantially flush with bottom surface 211. Further, stationary contact 921 is substantially flush with bottom surface 211. Bottom surfaces 221 of four enlarging depressions 22 also expose stationary contact 921.


One of metal components 9 has pin receiving portions 93 at positions that correspond to enlarging depressions 22. Retaining pins Y1 (see FIG. 6) are in contact with pin receiving portions 93 to retain the one of metal components 9 when case 2 is molded (is made by insert molding). Stationary contact 921 has pin receiving portions 93 in the present exemplary embodiment because enlarging depressions 22 expose stationary contact 921 of second metal component 92. In the present exemplary embodiment, a case is exemplified in which retaining pins Y1 are in contact with an underside of the one of metal components 9 (stationary contact 921). Therefore, pin receiving portions 93 are under the underside of the one of metal components 9.


First terminal 11 protrudes from a right side of case 2. Second terminal 12 protrudes from a left side of case 2. More specifically, first terminal 11 protrudes rightward from the right side of case 2. Further, second terminal 12 protrudes leftward from the left side of case 2. An underside of first terminal 11 and an underside of second terminal 12 are flush with an underside of case 2. First terminal 11 and second terminal 12 are mechanically joined to and electrically connected with conductive components on a printed circuit board by soldering, respectively, for example.


Stationary contact 7 is electrically connected with first terminal 11 by part of first metal component 91 that is embedded in case 2. Similarly, stationary contact 921 is electrically connected with second terminal 12 by part of second metal component 92 that is embedded in case 2. First metal component 91 is electrically insulated from second metal component 92.


Stationary contact 7 has contact surface 73 (a top surface in the present exemplary embodiment) that is opposite movable contact 8. A shape of stationary contact 7 will be described in detail in section “(2.4) Stationary contact”. Further, stationary contact 7 has grooves 74 that divide contact surface 73 into a plurality of areas 731 (see FIG. 9).


Movable component 3 is disposed in depression 21 of case 2, as illustrated in FIGS. 4A and 4B. Movable component 3 includes elastic sheets, such as metal sheets, for example, stainless-steel (SUS). In the present exemplary embodiment, movable component 3 includes a plurality of (three in the present exemplary embodiment) leaf springs 30 stacked together. The plurality of leaf springs 30 have a substantially same shape.


Movable component 3 has a shape that corresponds to depression 21. Further, movable component 3 is slightly smaller than depression 21, and thus can be disposed in depression 21. That is to say, in the present exemplary embodiment, movable component 3 has a shape like an ellipse whose lateral length is longer than a vertical length of the ellipse, in a top view. Atop surface of movable component 3 (a top surface of uppermost leaf spring 30) has a central portion that forms pressure receiving portion 33 (see FIG. 1). That is to say, the central portion of the top surface of movable component 3 functions as pressure receiving portion 33. Pressure receiving portion 33 receives force applied from an outside of push switch 1 to push switch 1 when push switch 1 is operated (hereinafter referred to as “operational force”).


Movable component 3 has a shape like a dome curved in such manner that a central portion of movable component 3 protrudes upward. While movable component 3 is disposed in depression 21, four corners of movable component 3 are in contact with bottom surface 211 of depression 21, in a top view. That is to say, four areas of movable component 3 are in contact with contact portions 212 of bottom surface 211 of depression 21, respectively. However, another area or other areas of movable component 3 may be in contact with bottom surface 211.


An underside of movable component 3 (an underside of lowermost leaf spring 30) is plated with gold (Au) or silver (Ag), for example. Consequently, a conductive film is made on the whole underside of movable component 3. Part of the conductive film that corresponds to a central portion of movable component 3 (pressure receiving portion 33) forms movable contact 8. At least four areas of movable component 3 are electrically connected with stationary contact 921 exposed by bottom surface 211. The at least four areas of movable component 3 are in contact with contact portions 212 of bottom surface 211. When operational force acts on pressure receiving portion 33, movable component 3 deforms and is bent downward. The details will be described in section “(2.2) Operations”. For example, movable component 3 deforms into a shape like a dome, as illustrated in FIG. 5B. Consequently, a central portion of movable component 3 protrudes downward. At that time, movable contact 8 made on an underside of pressure receiving portion 33 comes into contact with stationary contact 7. Consequently, movable contact 8 is electrically connected with stationary contact 7.


That is to say, movable contact 8 and stationary contact 7 constitute contacts 4. When pressure receiving portion 33 is pushed toward bottom surface 211 of depression 21, movable component 3 deforms. Consequently, contacts 4 are closed or opened. More specifically, while operational force does not act on pressure receiving portion 33, movable contact 8 is apart from stationary contact 7. Therefore, contacts 4 are open. At that time, first metal component 91 is electrically insulated from second metal component 92. Therefore, first terminal 11 is not connected with second terminal 12. On the other hand, when operational force acts on pressure receiving portion 33, movable contact 8 comes into contact with stationary contact 7. Consequently, contacts 4 are closed. At that time, movable component 3 (or the conductive film made on an underside of movable component 3) electrically connects first metal component 91 with second metal component 92. Therefore, first terminal 11 is connected with second terminal 12.


Protective sheet 5 is a flexible sheet made of a synthetic resin. In the present exemplary embodiment, protective sheet 5 is made of a resin film that possesses heat resistance and electrical insulation. Protective sheet 5 is disposed on top surface 23 of case 2. Protective sheet 5 covers whole depression 21. Protective sheet 5 is joined to top surface 23 of case 2. Consequently, protective sheet 5 closes an opening surface of depression 21. Consequently, protective sheet 5 tightly closes depression 21. Consequently, protective sheet 5 does not allow water and a flux to enter depression 21. Consequently, protective sheet 5 protects contacts 4 and movable component 3 that are disposed in depression 21 against water and a flux. For example, a shape of a periphery of protective sheet 5 is substantially a same as a shape of a periphery of top surface 23 of case 2, and is slightly larger than top surface 23. A size of protective sheet 5 is at least a size that allows a portion (joined-portion 51) of protective sheet 5 to be joined to case 2.


Protective sheet 5 has joined-portion 51 at a periphery of protective sheet 5. Joined-portion 51 is joined to part of top surface 23 of case 2. The part of top surface 23 of case 2 is a periphery of depression 21 and peripheries of enlarging depressions 22. Joined-portion 51 is welded to case 2. Therefore, an adhesive does not adhere to an underside of protective sheet 5. The pressure-sensitive adhesive adheres to an underside of protective sheet 5 if joined-portion 51 and case 2 are joined together with the adhesive. In the present exemplary embodiment, joined-portion 51 is joined to top surface 23 of case 2 by laser welding. A method by which joined-portion 51 is joined to case 2 is not limited to welding. Joined-portion 51 may be joined to case 2 with an adhesive. Alternatively, part of joined-portion 51 may be joined to case 2 by welding, and part of joined-portion 51 may be joined to case 2 with an adhesive.


Pressing component 6 is disposed between protective sheet 5 and pressure receiving portion 33 of movable component 3. Pressing component 6 is made of a synthetic resin, and possesses electrical insulation. Pressing component 6 has a shape like a disk. Pressing component 6 has a thin thickness and has a flat top surface and a flat underside. Pressing component 6 is disposed on a top surface of movable component 3. An underside of pressing component 6 is in contact with pressure receiving portion 33. A top surface of pressing component 6 is joined to an underside of a central portion of protective sheet 5 by laser welding, for example.


Pressing component 6 transfers operational force applied to protective sheet 5 to pressure receiving portion 33 of movable component 3. That is to say, when operational force acts on a top surface of protective sheet 5, pressing component 6 transfers the operational force to pressure receiving portion 33. Consequently, the operational force acts on a top surface of pressure receiving portion 33. The above configuration allows pressure receiving portion 33 to be indirectly operated with pressing component 6 by pressing protective sheet 5. A shape of pressing component 6 is not limited to a shape like a disk but may be a shape like a funnel.


(2.2) Operations

Next, operations of push switch 1 configured as described above will be described with reference to FIGS. 5A and 5B. FIG. 5A is a cross-sectional view taken along line X1-X1 in FIG. 2A.


Push switch 1 is normally open. When push switch 1 is operated, contacts 4 are closed. When push switch 1 is operated, a central portion of protective sheet 5 is pushed. Consequently, protective sheet 5 transfers downward operational force to pressing component 6. The expression “is pushed” means an operation that pushes a central portion of protective sheet 5 toward bottom surface 211 of depression 21 (downward).


When pressing component 6 transfers operational force to a top surface of pressure receiving portion 33, pressure receiving portion 33 is pushed toward bottom surface 211 of depression 21 (downward). Consequently, movable component 3 gradually deforms. If magnitude of the operational force transferred to pressure receiving portion 33 exceeds a predetermined value, movable component 3 quickly buckles and largely deforms, as illustrated in FIG. 5B. At that time, elastic force of movable component 3 that acts on pressure receiving portion 33 quickly varies. What is called reversal of movable component 3 deforms movable component 3 into a shape like a dome curved in such a manner that a central portion (pressure receiving portion 33) of movable component 3 protrudes downward, as illustrated in FIG. 5B. Therefore, the deformation of movable component 3 provides click feeling to a user (operator) who pushes push switch 1. When movable component 3 deforms into a shape like a dome that protrudes downward, movable contact 8 on an underside of movable component 3 comes into contact with stationary contact 7, as illustrated in FIG. 5B. Consequently, contacts 4 are closed. In this state, first terminal 11 is connected with second terminal 12.


On the other hand, if movable component 3 has deformed into a shape like a dome that protrudes downward, and then operational force ceases to act on pressure receiving portion 33, restoring force of movable component 3 restores movable component 3 to (movable component 3 deforms into) a shape like a dome curved in such a manner that a central portion (pressure receiving portion 33) of movable component 3 protrudes upward. At that time, elastic force of movable component 3 that acts on pressure receiving portion 33 quickly varies. Therefore, movable component 3 quickly returns to (deforms into) an original shape (a shape like a dome curved in such a manner that a central portion of movable component 3 protrudes upward). Therefore, the deformation of movable component 3 also provides click feeling to a user (operator) who pushes push switch 1 when the user ceases to push push switch 1. Then, when movable component 3 deforms into a shape like a dome that protrudes upward, movable contact 8 on an underside of movable component 3 becomes apart from stationary contact 7, as illustrated in FIG. 5A. Consequently, contacts 4 are opened. In this state, first terminal 11 is not connected with second terminal 12.


(2.3) Countermeasure Against Scraped Powder

Hereinafter, a structure that push switch 1 includes as a countermeasure against scraped powder P1 will be described in detail with reference to FIGS. 3A and 3B. Scraped powder P1 is schematically illustrated for explanation in FIG. 3B, for example. However, scraped powder P1 is not a component of push switch 1.


When push switch 1 according to the present exemplary embodiment is operated, movable component 3 deforms and may rub against bottom surface 211 of depression 21 of case 2. If excessive force is applied to movable component 3, for example, powder P1 may be scraped from case 2. Especially when an object collides with an operational button of a device that includes push switch 1 as one of controls, excessive force is more likely to be applied to movable component 3 than a case in which a user intentionally operates push switch 1. Consequently, powder P1 is more likely to be scraped. Further, the more times push switch 1 is used, the more likely powder P1 is to be scraped.


In the present exemplary embodiment, contact portions 212 of bottom surface 211 of depression 21 expose one of metal components 9, as described above. Movable component 3 is in contact with contact portions 212. Therefore, movable component 3 rubs mainly against the one of metal components 9 at contact portions 212. Therefore, powder P1 may be scraped from the one of metal components 9. In the present disclosure, the “scraped powder” is scraped from part of the one of metal components 9 since movable component 3 rubs against the one of metal components 9. However, scraped powder P1 is not only scraped from the one of metal components 9, but also may be scraped from case 2 made of a synthetic resin since movable component 3 rubs against part of case 2 made of a synthetic resin. Scraped powder P1 generated as described above may accumulate at contact portions 212 with which movable component 3 is in contact. Contact portions 212 are portions of bottom surface 211 of depression 21 of case 2. If scraped powder P1 accumulates at contact portions 212, scraped powder P1 may prevent movable component 3 from moving, or scraped powder P1 may enter between movable component 3 and stationary contact 921. Consequently, scraped powder P1 may vary tactility and electrical properties of push switch 1.


In push switch 1 according to the present exemplary embodiment, case 2 has enlarging depressions 22, as illustrated in FIGS. 3A and 3B. Therefore, push switch 1 according to the present exemplary embodiment deals with scraped powder P1 described above. That is to say, enlarging depressions 22 are adjacent to contact portions 212 with which movable component 3 is in contact. Contact portions 212 are portions of bottom surface 211 of depression 21. Therefore, if deformation of movable component 3 generates scraped powder P1 at contact portions 212, scraped powder P1 enters enlarging depressions 22. In other words, scraped powder P1 that has been generated at contact portions 212 in depression 21 moves from contact portions 212 into enlarging depressions 22 that is connected with contact portions 212, respectively, as illustrated in FIG. 3B. The above configuration allows enlarging depressions 22 to function as pockets in which scraped powder P1 that has been generated in depression 21 accumulates. Therefore, in push switch 1, scraped powder P1 is less likely to accumulate at contact portions 212 with which movable component 3 is in contact. Contact portions 212 are portions of bottom surface 211 of depression 21 of case 2. Therefore, scraped powder P1 is less likely to vary tactility and electrical properties of push switch 1.


In the present exemplary embodiment, a side surface of each of enlarging depressions 22 has a pair of side surfaces 222, as illustrated in FIG. 3B. The pair of side surfaces 222 are inclined. Therefore, in a plane that is along bottom surface 211 of depression 21, the farther from depression 21, the smaller an area of an opening of each of enlarging depressions 22. In other words, the closer to depression 21, the larger an area of an opening of each of enlarging depressions 22 becomes due to the pair of side surfaces 222.


That is to say, in a top view, the farther from depression 21, the shorter a distance between the pair of side surfaces 222 of each of enlarging depressions 22 that are adjacent to depression 21.


Further, in the present exemplary embodiment, one of the pair of side surfaces 222 (side surface 222 that is closer to a back side in FIG. 3B) is flush with side surface 213a of depression 21. The other one of the pair of side surfaces 222 (side surface 222 that is closer to a front side in FIG. 3B) is curved and is connected with side surface 213b of depression 21.


The configuration allows the pair of side surfaces 222 of each of enlarging depressions 22 to function as a structure that guides scraped powder


P1 from depression 21 into enlarging depressions 22. Therefore, push switch 1 according to the present exemplary embodiment has an advantage that scraped powder P1 that has been generated at contact portions 212 of depression 21 is more likely to enter enlarging depressions 22.


In the present exemplary embodiment, movable component 3 has a lateral length that is longer than a vertical length of movable component 3, in a top view. In such a case, preferably, a space in each of enlarging depressions 22 has a lateral length that is longer than a vertical length of the space in each of enlarging depressions 22, as illustrated in FIG. 4B. That is to say, if each of enlarging depressions 22 enlarged depression 21 equally in both vertically (backward in FIG. 4B) and laterally (rightward in FIG. 4B), imaginary line L2 in FIG. 4B would be a side surface of each of enlarging depressions 22.


If movable component 3 has a lateral length that is longer than a vertical length of movable component 3, in a top view, an amount of lateral movement of movable component 3 relative to each of contact portions 212 is larger than an amount of vertical movement of movable component 3 relative to each of contact portions 212 when operational force acts on pressure receiving portion 33 of movable component 3. Therefore, scraped powder P1 is more likely to be generated laterally outside contact portions 212 than vertically outside contact portions 212. Therefore, in the present exemplary embodiment, each of enlarging depressions 22 additionally enlarges depression 21 laterally (rightward in FIG. 4B) from imaginary line L2. Therefore, scraped powder P1 that has been generated laterally outside contact portions 212 (to a right of one of contact portions 212 in FIG. 4B) efficiently accumulates in enlarging depressions 22.


In the present exemplary embodiment, case 2 is made of a synthetic resin, and bottom surface 211 of depression 21 exposes metal components 9. In that case, preferably, one of metal components 9 extends to bottom surfaces 221 of enlarging depressions 22. That is to say, the one of metal components 9 extends from each of contact portions 212 of bottom surface 211 of depression 21 to bottom surface 221 of corresponding one of enlarging depressions 22. Movable component 3 is in contact with contact portions 212. Consequently, even if movable component 3 moves onto boundaries between depression 21 and each of enlarging depressions 22 (imaginary lines L1), movable component 3 does not rub against case 2 made of a synthetic resin. Therefore, powder P1 is less likely to be scraped from case 2 made of a synthetic resin.


Further, in the present exemplary embodiment, the one of metal components 9 has pin receiving portions 93 at positions that correspond to enlarging depressions 22, as described above. Pin receiving portions 93 of the one of metal components 9 may deform because retaining pins Y1 (drawn using a two-dot chain line) are in contact with pin receiving portions 93 while case 2 is molded, as illustrated in FIG. 6. FIG. 6 is a cross-sectional view taken along line X2-X2 in FIG. 2A. In an example in FIG. 6, retaining pins Y1 are inserted in pin holes 24 that extend through an underside of case 2, respectively. Bottom surfaces of pin holes 24 expose pin receiving portions 93, respectively. Surfaces of ends of retaining pins Y1 are in contact with pin receiving portions 93, respectively. If pin receiving portions 93 were at positions with which movable component 3 is in contact, such as contact portions 212, deformation of pin receiving portions 93 would prevent movable component 3 from moving. In the present exemplary embodiment, pin receiving portions 93 are at positions that correspond to enlarging depressions 22. Therefore, deformation of pin receiving portions 93 does not prevent movable component 3 from moving. That is to say, enlarging depressions 22 function as pockets in which scraped powder P1 that has been generated in depression 21 accumulates, as described above. Therefore, movable component 3 basically is not in contact with bottom surfaces 221 of enlarging depressions 22. Therefore, deformation of pin receiving portions 93 does not prevent movable component 3 from moving.


Preferably, case 2 has the plurality of contact portions 212 with which movable component 3 is in contact, as in the present exemplary embodiment.


Contact portions 212 are portions of bottom surface 211 of depression 21. Further, preferably, case 2 has the plurality of enlarging depressions 22 that are adjacent to the plurality of contact portions 212, respectively. That is to say, enlarging depressions 22 are separate from each other, and are for respective contact portions 212. Therefore, scraped powder P1 that has been generated at each of contact portions 212 efficiently accumulates in enlarging depressions 22.


Push switch 1 may include enlarging depressions 22 configured as exemplified in FIGS. 7A to 8B. FIGS. 7A and 7B are enlarged views of an important part that corresponds to area Z1 in FIG. 6. However, components that are not directly related to the following description, such as movable component 3, are appropriately not illustrated in FIGS. 7A and 7B. FIGS. 8A and 8B are enlarged views of an important part that corresponds to area Z1 in FIG. 3A.


In an example illustrated in FIG. 7A, surface roughness of bottom surfaces 221 of enlarging depressions 22 is at least higher than surface roughness of contact portions 212 of bottom surface 211 of depression 21. That is to say, bottom surfaces 221 of enlarging depressions 22 are at least rougher than contact portions 212 of bottom surface 211 of depression 21. More specifically, bottom surfaces 221 of enlarging depressions 22 are processed by knurling or embossing, for example. Consequently, surface roughness of bottom surfaces 221 of enlarging depressions 22 is higher than surface roughness of bottom surface 211 of depression 21. Consequently, scraped powder P1 that has moved from depression 21 into enlarging depressions 22 is captured by bottom surfaces 221 of enlarging depressions 22. Therefore, scraped powder P1 is more likely to stay in enlarging depressions 22. Consequently, scraped powder P1 is less likely to move from enlarging depressions 22 into depression 21.


A top surface of part of metal component 92 exposed by the bottom surface of depression 21 of case 2 forms part of bottom surface 211 of depression 21, as illustrated in FIGS. 7A and 7B. Atop surface of part of metal component 92 exposed by the bottom surfaces of enlarging depressions 22 of case 2 forms part of bottom surfaces 221 of enlarging depressions 22, as illustrated in FIGS. 7A and 7B.


In an example illustrated in FIG. 7B, depth D2 of enlarging depressions 22 is at least larger than depth Dl of depression 21 at contact portions 212 (D2>DD. Depth D2 of enlarging depressions 22 is a distance from top surface 23 of case 2 to bottom surfaces 221 of enlarging depressions 22. Depth D1 of depression 21 is a distance from top surface 23 of case 2 to bottom surface 211 of depression 21. That is to say, bottom surfaces 221 of enlarging depressions 22 are at least lower than contact portions 212 of bottom surface 211 of depression 21. Further, there is a step between bottom surface 221 of each of enlarging depressions 22 and corresponding one of contact portions 212 of bottom surface 211 of depression 21.


That is to say, when enlarging depressions 22 and depression 21 are seen from above (seen in a first direction), bottom surfaces 221 of enlarging depressions 22 are lower than bottom surface 211 of depression 21 (contact portions 212) (bottom surfaces 221 of enlarging depressions 22 are more in a second direction than bottom surface 211 of depression 21 (contact portions 212) is in the second direction).


Consequently, scraped powder P1 that has moved from depression 21 into enlarging depressions 22 is captured by bottom surfaces 221 of enlarging depressions 22. Therefore, scraped powder P1 is more likely to stay in enlarging depressions 22. Consequently, scraped powder P1 is less likely to move from enlarging depressions 22 into depression 21. The configuration illustrated in FIG. 7B and the configuration illustrated in FIG. 7A may be combined and applied.


In an example illustrated in FIG. 8A, case 2 has walls 25A each of which is between each of enlarging depressions 22 and depression 21. In an example illustrated in FIG. 8B, case 2 has walls 25B each of which is between each of enlarging depressions 22 and depression 21. In the example in FIG. 8A, the pair of walls 25A protrude from a pair of side surfaces 222, respectively. Further, the pair of walls 25A protrude toward each other. Similarly, in the example in FIG. 8B, the pair of walls 25B protrude from a pair of side surfaces 222, respectively. Further, the pair of walls 25B protrude toward each other. Especially in the example in FIG. 8B, the pair of walls 25B diagonally protrude from the pair of side surfaces 222 toward an inside of corresponding one of enlarging depressions 22, in a top view. Walls 25A, 25B decrease an area of an opening facing depression 21, of each of enlarging depressions 22. Consequently, if scraped powder P1 moves from depression 21 into enlarging depressions 22, walls 25A, 25B regulate movement of scraped powder P1 toward depression 21. Therefore, scraped powder P1 is more likely to stay in enlarging depressions 22. Consequently, scraped powder P1 is less likely to move from enlarging depressions 22 into depression 21. Especially in a configuration in FIG. 8B, the pair of walls 25B diagonally protrude toward an inside of corresponding one of enlarging depressions 22. Therefore, scraped powder P1 is much less likely to move from enlarging depressions 22 into depression 21. Walls 25A are not necessarily in pairs. Further, walls 25B are not necessarily in pairs.


(2.4) Stationary Contact

Hereinafter, (first) stationary contact 7 will be described in detail with reference to FIGS. 9 to 10C. FIG. 10B is an enlarged view of area Z1 in FIG. 10A. FIG. 10C is an enlarged view of area Z1 in FIG. 10B. FIGS. 10B and 10C are cross-sectional views that each schematically illustrate only stationary contact 7. Therefore, various dimensional relations (e.g., a thickness of base material 71 and a thickness of conductive layer 72) in FIGS. 10B and 10C are different from actual dimensional relations.


Stationary contact 7 includes base material 71 (see FIG. 10B) and conductive layer 72 (see FIG. 10B) that covers base material 71. In the present exemplary embodiment, conductive layer 72 covers a whole top surface (contact surface 73) of base material 71. Base material 71 is a copper alloy, such as phosphor bronze. Conductive layer 72 is a plated layer. Conductive layer 72 includes silver (Ag), for example. For example, nickel (Ni) is plated on a surface of base material 71 made of phosphor bronze to make a plated base layer. Further, silver (Ag) is plated on the plated base layer to make a plated silver layer. In that case, conductive layer 72 includes the plated base layer, and the plated silver layer.


Stationary contact 7 has contact surface 73 (a top surface in the present exemplary embodiment) that is opposite movable contact 8. Movable contact 8 is disposed opposite contact surface 73 of stationary contact 7. Movable contact 8 moves between a closed position (first position) where movable contact 8 is in contact with contact surface 73 and an open position (second position) where movable contact 8 is apart from contact surface 73. That is to say, contacts 4 are closed when movable contact 8 is at the closed position (first position) (see FIG. 5B). Alternatively, contacts 4 are open when movable contact 8 is at the open position (second position) (see FIG. 5A).


Stationary contact 7 has protrusion 70 that protrudes from a base surface. Contact surface 73 is a surface of an end of protrusion 70, as illustrated in FIG. 9. The base surface is bottom surface 211 of depression 21. Protrusion 70 protrudes upward from bottom surface 211. Protrusion 70 is substantially circular, in a top view. That is to say, contact surface 73 is a top surface of protrusion 70 that protrudes upward from a top surface of first metal component 91. Further, protrusion 70 is substantially circular, in a top view.


Stationary contact 7 has grooves 74 that divide contact surface 73 into a plurality of areas 731. Grooves 74 include first groove 741 and second groove 742. First groove 741 and second groove 742 extend in different directions in a plane that is along contact surface 73. First groove 741 intersects with second groove 742 at substantially a center of contact surface 73. In FIG. 9, first groove 741 is a straight groove that extends forward right diagonally, in a top view. Further, second groove 742 is a straight groove that extends backward right diagonally, in a top view. First groove 741 intersects with second groove 742 substantially at a right angle. Consequently, grooves 74 have a shape like a cross. In the present exemplary embodiment, first groove 741 and second groove 742 that intersect with each other divide contact surface 73 into four areas 731. Preferably, a width of grooves 74 is larger than a depth of grooves 74. Preferably, a depth of grooves 74 is smaller than or equal to half (½) of a thickness of stationary contact 7 (first metal component 91).


Since grooves 74 divide contact surface 73 into the plurality of areas 731, a structure-for-contact-at-a-plurality-of-positions is made for contacts 4. The structure-for-contact-at-a-plurality-of-positions allows movable contact 8 to be in contact with a plurality of positions of stationary contact 7, as described above. Therefore, even if foreign matter enters between stationary contact 7 and movable contact 8, electrical properties of push switch 1 are less likely to deteriorate, compared with a case in which contact surface 73 of stationary contact 7 is one flat plane. Consequently, electrical properties of push switch 1 are less likely to vary. Therefore, reliability of contact increases.


If contacts 4 have the above structure-for-contact-at-a-plurality-of-positions, part of conductive layer 72 is likely to be removed from base material 71 of stationary contact 7 when excessive force is applied to movable component 3, for example. Further, the more times push switch 1 is used, the more likely conductive layer 72 is to be removed. A conceivable cause is damage to conductive layer 72 at opening edges 751 of grooves 74. Another conceivable cause is a stress concentration that occurs at opening edges 751 of grooves 74 when movable contact 8 is pushed against stationary contact 7. Especially if movable contact 8 is more tightly plated than stationary contact 7 is plated, part of conductive layer 72 (a plated layer) of stationary contact 7 adheres to movable contact 8. Consequently, part of conductive layer 72 is likely to be removed. For example, movable contact 8 is tightly plated if nickel (Ni) and copper are plated on a surface of a base material that is stainless steel (SUS) to make a plated base layer, and silver (Ag) is plated on the plated base layer to make a plated silver layer. If part of conductive layer 72 is removed, electrical properties of push switch 1 may vary.


As a countermeasure against such removal of conductive layer 72, push switch 1 according to the present exemplary embodiment includes stationary contact 7 configured as described below. That is to say, in the present exemplary embodiment, each of grooves 74 has connection surfaces 753 that connect respective opening edges 751 of each of grooves 74 with bottom 752 of each of grooves 74. Each of connection surfaces 753 has slope 754, as illustrated in FIGS. 10A to 10C. Each of slopes 754 is inclined at acute angles θ relative to contact surface 73 (see FIG. 10C). In the present disclosure, the “opening edges” are edges of an opening surface of each of grooves 74. Further, each of the “opening edges” is a boundary between contact surface 73 and each of grooves 74. Further, in the present disclosure, the “bottom” is a deepest portion in each of grooves 74. That is to say, the “bottom” is a lowest portion in each of grooves 74. Further, in the present disclosure, an “acute angle” is an angle that is larger than 0° and smaller than a right angle (90°).


In short, stationary contact 7 has connection surfaces 753 in grooves 74. Connection surfaces 753 connect respective opening edges 751 with bottom 752. In an example in FIG. 10B, bottom 752 of groove 74 is flat. Further, each of connection surfaces 753 is a curved surface that is curved in such a manner that the curved surface protrudes toward an inside of corresponding one of grooves 74. In other words, a corner between contact surface 73 and an inner surface of each of grooves 74 is rounded in an example in FIG. 10B. Each of connection surfaces 753 that has such a shape has a curved surface that has slope 754. Especially in the example in FIG. 10B, whole connection surfaces 753 are curved surfaces. Therefore, whole connection surfaces 753 are inclined at acute angles relative to contact surface 73. That is to say, whole connection surfaces 753 form slopes 754. Consequently, the farther from opening edges 751 toward a center of a width of each of grooves 74, the deeper a depth of each of grooves 74 becomes.


Further, in the present exemplary embodiment, each of connection surfaces 753 has slope 754 also at each of corners at a point of intersection between first groove 741 and second groove 742. That is to say, each of connection surfaces 753 has slope 754 at least at each of corners at the point of intersection between first groove 741 and second groove 742. In the present exemplary embodiment, there are two pairs of corners at the point of intersection between first groove 741 and second groove 742. That is to say, there are four corners at the point of intersection between first groove 741 and second groove 742. Each of the two pairs of corners are opposite each other. Two of the four corners are vertically opposite each other. The two other ones of the four corners are laterally opposite each other. At each of the four corners, each of connection surfaces 753 is a curved surface that is curved in such a manner that the curved surface protrudes toward an inside of grooves 74.


Therefore, connection surfaces 753 have respective slopes 754 at any one of the four corners. Further, since four corners each have slope 754, areas of movable contact 8 that are in contact with four corners, respectively, are not points. That is to say, areas of movable contact 8 that are in contact with four areas 731 of stationary contact 7, respectively, are surfaces. Therefore, stationary contact 7 does not locally apply a large load to movable contact 8. Therefore, occurrences of a stress concentration at movable contact 8 are also reduced.


Conductive layer 72 includes first conductive layer 721 and second conductive layer 722, as illustrated in FIG. 10C. First conductive layer 721 is part of conductive layer 72 and is at contact surface 73. Second conductive layer 722 is part of conductive layer 72 and is at connection surfaces 753. Preferably, first conductive layer 721 is connected with second conductive layer 722. That is to say, if each of connection surfaces 753 is a curved surface that is curved in such a manner that the curved surface protrudes toward an inside of corresponding one of grooves 74, as in the present exemplary embodiment, there is no step at each of opening edges 751 of grooves 74. Therefore, in a method for manufacturing stationary contact 7 described later, damage is less likely to occur between first conductive layer 721 and second conductive layer 722 at each of opening edges 751. Therefore, first conductive layer 721 and second conductive layer 722 that are connected with each other are easily made.


In push switch 1 according to the present exemplary embodiment, the above configuration allows conductive layer 72 to be less likely to be damaged at opening edges 751 of grooves 74. Further, the above configuration allows a stress concentration to be less likely to occur at opening edges 751 of grooves 74 when movable contact 8 is pushed against stationary contact 7. Therefore, even if several tens of newtons are applied to movable component 3 of push switch 1 according to the present exemplary embodiment, for example, conductive layer 72 is less likely to be removed from base material 71. Further, even if push switch 1 is used several million times to several ten million times, conductive layer 72 is less likely to be removed from base material 71.


Next, an example of methods for manufacturing stationary contact 7 configured as described above will be described with reference to FIGS. 11A to 11C.


In the present exemplary embodiment, first, in a plating step, conductive layer 72 is plated on a surface of base material 71 to make metal sheet 100 that will become first metal component 91. Then, in a first pressing step, metal sheet 100 that includes conductive layer 72 is pressed to make grooves 74, as illustrated in FIGS. 11A and 11B. In the first pressing step, metal sheet 100 is disposed on pad Y3, and then metal sheet 100 is pressed from above with punch Y2 that has a shape like a cross. Consequently, metal sheet 101 that has grooves 74 is made.


Then, in a second pressing step, metal sheet 101 is pressed to make protrusion 70, as illustrated in FIG. 11C. In the second pressing step, metal sheet 101 is pressed upward with punch Y4 that is cylindrical while a top surface of metal sheet 101 is pushed with die Y5 that is cylindrical. Consequently, first metal component 91 that has protrusion 70 is made.


Second conductive layer 722 (see FIG. 10C) is part of conductive layer 72 and is at connection surfaces 753. Second conductive layer 722 is stretched in the first pressing step of the above manufacturing method. Therefore, a thickness of second conductive layer 722 is smaller than a thickness of first conductive layer 721 (see FIG. 10C). That is to say, a thickness of first conductive layer 721 may be different from a thickness of second conductive layer 722.


The above manufacturing method is only an example. For example, after the first pressing step and the second pressing step, the plating step is performed to plate conductive layer 72 on a surface of base material 71. That is to say, the first pressing step, the second pressing step, and the plating step may be performed in this order. In the above manufacturing method, before the first pressing step, a metal sheet is blanked to form an outer shape of metal sheet 100 that will become first metal component 91. However, after the second pressing step, a metal sheet may be blanked to form an outer shape of first metal component 91, for example.


Push switch 1 may include stationary contact 7 configured as exemplified in FIGS. 12A to 13C. FIGS. 12A to 12C are enlarged views of an important part that corresponds to area Z1 in FIG. 10A. FIGS. 12Ato 12C are cross-sectional views that each schematically illustrate only stationary contact 7. Therefore, various dimensional relations (e.g., a thickness of base material 71 and a thickness of conductive layer 72) in FIGS. 12Ato 12C are different from actual dimensional relations. Further, FIGS. 13A to 13C are enlarged views of an important part that corresponds to area Z2 in FIG. 3A.


In an example illustrated in FIG. 12A, slopes 754 of connection surfaces 753 are planes. More specifically, each of connection surfaces 753 has inner side surface 755 and tapered surface 756. Inner side surface 755 is a plane that extends upward from each of ends of a width of bottom 752 of each of grooves 74. Inner side surface 755 is perpendicular to contact surface 73. Tapered surface 756 is an inclined plane. Consequently, the closer to a top of each of grooves 74 (an opening surface), the larger a width of each of grooves 74. Consequently, whole tapered surface 756 of each of connection surfaces 753 is inclined at an acute angle relative to contact surface 73. Therefore, whole tapered surface 756 is slope 754.


Further, in an example illustrated in FIG. 12B, slopes 754 of connection surfaces 753 are planes, similarly as in FIG. 12A. More specifically, each of connection surfaces 753 has tapered surface 756. Tapered surface 756 is a plane that extends upward diagonally from bottom 752 of each of grooves 74. Further, tapered surface 756 is inclined. Consequently, the closer to a top of each of grooves 74 (an opening surface), the larger a width of each of grooves 74. Consequently, whole tapered surface 756 of each of connection surfaces 753 is inclined at an acute angle relative to contact surface 73. Therefore, whole tapered surface 756 is slope 754.


Further, in an example illustrated in FIG. 12C, slopes 754 are surfaces curved in such a manner that a width of bottom 752 of each of grooves 74 becomes narrower toward a lowest portion of bottom 752. Consequently, a substantially whole inner surface of each of grooves 74 is a curved surface.


In an example illustrated in FIG. 13A, groove 74 is one straight groove. More specifically, groove 74 is straight and laterally extends through substantially a center of contact surface 73. Groove 74 divides contact surface 73 into two areas 731.


In an example illustrated in FIG. 13B, grooves 74 include three grooves 743, 744, 745. Three grooves 743, 744, 745 extend in different directions in a plane that is along contact surface 73. Three grooves 743, 744, 745 are straight and extend radially from substantially a center of contact surface 73. Two grooves of three grooves 743, 744, 745 correspond to the “first groove” and the “second groove”. Grooves 74 divide contact surface 73 into three areas 731.


In an example illustrated in FIG. 13C, grooves 74 include four grooves 746, 747, 748, 749. Groove 746 is straight and vertically extends through substantially a center of contact surface 73. Three grooves 747, 748, 749 are each straight and laterally extend. Three grooves 747, 748, 749 are vertically arranged at regular intervals. Therefore, three grooves 747, 748, 749 are each substantially perpendicular to groove 746. Groove 746 and one of three grooves 747, 748, 749 correspond to the “first groove” and the “second groove”. Grooves 74 divide contact surface 73 into eight areas 731.


(3) Examples of Modifications

The above present exemplary embodiment is merely one of various exemplary embodiments of the present disclosure. The exemplary embodiment is variously modified according to design as long as an object of the present disclosure is fulfilled. Hereinafter, some examples of modifications of the exemplary embodiment will be recited. Some or all of the examples of modifications described later are appropriately combined and applied.


A shape of an opening of depression 21 of push switch 1 is not only like an ellipse whose lateral length is longer than a vertical length of the ellipse, in a top view, but also may be like a rectangle, a circle, or a polygon. In case of the configuration, shapes of movable component 3 and other components are determined according to a shape of an opening of depression 21.



FIG. 14A illustrates push switch 1A according to a first example of modifications of the exemplary embodiment. In push switch 1A according to the first example of modifications, movable component 3 has main body 31 and a plurality of (four in the first example of modifications) legs 32. Main body 31 has a shape like an ellipse whose lateral length is longer than a vertical length of the ellipse, in a top view, similarly as movable component 3 in the above exemplary embodiment. Four legs 32 protrude from a periphery of main body 31. Four legs 32 are arranged at predetermined intervals along the periphery of main body 31. Four legs 32 are each substantially rectangular. Four legs 32 are connected with main body 31. Movable component 3 is disposed in depression 21. An orientation of each of the plurality of legs 32 corresponds to corresponding one of a plurality of enlarging depressions 22. In the configuration of the first example of modifications, four legs 32 protrude from main body 31. Therefore, four legs 32 increase a distance from movable contact 8 to stationary contact 7. Therefore, a length of a stroke becomes longer.



FIG. 14B illustrates push switch 1B according to a second example of modifications of the exemplary embodiment. In push switch 1B according to the second example of modifications, movable component 3 has main body 31 and a plurality of (four in the second example of modifications) legs 32, similarly as the first example of modifications. In the second example of modifications, main body 31 is substantially circular, in a top view.


As another example of modifications, a length of a stroke of push switch 1 may be appropriately changed. The length of a stroke of push switch 1 is an amount of movement of protective sheet 5 through an operational area at a time when push switch 1 is pushed to close push switch 1. The length of a stroke of push switch 1 may be relatively short, medium, or relatively long, for example. The medium length is between the relatively short length and the relatively long length. Further, push switch 1 may include first contacts and second contacts, instead of contacts 4. In case of push switch 1 that includes the first contacts and the second contacts, when protective sheet 5 is pushed, the first contacts are closed first. If protective sheet 5 is further pushed while the first contacts are closed, the second contacts are closed. In case of push switch 1 that includes the first contacts and the second contacts, movable component 3 may include two metal sheets that are buckled by different operational force. Further, push switch 1 is not necessarily normally open. Push switch 1 may be normally closed. Push switch 1 that is normally closed is opened when push switch 1 is operated.


Further, push switch 1 is not only used as one of controls of a device operated by a person, but also may be used as a detector for a device. If push switch 1 is used as a detector for a device, push switch 1 is used, for example, as a limit switch to detect a position of a component of a machine, such as an actuator.


Further, movable component 3 does not necessarily include a plurality of leaf springs 30 stacked together. Movable component 3 may include one leaf spring. Further, movable component 3 does not necessarily include three leaf springs 30. Movable component 3 may include two leaf springs 30, or four or more leaf springs 30. In that case, a number of leaf springs 30 stacked together varies operational force required to buckle movable component 3. Consequently, the number of leaf springs 30 stacked together varies tactility of push switch 1.


Pressing component 6 is not necessarily disposed between protective sheet 5 and pressure receiving portion 33. Pressing component 6 may be disposed on a top surface of protective sheet 5, for example. In that case, an underside of pressing component 6 may be joined to a top surface of protective sheet 5. In the configuration, protective sheet 5 transfers operational force that acts on pressing component 6 to pressure receiving portion 33.


Further, protective sheet 5 only needs to cover at least part of depression 21. Protective sheet 5 that covers whole depression 21 is not essential to push switch 1. For example, a hole may be made through part of protective sheet 5. Push switch 1 may not include protective sheet 5.


Further, a conductive film is not necessarily made on a whole underside of movable component 3. For example, a conductive film may be made on part of an underside of movable component 3 with which stationary contact 7 is in contact, and on part of the underside of movable component 3 with which stationary contact 921 is in contact. Further, a conductive film may not be appropriately made on an underside of movable component 3. In that case, preferably, part or all of movable component 3 is made of a conductive material. Consequently, movable component 3 is surely conductive.


Retaining pins Y1 retain one of metal components 9 when case 2 is molded. Retaining pins Y1 are not necessarily in contact with an underside of the one of metal components 9 (stationary contact 921). Retaining pins Y1 may be in contact with a top surface of the one of metal components 9. In that case, pin receiving portions 93 are on the top surface of the one of metal components 9. Further, even if retaining pins Y1 are in contact with an underside of the one of metal components 9, pin holes 24 made through an underside of case 2 may be filled with a synthetic resin after case 2 has been molded.


Conductive layer 72 is not limited to a plated layer. Conductive layer 72 may be a painted film or a film, for example. If conductive layer 72 is a film, conductive layer 72 is stuck to base material 71.


Grooves 74 of stationary contact 7 are not necessarily complete hollows. A synthetic resin of which case 2 is made may exist in grooves 74 of stationary contact 7. That is to say, a synthetic resin may fill at least part of grooves 74 of stationary contact 7.


(5) Conclusion

As described above, a first aspect of push switch (1, 1A, 1B) includes case (2), movable component (3), first stationary contact (7), and second stationary contact (921). Case (2) has depression (21) that opens in a first direction (upward), and enlarging depression (22) that is adjacent to depression (21). Movable component (3) is disposed in depression (21). First stationary contact (7) is provided on bottom surface (211) of depression (21). First stationary contact (7) is located in a second direction that is opposite to the first direction from movable component (3) (first stationary contact (7) is under movable component (3)). Second stationary contact (921) is exposed at bottom surface (211) of depression (21). When movable component (3) is deformed, the movable component (3) comes into contact with first stationary contact (7). Second stationary contact (921) has contact portion (212) with which movable component (3) is in contact. Enlarging depression (22) is more apart from a center of case (2) than depression (21) is apart from the center of case (2) when viewed in the first direction. Depression (21) and enlarging depression (22) are integrally made. Enlarging depression (22) is adjacent to contact portion (212).


If scraped powder (P1) is generated at contact portion (212), the first aspect allows scraped powder (P1) to move into enlarging depression (22) from contact portion (212) in depression (21). Therefore, push switch (1, 1A, 1B) allows scraped powder (P1) to be less likely to accumulate at contact portion (212) with which movable component (3) is in contact. Contact portion (212) is a portion of bottom surface (211) of depression (21) of case (2). Therefore, scraped powder (P1) is less likely to vary tactility and electrical properties of push switch (1, 1A, 1B).


In a second aspect of push switch (1, 1A, 1B), surface roughness of bottom surface (221) of enlarging depression (22) is at least higher than surface roughness of contact portion (212).


The second aspect allows scraped powder (P1) that has moved from depression (21) into enlarging depression (22) to be captured by bottom surface (221) of enlarging depression (22). Therefore, scraped powder (P1) is more likely to stay in enlarging depression (22). Consequently, scraped powder (P1) is less likely to move from enlarging depression (22) into depression (21).


In a third aspect of push switch (1, 1A, 1B), bottom surface (211) of enlarging depression (21) is more in the second direction than contact portion (212) is in the second direction (bottom surface (211) of enlarging depression (21) is lower than contact portion (212)).


The third aspect allows scraped powder (P1) that has moved from depression (21) into enlarging depression (22) to be captured by bottom surface (221) of enlarging depression (22). Therefore, scraped powder (P1) is more likely to stay in enlarging depression (22). Consequently, scraped powder (P1) is less likely to move from enlarging depression (22) into depression (21).


In a fourth aspect of push switch (1, 1A, 1B), the farther from depression (21), the shorter a distance between a pair of opposite side surfaces (222) of enlarging depression (22) that is adjacent to depression (21), when viewed in the first direction (seen from above).


The fourth aspect allows the pair of side surfaces (222) of enlarging depression (22) to function as a structure that guides scraped powder (P1) from depression (21) into enlarging depression (22). Therefore, if scraped powder (P1) is generated at contact portion (212) of depression (21), scraped powder (P1) is more likely to move from contact portion (212) into enlarging depression (22).


In a fifth aspect of push switch (1, 1A, 1B), case (2) has wall (25A, 25B) at a boundary between enlarging depression (22) and depression (21).


In the fifth aspect, if scraped powder (P1) moves from depression (21) into enlarging depression (22), wall (25A, 25B) regulates movement of scraped powder (P1) toward depression (21). Therefore, scraped powder (P1) is more likely to stay in enlarging depression (22). Consequently, scraped powder (P1) is less likely to move from enlarging depression (22) into depression (21).


In the sixth aspect of push switch (1, 1A, 1B), case (2) is made of a synthetic resin, and contact portion (212) is part of metal component (9). Metal component (9) extends from contact portion (212) to bottom surface (221) of enlarging depression (22).


In the sixth aspect, even if movable component (3) moves onto a boundary between depression (21) and enlarging depression (22), movable component (3) does not rub against case (2) made of the synthetic resin. Therefore, powder (P1) is less likely to be scraped from case (2) made of the synthetic resin.


In a seventh aspect of push switch (1, 1A, 1B), metal component (9) has pin receiving portion (93) in enlarging depression (22).


Due to the seventh aspect, deformation of pin receiving portion (93) does not prevent movable component (3) from moving.


In an eighth aspect of push switch (1, 1A, 1B), a plurality of contact portions (212) are on bottom surface (211) of depression (21) of case (4). A plurality of enlarging depressions (22) are adjacent to the plurality of contact portions (211), respectively.


In the eight aspect, enlarging depressions (22) are separate from each other, and are for respective contact portions (212). Therefore, scraped powder (P1) that has been generated at each of contact portions (212) efficiently accumulates in enlarging depressions (22).


Configurations of the second to eighth aspects are not essential to push switch (1, 1A, 1B). Therefore, push switch (1, 1A, 1B) may not appropriately include the configurations of the second to eighth aspects.


REFERENCE MARKS IN THE DRAWINGS


1, 1A, 1B: push switch



2: case



3: movable component



4: contacts



5: protective sheet



6: pressing component



7: stationary contact



8: movable contact



9: metal component



11, 12: terminal



21: depression



22: enlarging depression



23: top surface



24: pin hole



25A, 25B: wall



31: main body



32: leg



33: pressure receiving portion



51: joined-portion



70: protrusion



71: base material



72: conductive layer



73: contact surface



74: groove



91: metal component



92: metal component



93: pin receiving portion



100, 101: metal sheet



211: bottom surface



212: contact portion



213
a,
213
b: side surface



221: bottom surface



222: side surface



721, 722: conductive layer



731: area



741, 742, 743, 746, 747, 748, 749: groove



751: opening edge



752: bottom



753: connection surface



754: slope



755: inner side surface



756: tapered surface



921: stationary contact


D1: depth


D2: depth


L1: imaginary line


L2: imaginary line


P1: powder


Y1: retaining pin


Y2: punch


Y3: pad


Y4: punch


Y5: die


Z1: area


Z2: area


θ: angle of inclination

Claims
  • 1. A push switch comprising: a case that has a depression that opens in a first direction, and an enlarging depression that is adjacent to the depression;a movable component disposed in the depression;a first stationary contact that is provided on a bottom surface of the depression, the first stationary contact is located in a second direction that is opposite to the first direction from the movable component; anda second stationary contact exposed at the bottom surface of the depression,whereinwhen the movable component is deformed, the movable component comes into contact with the first stationary contact,the second stationary contact has a contact portion with which the movable component is in contact,the enlarging depression is more apart from a center of the case than the depression is apart from the center of the case when viewed in the first direction,the depression and the enlarging depression are integrally made, andthe enlarging depression is adjacent to the contact portion.
  • 2. The push switch according to claim 1, wherein surface roughness of a bottom surface of the enlarging depression is higher than surface roughness of the contact portion.
  • 3. The push switch according to claim 1, wherein a bottom surface of the enlarging depression is more in the second direction than the contact portion is in the second direction.
  • 4. The push switch according to claim 1, wherein the farther from the depression, the shorter a distance between a pair of opposite side surfaces of the enlarging depression that is adjacent to the depression when viewed in the first direction.
  • 5. The push switch according to claim 1, wherein the case has a wall at a boundary between the enlarging depression and the depression.
  • 6. The push switch according to claim 1, wherein the case is made of a synthetic resin,the contact portion is part of a metal component, andthe metal component extends from the contact portion to a bottom surface of the enlarging depression.
  • 7. The push switch according to claim 6, wherein the metal component has a pin receiving portion in the enlarging depression.
  • 8. The push switch according to claim 1, wherein a plurality of contact portions include the contact portion,a plurality of enlarging depressions include the enlarging depression,the plurality of contact portions are on the bottom surface of the depression of the case, andthe plurality of enlarging depressions are adjacent to the plurality of contact portions, respectively.
Priority Claims (1)
Number Date Country Kind
2017-169014 Sep 2017 JP national
PCT Information
Filing Document Filing Date Country Kind
PCT/JP2018/031468 8/27/2018 WO 00