Putter fitting has historically been based first on appearance, feel and sound; and secondly on putter length and lie angle. A significant number of systems have been developed and marketed to facilitate fitting for lie angle and length. Some fitting methods include an analysis of stroke shape; including anecdotal recommendations for more toe hang for strokes with dramatic arc and face balanced putters for strokes with little or no arc. Putter weight fitting has historically been very limited and based only on feel or swingweight, and not on performance criteria.
The fact that very few putters offer any weight adjustment at all has naturally limited the offering of weight fitting by their manufacturers. Putters that have weight adjustment capability offer weight adjustment over only a very limited range; most commonly about 30 grams. This limited weight adjustability is typically used to maintain swingweight.
The industry standard for men's swingweight is typically designated with the labels D0 to D2. Women's is C6 to C8. If a putter is shortened from 35 inches to 34 inches the swingweight will decrease by about 6 swingweight points. If it is further shortened to 33 inches the swingweight will be reduced by an additional 6 points; a total of about 12 swingweight points. To maintain putter swingweight, some putter manufacturers offer heads with weights varying by about 30 grams, that is, 335 grams, 350 grams and 365 grams. Most putters are not weight adjustable at all; except by adding lead tape or other weighting material. Junior golfers, with even shorter putters, are particularly ill-served by the lack of weight adjustability in putters. With their very short putters, these juniors are forced to put with extremely light, low swingweight putters.
Swingweight fitting assumes that a putter should be about the same swingweight as the rest of a golfer's set of clubs. This anecdotal assumption assumes that the putter is swung in the same way as the other clubs; it is not. 40 years ago, putters were swung, with a distinct wrist break. On today's much faster greens, putters are no longer swung in the same way. The modern putting stroke limits wrist break dramatically. The modern putter stroke is a pendulum stroke based on maintaining wrist and arm relationships.
Putters have been gradually becoming heavier over the last 50 years. Putter head weight 50 years ago was very light, around 300 grams. The original Scottsdale Ping Anser (Trademark-Karsten Manufacturing Corp.) style putter, introduced in about 1966, weighed only 310 grams. Today's “Anser” style putters have increased in weight to about 345 grams. Putters are available today with weights of from 330 grams to about 400 grams. Very few putters have a weight over 400 grams.
The choice of light versus heavier putter is generally understood to be a matter of user feel or tempo; and an aesthetic choice for the individual golfer. With the advent of putting launch monitors that provide detailed data regarding both the putter club and the ball, it is possible to develop performance data for putters with varying specific characteristics.
Because so few putters have any weight adjustment at all, methods for putter fitting have been focused on comparing other putter characteristics; or more commonly one putter model to another. Incremental variation of a putter variable like loft, lie and length has been incorporated in some fitting systems; but incremental variation of weight has not been explored fully.
Existing putter fitting protocols have focused on launch angle, spin rates and aiming improvements. Existing club fitting (irons and woods) has focused similarly on launch angle and spin rates, with special attention on shaft variations. Numerous methods and systems for testing irons and woods exist. Far fewer putter fitting methods and systems exist and none of them have focused on incremental wide range weight optimization.
The putter industry has widely claimed that increased mass moment of inertia (MOI) means increased stability; but very little scientific evidence has been offered. Putter stability is widely understood to be very important in putter performance. On an off-center hit, a high MOI putter is more stable than a low MOI putter; meaning that the putter will twist less (about a vertical axis) at impact and the impact will therefore be more efficient. Twist at impact causes the ball to be sent off line. Twist at impact also reduces the resulting ball speed, so a putt will not travel as far. Twist at impact therefore results in both poor directional control performance and poor distance control performance. A higher MOI putter will be a more forgiving putter.
While the potential general improvement of putting accuracy with increased MOI is understood, there has been no understanding of whether and how changes in MOI affects individual users and no understanding of fitting individual users to maximize putting performance. What is needed to further improve putter accuracy is a way to tailor a putter weight over a very wide range to individuals' characteristics.
The invention is based on the novel recognition that a human user can have an optimum putter weight and associated moment of inertia (MOI) that optimizes user putter accuracy and performance independent of user aiming. By changing a user's putter weight over a very wide range and hence increased MOI at any given weight and testing user accuracy and performance an optimum putter weight characteristic can be determined.
The present invention employs multiple golf putter configurations with associated putter head weight adjustment over a sufficiently wide range to discern changes in typical individual user's performance and thereby determine an optimum putter weight and moment of inertia (MOI). This includes configurations from very low weights (less than 340 grams) up to very high weights (in excess of 600 grams).
In a preferred embodiment of the inventive method, a putter capable of changeable weight and MOI is provided, together with means of detecting and measuring at least one performance parameter. The putter should have an adjustable weight in the range of 300 to 600 grams. A user is directed to complete multiple putts, each putt consisting of the user striking a ball with the putter in typical fashion, for each of specified multiple weights. For each weight, the user completes multiple putts and the specified performance parameter is measured and recorded. An optimum weight and MOI for the user is identified from the values of the performance parameter. Any of a number of different parameters may be used to define performance, including for example: putter face angle variation range; putter speed variation range; ball launch angle. In a preferred configuration of the inventive method, putter face angle is measured and a minimum value of the face angle variation range is used as an indicator of an optimum putter weight and configuration. In alternative configurations of the method, multiple putters, each with a unique weight and MOI, is used to provide the multiple weight and MOI values.
The invention includes a putter having weight and MOI characteristics adjustable through a range of values including optimum values for a majority of human users. The adjustment includes weight increments no greater than 12 grams to discern typical putter performance parameters.
The inventive method enables the identification of a user associated optimum configuration of weight in a putter with variable weight configurations. In a putter of any design and range of weights, the inventive method can distinguish which weight or weight configuration will result in the lowest face angle variation range; and/or putter speed variation range; best launch angle; etc. which will result in improved putting performance with a specified user. It is important to note it is believed that the optimum (particularly, lowest face angle variation range) configuration of a putter is dependent in part on the user and the user's kinesiological and biomechanical interaction with the putter during use. For example, players with a slower tempo will likely perform best with a heavier putter and players with a faster tempo will likely perform best with a lighter putter. As such, when the act of putting is discussed herein, it should be understood that a specified associated user is engaged with the putter. The results of the putting performance, and therefore the results of the inventive method are associated with a combination of a particular putter and a specified user.
While the inventive method enables determining an optimum weight configuration among any various different putter weight configurations, it has been determined that for the majority of human users there is a range of putter weights and mass-moment of inertia (MOI) within which an optimum for the user can be determined.
In accordance with the present invention, an optimum putter weight and moment of inertia (MOI) for an individual golf player user is established by user performance putting test results in which putter weight is incrementally changed over a very wide range to alter both weight and MOI. At least one of a variety of possible putter performance parameters are detected and recorded during testing. Variations in the performance parameters indicate optimum weight and MOI. While adding MOI theoretically (actually) increases stability, the present invention determines the optimum weight and and associated MOI for any individual. Adding weight above this determined optimum weight will increase MOI and stability but will not improve performance.
Generally, the putter 100 should be held by the subject human user (not illustrated) and the user instructed to, at all times, attempt to use the putter in a fashion replicating the user's action in the course of golf activities. For example, the user should “address” the ball in his/her normal fashion; taking his/her normal putting stance and posture, ready to initiate a putting stroke. The actions of the user, including the actually striking of the ball, is termed here a “putt”. While the user is supporting the putter 100, an alignment device is used to align the putter 100 with the target. In the example shown, the alignment device 20 is provided by a laser light emitting device placed against the face of the putter 100 such that a light beam 22 is emitted along parallel to and coicident with the line-of-aim 112 of the putter 100. Generally, the putter line-of-aim is a line passing through the intended strike point of the putter 100 and perpendicular to the putter 100 at that point. Using this alignment device 20, the putter 100 is oriented such that its line-of-aim 112 passes through the center of the target 12 (assuming an absolutely level putting surface). The alignment device 20 may then be removed and a conventional golf ball placed in its position (not shown).
In the following steps, the user should attempt to aim the putter 100 on the line-of-aim 22 established with the laser; and thereafter initiate and complete a normal putting stroke, striking the ball and sending it along the line-of-aim 22.
As illustrated, the face angle lines 36 vary from putt to subsequent putt. The deviation of face angle line 36 of each putt from the intended line-of-aim is at least in part due to failure to return the putter 100 to the line-of-am. The face angle variation range 50 can calculated based on the face angle variation of the individual putts in a test.
During the inventive method, a multiple of balls are struck by the user in the same fashion and at least one putter performance parameter is determined and recorded for each event. In this step, the putter configuration, weight and MOI, is unchanged. Because human performance in putting is found to be erratic and variable, a single putt is unlikely to generate data that is representative of the putter characteristics of interest. As a result multiple balls must be struck, separately, in sequence, and data obtained from each, to generate meaningful data. Preferably, at least six balls (putts) are believed to be sufficient to generate the required information. Tests with more than 6 balls are more accurate; more than 20 balls is believed to be unnecessary.
Other putter performance parameters may be defined by motions and positions of the putter during the putting action, such as at the moment the putter strikes the ball or before and after. A variety of useful performance parameters may be determined by optical means using systems such as the “Quintic Ball Roll” (trademark of Quintic Consultancy Ltd. of UK) system. These systems use high speed cameras to photograph create images of the putters and ball during and after putting actions. From this information and data the performance parameters may be detected and measured. In
Using the inventive methods and devices various different putter performance parameters that may be likewise measured or determined including: putter head face angle variation range at ball impact, putter speed and variation range at impact, ball speed variation at impact, zero skid point and variation, ball launch angle and variation. Each of these may evidence movement or other conditions of the putter during a putting stroke that may be affected by stability of the putter that may be altered by changes in weight and MOI.
In a subsequent step in the present method, the weight and therefore MOI of the putter head is changed to form a second putter configuration. Preferably, in the first step above, a relatively low weight and MOI is used. Most preferably, the initial putter configuration for the first step is a putter that is previously used by the user, or is a putter configuration having closely matching properties. It can be presumed that such an initial putter configuration will have a weight and MOI below an optimum value, in which case subsequent testing steps may be carried out with subsequent putters, or putter configurations, having increased weight and, or, MOI. As in the first step, multiple balls are struck by the user using the putter having the second weight and MOI configuration, and respective movement performance parameters determined and measured. This data is recorded.
The step of changing the putter configuration weight and MOI (or introducing a different configuration) and striking multiple balls to obtain putter performance parameter data is repeated until an uncomfortably high putter weight is reached. This maximum may be determined by ad hoc analysis of putter performance parameters to detect an optimum putter configuration, or a maximum is determined by the feel of the player. The test is carried out and the optimum determined from review of all data.
A maximum possible putter weight of at least about 500 grams is suggested. However, it is possible that particular combinations of users and putters may require greater weight and MOI to reach an optimum configuration. In any test sequence, if a optimum configuration is not found, testing may be continued with greater weight and MOI values until a optimum is determined.
After a series of test steps, gathering putter performance parameter data for a range of putter weight configurations, the optimum weight configuration is determined by the performance parameter data. The indicator of the optimum weight is a minimum value for the selected putter performance parameter. For example, an optimum configuration based on putter face angle is the configuration having a minimum face angle variation range. The range being the angle (or similar dimension) encompassing all putts respecting a putter weight and MOI configuration.
An inventive putter is preferably provided with features to carry out the required optimization functions.
In a preferred embodiment of the inventive method, a putter according to the above specifications and requirements is provided, together with means of detecting and measuring at least one putter performance parameter. The putter should have an adjustable weight range of 300 to 600 grams and include incremental weights of no more than 12 grams each. The inventive steps are carried out as described above for specified multiple weights and MOIs within the weight and MOI range. For each weight and MOI, the user completes multiple putts and the specified performance parameter is measured and recorded. An optimum weight and MOI for the user is identified from the minimum value of the putter performance parameter.
The above description is that of current embodiments of the invention. Various alterations and changes can be made without departing from the spirit and broader aspects of the invention as defined in the appended claims. This disclosure is presented for illustrative purposes and should not be interpreted as an exhaustive description of all embodiments of the invention or to limit the scope of the claims to the specific elements illustrated or described in connection with these embodiments. For example, and without limitation, any individual element(s) of the described invention may be replaced by alternative elements that provide substantially similar functionality or otherwise provide adequate operation. This includes, for example, presently known alternative elements, such as those that might be currently known to one skilled in the art, and alternative elements that may be developed in the future, such as those that one skilled in the art might, upon development, recognize as an alternative. Further, the disclosed embodiments include a plurality of features that are described in concert and that might cooperatively provide a collection of benefits. The present invention is not limited to only those embodiments that include all of these features or that provide all of the stated benefits, except to the extent otherwise expressly set forth in the issued claims. Any reference to elements in the singular, for example, using the articles “a,” “an,” “the” or “said,” is not to be construed as limiting the element to the singular.
Number | Date | Country | |
---|---|---|---|
Parent | 14600034 | Jan 2015 | US |
Child | 15235744 | US |