PV module mounting assembly with clamp/standoff arrangement

Information

  • Patent Grant
  • 11616468
  • Patent Number
    11,616,468
  • Date Filed
    Friday, January 22, 2021
    3 years ago
  • Date Issued
    Tuesday, March 28, 2023
    a year ago
Abstract
A mounting assembly for use in mid-grab and/or edge-grab applications may include a clamp secured to a stanchion by a clamping fastener. The mounting assembly may also include a mounting plate which may be secured to a mounting device by the stanchion. The mounting assembly may be used, for example, to secure photovoltaic modules (or other devices or structures) of varying heights to a roof or other building surface.
Description
FIELD OF THE INVENTION

The present invention generally relates to installing structures on a building surface and, more particularly, to mounting devices for installing attachments, such as photovoltaic modules, on such a building surface.


BACKGROUND

Metal panels are being increasingly used to define building surfaces such as roofs and sidewalls. One type of metal panel is a standing seam panel, where the edges of adjacent standing seam panels of the building surface are interconnected in a manner that defines a standing seam. Standing seam panels are expensive compared to other metal panels, and building surfaces defined by metal panels may be more costly than other types of building surface constructions.


It is often desirable to install various types of structures on building surfaces, such as heating, air conditioning, and ventilation equipment. Installing structures on standing seam panel building surfaces in a manner that punctures the building surface at one or more locations is undesirable in a number of respects. One is simply the desire to avoid puncturing what is a relatively expensive building surface. Another is that puncturing a metal panel building surface can present leakage and corrosion issues.


Photovoltaic or solar cells have existed for some time and have been installed on various building roofs. A photovoltaic cell is typically incorporated into a perimeter frame of an appropriate material (e.g., aluminum) to define a photovoltaic module or solar cell module. Multiple photovoltaic modules may be installed in one or more rows (e.g., a string) on a roofing surface to define an array.



FIG. 1 illustrates one prior art approach that has been utilized to mount a solar cell module to a standing seam. A mounting assembly 10 includes a mounting device 74, a bolt 14, and a clamping member 142. Generally, the mounting device 74 includes a slot 90 that receives at least an upper portion of a standing seam 42. A seam fastener 106 is directed through the mounting device 74 and into the slot 90 to forcibly retain the standing seam 42 therein. This then mounts the mounting device 74 to the standing seam 42.


A threaded shaft 22 of the bolt 14 from the mounting assembly 10 passes through an unthreaded hole in a base 154 of a clamping member 142, and into a threaded hole 98 on an upper surface 78 of the mounting device 74. This then mounts the clamping member 142 to the mounting device 74. The clamping member 142 is used to interconnect a pair of different solar cell module frames 62 with the mounting assembly 10. In this regard, the clamping member 142 includes a pair of clamping legs 146, where each clamping leg 146 includes an engagement section 152 that is spaced from the upper surface 78 of the mounting device 74. The bolt 14 may be threaded into the mounting device 74 to engage a head 18 of the bolt with the base 154 of the clamping member 142. Increasing the degree of threaded engagement between the bolt 14 and the mounting device 74 causes the engagement sections 152 of the clamping legs 146 to engage the corresponding solar cell module frame 62 and force the same against the upper surface 78 of the mounting device 74.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a side view of a prior art mounting assembly for interconnecting solar cell modules with a standing seam roof.



FIG. 2 is a perspective view of a plurality of solar cell modules installed on a standing seam building surface using a plurality of adjustable mounting assemblies.



FIG. 3 is a cross-sectional schematic of a representative standing seam defined by interconnecting a pair of panels.



FIG. 4 is a top view of one of the solar cell modules illustrated in FIG. 2.



FIG. 5 is a perspective view of one of the mounting devices that is installed on a standing steam in FIG. 2.



FIG. 6 is an exploded, perspective view of one of the adjustable mounting assemblies from FIG. 2.



FIG. 7A is a side view of one of the adjustable mounting assemblies from FIG. 2, and which is engaging a pair of solar cell module frames.



FIG. 7B shows the mounting assembly of FIG. 7A being used for solar cell module frames having a different thickness than those illustrated in FIG. 7A.



FIG. 7C is a side view of one of the adjustable mounting assemblies from FIG. 2 that is disposed adjacent to an edge of the building surface, and which is engaging a single solar cell module frame.



FIG. 8A is one side-based perspective view of another embodiment of a mounting assembly for photovoltaic modules.



FIG. 8B is one top-based perspective view of the mounting assembly of FIG. 8A.



FIG. 8C is another top-based perspective view of the mounting assembly of FIG. 8A.



FIG. 8D is a bottom-based perspective view of the mounting assembly of FIG. 8A.



FIG. 8E is a plan view of a bottom of the mounting assembly of FIG. 8A.



FIG. 8F is another side-based perspective view of the mounting assembly of FIG. 8A, and schematically illustrating the engagement of a pair of photovoltaic modules.



FIG. 9A is a plan view of one embodiment of a photovoltaic system using a plurality of the mounting assemblies of FIGS. 8A-F, in which the clamping members are omitted to illustrate a positional registration function incorporated by the mounting plate of such mounting assemblies.



FIG. 9B is a plan view of a photovoltaic system using a plurality of the mounting assemblies of FIG. 6, in which the clamping members are omitted to illustrate how a misaligned mounting assembly can affect the ability of the same to clamp onto one or more photovoltaic modules.



FIG. 10A is a perspective view of another embodiment of a mounting plate that incorporates a discrete pair of PV module positional registrants.



FIG. 10B is a side view of the mounting plate of FIG. 10 disposed on a mounting device, where the mounting plate includes a pair of mounting device positional registrants.



FIG. 11 is one embodiment of a mounting assembly for a single photovoltaic module.



FIG. 12A is a perspective view of a mounting plate used by the mounting assembly of FIG. 11.



FIG. 12B is a top view of the mounting plate of FIG. 12A.



FIG. 12C is a side view of the mounting plate of FIG. 12A.



FIG. 12D as a cross-sectional view of the mounting plate of FIG. 12A.



FIG. 13A is a perspective view of a stanchion used by the mounting assembly of FIG. 11.



FIG. 13B is a cutaway view of the stanchion of FIG. 13A.



FIG. 13C is a side view of the stanchion of FIG. 13A.



FIG. 14A is a perspective view of a clamping fastener used by the mounting assembly of FIG. 11.



FIG. 14B is a side view of the clamping fastener of FIG. 14A.



FIG. 15A is a perspective view of a clamp used by the mounting assembly of FIG. 11.



FIG. 15B is an end view of the clamp of FIG. 15A.



FIG. 16A is a perspective view showing the mounting assembly of FIG. 11 in use with a photovoltaic module frame section of a first size.



FIG. 16B is an end view of the mounting assembly and photovoltaic module frame section shown in FIG. 16A.



FIG. 17A is a perspective view showing the mounting assembly of FIG. 11 in use with a photovoltaic module frame section of a second size.



FIG. 17B is an end view of the mounting assembly and photovoltaic module frame section shown in FIG. 17A.



FIG. 18A is an exploded, end view of another embodiment of a mounting assembly for a single photovoltaic module.



FIG. 18B is an end view of a clamp used by the mounting assembly of FIG. 18A.



FIG. 18C is a perspective view of the mounting assembly shown in FIG. 18A.



FIG. 18D is an end view of the mounting assembly of FIG. 18A, with a clamping fastener, clamp, and stanchion being in an assembled condition.



FIG. 19A is a perspective view of another embodiment of a mounting assembly for a single photovoltaic module.



FIG. 19B is an end view of the mounting assembly and photovoltaic module frame section shown in FIG. 19A.



FIG. 19C is an exploded, end view of the mounting assembly and photovoltaic module frame section shown in FIG. 19A.



FIG. 20A is an end view of the mounting assembly of FIG. 19A in a minimum height configuration for a photovoltaic module engagement.



FIG. 20B is an end view of the mounting assembly of FIG. 19A in a maximum height configuration for a photovoltaic module engagement.



FIG. 21 is an exploded, end view of another embodiment of a mounting assembly that accommodates engaging a pair of photovoltaic modules.



FIG. 22A is a perspective view of a clamp used by the mounting assembly of FIG. 21.



FIG. 22B is an end view of the clamp of FIG. 22A.



FIG. 23A is a perspective view showing the mounting assembly of FIG. 21 in with a photovoltaic module frame section of a first size.



FIG. 23B is an end view of the mounting assembly and photovoltaic module frame section shown in FIG. 23A.



FIG. 24A is a perspective view of using the mounting assembly of FIG. 21 for a photovoltaic module frame section of a second size.



FIG. 24B is an end view of the mounting assembly and photovoltaic module frame section shown in FIG. 24A.



FIG. 25A is an exploded, end view of another embodiment of a mounting assembly that accommodates engaging a pair of photovoltaic modules.



FIG. 25B is an end view of a clamp used by the mounting assembly of FIG. 25A.



FIG. 25C is a perspective view of the mounting assembly shown in FIG. 25A.



FIG. 25D is an end view of the mounting assembly of FIG. 25A, with a clamping fastener, clamp, and stanchion being in an assembled condition.



FIG. 26A is a perspective view of another embodiment of a mounting assembly that accommodates engaging a pair of photovoltaic modules.



FIG. 26B is an end view of the mounting assembly and photovoltaic module frame sections shown in FIG. 26A.



FIG. 26C is an exploded, end view of the mounting assembly and photovoltaic module frame sections shown in FIG. 26A.





DETAILED DESCRIPTION


FIG. 2 illustrates an assembly 30 in the form of a building surface 34, a photovoltaic module or solar cell array 54 defined by a plurality of photovoltaic modules or solar cell modules 58 (only schematically shown in FIG. 2), and a plurality of mounting assemblies 70a, 70b. The building surface 34 is defined by interconnecting a plurality of panels 38. Although the panels 38 may be formed from any appropriate material or combination of materials, typically they are in the form of metal panels 38. In any case, each adjacent pair of panels 38 is interconnected in a manner so as to define a standing seam 42 (only schematically shown in FIG. 2). A base 46 is disposed between the opposing edges of each panel 38 (e.g., FIG. 3). The entirety of the base 46 may be flat or planar. However, one or more small structures may be formed/shaped into the base 46 of one or more panels 38 of the building surface 34 to address oil canning. These structures are commonly referred to as crests, minor ribs, intermediate ribs, pencil ribs, striations, fluting, or flutes.


A cross-sectional schematic of one of the standing seams 42 is illustrated in FIG. 3. A pair of interconnected panels 38 define a standing seam 42. Generally, an edge or edge section 50 of one panel 38 is “nested” with the opposing edge or edge section 50 of the adjacent panel 38 to define a standing seam 42. Typically, each the two opposing edges 50 of a given panel 38 will be of a different configuration. That way, one edge 50 (one configuration) of one panel 38 will be able to “nest” with one edge 50 (another configuration) of the adjacent panel 38. Various configurations may be employed for the edges 50 of the panels 38, which may result in different configurations/profiles for the corresponding standing seam 42.


A more detailed view of one of the photovoltaic modules or solar cell modules 58 from FIG. 2 is presented in FIG. 4. Each solar cell module 58 includes a frame 62 that is disposed about the corresponding solar cell 66. The frame 62 may be of any appropriate size, shape, configuration, and/or type, and may be formed from any appropriate material or combination of materials. In the illustrated embodiment, the frame 62 is of a rectangular profile, and may be formed from an appropriate metal or metal alloy (e.g., aluminum). Similarly, the photovoltaic cell or solar cell 66 may be of any appropriate size, shape, configuration and/or type to convert light into electricity. Typically, the solar cell 66 will be in the form of a substrate having a stack of a plurality of layers. Any number of solar cell modules 58 may be used for the solar cell array of FIG. 2, and multiple solar cell modules 58 may be disposed in any appropriate arrangement (e.g., any appropriate number of rows and/or columns of solar cell modules 58).


The mounting assemblies 70a, 70b that are used to install the solar cell array 54 onto the building surface 34 in FIG. 2 utilize a mounting device 74 that may be of any appropriate size, shape, configuration, and/or type. One configuration of a mounting device that may be installed on a standing seam 42 is illustrated in FIG. 5 and is identified by reference numeral 74. This mounting device 74 includes an upper surface 78 and an oppositely disposed bottom surface 86, a pair of oppositely disposed side surfaces 82, and a pair of oppositely disposed ends 94. The upper surface 78 includes a threaded hole 98, as does at least one of the side surfaces 82, while the bottom surface 86 includes a slot 90 that extends between the two ends 94 of the mounting device 74.


The slot 90 on the bottom surface 86 of the mounting device 74 includes a base 92a and a pair of sidewalls 92b that are spaced apart to receive at least an end section of a standing seam 42. One or more seam fasteners 106 may be directed through a threaded hole 102 of the mounting device 74 and into the slot 90 to engage the standing seam 42 and secure the same against the opposing slot sidewall 92b. A cavity of any appropriate type may be on this opposing slot sidewall 92b to allow the aligned seam fastener 106 to deflect a corresponding portion of the standing seam 42 into this cavity, although such may not be required in all instances. In any case and in one embodiment, the seam fastener 106 only interfaces with an exterior surface of the standing seam 42. For instance, the end of the seam fastener 106 that interfaces with the standing seam 42 may be convex, rounded, or of a blunt-nosed configuration to provide a desirable interface with the standing seam 42.


Other mounting device configurations may be appropriate for mounting on standing seam 42 and may be used in place of the mounting device 74 shown in FIG. 5. Various mounting device configurations are disclosed in U.S. Pat. Nos. 5,228.248; 5,483,772; 5,491,931; 5,694,721; 5,715,640; 5,983,588; 6,164,033; 6,718,718; 7,100,338; and 7,013,612, various configurations may be utilized by either of the mounting assemblies 70a, 70b.


The mounting assembly 70a that is used in the installation of a pair of adjacent solar cell modules 58 in FIG. 2, and that may use a mounting device 74, is illustrated in FIG. 6. The mounting assembly 70a includes a mounting device 74, along with a mounting plate 110, a clamping member 142, a stud 114, and a nut 128. The mounting plate 110 is disposed on the upper surface 78 of the mounting device 74, and includes a hole or aperture 112 that allows the stud 114 to pass therethrough. The mounting plate 110 may be utilized when it may be desirable to enhance the stability of the mounting assembly 70a, and in any case may be of any appropriate size, shape, configuration and/or type. In some embodiments, the mounting plate 110 is circular, which beneficially avoids any need for the mounting plate to be aligned in a particular direction. The surface area of the mounting plate 110 is at least about 5 in2 in one embodiment, and is at least about 7 in2 in another embodiment. It may be possible to eliminate the mounting plate 110 from the mounting assembly 70a, for instance when the surface area of the upper surface 78 of the mounting device 74 is sufficiently large.


The stud 114 provides an interface between the clamping member 142 and the mounting device 74, and includes a first stud end 118 and an oppositely disposed second stud end 122. A nut 126 is disposed between the first stud end 118 and the second stud end 122, and is fixed to the stud 114 in any appropriate manner (e.g., welded). That is, the nut 126 does not move relative to the stud 114, such that the nut 126 and stud 114 will move together as a single unit. In one embodiment, the nut 126 is threaded onto the stud 114, and is then fixed in the desired location.


A first threaded section 130a extends from the first stud end 118 toward the second stud end 122, while a second threaded section 130b extends from the second stud end 122 toward the first stud end 118. An unthreaded section 134 is disposed between the fixed nut 126 and the first threaded section 130a in the illustrated embodiment. However, the first threaded section 130a could extend all the way to the fixed nut 126 (e.g., the entire stud 114 could be threaded). In one embodiment, the length of the first threaded section is at least about 1.5 inches.


The second stud end 122 may be directed through the hole 112 in the mounting plate 110 if being utilized, and in any case into a threaded hole 98 of the mounting device 74. It should be appreciated that the mounting device 74 could also be disposed in a horizontal orientation on a standing seam having a horizontally disposed end section versus the vertically disposed orientation of the end section of the standing seam 42, and that in this case the second stud end 122 would be directed into the threaded hole 98 on a side surface 82 of the mounting device 74 (e.g., the mounting plate 110 could then be disposed on such a side surface 82 if desired/required). In any case, the stud 114 may be tightened onto the mounting device 74 by having an appropriate tool engage the fixed nut 126 to rotate the stud 114 relative to the mounting device 74 and into a desired forcible engagement with the mounting plate 110 or with the corresponding surface of the mounting device 74 if the mounting plate 110 is not being used. In one embodiment, the fixed nut 126 is located along the length of the stud 114 such that the second stud end 122 does not extend into the slot 90 of the mounting device 74 when the stud 114 is tightened onto the mounting device 74. Having this stud end 122 extend into the slot 90 could potentially damage the standing seam 42.


The clamping member 142 includes a base 154 that is disposed on the fixed nut 26 of the stud 114. A hole 158 extends through the base 154 and is aligned with a threaded hole 98 of the mounting device 74. In the illustrated embodiment, the hole 156 in the clamping member 142 is not threaded such that the clamping member 142 may “slide” along the stud 114.


A pair of clamping legs 146 that are disposed in opposing relation extend upwardly from the base 154 in a direction that is at least generally away from the mounting device 74 when the mounting assembly 70a is installed, such that the base 154 and clamping legs 146 define an at least generally U-shaped structure. Each clamping leg 146 includes an extension 150 and an engagement section 152. The engagement sections 152 are disposed in a different orientation than the extensions 150, and function to provide a surface to engage and clamp a structure to the mounting assembly 70a. In the illustrated embodiment, the engagement sections 150 include teeth, serrations, or the like to enhance the “grip” on the structure being clamped to the mounting assembly 70a. The clamping legs 146 may be of any appropriate size, shape, and/or configuration for clamping a structure to the mounting assembly 70a. Generally, a pocket 160 is defined between each engagement section 152 and the underlying mounting plate 110/mounting device 74 for receiving a structure to be clamped to the mounting assembly 70a.



FIG. 7A illustrates one of the mounting assemblies 70a from FIG. 2, which again interfaces with a pair of solar cell modules 58. Installation of such a mounting assembly 70a could entail directing at least the upper portion of the standing seam 42 into the slot 90 of the mounting device 74. Thereafter, the mounting device 74 may be secured to the standing seam 42 using at least one seam fastener 106. Once again, the seam fastener 106 may be directed through the mounting device 74 and into the slot 90 to force a corresponding portion of the standing seam 42 against the opposing slot sidewall 92b.


The mounting plate 110 may be disposed on the upper surface 78 of the mounting device 74 such that its hole 112 is aligned with a threaded hole 98 on the mounting device 74 that will receive the stud 114. The second stud end 122 may then be directed through the hole 112 of the mounting plate 110 such that the stud 114 may be threaded to the mounting device 74 (e.g., using a wrench on the fixed nut 126 to clamp the mounting plate 110 between the fixed nut 126 and the mounting device 74). At this time, the lower surface of the fixed nut 126 engages the upper surface of the mounting plate 110 or a corresponding surface of the mounting device 74 if the mounting plate 110 is not used. As previously noted, and as illustrated in FIG. 7A, in one embodiment the second stud end 122 does not pass into the slot 90 of the mounting device 74. It should be appreciated that the mounting plate 110 and stud 114 could be installed on the mounting device 74 prior to its installation on the standing seam 42.


A frame 62 from one of the solar cell modules 58 may be positioned on one side of the mounting plate 110, while a frame 62 from another of the solar cell modules 58 may be positioned on the opposite side of the mounting plate 110. The clamping member 142 may or may not be positioned on the stud 114 at the time the solar cell module frames 62 are positioned on the mounting plate 110. In any case, the first stud end 118 may be directed through the hole 158 on the base 154 of the clamping member 142. At this time a portion of one solar cell module frame 62 will then be positioned between the mounting plate 110 and the engagement section 152 of one of the clamping legs 146, while a portion of another solar cell module frame 62 will then be positioned between the mounting plate 110 and the engagement section 152 of the other clamping leg 146. The nut 128 may then be threaded onto the first stud end 118 of the stud 114 until the engagement sections 152 of the clamping member 142 exert a desired force on the two solar cell module frames 62 (e.g., to clamp these frames 62 between the engagement sections 152 of the clamping member 142 and the mounting plate 110, or between the engagement sections 152 of the clamping member 142 and the mounting device 74 if the mounting plate 110 is not being used). That is, turning the nut 128 may move the clamping member 142 along the stud 114 and toward the mounting device 74 (e.g., by the clamping member 142 “sliding” along the stud 114) to generate the desired clamping action. It should be appreciated that the clamping member 142 and possibly the nut 128 could be pre-positioned on the stud 114 before the solar cell module frames 62 are positioned on the mounting plate 110, although this may require that the clamping member 142 be lifted to a degree when the solar cell module frames 62 are positioned on the mounting plate 110 to accommodate positioning the frames 62 under the engagement sections 152 of the clamping member 142.


As evident by a review of FIG. 7A, the stud 114 may extend beyond the nut 128 in the installed configuration. Preferably the first threaded section 130a of the stud 114 is of a length that allows the mounting assembly 70a to be used to clamp structures of various thicknesses to the mounting assembly 70a. For instance, FIG. 7B illustrates a pair of solar cell module frames 62′ being clamped to the mounting assembly 70a, where these frames 62′ are thicker than the frames 62 presented in FIG. 7A. In one embodiment, the length of the first threaded section 130a is at least about 1.5 inches, and which accommodates use of the mounting assembly 70a to clamp solar cell modules of a number of different thicknesses (e.g., the fixed nut 126 may be spaced from the first stud end 118 by a distance of at least about 1.5 inches, the first threaded section 130a may extend all the way to the fixed nut 126, or both).


The above-described mounting assemblies 70a may be used to simultaneously engage the frame 62 of a pair of solar cell modules 58. In at least some cases, there may only be a need to engage a single solar cell 58, such as in the case of those solar cells 58 that are disposed closest to an edge 36 of the building surface 34 (FIG. 2). FIG. 7C illustrates a configuration for this situation, and which is identified by reference numeral 70b. Corresponding parts of the mounting assemblies 70a and 70b are identified by the same reference numeral. The only difference between the mounting assembly 70b and the mounting assembly 70a is that an additional nut 128 is used by the mounting assembly 70b. Therefore, the remainder of the discussion presented above also applies to the mounting assembly 70b.


Generally, one nut 128 is threaded onto the first stud end 118, followed by positioning a clamping member 142 over the first stud end 118 and onto the stud 114, then followed by a second nut 128 that is threaded onto the first stud end 118. The lower nut 128 may be threaded down a sufficient distance on the stud 114. Thereafter, the top nut 128 may be threaded to clamp a solar cell module frame 62″ between the mounting plate 110 and the engagement section 152 of one of the clamping members 142. The lower nut 128 may then be threaded upwardly on the stud 118 to engage the underside of the base 154 of the clamping member 142.


Another embodiment of a mounting assembly, which may be used for mounting photovoltaic or solar cell modules to a building surface having a plurality of standing seams defined by a plurality of interconnected panels, is illustrated in FIGS. 8A-F and is identified by reference numeral 70c. Corresponding components between the mounting assembly 70c and the above-discussed mounting assembly 70a are identified by the same reference numerals. Those corresponding components between these two embodiments that differ in at least some respect are identified by the same reference numeral, but with a “single prime” designation in relation to the mounting assembly 70c.


The mounting assembly 70c of FIGS. 8A-F utilizes the above-discussed mounting device 74, clamping member 142, and stud 114. All of the features discussed above in relation to each of these components remain equally applicable to the mounting assembly 70c. The mounting assembly 70c does utilize a mounting plate 110′ that is positioned on an upper surface 78 of the mounting device 74, and that is located between the clamping member 142 and the mounting device 74 in a dimension corresponding with the length dimension of the stud 114. However, the mounting place 110′ is of a different configuration than the mounting plate 110 utilized by the mounting assembly 70a, and therefore the “single prime” designation is utilized.


The mounting plate 110′ includes an upper surface 170 and an oppositely disposed lower surface 176. The upper surface 170 includes a plurality of grounding projections 172. The grounding projections 172 may be integrally formed with a remainder of the mounting plate 110′ (e.g., the mounting plate 110′ and grounding projections 172 may be of one-piece construction, such that the individual grounding projections 172 do not need to be separately attached to the mounting plate 110′). Any appropriate number of grounding projections 172 may be utilized. Each grounding projection 172 may be of any appropriate size, shape, and/or configuration. The various grounding projections 172 may be equally spaced from the stud 114, may be equally spaced about the stud 114, or both.


In one embodiment, the number of grounding projections 172 is selected and the grounding projections 172 are arranged such that at least one grounding projection 172 will engage each photovoltaic module being mounted to a building surface by the clamp assembly 70c, regardless of the angular position of the mounting plate 110′ relative to the stud 114. “Angular position” does not mean that the mounting plate 110′ is disposed at an angle relative to the upper surface 78 of the mounting device 74. Instead, “angular position” means a position of the mounting plate 110′ that may be realized by rotating the mounting plate 110′ relative to the stud 114 and/or the mounting device 74. For example, the ends 94 of the mounting device 74 may define the 12 o'clock and 6 o'clock positions. The mounting plate 110′ may be positioned on the mounting device 74 with each of its grounding projections 172 being disposed at any angle relative to the 12 o'clock position (e.g., in the 1 o'clock position, in the 2 o'clock position, in the 8 o'clock position, etc.), and yet at least one grounding projection 172 will engage each photovoltaic module being mounted to a building surface by the clamp assembly 70c. The “angle” of each such grounding projection 172 is the angle between first and second reference lines that are disposed within a common plane, the first reference line remaining in a fixed position relative to the mounting plate 110′ and extending from the stud 114, for instance, to the 12 o'clock position. The second reference line may also extend from the stud 114 to a particular grounding projection 172, and thereby may rotate along with the mounting plate 110′ as its angular position is adjusted relative to the stud 114 and/or mounting device 74.


The grounding projections 172 may facilitate establishing an electrical connection with and/or grounding one or more photovoltaic modules. In some embodiments, the grounding projections 172 may comprise a sharpened point or edge to pierce or penetrate a surface or surface coating of a frame/frame section of a photovoltaic module so as to be able to establish an electrical connection with the underlying metal of the frame/frame section. The grounding projections 172 may be characterized as providing electrical continuity between adjacent photovoltaic modules that are positioned on the same mounting plate 110′ (e.g., an electrical path may encompass or include the frame of one photovoltaic module, one or more grounding projections 172 engaged therewith, the mounting plate 110′, one or more additional grounding projections 172, and the frame of another photovoltaic module engaged by such an additional grounding projection(s) 172). This may be referred to in the art as “bonding.” In any case, the grounding projections 172 may be used in providing a grounding function for a corresponding photovoltaic module(s). The electrical connection provided by the grounding projections 172 may be used to electrically connect adjacent photovoltaic modules (e.g., those positioned on a common mounting plate 110′), and which may be used to provide an electrical path to ground a string or collection of photovoltaic modules.


The mounting plate 110′ also includes a raised structure 174 on its upper surface 170. The raised structure 174 may be disposed about the un-threaded hole 112 in the mounting plate 110′ through which the stud 114 passes. Generally, and as will be discussed in more detail below, the raised structure 174 may be used to determine where a photovoltaic module should be positioned on the upper surface 170 of the mounting plate 110′ to ensure that the clamping member 142 will adequately engage not only this photovoltaic module, but an adjacently disposed photovoltaic module as well. As such, the raised structure 174 may be characterized as a positional registrant or alignment feature for each adjacent pair of photovoltaic modules being clamped by a common mounting assembly 70c.


The raised structure 174 may be integrally formed with a remainder of the mounting plate 110′ (e.g., the mounting plate 110′ and raised structure 174 may be of one-piece construction, such that the raised structure 174 does not need to be separately attached to the mounting plate 110′). The raised structure 174 may be characterized as being doughnut-shaped. The raised structure 174 may extend completely about the stud 114, the stud 114 may extend through a center of the raised structure 174, or both. The raised structure 174 may be circular in a plan view. This alleviates the requirement to have the mounting plate 110′ be in a certain angular position on the upper surface 78 of the mounting device 74 to provide its positional registration or alignment function in relation to the photovoltaic modules to be clamped. An outer perimeter of the raised structure 174 and an outer perimeter of the mounting plate 110′ may be concentrically disposed relative to the stud 114. The raised structure 174 may be centrally disposed relative to an outer perimeter of the mounting plate 110′.


The lower surface 176 of the mounting plate 110′ includes a plurality of wiring tabs or clips 178. The wiring clips 178 may be integrally formed with a remainder of the mounting plate 110′ (e.g., the mounting plate 110′ and wiring clips 178 may be of one-piece construction, such that the individual wiring clips 178 do not need to be separately attached to the mounting plate 110′). For instance, the wiring clips 178 could be “stamped” from the body of the mounting plate 110′. In this regard, the mounting plate 110′ includes an aperture 184 for each such wiring clip 178. Any appropriate number of wiring clips 178 may be utilized. The various wiring clips 178 may be equally spaced from the stud 114, may be equally spaced about the stud 114, or both. In some embodiments, the mounting plate 110′ may comprise one or more apertures 184 that do not correspond to a wiring clip 178.


In one embodiment, a number of wiring clips 178 is selected and the wiring clips 178 are arranged such that at least one wiring clip 178 should be available for holding/retaining one or more wires from/for each photovoltaic module being mounted to a building surface by the clamp assembly 70c, regardless of the angular position of the mounting plate 110′ relative to the stud 114 and/or mounting device 74.


Each wiring clip 178 may be of any appropriate size, shape, and/or configuration. In the illustrated embodiment, each wiring clip 178 includes a first segment 180a that extends away from the lower surface 176 of the mounting plate 110′, along with a second segment 180b that extends from a distal end of the first segment 180a. The second segment 180b may be disposed at least generally parallel with the lower surface 176 of the mounting plate 110′. In any case, the second segment 180b may include a recessed region 182 (e.g., a concave area) to facilitate retention of one or more wires and/or quick-connect leads.


A wiring clip 178 may be used to support and/or retain the quick-connect lead(s) associated with one of the photovoltaic modules being clamped by the corresponding mounting assembly 70c (e.g., by being positioned within the space between the second segment 180b of a given wiring clip 178 and the lower surface 176 of the mounting plate 110′, for instance by resting in a concave portion of the second segment 180b in the form of the recessed region 182). Other wires could be directed into the space between the second segment 180b of a given wiring clip 178 and the lower surface 176 of the mounting plate 110′.


Another function is indirectly provided by the wiring clips 178. The aperture 184 associated with each wiring clip 178 provides a space through which an installer may direct a cable or zip tie or the like to bundle together various wires that may be located at a lower elevation than the mounting plate 110′ (e.g., wires underneath the mounting assembly 70c; wires underneath a photovoltaic module being clamped by the mounting assembly 70c; wires in a space between a pair of photovoltaic modules being clamped by the mounting assembly 70c).



FIG. 8F schematically illustrates the positional registration/alignment function provided by the raised structure 174 of the mounting plate 110′. Here the frame 62 of one photovoltaic module 58 being clamped by the mounting assembly 70c abuts one portion on a perimeter of the raised structure 174, while the frame 62 of another photovoltaic module 58 being clamped by the mounting assembly 70c is disposed adjacent to (or possibly abutting with) an oppositely disposed portion on the perimeter of the raised structure 174. In one embodiment, the width or outer diameter of the raised structure 174 is the same as or slightly larger than the spacing between the two extensions 150 of the clamping member 142. In any case, the raised structure 174 should be sized such that when an adjacent pair of photovoltaic modules 58 are positioned to abut oppositely disposed portions on the perimeter of the raised structure 174, the clamping member 142 should be positionable on the stud 114 and should properly engage these photovoltaic modules.


At least one grounding projection 172 of the mounting plate 110′ shown in FIG. 8F should be engaged with the frame 62 of one photovoltaic module 58 shown in FIG. 8F, and at least one other grounding projection 172 of this same mounting plate 110′ should be engaged with the frame 62 of the other photovoltaic module 58 shown in FIG. 8F. This again provides electrical continuity between the two modules 58 shown in FIG. 8F—an electrical path exists from one module 58 to the other module 58 via the mounting plate 110′ and each grounding projection 172 that is engaged with either of the modules 58.



FIG. 9A illustrates the positional registration or alignment function provided by the mounting plate 110′ incorporating a raised structure 174 (which thereby may be referred to as a PV module positional registrant). In FIG. 9A, the mounting devices 74 are attached to the standing seams 42 such that the frame 62 of the photovoltaic module 58 engages a portion on the outer perimeter of the raised structure 174. The clamping member 142 for each such mounting device 74 should not only be in proper position to adequately engage the frame 62 of the photovoltaic module 58 shown in FIG. 9A, but the clamping member 142 for each such mounting device 74 should also be in proper position to adequately engage the frame 62 of another photovoltaic module 58 that would be positioned in the uphill direction A (e.g., the arrow A indicating the direction of increasing elevation) from the illustrated photovoltaic module 58. The frame 62 of this “uphill” photovoltaic module 58 would likely engage an opposing portion of the raised structure 174 (or be disposed in closely spaced relation thereto). Any “downward drifting” of this uphill photovoltaic module 58 should be stopped by engaging the raised structure 174 of the “downhill” mounting assemblies 70c.


In FIG. 9B, the mounting assembly 70a has been used, the mounting plate 110 of which does not incorporate the raised structure 174 from the mounting plate 110′ of FIGS. 8A-F. The uphill photovoltaic module 58a (the arrow B in FIG. 9B indicating the downhill direction, or direction of decreasing elevation) has been positioned relative to the three lower mounting devices 74 such that its frame 62 is quite close to the hole 112 of the three lower mounting plates 110 (through which the stud 114 is directed to threadably engage the mounting device 74). The three clamping members 142 associated with these three “downhill” mounting plates 110 may not sufficiently engage the downhill photovoltaic module 58b.


The mounting plate 110′ from the mounting assembly 70c of FIGS. 8A-F uses a single raised structure 174 to provide a positional registration or alignment function for each of the two photovoltaic modules that may be clamped by a single mounting assembly 70c. Other types of positional registration or alignment features may be incorporated by a mounting plate. One representative embodiment is illustrated in FIGS. 10A-B in the form of a mounting plate 110″. Generally, the mounting plate 110″ may be used in place of the mounting plate 110′ discussed above. Although not shown, it should be appreciated that the mounting plate 110″ may also utilize the grounding projections 172 and/or wiring clips 178 (and their associated apertures 184).


The mounting plate 110″ of FIGS. 10A and 10B differs from the mounting plate 110′ of FIGS. 8A-F in a number of respects. One is the shape of the mounting plate 110′. Each of these mounting plates 110′, 110″ may be of any appropriate shape in relation to their respective outer perimeters (e.g., circular as in the case of the mounting plate 110′; square as in the case of the mounting plate 110″; rectangular). Another is that the mounting plate 110″ utilizes at least two discrete PV module positional registrants 190. Each of the PV module positional registrants 190 may be of any appropriate size, shape, and/or configuration. The PV module positional registrants 190 may be integrally formed with a remainder of the mounting plate 110″ as shown where they have been stamped from the mounting plate 110″ (creating corresponding apertures 192), or the PV module registrants 190 could be separately attached to the mounting plate 110″. When the mounting plate 110″ is positioned in the proper orientation on a mounting device 74, one of the PV module positional registrants 190 may be used to position one photovoltaic module on the mounting plate 110″ (e.g., by this first photovoltaic module butting up against this first PV module positional registrant 190) such that it should be adequately engaged by the clamping member 142, and furthermore such that the other or second photovoltaic module to be positioned on the mounting plate 110″ should also be adequately engaged by this same clamping member 142. In this regard, this second photovoltaic module may be positioned such that it butts up against the other or second of the PV module positional registrants 190 of the mounting plate 110″.


As there are only two PV module positional registrants 190 in the illustrated embodiment of FIGS. 10A and 10B, the mounting plate 110″ may need to be in a certain angular position or orientation on the mounting device 74 to provide a positional registration or alignment function for the two photovoltaic modules to be clamped by the associated mounting assembly. An installer could be required to place the mounting plate 110″ onto the mounting device 74 in the correct angular position or orientation. Another option is for the mounting plate 110″ to include one or more mounting device positional registrants 194 that facilitate the positioning of the mounting plate 110″ onto the upper surface 78 of the mounting device 74 such that the PV module positional registrants 190 should be positioned to provide a positional registration or alignment function for the two photovoltaic modules to be clamped by the associated mounting assembly. In the illustrated embodiment, the mounting plate 110″ includes a pair of mounting device positional registrants 194—a separate mounting device positional registrant 194 for each of the two opposite ends 94 of the mounting device 74 (e.g., one mounting device positional registrant 194 may engage one end 94 of the mounting device 74, and another mounting device positional registrant 194 may engage the opposite end 94 of the mounting device 74). A pair of mounting device positional registrants could be utilized by the mounting plate 110″ to engage the two opposite side surfaces 82 of the mounting device 74 to place the mounting plate 110″ in the correct angular position relative to the mounting device 74. Yet another option would be to have at least one mounting device positional registrant for the mounting plate 110″ that engages an end 94 of the mounting device 74 and at least one mounting device positional registrant for the mounting plate 110″ that engages one of the side surfaces 82 of the mounting device 74. Any appropriate way of positionally registering the mounting plate 110″ relative to the mounting device 74 may be utilized.


One embodiment of a mounting assembly (e.g., for photovoltaic modules) is illustrated in FIG. 11 and is identified by reference numeral 200. The mounting assembly 200 generally includes a mounting device 210, a mounting plate or disk/disc 230, a fastening assembly 270, and a clamp or clamping member 320. The mounting assembly 200, more specifically the clamp 320, is adapted to engage a single photovoltaic module of a photovoltaic module array (e.g., photovoltaic module array 54 shown in FIG. 2) of any appropriate size and/or configuration, where rows of photovoltaic modules are typically disposed perpendicular to the pitch of a sloped roofing surface and where columns of photovoltaic modules are typically disposed along the pitch of such a sloped roofing surface. Typically the clamp 320 of the mounting assembly 200 will engage a single photovoltaic module that is disposed along an edge of the photovoltaic module array, and thus the clamp 320 may also be referred to as an “edge grab” or configured for an edge grab application.


The mounting device 210 is attachable to a building surface of any appropriate type, and as such the mounting device 210 may be of any appropriate configuration for a particular application/building surface configuration. The illustrated mounting device 210 is adapted for installation on a standing seam defined by a pair of interconnected panels that are part of such a building surface. As such, the mounting device 210 is least generally in accordance with the mounting device 74 discussed above in relation to FIG. 5.


The mounting device 210 includes an upper surface 212, an oppositely disposed bottom surface 216, a pair of laterally spaced side surfaces 214, and a pair of ends 220. The ends 220 for the mounting device 210 will be spaced along a standing seam when the mounting device 210 is in an installed configuration. One or more threaded holes 222 will extend between one or more of the side surfaces 214 and a slot 218 that is incorporated by the bottom surface 216 and that extends between the two ends 220 of the mounting device 210 (e.g., FIG. 16A). A separate seam fastener 224 may be threadably engaged with the mounting device 210 (e.g., FIG. 19C), via a corresponding threaded hole 222, to secure a standing seam within the slot 218 (e.g., FIG. 16A; see also FIG. 5). The upper surface 212 of the mounting device 210 also may include a threaded hole 226 (e.g., FIG. 19C; see also FIG. 5) for detachably connecting the mounting device 210 with the fastening assembly 270 (more specifically a threaded shaft 284 of a stanchion 280).


Details of the mounting plate 230 are illustrated in FIGS. 11 and 12A-D. The mounting plate 230 includes an upper surface 232 and an oppositely disposed lower surface 234. Part of the lower surface 234 of the mounting plate 230 is disposed on the upper surface 212 of the mounting device 210. An outer perimeter 236 for the mounting plate 230 extends beyond a perimeter of the upper surface 212 of the mounting device 210. Stated another way, the surface area defined by the outer perimeter 236 of the mounting plate 230 is larger than a surface area of the upper surface 212 of the mounting device 210 on which the mounting plate 230 is positioned. A portion of a photovoltaic module being engaged by the mounting assembly 200 will thereby be positioned on a portion of the mounting plate 230 that is not directly supported by an underlying portion of the mounting device 210. Although the outer perimeter 236 is circular for the illustrated embodiment, other configurations may be appropriate.


The upper surface 232 of the mounting plate 230 includes a first or inner annular projection 238 and a second or outer annular projection 252. A circular configuration is used for each of the inner annular projection 238 and the outer annular projection 252, although other configurations may be appropriate. A plurality of ribs 254 extend from the inner annular projection 238 to the outer annular projection 252. These ribs 254 are radially spaced about a hole 250 that extends through the mounting plate 230 (e.g., the ribs 254 are in a spoked or spoke-like configuration on the upper surface 232; each rib 254 may be characterized as extending along a separate radius relative to a center of the mounting plate 230). Any appropriate number of ribs 254 may be utilized. Although the ribs 254 are shown as being equally spaced in the radial dimension (e.g., about the hole 250), other configurations may be appropriate. The ribs beneficially stiffen the mounting plate 230.


The hole 250 (e.g., defining a center of the mounting plate 230 relative to its outer perimeter 236), the inner annular projection 238, and the outer annular projection 252 are concentrically disposed relative to each other in the illustrated embodiment, with the inner annular projection 238 being disposed radially outwardly of the hole 250, and with the outer annular projection 252 being disposed radially outwardly of the inner annular projection 238. The inner annular projection 238 protrudes further than the outer annular projection 252 (e.g., an upper surface of the inner annular projection 238 is disposed at a higher elevation than an upper surface of the outer annular projection 252 when the mounting plate 230 is horizontally disposed and with its upper surface 232 projecting upwardly), while an upper surface of the ribs 254 and an upper surface of the outer annular projection 252 are disposed at a common elevation.


A receptacle base 246 is disposed radially inwardly of the inner annular projection 238 and is recessed relative to an upper surface of the inner annular projection 238 (e.g., an upper surface of the inner annular projection 238 is disposed at a higher elevation than the receptacle base 246 when the mounting plate 230 is horizontally disposed and with its upper surface 232 projecting upwardly). The recessed receptacle base 246 allows the stanchion 280 to be received therein, such that the threaded shaft 284 of the stanchion 280 can be shorter than would otherwise be required, resulting in material savings. The hole 250 extends through this receptacle base 246 and is not threaded. A receptacle 248 (for a portion of a standoff or stanchion 280 of the fastening assembly 270 (discussed in more detail below)) is collectively defined by inner annular projection 238 and the receptacle base 246.


A plurality of electrical contacts, bonding spikes, or bonding projections 256 are incorporated by the upper surface 232 of the mounting plate 230. One bonding spike 256 is disposed between each adjacent pair of ribs 254 and each bonding spike 256 protrudes further than its corresponding pair of ribs 254 (e.g., an uppermost portion of each bonding spike 256 is disposed at a higher elevation than an uppermost surface of its corresponding adjacent pair of ribs 254 when the mounting plate 230 is horizontally disposed and with its upper surface 232 projecting upwardly). When a photovoltaic module is positioned on the upper surface 232 of the mounting plate 230, at least one of the bonding spikes 256 should engage such a photovoltaic module so as to be electrically connected therewith. The mounting plate 230 accommodates having two photovoltaic modules positioned thereon and in opposing relation to one another, with each such photovoltaic module being engaged by at least one bonding spike 256 and with the inner annular projection 238 of the mounting plate 230 being disposed between these two photovoltaic modules.


The bonding spikes 256 facilitate establishing an electrical connection with a photovoltaic module when positioned on the upper surface 232 of the mounting plate 230 (e.g., by engaging a frame or frame section of such a photovoltaic module, and which may require that one or more bonding spikes 256 pierce or penetrate a surface or surface coating of this frame/frame section). Each bonding spike 256 utilizes a plurality of upwardly projecting teeth for engaging a corresponding/overlying photovoltaic module. Other configurations may be appropriate for the bonding spikes 256. Use of more substantial bonding spikes 256 (e.g. with a larger cross-section, greater height, and/or multiple points per spike) beneficially increases the ability of the bonding spikes 256 to continue to function for their intended purpose during a plurality of photovoltaic module installation cycles. In other words, if a photovoltaic module is installed on a mounting plate 230, then removed, the bonding spikes 256 will still function for their intended purpose upon reinstallation of the photovoltaic module or installation of another photovoltaic module thereon.


The bonding spikes 256 may be used to provide a grounding function for a photovoltaic module array. A plurality of photovoltaic modules may be arranged to define an array. In the case of a pitched building surface that incorporates a PV module array, a column of a plurality of photovoltaic modules will typically be installed such that the column runs with/parallel to the pitch of the building surface. Each such photovoltaic module in a given column will thereby have an upper edge and an oppositely disposed lower edge on its perimeter (the upper edge being at a higher elevation than its corresponding lower edge), with both the upper edge and lower edge for each photovoltaic module in a given column extending orthogonal/transversely to the pitch of the building surface. Adjacent pairs of photovoltaic modules in a given column may be secured to the underlying pitched building surface using one of more of the mounting assemblies 200d (FIGS. 21-24B), using one or more of the mounting assemblies 200e (FIGS. 25A-25D), or using one or more of the mounting assemblies 200f (FIGS. 26A-26C), namely by such a mounting assembly engaging both the lower edge of one photovoltaic module and the upper edge of the adjacent photovoltaic module in the same column. The lower edge of the last photovoltaic module in a given column—the photovoltaic module that is at the lowest elevation in relation to the entire column—may be secured to the underlying pitched building surface using one or more of the mounting assemblies 200 (FIGS. 11-17B), using one or more of the mounting assemblies 200b (FIGS. 18A-18D), using one or more of the mounting assemblies 200c (FIGS. 19A-20B), using one of more of the mounting assemblies 200d (FIGS. 21-24B), using one or more of the mounting assemblies 200e (FIGS. 25A-25D), or using one or more of the mounting assemblies 200f (FIGS. 26A-26C). Each of these mounting assemblies uses a mounting plate 230/230c with the bonding spikes 256. Each photovoltaic module in a given column is thereby at the same electrical potential via the described mounting assemblies. In the case where a pair of photovoltaic modules are positioned on a mounting plate 230 (e.g., the mounting assembly 200d of FIGS. 21-24B; the mounting assembly 200e of FIGS. 25A-25D; the mounting assembly 200f of FIGS. 26A-26C), the corresponding mounting plate 230 provides an electrical path between these two photovoltaic modules by one or more of the bonding spikes 256 engaging one of the photovoltaic modules and by a different one or more of the bonding spikes 256 engaging the other of the photovoltaic modules. This may be referred to as “bonding” or “electrically bonding” an adjacent pair of photovoltaic modules utilizing the mounting plate 230 and its plurality of bonding spikes 256. As such, the mounting assemblies 200d (FIGS. 21-24B), the mounting assemblies 200e (FIGS. 25A-25D), and mounting assemblies 200f (FIGS. 26A-26C) may be used to electrically bond an entire column of a PV module array. Adjacent columns in a given PV module array may be disposed at the same electrical potential by running one more grounding wires between each of the columns (e.g., between a photovoltaic module (e.g., a frame section thereof) or a mounting assembly (e.g., mounting plate 230) in one column, and a photovoltaic module (e.g., a frame section thereof) or a mounting assembly (e.g., mounting plate 230) in another column). With the entire PV module array being at the same electrical potential, a wire can run from the array to ground.


An outer annulus 258 of the mounting plate 230 is recessed relative to an upper surface of the inner annular projection 238, an upper surface of the ribs 254, and an upper surface of the outer annular projection 252. An upper surface of the inner annular projection 238, an upper surface of the ribs 254, and an upper surface of the outer annular projection 252 are all disposed at a higher elevation than the outer annulus 258 when the mounting plate 230 is horizontally disposed and with its upper surface 232 projecting upwardly. The outer annulus 258 includes a plurality of first cutouts 260 and a plurality of second cutouts 262. Any appropriate number of first cutouts 260 and any appropriate number of second cutouts 262 may be utilized, and the various cutouts 260, 262 may be disposed in any appropriate arrangement about the outer annulus 258 of the mounting plate 230. In the illustrated embodiment, a cutout 262 is disposed between each adjacent pair of cutouts 260 in the radial dimension. Each cutout 260 provides a space for a wire management device to pass through or connect to the mounting plate 230, while each cutout 262 provides a smaller space for a wire management device (e.g., a zip tie) to pass through or connect to the mounting plate 230. Having different sizes for the cutouts 260 compared to the cutouts 262 provides the benefit of and/or allows wire management devices of different sizes and geometries to pass through or connect to the mounting plate 230.


The fastening assembly 270 for the mounting assembly 200 includes a stanchion or standoff 280 and a clamping fastener 310. Generally, the stanchion 280 is detachably connected with the mounting device 210. The clamping fastener 310 engages the clamp 320 and is detachably connected with the stanchion 282 in order to move the clamp 320 relative to the stanchion 280 to clamp a photovoltaic module between the clamp 320 and the mounting plate 230.


Referring to FIG. 11 and FIGS. 13A-13C, the stanchion 280 includes body 294 and a threaded shaft 284 that extends from an end 300 of this body 294. A free end of the threaded shaft 284 defines a first end 282 of the stanchion 280. A threaded hole 286 is on a second end 290 of the stanchion 280 (which also coincides with a second end of the body 294). The spacing between the ends 282, 290 of the stanchion 280 define its length dimension. An upper annulus 292 is rounded and/or beveled proximate the second end 290 of the stanchion 280. The body 294 includes a cylindrical sidewall 296. The body 294 also includes at least one pair of flats 298 that are preferably disposed in opposing relation to one another, and in any case that may be utilized to rotate the stanchion 280 relative to the mounting device 210 in at least certain instances.


The threaded shaft 284 of the stanchion 280 is directed into the stanchion receptacle 248 on the upper surface 232 of the mounting plate 230 and then is directed through the hole 250 within the stanchion receptacle 248 for engagement with the threaded hole 226 on the upper surface 212 of the mounting device 210 (e.g., FIG. 26C; see also FIG. 5). When the stanchion 280 is appropriately secured to the mounting device 210, typically a lower portion of the body 294 of the stanchion 280 will be disposed within the stanchion receptacle 248 of the mounting plate 230 and the end 300 of the body 294 of the stanchion 280 will be engaged with the receptacle base 246 within the stanchion receptacle 248 of the mounting plate 230. Preferably, the threaded shaft 284 of the stanchion 280 will not extend into the slot 218 on the bottom surface 216 of the mounting device 210 in the installed configuration of the mounting assembly 200.


Referring now to FIGS. 11, 14A, and 14B, the clamping fastener 310 includes a head 312 and a threaded shaft 316 that extends from this head 312. The head 312 incorporates a drive socket 314 (e.g., a hexagonal aperture or receptacle) for rotating the clamping fastener 310 (e.g., relative to at least the clamp 320). The drive socket 314 for the clamping fastener 310 may be of the same configuration as a drive socket that is used by the seam fastener(s) 224 (e.g., FIG. 19C) that is used to secure the mounting device 210 to a building surface.


Details of the clamp 320 are illustrated in FIGS. 11, 15A, and 15B, where the clamp 320 is shown as including an upper wall 330, a single clamping section 340, a first leg, sidewall, or wall 346, and a second leg, sidewall, or wall 352 that each extend between a pair of ends 322. A countersink 334 and a fastener aperture 332 collectively extend through the upper wall 330 to accommodate the threaded shaft 316 of the clamping fastener 310. Preferably the fastener aperture 332 of the clamp 320 is un-threaded such that the clamping fastener 310 is not threadably engaged with the clamp 320 (e.g., rotation of the clamping fastener 310 about a rotational axis 272 for the fastening assembly 270 (the rotational axis 272 being for both the clamping fastener 310 and stanchion 280) should not rotate the clamp 320; the clamp 320 may remain in a stationary position while the clamping fastener 310 is rotated relative to the clamp 320 and about the rotational axis 272).


The first wall 346 and the second wall 352 of the clamp 320 both cantilever from the upper wall 330 (more specifically an underside thereof), with the first wall 346 having a free end 347 and the second wall 352 having a free end 353. The first wall 346 includes an outer surface or outer perimeter 348 and an inner surface 350, while the second wall 352 includes an outer surface or outer perimeter 354 and an inner surface 356. The inner surface 350 of the first wall 346 is flat or planar, as is the inner surface 356 of the second wall 352. The inner surface 350 of the first wall 346 is spaced from and is parallel to the inner surface 356 of the second wall 352 to collectively define a stanchion receptacle 328.


The clamping section 340 may be characterized as a portion of the upper wall 330 that extends beyond the first wall 346 (more specifically its outer surface 348). In any case, the clamping section 340 includes an upper surface 342 and an oppositely disposed lower surface 344, with the lower surface 344 including serrations or the like for engaging a photovoltaic module and with the lower surface 344 being disposed at least generally orthogonal or perpendicular to the outer surface 348 of the first wall 346. The upper surface 342 of the clamping section 340 is sloped, converging at least generally in the direction of the lower surface 344 in proceeding toward a free side portion of the clamping section 340.


The outer perimeter 354 of the second wall 352 for the clamp 320 includes a slot 358 that leads to a channel 360. Both the slot 358 and the channel 360 extend between the two ends 322 of the clamp 320. The channel 360 is defined by a channel base 364 and a pair of lips 362 that are spaced from this channel base 364. The slot 358 provides access to the channel 360 in at least certain instances. The channel 360 may be used for any appropriate purpose, such as wire management, attachment of equipment shields and/or snow retention devices, module cantilever support, and the like.


The clamping fastener 310, the clamp 320, and the stanchion 280 may be assembled prior to securing the stanchion 280 to the mounting device 210. The threaded shaft 316 of the clamping fastener 310 is directed through the upper wall 330 of the clamp 320 (via the countersink 334 and the fastener aperture 332) and at least an upper section of the stanchion 280 is positioned within the stanchion receptacle 328 of the clamp 320 such that the shaft 316 of the clamping fastener 310 may be threaded into the hole 286 on the second end 290 of the stanchion 280 (e.g., by directing the stanchion 280 through the space between the walls 346, 352 at either of the ends 322 of the clamp 320; by directing the stanchion 280 through the space between the walls 346, 352 at their respective fee ends 347, 353). In one embodiment, the clamping fastener 310 is temporarily secured to the stanchion 280, such as by an appropriate bond (e.g., adhesive). For instance, an appropriate adhesive (e.g., Loctite®) may be applied to the shaft 316 of the clamping fastener 310 and/or within the threaded hole 286 of the stanchion 280 to bond the clamping fastener 310 to the stanchion 280. While the clamping fastener 310 and the stanchion 280 are in a bonded state, the clamping fastener 310 and the stanchion 280 may be collectively rotated (e.g., using the drive socket 314 of the clamping fastener 310; about the rotational axis 272) to thread the shaft 284 of the stanchion 280 into the hole 226 of the mounting device 210. At this time the clamp 320 should remain in a rotationally stationary state (i.e., both the stanchion 280 and the clamping fastener 310 should rotate, but not the clamp 320). Once the stanchion 280 has been appropriately tightened/secured to the mounting device 210, the bond between the clamping fastener 310 and the stanchion 280 should be eliminated (e.g., break; an un-bonded state) to thereafter allow the clamping fastener 310 to continue to rotate about the axis 272 and now relative to both the clamp 320 and the stanchion 280. Rotation of the clamping fastener 310 relative to the stanchion 280 will then advance the clamp 320 along the stanchion 280 and in the direction of the first end 282 of the stanchion 280. That is, the head 312 of the clamping fastener 310 will exert a force on the clamp 320 (the force vector being in a direction of an underlying portion of the mounting plate 230) to advance the clamp 320 relative to the stanchion 280, and which will thereby exert a compressive force on a photovoltaic module that is disposed between the clamp 320 and the mounting plate 230 so as to retain such a photovoltaic module within the mounting assembly 200.


At least a portion of the perimeter of a photovoltaic module is typically defined by one or more frame sections. The height or thickness of these PV module frame sections may vary. The mounting assembly 200 accommodates a range of PV module frame section heights or thicknesses, namely by accommodating for a plurality of positions of the clamp 320 along the stanchion 280 in a manner that will still allow for engagement of a photovoltaic module in the following manner.



FIGS. 16A and 16B illustrate use of the mounting assembly 200 to secure a photovoltaic module having a first thickness for a frame section 370a thereof (e.g., 30 mm), where this photovoltaic module (e.g., its frame section 370a) is positioned on both the upper surface of one or more of the ribs 254 and the upper surface of part of the outer annular projection 252 on the upper surface 232 of the mounting plate 230 (the photovoltaic module is not positioned on an upper surface of the inner annular projection 238 of the mounting plate 230). Generally: 1) the stanchion 280 is appropriately secured to the mounting device 210 as described above; 2) the PV module frame section 370a is clamped between the clamp 320 and the mounting plate 230 by rotating the clamping fastener 310 to advance the clamp 320 toward the mounting plate 230 and relative to the stanchion 280; 3) the lower surface 344 of the clamping section 340 for the clamp 320 engages an upper wall 372 of the PV module frame section 370a; and 4) the outer surface 348 of the first wall 346 for the clamp 320 engages at least part of an end wall 374 of the PV module frame section 370a, and where this end wall 374 of the PV module frame section 370a is spaced from an adjacent-most portion of an outer perimeter of the inner annular projection 238 of the mounting plate 230 (although the clamp 320 could be configured such that the end wall 374 of the PV module frame section 370a would also engage an adjacent-most portion of the outer perimeter of the inner annular projection 238). Small spacing exists between the underside of the upper wall 330 and the second end 290 of the stanchion 280. In addition, opposing portions of the sidewall 296 of the stanchion 280 engage the inner surface 350 of the first wall 346 of the clamp 320 and the inner surface 356 of the second wall 352 of the clamp 320, and that is facilitated by having the sidewall 296 being a cylindrical surface. There is contact (e.g., along a line) between the sidewall 296 of the stanchion 280 and the inner surface 350 of the first wall 346 of the clamp 320. There is also opposing contact (e.g., along a line) between the sidewall 296 of the stanchion 280 and the inner surface 356 of the second wall 352 of the clamp 320. This provides support for the corresponding PV module. The engagement between the stanchion 280 and the clamp 320 should reduce the chance of the corresponding PV module “tilting” relative to the underlying building surface when compressing the PV module frame section 370a between the clamp 320 and the mounting plate 230 as described.



FIGS. 17A and 17B illustrate use of the mounting assembly 200 to secure a photovoltaic module having a frame section 370b with a second thickness (e.g., 42 mm), with the PV module frame section 370b being thicker than the PV module frame section 370a of FIGS. 16A and 16B, and where this photovoltaic module (e.g., its frame section 370b) is positioned on both the upper surface of one or more of the ribs 254 and the upper surface of part of the outer annular projection 252 on the upper surface 232 of the mounting plate 230 (the photovoltaic module is not positioned on an upper surface of the inner annular projection 238 of the mounting plate 230). Generally: 1) the stanchion 280 is appropriately secured to the mounting device 210 as described above; 2) the PV module frame section 370b is clamped between the clamp 320 and the mounting plate 230 by rotating the clamping fastener 310 to advance the clamp 320 toward the mounting plate 230 and relative to the stanchion 280; 3) the lower surface 344 of the clamping section 340 for the clamp 320 engages an upper wall 372 of the PV module frame section 370b; and 4) the outer surface 348 of the first wall 346 for the clamp 320 engages at least part of an end wall 374 of the PV module frame section 370b, where this end wall 374 of the PV module frame section 370b is spaced from an adjacent-most portion of the outer perimeter of the inner annular projection 238 of the mounting plate 230 (although the clamp 320 could be configured such that the end wall 374 of the PV module frame section 370b would also engage an adjacent-most portion of the outer perimeter of the inner annular projection 238). Larger spacing exists between the underside of the upper wall 330 and the second end 290 of the stanchion 280 (i.e., larger spacing than in the embodiment shown in FIG. 16B). In addition, opposing portions of the sidewall 296 of the stanchion 280 engage the inner surface 350 of the first wall 346 of the clamp 320 and the inner surface 356 of the second wall 352 of the clamp 320, facilitated by having the sidewall 296 being a cylindrical surface. There is contact (e.g., along a line) between the sidewall 296 of the stanchion 280 and the inner surface 350 of the first wall 346 of the clamp 320. There is also opposing contact (e.g., along a line) between the sidewall 296 of the stanchion 280 and the inner surface 356 of the second wall 352 of the clamp 320. This provides support for the corresponding PV module. The engagement between the stanchion 280 and the clamp 320 should reduce the chance of the corresponding PV module “tilting” relative to the underlying building surface when compressing the PV module frame section 370b between the clamp 320 and the mounting plate 230 as described.


A variation of the mounting assembly 200 of FIGS. 11-17B is illustrated in FIGS. 18A-18D and is identified by reference numeral 200b. Corresponding components between the embodiment of FIGS. 11-17B and the embodiment of FIGS. 18A-18D are identified by the same reference numerals, and the corresponding discussion presented above remains equally applicable unless otherwise noted to the contrary. Those components from the embodiment of FIGS. 18A-18D that differ in at least some respect from a corresponding component of the embodiment of FIGS. 11-17B use the same reference numeral in combination with a further identifier. Notwithstanding the discussion of differences that may exist between a component of the embodiment of FIGS. 18A-18D and its corresponding component in the embodiment of FIGS. 11-17B, the remainder of the discussion of this corresponding component from the embodiment of FIGS. 11-17B will remain equally applicable to the embodiment of FIGS. 18A-18D unless otherwise noted to the contrary.


The stanchion 280b for the mounting assembly 200b of FIGS. 18A-18D includes a different configuration for the transition between its body 294 and the threaded shaft 284 compared to the embodiment of FIGS. 11-17B. More specifically, the beveled transition between the body 294 (and more specifically from the end 300) and the threaded shaft 284 beneficially ensures that the mounting plate 230 is centered on the threaded shaft 294. Stated differently, the bevel between the threaded shaft 284 and the end 300 prevents the mounting plate 230 from shifting relative to the threaded shaft 284 once the threaded shaft 284 has been tightened onto a mounting device 210. However, the mounting assembly 200b of FIGS. 18A-18D could also use the stanchion 280 from the mounting assembly 200. The clamping fastener 310b for the mounting assembly 200b of FIGS. 18A-18D includes a different shape for its head 312b. Moreover, the head 312b for the clamping fastener 310b is positioned on the upper wall 330 of the clamp 320b. However, the mounting assembly 200b of FIGS. 18A-18D could also use clamping fastener 310 from the mounting assembly 200 and the clamp 320b could also include a countersink 334 for receiving the head of a clamping fastener in accordance with the mounting assembly 200. In any case, a hole extends completely through the clamp 320b to accommodate the passage of the threaded shaft 316 through the upper wall 330 of the clamp 320b. In some embodiments, there is no threaded engagement between the clamping fastener 310b and the clamp 320b (e.g., such that rotation of the clamping fastener 310b does not rotate the clamp 320b).


The primary distinction between the mounting assembly 200b of FIGS. 18A-18D and the mounting assembly 200 of FIGS. 11-17B is the configuration of the clamp 320b, namely with regard to the configuration of its first wall 346′. As the configuration of the first wall 346′ has changed, its outer surface is identified by reference numeral 348′, its inner surface is identified by reference numeral 350′, and the stanchion receptacle is identified by reference numeral 328b. There are three sections that collectively define the first wall 346′ for the clamp 320b—an upper section 346a, an intermediate section 346b, and a lower section 346c—and these sections 346a, 346b, and 346c are of a common wall thickness. The first wall 346′ has a free end 347. The upper section 346a and the lower section 346c may be characterized as being disposed in parallel relation to one another, with the intermediate section 346b being disposed in a different orientation (relative to both the upper section 346a and the lower section 346c) and extending from the upper section 346a to the lower section 346c at least generally in the direction of a reference plane 274. This reference plane 274 is disposed in the stanchion receptacle 328b for the clamp 320b and is thereby located between the walls 346′, 352. The reference plane 274 may be characterized as being oriented so as to be parallel to both at least part of the inner surface 350′ of the first wall 346′ (e.g., the portion corresponding with the upper section 346a and the lower section 346c) and at least part of the inner surface 356 of the second wall 352 (or the entirety thereof, for the illustrated embodiment). The reference plane 274 may also bisect the hole 250 through the mounting plate 230.


The inner surface 350′ of both the upper section 346a and the lower section 346c are parallel to the inner surface 356 of the second wall 352, as well as the reference plane 274. However, a first spacing exists between the inner surface 350′ of the upper section 346a and the reference plane 274, and a second spacing exists between the inner surface 350′ of the lower section 346c and the reference plane 274, with the first spacing being larger than the second spacing. Stated another way, the inner surface 350′ of the upper section 346a is further from the reference plane 274 (and from the inner surface 356 of the second wall 352) than the inner surface 350′ of the lower section 346c. Stated yet another way, the inner surface 350′ of the lower section 346c is closer to the reference plane 274 (and to the inner surface 356 of the second wall 352) than the inner surface 350′ of the upper section 346a.


A third spacing exists between the outer surface 348′ of the upper section 346a and the reference plane 274, and a fourth spacing exists between the outer surface 348′ of the lower section 346c and the reference plane 274, with the third spacing being larger than the fourth spacing. Stated another way, the outer surface 348′ of the upper section 346a is further from the reference plane 274 (and from the inner surface 356 of the second wall 352) than the outer surface 346′ of the lower section 346c. Stated yet another way, the outer surface 346′ of the lower section 346c is closer to the reference plane 274 (and to the inner surface 356 of the second wall 352) than the outer surface 348′ of the upper section 346a.


The outer surface 348′ of the upper section 346a of the first leg 346′ and the outer perimeter of the inner annular projection 238 on the upper surface 232 of the mounting plate 230 are disposed the same distance from the reference plane 274. When a PV module frame section is engaged by the mounting assembly 200b, and where this photovoltaic module (e.g., its frame section 370) is positioned on both the upper surface of one or more of the ribs 254 and the upper surface of part of the outer annular projection 252 on the upper surface 232 of the mounting plate 230 (the photovoltaic module again is not positioned on an upper surface of the inner annular projection 238 of the mounting plate 230): 1) the lower surface 344 of the clamping section 340 will engage the upper wall of this PV module frame section (e.g., upper wall 372); 2) the outer surface 348′ of the upper section 346a for the first wall 346′ will engage an upper part of the end wall of this PV module frame section (e.g. end wall 374); 3) a lower part of the end wall of this PV module frame section (e.g. end wall 374) will engage an adjacent-most portion of the outer perimeter of the inner annular projection 238 for the mounting plate 230; 4) the PV module frame section will be clamped between the upper surface 232 of the mounting plate 230 and the clamping section 340 of the clamp 320b by rotation of the clamping fastener 310b to advance the clamp 320b toward the mounting plate 230 and relative to the stanchion 280b; and 5) the inner surface 350′ of at least part of the lower section 346c of the first wall 346′ and the inner surface 356 of at least part of the second wall 352 will engage the sidewall 296 of the stanchion 280a. The sidewall 296 being a cylindrical surface facilitates having opposing portions of the sidewall 296 of the stanchion 280b engage the inner surface 350′ of the first wall 346′ of the clamp 320b (namely at least part of the lower section 346c) and at least part of the inner surface 356 of the second wall 352 of the clamp 320. There is contact (e.g., along a line) between the sidewall 296 of the stanchion 280 and the inner surface 350′ of the lower section 346c of the first wall 346′ for the clamp 320b. There is also opposing contact (e.g., along a line) between the sidewall 296 of the stanchion 280 and the inner surface 356 of the second wall 352 of the clamp 320b. This provides support for the corresponding PV module. The engagement between the stanchion 280 and the clamp 320b should reduce the chance of the corresponding PV module “tilting” relative to the underlying building surface when compressing the PV module frame section (e.g., frame section 370) between the clamp 320b and the mounting plate 230 as described.


The clamping fastener 310b, the clamp 320b, and the stanchion 280b may be assembled prior to securing the stanchion 280b to the mounting device 210 (not shown in FIGS. 18A-18D, but a part of the mounting assembly 200b; e.g., using a temporary bond between the clamping fastener 310b and the stanchion 280b so that rotation of the clamping fastener 310b results in rotation of the stanchion 280b, such that the stanchion 280b threadably engages the mounting device 210) and thereafter clamping a PV module frame section between the clamp 320b and the mounting plate 230 in the same general manner as the embodiment of FIGS. 11-17B. The mounting assembly 200b also accommodates a range of PV module frame section heights or thicknesses based upon varying the position of the clamp 320b along/relative to the stanchion 280b and where the inner surface 350′ of at least part of the lower section 346c of the first wall 346′ and at least part of the inner surface 356 of the second wall 352 will remain engaged with opposing portions of at least part of the sidewall 296 of the stanchion 280 in each of these different positions.


A variation of the mounting assembly 200 of FIGS. 11-17B is illustrated in FIGS. 19A-20B and is identified by reference numeral 200c. Corresponding components between the embodiment of FIGS. 11-17B and the embodiment of FIGS. 19A-20B are identified by the same reference numerals, and the corresponding discussion presented above remains equally applicable unless otherwise noted to the contrary. Those components from the embodiment of FIGS. 19A-20B that differ in at least some respect from a corresponding component of the embodiment of FIGS. 11-17B use the same reference numeral in combination with a further identifier. Notwithstanding the discussion of differences that may exist between a component of the embodiment of FIGS. 19A-20B and its corresponding component in the embodiment of FIGS. 11-17B, the remainder of the discussion of this corresponding component from the embodiment of FIGS. 11-17B will remain equally applicable to the embodiment of FIGS. 19A-20B unless otherwise noted to the contrary.


The mounting assembly 200c of FIGS. 19A-20B uses the above-discussed clamping fastener 310 and mounting device 210. The mounting plate 230c for the mounting assembly 200c does not use any of the first cutouts 260 from the mounting plate 230 of FIGS. 11-17B. However, the mounting assembly 200c could utilize the mounting plate 230 in place of the mounting plate 230c. The mounting assembly 200c also uses a different clamp 380 and a modified stanchion 280c compared to the mounting assembly 200.


The clamp 380 includes an upper wall 382 and an oppositely disposed bottom wall 388 that each extend between a pair of ends 398 for the clamp 380. The upper wall 382 includes a countersink 386, with this countersink 386 and a fastener aperture 384 collectively extending between the upper wall 382 and the bottom wall 388. Preferably the fastener aperture 384 of the clamp 380 is un-threaded such that the clamping fastener 310 is not threadably engaged with the clamp 380 (e.g., rotation of the clamping fastener 310 about the rotational axis 272 should not rotate the clamp 380; in other words, the clamp 380 may remain in a stationary position while the clamping fastener 310 is rotated relative to the clamp 380 and about the rotational axis 272).


Other components of the clamp 380 include a rail wall 390 and a clamping section 392 that each extend between the ends 398 for the clamp 380. The clamping section 392 may be characterized as a portion of the upper wall 382 that extends beyond the rail wall 390. In any case, the clamping section 392 includes an upper surface 394 and a lower surface 396, with the lower surface 396 including serrations or the like for engaging a photovoltaic module and with the lower surface 396 being disposed at least generally orthogonal or perpendicular to the rail wall 390. The upper surface 394 of the clamping section 392 is sloped, converging at least generally in the direction of the lower surface 396 in proceeding toward a free side portion of the clamping section 392.


The stanchion 280c includes a body 294c having a cylindrical sidewall 296c. The body 294c does not include any flats 298. Instead, the stanchion 280c includes a fixed nut 304 that defines a second end 290c for the stanchion 280c, and with the threaded hole 286c also extending through this fixed nut 304. A rail flange 302 extends from the body 294c of the stanchion 280c. An outer perimeter of this rail flange 302 and the rail wall 390 are disposed at a common location from the rotational axis 272 associated with the clamping fastener 310 and the stanchion 280c. As such, when the lower surface 396 of the clamping section 392 engages the upper wall 372 of the PV module frame section 370, the rail wall 390 of the clamp 380 should engage one portion of the end wall 374 of the PV module frame section 370 and the outer perimeter of the rail flange 302 of the stanchion 280c should engage a different, spaced portion of the end wall 374 of the PV module frame section 370. The engagement between the rail flange 302 of the stanchion 280c and the rail wall 390 of the clamp 380 should reduce the chance of the corresponding PV module “tilting” relative to the underlying building surface when compressing the PV module frame section 370 between the clamp 380 the mounting plate 230c as described.


The clamping fastener 310, the clamp 380, and the stanchion 280c may be assembled prior to securing the stanchion 280c to the mounting device 210 (e.g., using a temporary bond between the clamping fastener 310 and the stanchion 280c such that rotation of the clamping fastener 310 causes the stanchion 280c to rotate and thus threadably engage the mounting device 210) and thereafter clamping a PV module frame section between the clamp 380 and the mounting plate 230c as described above. The mounting assembly 200c also accommodates a range of PV module frame section heights or thicknesses based upon varying the position of the clamp 380 relative to the stanchion 280c. With reference still to FIGS. 19A-20B, but focusing on FIG. 20A, the mounting assembly 200c may be used to secure a photovoltaic module frame section 370c of a minimum thickness for the mounting assembly 200c, where this photovoltaic module (e.g., its frame section 370c) is positioned on both the upper surface of one or more of the ribs 254 and the upper surface of part of the outer annular projection 252 on the upper surface 232 of the mounting plate 230c (the photovoltaic module is not positioned on an upper surface of the inner annular projection 238 of the mounting plate 230c). Generally: 1) the stanchion 280c is appropriately secured to the mounting device 210 as described above; 2) the PV module frame section 370c is clamped between the clamp 380 and the mounting plate 230c as described above by the rotating clamping fastener 310 advancing the clamp 380 toward the mounting plate 230c and relative to the stanchion 280c; 3) the lower surface 396 of the clamping section 392 for the clamp 380 engages the upper wall 372 of the PV module frame section 370c; 4) the rail wall 390 of the clamp 380 engages one part of the end wall 374 for the PV module frame section 370c; 5) the outer perimeter of the rail flange 302 of the stanchion 280c engages a part of the end wall 374 for the PV module frame section 370c that is different and spaced from the part of the end wall 374 engaged by the rail wall 390 of the clamp 380; and 6) the end wall 374 of the PV module frame section 370c is spaced from an adjacent-most portion of the outer perimeter of the inner annular projection 238 of the mounting plate 230c (although the clamp 380 and stanchion 280c could be configured such that end wall 374 of the PV module frame section 370a would also engage an adjacent-most portion of the outer perimeter of the inner annular projection 238).


Still referring to FIGS. 19A-20B but focusing now on FIG. 20B, FIG. 20B illustrates use of the mounting assembly 200c to secure a photovoltaic module frame section 370d of a maximum thickness for the mounting assembly 200c, where this photovoltaic module (e.g., its frame section 370d) is positioned on both the upper surface of one or more of the ribs 254 and the upper surface of part of the outer annular projection 252 on the upper surface 232 of the mounting plate 230c (the photovoltaic module is not positioned on an upper surface of the inner annular projection 238 of the mounting plate 230c). Generally: 1) the stanchion 280c is appropriately secured to the mounting device 210 as described above; 2) the PV module frame section 370d is clamped between the clamp 380 and the mounting plate 230c as described above by rotating the clamping fastener 310 to advance the clamp 380 toward the mounting plate 230c and relative to the stanchion 280c; 3) the lower surface 396 of the clamping section 392 for the clamp 380 engages the upper wall 372 of the PV module frame section 370d; 4) the rail wall 390 of the clamp 380 engages one part of the end wall 374 for the PV module frame section 370d; 5) the outer perimeter of the rail flange 302 of the stanchion 280d engages a part of the end wall 374 for the PV module frame section 370d that is different than and spaced from the part of the end wall 374 engaged by the rail wall 390 of the clamp 380; and 6) the end wall 374 of the PV module frame section 370d is spaced from an adjacent-most portion of the outer perimeter of the inner annular projection 238 of the mounting plate 230c (although the clamp 380 and stanchion 280c could be configured such that end wall 374 of the PV module frame section 370d would also engage an adjacent-most portion of the outer perimeter of the inner annular projection 238).


Another embodiment of a mounting assembly is illustrated in FIGS. 21-24B and is identified by reference numeral 200d. Corresponding components between the embodiment of FIGS. 11-17B and the embodiment of FIGS. 21-24B are identified by the same reference numerals, and the corresponding discussion presented above remains equally applicable unless otherwise noted to the contrary. The mounting assembly 200d uses the above-discussed clamping fastener 310, stanchion 280, mounting plate 230, and mounting device 210 such that all related discussion remains equally applicable to the mounting assembly 200d. The primary difference between the mounting assembly 200d (FIGS. 21-24B) and the mounting assembly 200 (FIGS. 11-17B) is the replacement of the clamp 320 (FIGS. 11-17B) with a clamp 420 (FIGS. 21-24B). While the clamp 320 accommodates engaging only a single photovoltaic module, the clamp 420 accommodates simultaneously engaging a pair of adjacently disposed photovoltaic modules in a photovoltaic module array (e.g., photovoltaic module array 54 shown in FIG. 2) of any appropriate size and/or configuration, where rows of photovoltaic modules are typically disposed perpendicular to the pitch of a sloped roofing surface and where columns of photovoltaic modules are typically disposed along the pitch of such a sloped roofing surface. As such, the clamp 420 may be characterized as a “mid grab” (e.g., by being disposed between and/or engaging an adjacent pair of photovoltaic modules). However, the mounting assembly 200d could also be used to engage a single photovoltaic module. For instance, the configuration of the mounting assembly 200d allows the same to be used to engage a single photovoltaic module that is disposed along an edge of the photovoltaic module array (e.g., an “edge grab” application). Given the close fit between the clamp 420 and the stanchion 296, use of the clamp 420 in an “edge grab” application does not compromise the stability of the clamp 420 or of the mounting assembly 200d more generally. Consequently, if the clamp 420 is being used in a “mid-grab” application to hold two photovoltaic modules, and one of the photovoltaic modules being held by the clamp 420 is knocked loose for any reason (e.g., flying debris in a strong storm), the clamp 420 will continue to secure the other photovoltaic module (as if originally installed in an “edge-grab” application). The mounting assembly 200d thus represents an improvement over other mounting assemblies that are useful in a mid-grab application but not in an edge-grab application, and in the scenario presented above would fail altogether, potentially resulting in a “domino effect” or chain reaction of photovoltaic modules breaking free therefrom.


The clamp 420 includes an upper wall 430, two clamping sections 440a, 440b that are spaced from one another on opposite sides of the clamp 420, a first leg, sidewall, or wall 446, and a second leg, sidewall, or wall 452 that each extend between a pair of ends 422. A countersink 434 and a fastener aperture 432 collectively extend through the upper wall 430 to accommodate the threaded shaft 316 of the clamping fastener 310. In some embodiments, the fastener aperture 432 of the clamp 420 is un-threaded such that the clamping fastener 310 is not threadably engaged with the clamp 420 (e.g., rotation of the clamping fastener 310 about rotational axis 272 does not rotate the clamp 420, such that the clamp 420 may remain in a stationary position while the clamping fastener 310 is rotated relative to the clamp 420 and about rotational axis 272).


The first wall 446 and the second wall 452 both cantilever from the upper wall 430 (more specifically an underside thereof), with the first wall 446 having a free end 447 and the second wall 452 having a free end 453. The first wall 446 includes an outer surface 448 and an inner surface 450, while the second wall 452 includes an outer surface 454 and an inner surface 456. The inner surface 450 of the first wall 446 is flat or planar, as is the inner surface 456 of the second wall 452. The outer surface 448 of the first wall 446 is flat or planar, as is the outer surface 454 of the second wall 452. The surfaces 448, 450 of the first wall 446 and the surfaces 454, 456 of the second wall 452 are parallel to one another. The inner surface 450 of the first wall 446 is spaced from and is parallel to the inner surface 456 of the second wall 452 to collectively define a stanchion receptacle 428.


The clamping sections 440a, 440b each may be characterized as a portion of the upper wall 430 that extends beyond the first wall 446 and second wall 452, respectively. In any case, each of the clamping section 440a, 440b includes an upper surface 442 and a lower surface 444, with the lower surface 444 including serrations or the like for engaging a photovoltaic module, with the lower surface 444 of the clamping section 440a being disposed at least generally orthogonal or perpendicular to the outer surface 448 of the first wall 446, and with the lower surface 444 of the clamping section 440b being disposed at least generally orthogonal or perpendicular to the outer surface 454 of the second wall 452. The upper surface 442 of each clamping section 440a, 440b is sloped, converging at least generally in the direction of its corresponding lower surface 444 in proceeding toward a free side portion of its corresponding clamping section 440a, 440b.


The clamping fastener 310, the clamp 420, and the stanchion 280 may be assembled prior to securing the stanchion 280 to the mounting device 210 in the case of the mounting assembly 200d. The threaded shaft 316 of the clamping fastener 310 is directed through the upper wall 430 of the clamp 420 (via the countersink 434 and the fastener aperture 432) and at least an upper section of the stanchion 280 is positioned within the stanchion receptacle 428 of the clamp 420 such that the shaft 316 of the clamping fastener 310 may be threaded into the hole 286 on the second end 290 of the stanchion 280 (e.g., by directing the stanchion 280 through the space between the walls 446, 452 at either of the ends 422 of the clamp 420; by directing the stanchion 280 through the space between the walls 446, 452 at their respective free ends 447, 453). Again, the clamping fastener 310 may be temporarily secured to the stanchion 280, such as by an appropriate bond (e.g., adhesive). When the clamping fastener 310 and the stanchion 280 are in a bonded state, the clamping fastener 310 and the stanchion 280 may be collectively rotated (e.g., using the drive socket 314 of the clamping fastener 310) about the rotational axis 272 to thread the shaft 284 of the stanchion 280 into the hole 226 of the mounting device 210. At this time the clamp 420 should remain in a rotationally stationary state (i.e., both the stanchion end 280 and the clamping fastener 310 should rotate, but not the clamp 420). Once the stanchion 280 has been appropriately tightened/secured to the mounting device 210, the bond between the clamping fastener 310 and the stanchion 280 should be broken or otherwise eliminated to return the clamping fastener 310 and the stanchion 280 to an un-bonded state, to thereafter allow the clamping fastener 310 to continue to rotate about this axis 272 and relative to the stanchion 280. Rotation of the clamping fastener 310 relative to the stanchion 280 will advance the clamp 420 along the stanchion 280 and in the direction of the first end 282 of the stanchion 280.


The mounting assembly 200d also accommodates a range of PV module frame section heights or thicknesses based upon varying the position of the clamp 420 along/relative to the stanchion 280 and where the inner surface 450 of at least part of the first wall 446 and where the inner surface 456 of at least part of the second wall 452 will remain engaged with opposing portions of the sidewall 296 of the stanchion 280 in each of these different positions. Referring still to FIGS. 21-24B but focusing on FIGS. 23A-23B, these figures illustrate use of the mounting assembly 200d to simultaneously secure an adjacent pair of photovoltaic modules each having a first thickness for a frame section 370a thereof (e.g., 30 mm), where each photovoltaic module of the pair (e.g., its frame section 370a) is positioned on both the upper surface of one or more of the ribs 254 and the upper surface of part of the outer annular projection 252 on the upper surface 232 of the mounting plate 230 (each photovoltaic module of the pair is not positioned on an upper surface of the inner annular projection 238 of the mounting plate 230). Generally: 1) the stanchion 280 is appropriately secured to the mounting device 210 in the above-noted manner; 2) the left PV module frame section 370a in the view of FIG. 23B is clamped between the clamping section 440a of the clamp 420 and the mounting plate 230, while the right PV module frame section 370a in the view of FIG. 23B is clamped between the clamping section 440b of the clamp 420 and the mounting plate 230, all by the rotating clamping fastener 310 advancing the clamp 420 toward the mounting plate 230 and relative to the stanchion 280; 3) the lower surface 444 of the clamping section 440a for the clamp 420 engages the upper wall 372 of the left PV module frame section 370a in the view of FIG. 23B, while the lower surface 444 of the clamping section 440b for the clamp 420 engages the upper wall 372 of the right PV module frame section 370a in the view of FIG. 23B; 4) the outer surface 448 of the first wall 446 for the clamp 420 engages at least part of end wall 374 of the left PV module frame section 370a in the view of FIG. 23B, while the outer surface 454 of the second wall 452 for the clamp 420 engages at least part of end wall 374 of the right PV module frame section 370a in the view of FIG. 23B; and 5) the end wall 374 of the left PV module frame section 370a in the view of FIG. 23B is spaced from an adjacent-most portion of the outer perimeter of the inner annular projection 238 of the mounting plate 230 (although the clamp 420 could be configured such that end wall 374 of the left PV module frame section 370a in the view of FIG. 23B would also engage an adjacent-most portion of the outer perimeter of the inner annular projection 238), while the end wall 374 of the right PV module frame section 370a in the view of FIG. 23B is spaced from an adjacent-most portion of the outer perimeter of the inner annular projection 238 of the mounting plate 230 (although the clamp 420 could be configured such that end wall 374 of the right PV module frame section 370a in the view of FIG. 23B would also engage an adjacent-most portion of the outer perimeter of the inner annular projection 238). Small spacing exists between the underside of the upper wall 430 and the second end 290 of the stanchion 280. In addition, opposing portions of the sidewall 296 of the stanchion 280 engage the inner surface 450 of the first wall 446 of the clamp 420 and the inner surface 456 of the second wall 452 of the clamp 420, facilitated by having the sidewall 296 be a cylindrical surface. There is contact (e.g., along a line) between the sidewall 296 of the stanchion 280 and the inner surface 450 of the first wall 446 of the clamp 420. There is also opposing contact (e.g., along a line) between the sidewall 296 of the stanchion 280 and the inner surface 456 of the second wall 452 of the clamp 420. This provides support for the corresponding PV module(s). The engagement between the stanchion 280 and the clamp 420 should reduce the chance of the corresponding PV modules “tilting” relative to the underlying building surface when compressing the pair of PV module frame sections 370a between the clamp 420 and the mounting plate 230 as described. The engagement between the stanchion 280 and the clamp 420 should also reduce the chance of a PV module “tilting” relative to the underlying building surface when only a single PV module frame section 370a is disposed on the upper surface 232 of the mounting plate 230 and when compressing this single PV module frame section 370a between the clamp 420 (either the clamping section 440a or the clamping section 440b) and the mounting plate 230 as described.


Referring still to FIGS. 21-24B but focusing on FIGS. 24A and 24B, these figures illustrate use of the mounting assembly 200d to simultaneously secure an adjacent pair of photovoltaic modules each having a second thickness for a frame section 370b thereof (e.g., 42 mm), with the PV module frame section 370b being thicker than the PV module frame section 370a of FIGS. 23A and 23B, and where each photovoltaic module of the pair (e.g., its frame section 370b) is positioned on both the upper surface of one or more of the ribs 254 and the upper surface of part of the outer annular projection 252 on the upper surface 232 of the mounting plate 230 (each photovoltaic module of the pair is not positioned on an upper surface of the inner annular projection 238 of the mounting plate 230). Generally: 1) the stanchion 280 is appropriately secured to the mounting device 210 in the above-described manner; 2) the left PV module frame section 370b in the view of FIG. 24B is clamped between the clamping section 440a of the clamp 420 and the mounting plate 230, while the right PV module frame section 370b in the view of FIG. 24B is clamped between the clamping section 440b of the clamp 420 and the mounting plate 230, all by the rotating clamping fastener 310 advancing the clamp 420 toward the mounting plate 230 and relative to the stanchion 280; 3) the lower surface 444 of the clamping section 440a for the clamp 420 engages an upper wall 372 of the left PV module frame section 370b in the view of FIG. 24B, while the lower surface 444 of the clamping section 440b for the clamp 420 engages an upper wall 372 of the right PV module frame section 370b in the view of FIG. 24B; 4) the outer surface 448 of the first wall 446 for the clamp 420 engages at least part of end wall 374 of the left PV module frame section 370b in the view of FIG. 24B, while the outer surface 454 of the second wall 452 for the clamp 420 engages at least part of end wall 374 of the right PV module frame section 370b in the view of FIG. 24B; and 5) the end wall 374 of the left PV module frame section 370b in the view of FIG. 24B is spaced from an adjacent-most portion of the outer perimeter of the inner annular projection 238 of the mounting plate 230 (although the clamp 420 could be configured such that end wall 374 of the left PV module frame section 370b in the view of FIG. 24B would also engage an adjacent-most portion of the outer perimeter of the inner annular projection 238), while the end wall 374 of the right PV module frame section 370b in the view of FIG. 24B is spaced from an adjacent-most portion of the outer perimeter of the inner annular projection 238 of the mounting plate 230 (although the clamp 420 could be configured such that end wall 374 of the right PV module frame section 370b in the view of FIG. 24B would also engage an adjacent-most portion of the outer perimeter of the inner annular projection 238). Larger spacing exists between the underside of the upper wall 430 and the second end 290 of the stanchion 280 (i.e., compare FIG. 24B with FIG. 23B). In addition, opposing portions of the sidewall 296 of the stanchion 280 engage the inner surface 450 of the first wall 446 of the clamp 420 and the inner surface 456 of the second wall 452 of the clamp 420, facilitated by having the sidewall 296 being a cylindrical surface. There is contact (e.g., along a line) between the sidewall 296 of the stanchion 280 and the inner surface 450 of the first wall 446 of the clamp 420. There is also opposing contact (e.g., along a line) between the sidewall 296 of the stanchion 280 and the inner surface 456 of the second wall 452 of the clamp 420. This provides support for the corresponding PV module(s). The engagement between the stanchion 280 and the clamp 420 should reduce the chance of the corresponding PV modules “tilting” relative to the underlying building surface when compressing the pair of PV module frame sections 370b between the clamp 420 and the mounting plate 230 as described. The engagement between the stanchion 280 and the clamp 420 should also reduce the chance of a PV module “tilting” relative to the underlying building surface when only a single PV module frame section 370b is disposed on the upper surface 232 of the mounting plate 230 and when compressing this single PV module frame section 370b between the clamp 420 (either the clamping section 440a or the clamping section 440b) and the mounting plate 230 as described.


A variation of the mounting assembly 200d of FIGS. 21-24B is illustrated in FIGS. 25A-25D and is identified by reference numeral 200e. Corresponding components between the embodiment of FIGS. 21-24B and the embodiment of FIGS. 25A-25D are identified by the same reference numerals, and the corresponding discussion presented above remains equally applicable unless otherwise noted to the contrary. Those components from the embodiment of FIGS. 25A-25D that differ in at least some respect from a corresponding component of the embodiment of FIGS. 21-24B use the same reference numeral in combination with a further identifier. Notwithstanding the discussion of differences that may exist between a component of the embodiment of FIGS. 25A-25D and its corresponding component in the embodiment of FIGS. 21-24B, the remainder of the discussion of this corresponding component from the embodiment of FIGS. 21-24B will remain equally applicable to the embodiment of FIGS. 25A-25D unless otherwise noted to the contrary.


The mounting assembly 200e of FIGS. 25A-25D utilizes the stanchion 280b (e.g., FIGS. 18A-18D), although the mounting assembly 200e of FIGS. 25A-25D could instead use the stanchion 280 (e.g., FIGS. 11-17B; FIGS. 21-24B). The mounting assembly 200e of FIGS. 25A-25D also utilizes the clamping fastener 310b (e.g., FIGS. 18A-18D), although the mounting assembly 200e of FIGS. 25A-25D could instead use the clamping fastener 310 (e.g., FIGS. 11-17BFIGS. 21-24B) in which case the clamp 420a could also utilize a countersink 434 for receiving the head 312 of such a clamping fastener 310. In any case, a hole extends completely through the clamp 420a to accommodate the passage of the threaded shaft 316 through the upper wall 430 of the clamp 420a and preferably without there being a threaded engagement between the clamping fastener 310b and the clamp 420a.


The primary distinction between the mounting assembly 200e of FIGS. 25A-25D and the mounting assembly 200d of FIGS. 21-24B is the configuration of the clamp 420a. However, the clamp 420a for the mounting assembly 200e still accommodates simultaneously engaging a pair of adjacently disposed photovoltaic modules in a photovoltaic module array (e.g., photovoltaic module array 54 shown in FIG. 2) of any appropriate size and/or configuration, where rows of photovoltaic modules are typically disposed perpendicular to the pitch of a sloped roofing surface and where columns of photovoltaic modules are typically disposed along the pitch of such a sloped roofing surface. As such, the clamp 420a may be characterized as a “mid grab” (e.g., by being disposed between and/or engaging an adjacent pair of photovoltaic modules). However, the mounting assembly 200e could also be used to engage a single photovoltaic module. For instance, the configuration of the mounting assembly 200e allows the same to be used to engage a single photovoltaic module that is disposed along an edge of the photovoltaic module array (e.g., an “edge grab” application).


The clamp 420a for the mounting assembly 200e of FIGS. 25A-25D includes a first wall 446′ and a second wall 452′ that are each of a different configuration compared to the clamp 420 of the mounting assembly 200d. As the configuration of the first wall 446′ has changed, its outer surface is identified by reference numeral 448′ and its inner surface is identified by reference numeral 450′. As the configuration of the second wall 452′ has changed, its outer surface is identified by reference numeral 454′ and its inner surface is identified by reference numeral 456′. With the configurations of the first wall 446′ and the second wall 452′ being different for the mounting assembly 200e compared to the mounting assembly 200d, the stanchion receptacle is identified by reference numeral 428a for the case of the mounting assembly 200e. A reference plane 274 is disposed in the stanchion receptacle 428a and is located between the walls 446′, 452′. The reference plane 274 may be characterized as being oriented so as to be parallel to both at least part of the inner surface 450′ of the first wall 446′ and at least part of the inner surface 456′ of the second wall 452′. The reference plane 274 may also bisect the hole 250 through the mounting plate 230.


There are three sections that collectively define the first wall 446′ for the mounting assembly 200e—an upper section 446a, an intermediate section 446b, and a lower section 446c—and these sections 446a, 446b, and 446c are of a common wall thickness and with the first wall 446′ having a free end 447′. The upper section 446a and the lower section 446c may be characterized as being disposed in parallel relation to one another and to the reference plane 274, with the intermediate section 446b being disposed in a different orientation (relative to both the upper section 446a and the lower section 446c) and extending from the upper section 446a to the lower section 446c at least generally in the direction of the reference plane 274.


There are three sections that collectively define the second wall 452′ for the mounting assembly 200e—an upper section 452a, an intermediate section 452b, and a lower section 452c—and these sections 452a, 452b, and 452c are of a common wall thickness and with the second wall 452′ having a free end 453′. The upper section 452a and the lower section 452c may be characterized as being disposed in parallel relation to one another and to the reference plane 274, with the intermediate section 452b being disposed in a different orientation (relative to both the upper section 452a and the lower section 452c) and extending from the upper section 452a to the lower section 452c at least generally in the direction of the reference plane 274.


A first spacing exists between the inner surface 450′ of the upper section 446a and the reference plane 274 and a second spacing exists between the inner surface 450′ of the lower section 446c and the reference plane 274, with the first spacing being larger than the second spacing. Stated another way, the inner surface 450′ of the upper section 446a is further from the reference plane 274 (and from the inner surface 456′ of the second wall 452′) than the inner surface 450′ of the lower section 446c. Stated yet another way, the inner surface 450′ of the lower section 446c is closer to the reference plane 274 (and to the inner surface 456′ of the second wall 452′) than the inner surface 450′ of the upper section 446a.


A third spacing exists between the outer surface 448′ of the upper section 446a and the reference plane 274 and a fourth spacing exists between the outer surface 448′ of the lower section 446c and the reference plane 274, with the third spacing being larger than the fourth spacing. Stated another way, the outer surface 448′ of the upper section 446a is further from the reference plane 274 (and from the inner surface 456′ of the second wall 452′) than the outer surface 448′ of the lower section 446c. Stated yet another way, the outer surface 448′ of the lower section 446c is closer to the reference plane 274 (and to the inner surface 456′ of the second wall 452′) than the outer surface 448′ of the upper section 446a.


A fifth spacing exists between the inner surface 456′ of the upper section 452a and the reference plane 274 and a sixth spacing exists between the inner surface 456′ of the lower section 452c and the reference plane 274, with the fifth spacing being larger than the sixth spacing. Stated another way, the inner surface 456′ of the upper section 452a is further from the reference plane 274 (and from the inner surface 450′ of the first wall 446′) than the inner surface 456′ of the lower section 452c. Stated yet another way, the inner surface 456′ of the lower section 452c is closer to the reference plane 274 (and to the inner surface 450′ of the first wall 446′) than the inner surface 456′ of the upper section 452a.


A seventh spacing exists between the outer surface 454′ of the upper section 452a and the reference plane 274 and an eighth spacing exists between the outer surface 454′ of the lower section 452c and the reference plane 274, with the seventh spacing being larger than the eighth spacing. Stated another way, the outer surface 454′ of the upper section 452a is further from the reference plane 274 (and from the inner surface 450′ of the first wall 446′) than the outer surface 454′ of the lower section 452c. Stated yet another way, the outer surface 454′ of the lower section 452c is closer to the reference plane 274 (and to the inner surface 450′ of the first wall 446′) than the outer surface 454′ of the upper section 452a.


The first wall 446′ and the second wall 452′ are the mirror image of each other in the case of the mounting assembly 200e. As such: 1) the first spacing between the inner surface 450′ of the upper section 446a and the reference plane 274 may be of the same magnitude as the fifth spacing between the inner surface 456′ of the upper section 452a and the reference plane 274; 2) the second spacing between the inner surface 450′ of the lower section 446c and the reference plane 274 may be of the same magnitude as the sixth spacing between the inner surface 456′ of the lower section 452c and the reference plane 274; 3) the third spacing between the outer surface 448′ of the upper section 446a and the reference plane 274 may be of the same magnitude as the seventh spacing between the outer surface 454′ of the upper section 452a and the reference plane 274; and 4) the fourth spacing between the outer surface 448′ of the lower section 446c and the reference plane 274 may be of the same magnitude as the eighth spacing between the outer surface 454′ of the lower section 452c and the reference plane 274.


The outer surface 448′ of the upper section 446a of the first wall 446′ and the outer perimeter of the inner annular projection 238 on the upper surface 232 of the mounting plate 230 are disposed the same distance from the reference plane 274. Similarly, the outer surface 454′ of the upper section 452a of the second wall 452′ and the outer perimeter of the inner annular projection 238 on the upper surface 232 of the mounting plate 230 are disposed the same distance from the reference plane 274. As such and when a PV module frame section is engaged by the clamping section 440a of the mounting assembly 200e (where this photovoltaic module (e.g., its frame section) is positioned on both the upper surface of one or more of the ribs 254 and the upper surface of part of the outer annular projection 252 on the upper surface 232 of the mounting plate 230 (the photovoltaic module is not positioned on an upper surface of the inner annular projection 238 of the mounting plate 230)): 1) the lower surface 444 of the clamping section 440a will engage the upper wall of this PV module frame section (e.g., upper wall 372); 2) the outer surface 448′ of the upper section 446a for the first wall 446′ will engage an upper part of an end wall of this same PV module frame section (e.g., end wall 374); 3) a lower part of the end wall of this PV module frame section (e.g., end wall 374) will engage the adjacent-most portion of the outer perimeter of the inner annular projection 238 for the mounting plate 230; 4) this PV module frame section will be clamped between the upper surface 232 of the mounting plate 230 and the clamping section 440a of the clamp 420a by rotating the clamping fastener 310b to advance the clamp 420a toward the mounting plate 230 and relative to the stanchion 280b; and 5) the inner surface 450′ of at least part of the lower section 446c of the first wall 446′ and the inner surface 456′ of at least part of the lower section 452c of the second wall 452′ will engage opposing portions of the sidewall 296 of the stanchion 280b.


When a PV module frame section is engaged by the clamping section 440b of the mounting assembly 200e (where this photovoltaic module (e.g., its frame section) is positioned on both the upper surface of one or more of the ribs 254 and the upper surface of part of the outer annular projection 252 on the upper surface 232 of the mounting plate 230 (the photovoltaic module is not positioned on an upper surface of the inner annular projection 238 of the mounting plate 230): 1) the lower surface 444 of the clamping section 440b will engage the upper wall of this PV module frame section (e.g., upper wall 372); 2) the outer surface 454′ of the upper section 452a for the second wall 452′ will engage an upper part of an end wall of this PV module frame section (e.g., end wall 374); 3) a lower part of the end wall of this PV module frame section (e.g., end wall 374) will engage the adjacent-most portion of the outer perimeter of the inner annular projection 238 for the mounting plate 230; 4) the PV module frame section will be clamped between the upper surface 232 of the mounting plate 230 and the clamping section 440b of the clamp 420a by the rotating clamping fastener 310b advancing the clamp 420a toward the mounting plate 230 and relative to the stanchion 280b; and 5) the inner surface 450′ of at least part of the lower section 446c of the first wall 446′ and the inner surface 456′ of at least part of the lower section 452c of the second wall 452′ will engage opposing portions of the sidewall 296 of the stanchion 280b.


The clamping fastener 310b, the clamp 420a, and the stanchion 280b may be assembled prior to securing the stanchion 280b to the mounting device 210 (not shown in FIGS. 25A-25D, but a part of the mounting assembly 200e). A temporary bond may be used to secure the clamping fastener 310b to the stanchion 280b so that rotation of the clamping fastener 310b causes rotation of the stanchion 280b, thus causing the stanchion 280b to threadably engage the mounting device 210. Thereafter one or two PV module frame sections may be clamped between the clamp 420a and the mounting plate 230 in the same general manner as the embodiment of FIGS. 21-24B. The mounting assembly 200e also accommodates a range of PV module frame section heights or thicknesses based upon varying the position of the clamp 420a along/relative to the stanchion 280b and where at least part of the lower section 446c of the first wall 446′ and where at least part of the lower section 452c of the second wall 452′ will remain engaged with opposing portions of the sidewall 296 of the stanchion 280b in each of these different positions.


A variation of the mounting assembly 200d of FIGS. 21-24B is illustrated in FIGS. 26A-26C and is identified by reference numeral 200f. Corresponding components between the embodiment of FIGS. 21-24B and the embodiment of FIGS. 26A-26C are identified by the same reference numerals, and the corresponding discussion presented above remains equally applicable unless otherwise noted to the contrary. Those components from the embodiment of FIGS. 26A-26C that differ in at least some respect from a corresponding component of the embodiment of FIGS. 21-24B use the same reference numeral in combination with a further identifier. Notwithstanding the discussion of differences that may exist between a component of the embodiment of FIGS. 26A-26C and its corresponding component in the embodiment of FIGS. 21-24B, the remainder of the discussion of this corresponding component from the embodiment of FIGS. 21-24B will remain equally applicable to the embodiment of FIGS. 26A-26C unless otherwise noted to the contrary.


The mounting assembly 200e of FIGS. 26A-26C uses the clamping fastener 310, mounting plate 230, and mounting device 210 at least from the mounting assembly 200d of FIGS. 21-24B, as well as the stanchion 280c from the mounting assembly 200c of FIGS. 19A-20B. The mounting assembly 200f uses a different clamp 480 compared to the mounting assembly 200d (FIGS. 21-24B). This clamp 480 for the mounting assembly 200f may be viewed as a variation of the clamp 380 for the mounting assembly 200c (FIGS. 19A-20B). In any case, the clamp 480 accommodates simultaneously engaging a pair of adjacently disposed photovoltaic modules in a photovoltaic module array (e.g., photovoltaic module array 54 shown in FIG. 2) of any appropriate size and/or configuration, where rows of photovoltaic modules are typically disposed perpendicular to the pitch of a sloped roofing surface and where columns of photovoltaic modules are typically disposed along the pitch of such a sloped roofing surface. As such, the clamp 480 may be characterized as a “mid grab” (e.g., by being disposed between and/or engaging an adjacent pair of photovoltaic modules). However, the mounting assembly 200f could also be used to engage a single photovoltaic module. For instance, the configuration of the mounting assembly 200f allows the same to be used to engage a single photovoltaic module that is disposed along an edge of the photovoltaic module array (e.g., an “edge grab” application).


The clamp 480 includes an upper wall 482 and an oppositely disposed bottom wall 488 that each extend between a pair of ends 498 for the clamp 480. The upper wall 482 includes a countersink 486, with this countersink 486 and a fastener aperture 484 collectively extending between the upper wall 482 and the bottom wall 488. Preferably the fastener aperture 484 of the clamp 480 is un-threaded such that the clamping fastener 310 is not threadably engaged with the clamp 480 (e.g., rotation of the clamping fastener 310 about rotational axis 272 should not rotate the clamp 480; the clamp 480 may remain in a stationary position while the clamping fastener 310 is rotated relative to the clamp 480 about the rotational axis 272).


Other components of the clamp 480 include a pair of rail walls 490a, 490b and a corresponding pair of clamping sections 492a, 492b that are spaced from one another on opposite sides of the clamp 480 and that each extend between the ends 498. The clamping sections 492a, 492b each may be characterized as a portion of the upper wall 482 that extends beyond the corresponding rail wall 490a, 490b. In any case, each of the clamping sections 492a, 492b includes an upper surface 494 and a lower surface 496, with the lower surface 496 including serrations or the like for engaging a photovoltaic module and with the lower surface 496 being disposed at least generally orthogonal or perpendicular to the corresponding rail wall 490a, 490b. The upper surface 494 of each clamping section 492a, 492b is sloped, converging at least generally in the direction of the corresponding lower surface 496 in proceeding toward a free side portion of the corresponding clamping section 492a, 492b.


The clamping fastener 310, the clamp 480, and the stanchion 280c may be assembled prior to securing the stanchion 280c to the mounting device 210 (e.g., using a temporary bond between the clamping fastener 310 and the stanchion 280c) and thereafter clamping a PV module frame section between the clamp 480 and the mounting plate 230c as described. The mounting assembly 200c also accommodates a range of PV module frame section heights or thicknesses through varying the position of the clamp 480 relative to the stanchion 280c. FIG. 26B illustrates use of the mounting assembly 200f to secure a pair of photovoltaic module frame sections 370. Generally: 1) the stanchion 280c is appropriately secured to the mounting device 210 as described; 2) the two PV module frame sections 370 are clamped between the clamp 480 and the mounting plate 230 by rotating the clamping fastener 310 to advance the clamp 480 toward the mounting plate 230c and relative to the stanchion 280c; 3) the lower surface 496 of the clamping section 492a for the clamp 480 engages the upper wall 372 of the left PV module frame section 370 in the view of FIG. 26B; 4) the rail wall 490a of the clamp 480 engages one part of the end wall 374 for the left PV module frame section 370 in the view of FIG. 26B; 5) the outer perimeter of the rail flange 302 of the stanchion 280c engages a different part of the end wall 374 for the left PV module frame section 370 in the view of FIG. 26B and that is spaced from where the rail wall 490a of the clamp 480 engages this same end wall 374; 6) the lower surface 496 of the clamping section 492b for the clamp 480 engages the upper wall 372 of the right PV module frame section 370 in the view of FIG. 26B; 4) the rail wall 490b of the clamp 480 engages one part of the end wall 374 for right PV module frame section 370 in the view of FIG. 26B; 7) the outer perimeter of the rail flange 302 of the stanchion 280c engages a different part of the end wall 374 for the right PV module frame section 370 in the view of FIG. 26B and that is spaced from where the rail wall 490b of the clamp 480 engages this same end wall 374; and 8) the end wall 374 of the left PV module frame section 370 in the view of FIG. 26B is disposed adjacent to/engages an adjacent-most portion of an outer perimeter of the inner annular projection 238 of the mounting plate 230, while the end wall 374 of the right PV module frame section 370 in the view of FIG. 26B is disposed adjacent to/engages an adjacent-most portion of an outer perimeter of the inner annular projection 238 of the mounting plate 230.


Embodiments of the present disclosure include a mounting assembly, comprising: a mounting device attachable to a building surface; a stanchion removably attached to the mounting device; a clamp comprising at least one clamping section and a stanchion receptacle, wherein the clamp is removably positioned on the stanchion with the stanchion extending into the stanchion receptacle, and wherein the at least one clamping section is adapted to engage a perimeter portion of a photovoltaic module; and a clamping fastener that extends through the clamp and into detachable engagement with the stanchion.


Aspects of the foregoing embodiment include: wherein the mounting device comprises a slot configured to receive a protrusion of the building surface in an installed configuration; wherein the mounting device is detachably engaged with the building surface in an installed configuration; wherein the stanchion comprises a first threaded shaft and the mounting device comprises a first threaded aperture, wherein the first threaded shaft of the stanchion extends within and is engaged with the first threaded aperture of the mounting device; and wherein a free end of the first threaded shaft defines a first end of the stanchion, wherein the stanchion comprises a second end oppositely disposed from the first end along a length dimension of the stanchion, and wherein the clamping fastener is detachably engaged with the second end of the stanchion; wherein the second end of the stanchion comprises a second threaded aperture, and wherein the clamping fastener comprises a second threaded shaft that extends into and is engaged with the second threaded aperture of the stanchion; wherein the second threaded shaft of the clamping fastener is bonded to the stanchion.


Aspects of the foregoing embodiment also include: wherein the clamping fastener and the stanchion collectively define a first assembly that is disposable in each of first and second configurations, the first configuration comprising the clamping fastener and the stanchion being in a bonded state such that the clamping fastener and the stanchion collectively rotate to removably attach the stanchion to the mounting device, the second configuration comprising the clamping fastener and the stanchion being in an un-bonded state such that the clamping fastener rotates relative to the stanchion to advance the clamp along the stanchion; wherein an entirety of an outer perimeter wall of the stanchion that is disposed within the stanchion receptacle of the clamp is un-threaded; wherein the clamp comprises an upper wall and a pair of clamp walls that cantilever from the upper wall, that are spaced from one another in a first dimension, and that define at least a portion of the stanchion receptacle, and wherein the stanchion comprises a first stanchion section that extends into a space between the pair of clamp walls and that engages each clamp wall of the pair clamp walls within the stanchion receptacle.


Aspects of the foregoing embodiment also include: wherein each the clamp wall of the pair extends from the upper wall in a direction that the mounting device is spaced from the clamp; wherein the first stanchion section comprises a cylindrical sidewall that defines an outer perimeter of the first stanchion section; wherein the stanchion comprises a second stanchion section having first and second flat surfaces disposed in opposing relation on a perimeter of the second stanchion section; wherein the second stanchion section is located between the first stanchion section and the mounting device; wherein the first stanchion section comprises a plurality of flat, intersecting surfaces that collectively define an outer perimeter of the first stanchion section; wherein an exterior of the first stanchion section is un-threaded; wherein a portion of the upper wall that extends beyond an adjacent the clamp wall in the first dimension comprises the at least one clamping section; wherein the clamp further comprises an upper wall and first and second walls that cantilever from the upper wall, that are spaced from one another in a first dimension, and that define at least a portion of the stanchion receptacle, wherein the stanchion comprises an upper end section that extends into a space between the first and second walls and engages each of the first and second walls within the stanchion receptacle; wherein each of the first and second walls extends from the upper wall in a direction that the mounting device is spaced from the clamp; wherein a portion of the upper wall that extends away from an outer surface of the first wall in the first dimension comprises the at least one clamping section; and wherein an entirety of an inner surface of the first wall that faces the second wall is flat, and wherein an entirety of an inner surface of the second wall that faces the inner surface of the first wall is also flat.


Aspects of the foregoing embodiment also include: wherein the inner surface of the first wall and the inner surface of the second wall face and are disposed parallel to one another; wherein the at least one clamping section comprises a single clamping section, wherein the single clamping section extends from the first wall within the first dimension in a direction that is away from the second wall; wherein an outer surface of the second wall comprises a channel; wherein the at least one clamping section comprises a first and second clamping sections, wherein the first clamping section extends from the first wall within the first dimension in a direction that is away from the second wall, and wherein the second clamping section extends from the second wall within the first dimension in a direction that is away from the first wall; wherein an inner surface of a lower section of the first wall is flat and is located opposite of and parallel to a flat portion of an inner surface of the second wall.


Aspects of the foregoing embodiment also include: wherein an inner surface of an upper section of the first wall is spaced further from a corresponding portion of the inner surface of the second wall compared to the lower section of the first wall and its corresponding portion of the inner surface of the second wall; and wherein an entirety of the inner surface of the second wall that faces the first wall is flat; wherein the first wall comprises an upper section and a lower section, wherein the first wall comprises a first inner surface, wherein the second wall comprises a second inner surface, wherein the first and second inner surfaces face each other, wherein a reference plane is disposed between the first and second walls and is parallel to at least part of the first inner surface and at least part of the second inner surface, wherein a spacing of the first inner surface of the upper section of the first wall from the reference plane is greater than a spacing of the first inner surface of the lower section of the first wall from the reference plane.


Aspects of the foregoing embodiment also include: wherein the first inner surface of the upper section of the first wall is parallel to the first inner surface of the lower section of the first wall; wherein an entirety of the second inner surface of the second wall is flat; wherein the at least one clamping section comprises a single clamping section that protrudes from a first outer surface of the first wall; wherein the second wall comprises a second outer surface, which in turn comprises a channel; wherein the second wall comprises an upper section and a lower section, wherein a spacing of the second inner surface of the upper section of the second wall from the reference plane is greater than a spacing of the second inner surface of the lower section of the second wall from the reference plane; wherein the first inner surface of the upper section of the first wall is parallel to the first inner surface of the lower section of the first wall, and wherein the second inner surface of the upper section of the second wall is parallel to the second inner surface of the lower section of the second wall; and wherein the first inner surface of the upper section of the first wall, the first inner surface of the lower section of the first wall, and the second inner surface of the upper section of the second wall, and the second inner surface of the lower section of the second wall are all parallel to one another.


Aspects of the foregoing embodiment also include: wherein the first inner surface of the upper section of the first wall and the second inner surface of the upper section of the second wall are disposed in opposing relation, and the first inner surface of the lower section of the first wall and the second inner surface of the lower section of the second wall are disposed in opposing relation; wherein the first and second walls are the mirror image of one another; wherein the at least one clamping section comprises first and second clamping sections, wherein the first clamping section comprises a first portion of the upper wall that extends away from an outer surface of the first wall in the first dimension, and wherein the second clamping section comprises a second portion of the upper wall that extends away from an outer surface of the second wall in the first dimension; and wherein the at least one clamping section comprises a single clamping section that protrudes from a first side of the clamp; wherein an outer surface of a second side of the clamp comprises a channel.


Aspects of the foregoing embodiment also include: a building surface and a plurality of photovoltaic modules, wherein the mounting device is attached to the building surface, wherein the clamp engages only a single photovoltaic module in the form of a first photovoltaic module, wherein the single clamping section exerts a force on the first photovoltaic module in a direction of an underlying portion of the building surface, wherein the first photovoltaic module is on an edge of an array defined by the plurality of photovoltaic modules; wherein the at least one clamping section comprises first and second clamping sections that protrude from first and second sides, respectively, of the clamp.


Aspects of the foregoing embodiment also include: a building surface and a plurality of photovoltaic modules, wherein the mounting device is attached to the building surface, wherein the clamp engages only a single photovoltaic module in the form of a first photovoltaic module, wherein the first clamping section exerts a force on the first photovoltaic module in a direction of an underlying portion of the building surface, wherein the first photovoltaic module is on an edge of an array defined by the plurality of photovoltaic modules, and wherein the second clamping section fails to engage any photovoltaic module.


Aspects of the foregoing embodiment also include: a building surface and an array comprising first and second photovoltaic modules, wherein the mounting device is attached to the building surface, wherein the first clamping section engages and exerts a force on the first photovoltaic module in a direction of an underlying portion of the building surface, wherein the second clamping section engages and exerts a force on the second photovoltaic module in a direction of an underlying portion of the building surface, and wherein the stanchion is located between the first and second photovoltaic modules.


Aspects of the foregoing embodiment also include: further comprising a disk positioned on the mounting device, wherein the stanchion extends through the disk and is removably attached to the mounting device; wherein a perimeter of the disk is larger than a perimeter of a surface of the mounting device on which the disk is positioned; wherein an upper surface of the disk comprises a first raised section having an effective inner diameter and an effective outer diameter, wherein the upper surface further comprises a base within the effective inner diameter of the first raised section, wherein the base is recessed relative to an uppermost portion of the raised section, and wherein an end portion the stanchion extends through the base and engages the mounting device; wherein the end portion of the stanchion is threaded and engages the mounting device; wherein the first raised section is annular; wherein the first raised section comprises a closed perimeter that extends completely about the wall; wherein the upper surface of the disk comprises a second raised section having an effective inner diameter, wherein the second raised section is positioned radially outward of the first raised section, wherein the upper surface of the disk further comprises a plurality of ribs that are spaced from one another and that each extend between the first raised section and the second raised section.


Aspects of the foregoing embodiment also include: wherein the second raised section is annular; wherein the second raised section comprises a closed perimeter that extends completely about the first raised section; and wherein the upper surface further comprises a plurality of electrical bonding projections, wherein each the electrical bonding projection is disposed between an adjacent pair of ribs of the plurality of ribs, and wherein each the electrical bonding projection protrudes beyond an uppermost portion of each rib of its corresponding the adjacent pair of ribs.


Embodiments of the present disclosure also include a mounting assembly, comprising: a mounting device attachable to a building surface and comprising an upper surface, wherein the upper surface comprises a first threaded hole; a standoff comprising first and second ends that are spaced from one another along a length dimension of the standoff, the second end comprising a second threaded hole, the standoff further comprising a body and a first threaded shaft that extends from the body to the first end of the standoff, wherein the first threaded shaft of the standoff interfaces with the first threaded hole of the mounting device such that the second end of the standoff and the upper surface of the mounting device are spaced from one another; a clamp that is spaced above the mounting device and that comprises at least one clamping section, wherein the at least one clamping section is adapted to engage a perimeter portion of a photovoltaic module; and a clamping fastener comprising a head and a second threaded shaft, wherein the clamp is disposed between the head and the standoff, and wherein the second threaded shaft extends through the clamp to threadably interface with the second threaded hole on the second end of the standoff.


Aspects of the foregoing embodiment include: wherein the mounting device comprises a slot configured to receive a protrusion of the building surface in an installed configuration; wherein the mounting device is detachably engaged with the building surface in an installed configuration; wherein the clamping fastener is not threadably engaged with the clamp such that the clamping fastener is able to rotate relative to the clamp; wherein an entirety of the clamp is positioned above the second end of the standoff at all times; wherein the clamp comprises a first rail wall, wherein the at least one clamping section comprises a first clamping section, wherein the first clamping section comprises a lower surface that extends from and is perpendicular to the first rail wall, wherein the standoff further comprises a rail flange, wherein the first rail wall and a perimeter of the rail flange are spaced a common distance from a rotational axis of the clamping fastener.


Aspects of the foregoing embodiment also include: a building surface and a plurality of photovoltaic modules, wherein the mounting device is attached to the building surface, wherein the clamp engages only a single one of the plurality of photovoltaic modules in the form of a first photovoltaic module, wherein the first clamping section exerts a force on the first photovoltaic module in a direction of an underlying portion of the building surface, and wherein the first photovoltaic module is on an edge of an array defined by the plurality of photovoltaic modules; wherein the first photovoltaic module comprises a PV module frame section that in turn comprises an upper wall and an end wall, wherein the lower surface of the first clamping section engages the upper wall of the PV module frame section, wherein the first rail wall engages the end wall of the PV module frame section at a first location, and wherein a first portion on the perimeter of the first rail flange engages the end wall of the PV module frame section at a second location that is spaced from the first location in a dimension corresponding with a spacing between the clamp and the mounting device; wherein the clamp comprises first and second rail walls on first and second sides, respectively, of the clamp, wherein the at least one clamping section comprises a first and second clamping sections on the first and second sides, respectively, of the clamp, wherein the first clamping section comprises a lower surface that extends from and is perpendicular to the first rail wall, wherein the second clamping section comprises a lower surface that extends from and is perpendicular to the second rail wall, wherein the standoff further comprises a rail flange, wherein the first rail wall, the second rail wall, and a perimeter of the rail flange are spaced a common distance from a rotational axis of the clamping fastener; and wherein the first and second rail walls are oppositely disposed and parallel to one another.


Aspects of the foregoing embodiment also include: a building surface and first and second photovoltaic modules, wherein the mounting device is attached to the building surface, wherein the standoff is positioned between the first photovoltaic module and the second photovoltaic module, wherein the first clamping section exerts a force on the first photovoltaic module in a direction of an underlying portion of the building surface, and wherein the second clamping section exerts a force on the second photovoltaic module in a direction of an underlying portion of the building surface; wherein the first photovoltaic module comprises a first PV module frame section that in turn comprises a first upper wall and a first end wall, wherein the second photovoltaic module comprises a second PV module frame section that in turn comprises a second upper wall and a second end wall, wherein the lower surface of the first clamping section engages the first upper wall of the first PV module frame section, wherein the first rail wall engages the first end wall of the first PV module frame section at a first location, wherein a first portion on the perimeter of the first rail flange engages the first end wall of the first PV module frame section at a second location that is spaced from the first location in a first dimension corresponding with a spacing between the clamp and the mounting device, wherein the lower surface of the second clamping section engages the second upper wall of the second PV module frame section, wherein the second rail wall engages the second end wall of the first PV module frame section at a third location, and wherein a second portion on the perimeter of the first rail flange engages the second end wall of the second PV module frame section at a fourth location that is spaced from the third location in the first dimension.


Aspects of the foregoing embodiment also include: wherein the clamp further comprises a standoff receptacle, wherein the clamp is removably positioned on the standoff with the standoff extending into the standoff receptacle; wherein the second threaded shaft of the clamping fastener is bonded to the standoff; wherein the clamping fastener and the standoff collectively define a first assembly that is disposable in each of first and second configurations, the first configuration comprising the clamping fastener and the standoff being in a bonded state such that the clamping fastener and the stanchion collectively rotate to engage the first threaded shaft of the standoff to first threaded hole of the mounting device, the second configuration comprising the clamping fastener and the standoff being in an un-bonded state such that the clamping fastener rotates relative to the standoff to advance the clamp along the standoff.


Aspects of the foregoing embodiment also include: wherein the clamp comprises an upper wall and a pair of clamp walls that cantilever from the upper wall, that are spaced from one another in a first dimension, and that define at least a portion of the standoff receptacle, wherein the standoff comprises a first standoff section that extends into a space between the pair of clamp walls and that engages each clamp wall of the pair clamp walls within the standoff receptacle; wherein each the clamp wall of the pair extends from the upper wall in a direction that the mounting device is spaced from the clamp; wherein the first standoff section comprises a cylindrical sidewall that defines an outer perimeter of the first standoff section; wherein the standoff comprises a second standoff section having first and second flat surfaces disposed in opposing relation on a perimeter of the second standoff section; wherein the second standoff section is located between the first standoff section and the mounting device; wherein the first standoff section comprises a plurality of flat, intersecting surfaces that collectively define an outer perimeter of the first standoff section; wherein an exterior of the first standoff section is un-threaded; wherein a portion of the upper wall that extends beyond an adjacent the clamp wall in the first dimension comprises the at least one clamping section; wherein the clamp further comprises an upper wall and first and second walls that cantilever from the upper wall, that are spaced from one another in a first dimension, and that define at least a portion of the standoff receptacle, wherein the standoff comprises an upper end section that extends into a space between the first and second walls and engages each of the first and second walls within the standoff receptacle.


Aspects of the foregoing embodiment also include: wherein each of the first and second walls extends from the upper wall in a direction that the mounting device is spaced from the clamp; wherein a portion of the upper wall that extends away from an outer surface of the first wall in the first dimension comprises the at least one clamping section; wherein an entirety of an inner surface of the first wall that faces the second wall is flat, and wherein an entirety of an inner surface of the second wall that faces the inner surface of the first wall is also flat; wherein the inner surface of the first wall and the inner surface of the second wall face and are disposed parallel to one another; wherein the at least one clamping section comprises a single clamping section, wherein the single clamping section extends from the first wall within the first dimension in a direction that is away from the second wall; wherein an outer surface of the second wall comprises a channel; wherein the at least one clamping section comprises a first and second clamping sections, wherein the first clamping section extends from the first wall within the first dimension in a direction that is away from the second wall, and wherein the second clamping section extends from the second wall within the first dimension in a direction that is away from the first wall.


Aspects of the foregoing embodiment also include: wherein the first wall comprises an upper section and a lower section, wherein the first wall comprises a first inner surface, wherein the second wall comprises a second inner surface, wherein the first and second inner surfaces face each other, wherein a reference plane is disposed between the first and second walls and is parallel to at least part of the first inner surface and at least part of the second inner surface, wherein a spacing of the first inner surface of the upper section of the first wall from the reference plane is greater than a spacing of the first inner surface of the lower section of the first wall from the reference plane; wherein the first inner surface of the upper section of the first wall is parallel to the first inner surface of the lower section of the first wall; wherein an entirety of the second inner surface of the second wall is flat; wherein the at least one clamping section comprises a single clamping section that protrudes from a first outer surface of the first wall; wherein the second wall comprises a second outer surface, which in turn comprises a channel; wherein the second wall comprises an upper section and a lower section, wherein a spacing of the second inner surface of the upper section of the second wall from the reference plane is greater than a spacing of the second inner surface of the lower section of the second wall from the reference plane.


Aspects of the foregoing embodiment also include: wherein the first inner surface of the upper section of the first wall is parallel to the first inner surface of the lower section of the first wall, and wherein the second inner surface of the upper section of the second wall is parallel to the second inner surface of the lower section of the second wall; wherein the first inner surface of the upper section of the first wall, the first inner surface of the lower section of the first wall, and the second inner surface of the upper section of the second wall, and the second inner surface of the lower section of the second wall are all parallel to one another; wherein the first inner surface of the upper section of the first wall and the second inner surface of the upper section of the second wall are disposed in opposing relation, and the first inner surface of the lower section of the first wall and the second inner surface of the lower section of the second wall are disposed in opposing relation; wherein the first and second walls are the mirror image of one another; wherein the at least one clamping section comprises first and second clamping sections, wherein the first clamping section comprises a first portion of the upper wall that extends away from an outer surface of the first wall in the first dimension, and wherein the second clamping section comprises a second portion of the upper wall that extends away from an outer surface of the second wall in the first dimension; wherein the at least one clamping section comprises a single clamping section that protrudes from a first side of the clamp; and wherein an outer surface of a second side of the clamp comprises a channel.


Aspects of the foregoing embodiment also include: a building surface and a plurality of photovoltaic modules, wherein the mounting device is attached to the building surface, wherein the clamp engages only a single photovoltaic module in the form of a first photovoltaic module, wherein the single clamping section exerts a force on the first photovoltaic module in a direction of an underlying portion of the building surface, wherein the first photovoltaic module is on an edge of an array defined by the plurality of photovoltaic modules; wherein the at least one clamping section comprises first and second clamping sections that protrude from first and second sides, respectively, of the clamp.


Aspects of the foregoing embodiment also include: a building surface and a plurality of photovoltaic modules, wherein the mounting device is attached to the building surface, wherein the clamp engages only a single photovoltaic module in the form of a first photovoltaic module, wherein the first clamping section exerts a force on the first photovoltaic module in a direction of an underlying portion of the building surface, wherein the first photovoltaic module is on an edge of an array defined by the plurality of photovoltaic modules, and wherein the second clamping section fails to engage any photovoltaic module.


Aspects of the foregoing embodiment also include: a building surface and an array comprising first and second photovoltaic modules, wherein the mounting device is attached to the building surface, wherein the first clamping section engages and exerts a force on the first photovoltaic module in a direction of an underlying portion of the building surface, wherein the second clamping section engages and exerts a force on the second photovoltaic module in a direction of an underlying portion of the building surface, and wherein the stanchion is located between the first and second photovoltaic modules; further comprising a disk positioned on the upper surface of the mounting device, wherein the first threaded shaft of the standoff extends through the disk; wherein a perimeter of the disk is larger than a perimeter of a surface of the mounting device on which the disk is positioned.


Aspects of the foregoing embodiment also include: wherein an upper surface of the disk comprises a first raised section having an effective inner diameter and an effective outer diameter, wherein the upper surface further comprises a base within the effective inner diameter of the first raised section, wherein the base is recessed relative to an uppermost portion of the raised section, and wherein an end portion the stanchion extends through the base and engages the mounting device; wherein the first raised section is annular; wherein the first raised section comprises a closed perimeter that extends completely about the base; wherein the upper surface of the disk comprises a second raised section having an effective inner diameter, wherein the second raised section is positioned radially outward of the first raised section, wherein the upper surface of the disk further comprises a plurality of ribs that are spaced from one another and that each extend between the first raised section and the second raised section; wherein the second raised section is annular; wherein the second raised section comprises a closed perimeter that extends completely about the first raised section; wherein the upper surface further comprises a plurality of electrical bonding projections, wherein each the electrical bonding projection is disposed between an adjacent pair of ribs of the plurality of ribs, and wherein each the electrical bonding projection protrudes beyond an uppermost portion of each rib of its corresponding the adjacent pair of ribs.


Embodiments of the present disclosure also include a mounting assembly comprising: a clamp comprising: an upper wall comprising a central aperture, a first edge, and a second edge parallel to the first edge; a first sidewall extending from the upper wall proximate and substantially parallel to the first edge, the first sidewall spaced from the first edge to form a first clamping section; and a second sidewall extending from the upper wall proximate and substantially parallel to the second edge, the first and second sidewalls defining a stanchion receptacle; a stanchion comprising a first threaded hole and a first threaded shaft; a mounting plate comprising a central hole, an inner annular projection surrounding the central hole, an outer annular projection surrounding the inner annular projection, and a plurality of ribs extending from the inner annular projection to the outer annular projection; a mounting device comprising a second threaded hole; and a clamping fastener comprising a second threaded shaft; wherein the central aperture and the first threaded hole are configured to receive the second threaded shaft, and the central hole and the second threaded hole are configured to receive the first threaded shaft.


Aspects of the foregoing mounting assembly include: wherein the first sidewall is spaced from the second sidewall by a width of the stanchion, such that each of the two sidewalls contact the stanchion when the stanchion is positioned within the stanchion receptacle; wherein the second sidewall is spaced from the second edge to form a second clamping section; wherein the mounting plate comprises a plurality of bonding points; wherein the inner annular projection has a first height greater than a second height of the outer annular projection; wherein the mounting device further comprises a third threaded hole and a seam fastener removably engaged in the third threaded hole, and further wherein the seam fastener comprises a drive socket having an identical configuration to a drive socket of the clamping fastener; wherein the stanchion further comprises: a body portion from which the first threaded shaft extends; and a beveled portion between the first threaded shaft and the body portion; wherein the mounting plate further comprises a plurality of apertures therein; wherein the inner annular projection surrounds a recessed base; and wherein the first sidewall comprises a first portion proximate the upper wall and a second portion separated from the upper wall by the first portion; the second sidewall comprises a third portion proximate the upper wall and a fourth portion separated from the upper wall by the third portion; and the first portion is separated from the third portion by a first distance greater than a second distance that separates the second portion from the fourth portion.


Embodiments of the present disclosure also include a mounting assembly comprising: a mounting device comprising a planar upper surface having a first threaded aperture therein; a mounting plate adapted to be secured to the planar upper surface of the mounting device, the mounting plate comprising a first central hole; a stanchion comprising an upper body portion and a lower threaded shaft, the lower threaded shaft adapted to pass through the first central hole and engage the threaded aperture, and the upper body portion comprising a second threaded aperture; a clamp comprising: an upper wall with a second central hole therein; and two parallel sidewalls defining a stanchion receptacle, each of the two parallel sidewalls extending downwardly from the upper wall to a free end, wherein a first distance separates a portion of the two parallel sidewalls proximate the upper wall, and a second distance less than the first distance separates the free ends of the two parallel sidewalls; and a clamping fastener configured to extend through the second central hole and threadably engage the second threaded aperture to secure the clamp to the stanchion.


Aspects of the foregoing mounting assembly include: wherein the stanchion further comprises a beveled portion in between the upper body portion and the lower threaded shaft; wherein the mounting plate further comprises a plurality of radially extending ribs; wherein the mounting plate further comprises a plurality of bonding projections, each bonding projection comprising a plurality of spikes and positioned in between adjacent ones of the plurality of radially extending ribs; wherein the mounting plate further comprises an inner annular projection surrounding the first central hole and an outer annular projection surrounding the inner annular projection; wherein the plurality of radially extending ribs extend from the inner annular projection to the outer annular projection; and wherein the inner annular projection has a first height greater than a second height of the outer annular projection; wherein the mounting plate further comprises a plurality of apertures between the outer annular projection and an outer edge of the mounting plate.


Embodiments of the present disclosure also include a mounting assembly comprising: a mounting plate comprising a first aperture, a recessed base surrounding the first aperture and having a first diameter, and an annular projection surrounding the recessed base; a stanchion comprising a threaded shaft configured to extend through the first aperture, a body portion comprising a second aperture, and a beveled portion in between the threaded shaft and the body portion, the body portion having a second diameter less than the first diameter; a clamp comprising: an upper wall with a second aperture in between a first edge and a second edge that is parallel to the first edge; a first sidewall extending downwardly from the upper wall and terminating in a first free end, the first sidewall parallel to the first edge and having a first portion in between the first free end and the upper wall; and a second sidewall extending downwardly from the upper wall and terminating in a second free end, the second sidewall spaced from the first sidewall and parallel to the first edge and having a second portion in between the second free end and the upper wall; wherein the first free end is spaced from the second free end by a first distance substantially equal to the first diameter; and the first portion is spaced from the second portion by a second distance greater than the first distance; and a clamping fastener configured to extend through the second aperture and threadably engage the second aperture to secure the clamp to the stanchion.


Aspects of the foregoing mounting assembly include: wherein the mounting plate further comprises a plurality of bonding projections extending upward, each bonding projection comprising a plurality of spikes.


The foregoing description of the present invention has been presented for purposes of illustration and description. Furthermore, the description is not intended to limit the invention to the form disclosed herein. Consequently, variations and modifications commensurate with the above teachings, and skill and knowledge of the relevant art, are within the scope of the present invention. The embodiments described hereinabove are further intended to explain best modes known of practicing the invention and to enable others skilled in the art to utilize the invention in such, or other embodiments and with various modifications required by the particular application(s) or use(s) of the present invention. It is intended that the appended claims be construed to include alternative embodiments to the extent permitted by the prior art.


For the avoidance of doubt, any of the features described above in connection with one embodiment of a mounting assembly or component thereof described herein may be utilized in connection with another embodiment of a mounting assembly or a corresponding component thereof described herein. As just one, non-limiting example, a grounding projection 172 may be utilized in a mounting assembly 200d instead of or in addition to one or more of the bonding projections 256.

Claims
  • 1. A mounting system to mount a photovoltaic module to a surface of a building, comprising: a clamp, comprising: an upper wall with an aperture, a first surface, and a second surface opposite to the first surface, wherein a medial section of the first surface includes the aperture and defines a first reference plane, and wherein no portion of the clamp intersects the first reference plane;a first sidewall extending from the upper wall proximate to the second surface; anda second sidewall extending from the upper wall proximate to the second surface, the first and second sidewalls defining a stanchion receptacle;a mounting plate with an upper surface and a lower surface;a stanchion extending from the upper surface of the mounting plate, the stanchion comprising: a first end spaced from the upper surface of the mounting plate; anda first threaded hole extending through the first end into the stanchion;a mounting device comprising a body with: a top surface to support the lower surface of the mounting plate;a bottom surface;a first side surface;a slot extending into the body through the bottom surface to receive a standing seam extending from the surface of the building; anda second threaded hole extending through the first side surface to the slot, the second threaded hole configured to receive a seam fastener to engage the standing seam when the standing seam is positioned within the slot; anda clamping fastener comprising a first threaded shaft;wherein the aperture of the clamp and the first threaded hole of the stanchion are configured to receive the first threaded shaft of the clamping fastener.
  • 2. The mounting system of claim 1, wherein: the first sidewall has a first inner surface;the second sidewall has a second inner surface; anda portion of the first inner surface is spaced from a portion of the second inner surface by a distance approximately equal to a width of the stanchion such that at least a portion of one of the first and second inner surfaces contacts at least a portion of the stanchion when the stanchion is positioned within the stanchion receptacle.
  • 3. The mounting system of claim 1, wherein: the second surface of the upper wall defines a second reference plane;the upper wall extends from a first edge to a second edge, the first and second edges being closer to the second reference plane than to the first reference plane;the first sidewall extends from the upper wall and is offset from the first edge by a first edge distance to form a first clamping section; andthe second sidewall extends from the upper wall and is offset from the second edge by a second edge distance to form a second clamping section.
  • 4. The mounting system of claim 1, wherein: the mounting plate comprises a hole extending through the upper and lower surfaces;the stanchion comprises a second end with a second threaded shaft configured to extend through the hole of the mounting plate; andthe mounting device comprises a third threaded hole extending through the top surface and into the body, the third threaded hole configured to receive the second threaded shaft of the stanchion to secure the mounting plate to the mounting device between the second end of the stanchion and the top surface of the mounting device.
  • 5. The mounting system of claim 1, wherein the mounting plate has an outer perimeter that extends away from the first side surface of the mounting device when the mounting plate is secured to the mounting device.
  • 6. The mounting system of claim 1, wherein: the first sidewall comprises: a first upper end that intersects the upper wall;a first free end spaced from the upper wall; anda first intermediate section between the first upper end and the first free end; andthe second sidewall comprises: a second upper end that intersects the upper wall, the second upper end separated from the first upper end by a first interior distance;a second free end spaced from the upper wall, the second free end separated from the first free end by a third interior distance; anda second intermediate section between the second upper end and the second free end, the second intermediate section separated from the first intermediate section by a second interior distance, wherein the first interior distance is greater than the second interior distance, and wherein the second interior distance is greater than the third interior distance.
  • 7. The mounting system of claim 1, wherein the stanchion further comprises a body portion including: the first end, wherein the first end is positionable within the stanchion receptacle of the clamp;a first flat surface oriented approximately perpendicular to the first end; anda second flat surface positioned opposite to the first flat surface, wherein the first threaded hole of the stanchion extends into at least a portion of the body portion between the first and second flat surfaces.
  • 8. The mounting system of claim 1, wherein the upper wall further comprises: a first edge; anda second edge, wherein the first surface of the upper wall comprises: the medial section;a first edge section that extends from the medial section and away from the first reference plane to the first edge; anda second edge section that extends from the medial section away from the first reference plane to the second edge.
  • 9. The mounting system of claim 1, wherein, when the clamp is secured to the stanchion by the clamping fastener: a first free end of the first sidewall of the clamp is positioned between the upper wall of the clamp and the mounting plate; anda distance between the second surface of the clamp and the upper surface of the mounting plate decreases as the clamping fastener is rotated to advance the first threaded shaft of the clamping fastener into the first threaded hole of the stanchion.
  • 10. The mounting system of claim 1, wherein: the first sidewall extends a first sidewall length to a first free end and comprises a first outer surface;the second sidewall extends a second sidewall length to a second free end and comprises a second outer surface;the first outer surface is separated from the second outer surface by a first outer distance proximate the upper wall; andthe first outer surface is separated from the second outer surface by a second outer distance proximate to the first and second free ends, the first outer distance being greater than the second outer distance.
  • 11. A mounting system selectively engageable to a standing seam extending from a surface of a building, comprising: a mounting plate comprising an upper surface and a lower surface;a stanchion comprising a body portion extending away from the upper surface, the body portion comprising: a first end spaced from the upper surface by a first stanchion length; anda first threaded aperture extending through the first end into the body portion;a clamp comprising: an upper wall with an aperture therein and a first surface that defines a first reference plane, wherein no portion of the clamp intersects the first reference plane;a first sidewall extending from the upper wall to a first free end, the first sidewall comprising a first exterior surface and a first intermediate section between the upper wall and the first free end; anda second sidewall extending from the upper wall to a second free end, the second sidewall comprising a second exterior surface and a second intermediate section between the upper wall and the second free end, wherein the second exterior surface is spaced from the first exterior surface by a first outer distance proximate to the upper wall, wherein the second exterior surface is spaced from the first exterior surface by a second outer distance at the first and second intermediate sections, the second outer distance being less than the first outer distance, and wherein the second exterior surface is spaced from the first exterior surface by a third outer distance proximate to the first and second free ends, the third outer distance being less than the second outer distance;a stanchion receptacle defined between the first and second sidewalls of the clamp; anda clamping fastener configured to extend through the aperture of the clamp and threadably engage the first threaded aperture of the stanchion to secure the clamp to the stanchion; anda mounting device, comprising: a top surface to support the lower surface of the mounting plate;a first side surface;a slot to receive the standing seam extending from the surface of the building; anda second threaded aperture extending through the first side surface to the slot, the second threaded aperture configured to receive a seam fastener to engage the standing seam in the slot.
  • 12. The mounting system of claim 11, wherein the mounting plate further comprises: a hole;an outer annulus;an inner annular projection surrounding the hole and that extends above the outer annulus to a first height;an outer annular projection surrounding the inner annular projection and that extends above the outer annulus to a second height that is less than the first height; anda plurality of ribs that extend radially from the hole, wherein the plurality of ribs extend between the inner annular projection and the outer annular projection; andwherein the stanchion further comprises a threaded shaft extending from the body portion that is configured to extend through the hole of the mounting plate and threadably engage a threaded aperture of the mounting device.
  • 13. The mounting system of claim 11, wherein the upper wall of the clamp further comprises: a second surface that defines a second reference plane, wherein the first and second sidewalls intersect the second reference plane;a first end;a second end opposite the first end;a first edge extending from the first end to the second end; anda second edge extending from the first end to the second end, the first and second edges being closer to the second reference plane than to the first reference plane.
  • 14. The mounting system of claim 11, wherein the first threaded aperture of the stanchion extends into at least a portion of the body portion between first and second flat surfaces.
  • 15. The mounting system of claim 11, wherein: the first sidewall of the clamp comprises a first inner surface;the second sidewall of the clamp comprises a second inner surface;a first interior distance separates the first inner surface from the second inner surface proximate to the upper wall;a second interior distance separates the first inner surface from the second inner surface at the first and second intermediate sections, the second interior distance being less than the first interior distance; anda third interior distance separates the first inner surface from the second inner surface proximate to the first and second free ends, wherein the third interior distance is less than the second interior distance, and wherein the third interior distance is greater than a width of the stanchion.
  • 16. The mounting system of claim 13, wherein the first sidewall is offset from the first edge by a first edge distance to form a first clamping section.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a Continuation of U.S. patent application Ser. No. 16/360,923, entitled “PV Module Mounting Assembly with Clamp/Standoff Arrangement,” filed on Mar. 21, 2019, now U.S. Pat. No. 10,903,785 which issued on Jan. 26, 2021, which claims the benefit of U.S. Provisional Application No. 62/645,963 filed on Mar. 21, 2018, and entitled “PV Module Mounting Assembly with Clamp/Standoff Arrangement”, and the entire disclosure of each of which is hereby incorporated herein by reference.

US Referenced Citations (798)
Number Name Date Kind
42992 Howe May 1864 A
97316 Rogers Nov 1869 A
106580 Hathorn Aug 1870 A
189431 Creighton Apr 1877 A
224608 Rendle Feb 1880 A
250580 Rogers Dec 1881 A
332413 List Dec 1885 A
386316 Hawthorne Jul 1888 A
405605 Sagendorph Jun 1889 A
407772 Curtis et al. Jul 1889 A
446217 Dickelman Feb 1891 A
459876 Powers Sep 1891 A
472014 Densmore Mar 1892 A
473512 Laird Apr 1892 A
491173 Hayward Feb 1893 A
507776 Berger et al. Oct 1893 A
529774 Baird Nov 1894 A
602983 Folsom Apr 1898 A
733697 Chronik Jul 1903 A
756884 Parry Apr 1904 A
831445 Kosmatka Sep 1906 A
881757 Winsor Mar 1908 A
884850 Peter Apr 1908 A
927522 Gery Jul 1909 A
933784 Peter Sep 1909 A
939516 Laird Nov 1909 A
1054091 Darnall Feb 1913 A
1085474 Peterson Jan 1914 A
1136460 Wright Apr 1915 A
1230363 Baird Jun 1917 A
1330309 Dixon Feb 1920 A
1399461 Childs Dec 1921 A
1463065 Sieger Jul 1923 A
1465042 Hruska Aug 1923 A
1477088 Turner Dec 1923 A
1511529 Standlee Oct 1924 A
1620428 Becker Mar 1927 A
1735927 Shaffer Nov 1929 A
1735937 Shaffer Nov 1929 A
1893481 Adams Jan 1933 A
1946862 Koch, Jr. Feb 1934 A
1957933 Brandl May 1934 A
2079768 Levow May 1937 A
2150497 Fernberg Mar 1939 A
2183008 Camp Dec 1939 A
2183844 Murphy Dec 1939 A
2192720 Tapman Mar 1940 A
2201320 Place May 1940 A
2250401 Sylvester Jul 1941 A
2274010 Stellin Feb 1942 A
2340692 Ridd Feb 1944 A
2429833 Luce Oct 1947 A
2443362 Tinnerman Jun 1948 A
2448752 Wagner Sep 1948 A
2457250 Macomber Dec 1948 A
2472586 Harvey Jun 1949 A
2504776 Woodfield et al. Apr 1950 A
2525217 Glitsch Oct 1950 A
2574007 Anderson Nov 1951 A
2658247 Heuer Nov 1953 A
2714037 Singer et al. Jul 1955 A
2730381 Curtiss Jan 1956 A
2740027 Budd et al. Mar 1956 A
2808491 Rhee et al. Oct 1957 A
2810173 Bearden Oct 1957 A
2875805 Flora Mar 1959 A
2985174 Guth May 1961 A
3039161 Gagnon Jun 1962 A
3064772 Clay Nov 1962 A
3095672 Di Tullio Jul 1963 A
3112016 Peterson Nov 1963 A
3136206 Adams Jun 1964 A
3194524 Trumbull Jul 1965 A
3221467 Henkels Dec 1965 A
3231076 Frieman Jan 1966 A
3232393 Atwwod Feb 1966 A
3232573 Berman Feb 1966 A
3242620 Kaiser Mar 1966 A
3247316 Weimer, Jr. Apr 1966 A
3288409 Bethea, Jr. Nov 1966 A
3296750 Zaleski Jan 1967 A
3298653 Omholt Jan 1967 A
3301513 Masao Jan 1967 A
3307235 Hennings Mar 1967 A
3318057 Norsworthy May 1967 A
3333799 Peterson Aug 1967 A
3335995 Pickles Aug 1967 A
3341909 Havener Sep 1967 A
3363864 Olgreen Jan 1968 A
3394524 Howarth Jul 1968 A
3425127 Long Feb 1969 A
3482369 Burke Dec 1969 A
3495363 Johnson Feb 1970 A
3496691 Seaburg et al. Feb 1970 A
3503244 Joslin Mar 1970 A
3523709 Heggy et al. Aug 1970 A
3527619 Miley Sep 1970 A
3565380 Langren Feb 1971 A
3572623 Lapp Mar 1971 A
3590543 Heirich Jul 1971 A
3656747 Revell, Jr. et al. Apr 1972 A
3667182 Stemler Jun 1972 A
3667185 Maurer Jun 1972 A
3715705 Kuo Feb 1973 A
3719919 Tibolla Mar 1973 A
3753326 Kaufman, Sr. Aug 1973 A
3778537 Miller Dec 1973 A
3792560 Naylor Feb 1974 A
3809799 Taylor May 1974 A
3810069 Jaconette, Jr. May 1974 A
3817270 Ehrens et al. Jun 1974 A
3824664 Seeff Jul 1974 A
3845601 Kostecky Nov 1974 A
3861098 Schaub Jan 1975 A
3904161 Scott Sep 1975 A
3914001 Nelson et al. Oct 1975 A
3921253 Nelson Nov 1975 A
3960352 Plattner et al. Jun 1976 A
3986746 Chartier Oct 1976 A
4001474 Hereth Jan 1977 A
4007574 Riddell Feb 1977 A
4018538 Smyrni et al. Apr 1977 A
4034532 Reinwall, Jr. Jul 1977 A
4051289 Adamson Sep 1977 A
4127975 Judkins Dec 1978 A
4130970 Cable Dec 1978 A
4141182 McMullen Feb 1979 A
4147257 Zippel Apr 1979 A
4162595 Ramos et al. Jul 1979 A
4162755 Bott Jul 1979 A
4189882 Harrison et al. Feb 1980 A
4189891 Johnson et al. Feb 1980 A
4200107 Reid Apr 1980 A
4203646 Desso et al. May 1980 A
4215677 Erickson Aug 1980 A
4223053 Brogan Sep 1980 A
4252458 Keen Feb 1981 A
4261338 McAlister Apr 1981 A
4261384 Dahlbring Apr 1981 A
4263474 Tennant Apr 1981 A
4270721 Mainor, Jr. Jun 1981 A
4291934 Kund Sep 1981 A
4307976 Butler Dec 1981 A
4321416 Tennant Mar 1982 A
4351140 Simpson Sep 1982 A
4358916 Lacasse Nov 1982 A
4366656 Simpson Jan 1983 A
4393859 Marossy et al. Jul 1983 A
4449335 Fahey May 1984 A
4456321 Jones et al. Jun 1984 A
4461514 Schwarz Jul 1984 A
4467582 Hague Aug 1984 A
4475776 Teramachi Oct 1984 A
4546586 Knudson Oct 1985 A
4560224 Weisenburger Dec 1985 A
4567706 Wendt Feb 1986 A
4570405 Knudson Feb 1986 A
4588240 Ruehl et al. May 1986 A
4593877 van der Wyk Jun 1986 A
4601600 Karlsson Jul 1986 A
4656794 Thevenin et al. Apr 1987 A
4666116 Lloyd May 1987 A
4674252 Nicholas et al. Jun 1987 A
4682454 Simpson Jul 1987 A
4686809 Skelton Aug 1987 A
4701586 Hagberg Oct 1987 A
4704058 Crunwell Nov 1987 A
4753425 Yang Jun 1988 A
4773791 Hartkorn Sep 1988 A
4782642 Conville Nov 1988 A
4799444 Lisowski Jan 1989 A
4805364 Smolik Feb 1989 A
4809476 Satchell Mar 1989 A
4810573 Harriett Mar 1989 A
4835927 Michlovic Jun 1989 A
4840529 Phillips Jun 1989 A
4848858 Suzuki Jul 1989 A
4854096 Smolik Aug 1989 A
4878331 Taylor Nov 1989 A
4895338 Froutzis Jan 1990 A
4901963 Yoder Feb 1990 A
4905444 Semaan Mar 1990 A
4909011 Freeman et al. Mar 1990 A
4949929 Kesselman et al. Aug 1990 A
4961712 Schwenk et al. Oct 1990 A
4970833 Porter Nov 1990 A
4987699 Gold Jan 1991 A
4991368 Amstutz Feb 1991 A
5007612 Manfre Apr 1991 A
5019111 Dempsey et al. May 1991 A
5036949 Crocker et al. Aug 1991 A
5039352 Mueller Aug 1991 A
5092939 Nath et al. Mar 1992 A
5094435 Depperman Mar 1992 A
5118571 Petersen Jun 1992 A
5119612 Taylor et al. Jun 1992 A
5125608 McMaster et al. Jun 1992 A
5127205 Eidson Jul 1992 A
5138820 Pearce Aug 1992 A
5140793 Knudson Aug 1992 A
5152107 Strickert Oct 1992 A
5164020 Wagner et al. Nov 1992 A
5176462 Chen Jan 1993 A
5187911 Cotter Feb 1993 A
5213300 Rees May 1993 A
5222340 Bellem Jun 1993 A
5224427 Riches et al. Jul 1993 A
5228248 Haddock Jul 1993 A
5251993 Sigourney Oct 1993 A
5268038 Riermeier et al. Dec 1993 A
5271194 Drew Dec 1993 A
5277006 Ruster Jan 1994 A
5282340 Cline et al. Feb 1994 A
5287670 Funaki Feb 1994 A
5290366 Riermeier et al. Mar 1994 A
5307601 McCracken May 1994 A
5312079 Little, Jr. May 1994 A
5313752 Hatzinikolas May 1994 A
D347701 McCracken Jun 1994 S
5352154 Rotter et al. Oct 1994 A
5356519 Grabscheid et al. Oct 1994 A
5356705 Kelch et al. Oct 1994 A
D351989 Cline et al. Nov 1994 S
5363624 Cotter Nov 1994 A
5379567 Vahey Jan 1995 A
5390453 Untiedt Feb 1995 A
5392574 Sayers Feb 1995 A
5408797 Bellem Apr 1995 A
5409549 Mori Apr 1995 A
5413063 King May 1995 A
5413397 Gold May 1995 A
5417028 Meyer May 1995 A
5425209 Funaki Jun 1995 A
5426906 McCracken Jun 1995 A
5439307 Steinhilber Aug 1995 A
5453027 Buell et al. Sep 1995 A
D364338 Cline Nov 1995 S
5479752 Menegoli Jan 1996 A
5482234 Lyon Jan 1996 A
5483772 Haddock Jan 1996 A
5483782 Hall Jan 1996 A
5491931 Haddock Feb 1996 A
5497591 Nelson Mar 1996 A
5522185 Cline Jun 1996 A
5533839 Shimada Jul 1996 A
D372421 Cline Aug 1996 S
5557903 Haddock Sep 1996 A
5571338 Kadonome et al. Nov 1996 A
5596858 Jordan Jan 1997 A
5596859 Horton et al. Jan 1997 A
5598785 Zaguroli, Jr. Feb 1997 A
5600971 Suk Feb 1997 A
D378343 Macor Mar 1997 S
5609326 Stearns et al. Mar 1997 A
5613328 Alley Mar 1997 A
5640812 Crowley et al. Jun 1997 A
5647178 Cline Jul 1997 A
5660008 Bevilacqua Aug 1997 A
5664750 Cohen Sep 1997 A
5667181 van Leeuwen et al. Sep 1997 A
5681191 Robicheau et al. Oct 1997 A
5688131 Byfield, Jr. Nov 1997 A
D387443 Blankenbiller Dec 1997 S
5694721 Haddock Dec 1997 A
5697197 Simpson Dec 1997 A
5715640 Haddock Feb 1998 A
5732513 Alley Mar 1998 A
5743063 Boozer Apr 1998 A
5743497 Michael Apr 1998 A
5746029 Ullman May 1998 A
5755824 Blechschmidt et al. May 1998 A
5765310 Gold Jun 1998 A
5765329 Huang Jun 1998 A
5787653 Sakai et al. Aug 1998 A
5794386 Klein Aug 1998 A
5809703 Kelly Sep 1998 A
5826379 Curry Oct 1998 A
5826390 Sacks Oct 1998 A
5828008 Lockwood et al. Oct 1998 A
5829723 Brunner et al. Nov 1998 A
5842318 Bass et al. Dec 1998 A
5890340 Kafarowski Apr 1999 A
5897088 Kirschner Apr 1999 A
5901507 Smeja et al. May 1999 A
5942046 Kahlfuss et al. Aug 1999 A
5970586 Demel et al. Oct 1999 A
5983588 Haddock Nov 1999 A
5994640 Bansemir et al. Nov 1999 A
5997368 Mello et al. Dec 1999 A
6029415 Culpepper et al. Feb 2000 A
6073410 Schimpf et al. Jun 2000 A
6073920 Colley Jun 2000 A
6079678 Schott et al. Jun 2000 A
6083010 Daoud Jul 2000 A
6088979 Neal Jul 2000 A
6095462 Morgan Aug 2000 A
6099203 Landes Aug 2000 A
6105317 Tomiuchi et al. Aug 2000 A
6106310 Davis et al. Aug 2000 A
6111189 Garvison et al. Aug 2000 A
6119317 Pfister Sep 2000 A
6132070 Vosika et al. Oct 2000 A
6158180 Edwards Dec 2000 A
6164033 Haddock Dec 2000 A
6182403 Mimura et al. Feb 2001 B1
6186799 Mello Feb 2001 B1
6206991 Starr Mar 2001 B1
6223477 Alley May 2001 B1
6237297 Paroly May 2001 B1
6253496 Gilchrist Jul 2001 B1
6256934 Alley Jul 2001 B1
6269596 Ohtsuka et al. Aug 2001 B1
6276285 Ruch Aug 2001 B1
6320114 Kuechler Nov 2001 B1
6336616 Lin Jan 2002 B1
6360491 Ullman Mar 2002 B1
6364262 Gibson et al. Apr 2002 B1
6364374 Noone et al. Apr 2002 B1
6370828 Genschorek Apr 2002 B1
6382569 Schattner et al. May 2002 B1
6385914 Alley May 2002 B2
6393796 Goettl et al. May 2002 B1
6443680 Bodin Sep 2002 B1
6453623 Nelson et al. Sep 2002 B1
6470629 Haddock Oct 2002 B1
6497080 Malcolm Dec 2002 B1
6499259 Hockman Dec 2002 B1
6508442 Dolez Jan 2003 B1
6521821 Makita et al. Feb 2003 B2
6534702 Makita et al. Mar 2003 B1
6536166 Alley Mar 2003 B1
6536729 Haddock Mar 2003 B1
6576830 Nagao et al. Jun 2003 B2
6602016 Eckart et al. Aug 2003 B2
6622441 Miller Sep 2003 B2
6637671 Alley Oct 2003 B2
6647671 Alley Nov 2003 B1
6655633 Chapman, Jr. Dec 2003 B1
6665991 Hasan Dec 2003 B2
6688047 McNichol Feb 2004 B1
D487595 Sherman Mar 2004 S
6715256 Fischer Apr 2004 B1
6718718 Haddock Apr 2004 B2
6725623 Riddell et al. Apr 2004 B1
6730841 Heckeroth May 2004 B2
6732982 Messinger May 2004 B1
6751919 Calixto Jun 2004 B2
D495595 Dressler Sep 2004 S
D496738 Sherman Sep 2004 S
6799742 Nakamura et al. Oct 2004 B2
6834466 Trevorrow et al. Dec 2004 B2
6918217 Jakob-Bamberg et al. Jul 2005 B2
6918727 Huang Jul 2005 B2
6922948 Smeja et al. Aug 2005 B2
6967278 Hatsukaiwa et al. Nov 2005 B2
7012188 Erling Mar 2006 B2
7013612 Haddock Mar 2006 B2
7063763 Chapman, Jr. Jun 2006 B2
7100338 Haddock Sep 2006 B2
7104020 Suttle Sep 2006 B1
7127852 Dressler Oct 2006 B1
7191794 Hodges Mar 2007 B2
7195513 Gherardini Mar 2007 B1
7219863 Collett, II May 2007 B1
7240770 Mullins et al. Jul 2007 B2
7260918 Liebendorfer Aug 2007 B2
7281695 Jordan Oct 2007 B2
7386922 Taylor et al. Jun 2008 B1
7406924 Impey Aug 2008 B1
7410139 Rorich Aug 2008 B1
7431252 Birli et al. Oct 2008 B2
7435134 Lenox Oct 2008 B2
7451573 Orszulak et al. Nov 2008 B2
7458555 Mastropaolo et al. Dec 2008 B2
7459196 Sturm Dec 2008 B2
7469511 Wobber Dec 2008 B2
7493730 Fennell, Jr. Feb 2009 B2
7513080 Showalter Apr 2009 B1
7516580 Fennell, Jr. Apr 2009 B2
7568871 Chopp, Jr. et al. Aug 2009 B2
7578711 Robinson Aug 2009 B2
7600349 Liebendorfer Oct 2009 B2
7658356 Nehls Feb 2010 B1
7686625 Dyer et al. Mar 2010 B1
7703256 Haddock Apr 2010 B2
7707800 Kannisto May 2010 B2
7712278 Lonardi May 2010 B2
7721492 Plaisted et al. May 2010 B2
7731138 Wiesner et al. Jun 2010 B2
7733667 Qin Jun 2010 B2
7758003 Pourtier et al. Jul 2010 B2
7758011 Haddock Jul 2010 B2
7762027 Wentworth et al. Jul 2010 B1
7766292 Liebendorfer Aug 2010 B2
7780472 Lenox Aug 2010 B2
7788874 Miller Sep 2010 B2
7788879 Brandes et al. Sep 2010 B2
7824191 Browder Nov 2010 B1
7827920 Beck et al. Nov 2010 B2
7845127 Brescia Dec 2010 B2
7847181 Brescia Dec 2010 B2
7861480 Wendelburg et al. Jan 2011 B2
7861485 Wentworth et al. Jan 2011 B1
7874117 Simpson Jan 2011 B1
7891618 Carnevali Feb 2011 B2
7895808 Wentworth et al. Mar 2011 B1
7905064 Wentworth et al. Mar 2011 B1
7915519 Kobayashi Mar 2011 B2
7926777 Koesema, Jr. Apr 2011 B2
7954287 Bravo et al. Jun 2011 B2
7988464 Kossak et al. Aug 2011 B2
8011153 Orchard Sep 2011 B2
8066200 Hepner et al. Nov 2011 B2
8070119 Taylor Dec 2011 B2
8092129 Wiley et al. Jan 2012 B2
8096503 Verweyen Jan 2012 B2
8109048 West Feb 2012 B2
8146299 Stearns et al. Apr 2012 B2
8151522 Stearns et al. Apr 2012 B2
8153700 Stearns et al. Apr 2012 B2
D658977 Riddell et al. May 2012 S
8226061 Nehls Jul 2012 B2
8251326 McPheeters Aug 2012 B2
8272172 Li Sep 2012 B2
8294026 Wang et al. Oct 2012 B2
8312678 Haddock Nov 2012 B1
8316590 Cusson Nov 2012 B2
8316621 Safari Kermanshahi et al. Nov 2012 B2
D674513 Liu Jan 2013 S
8344239 Plaisted Jan 2013 B2
8347572 Piedmont Jan 2013 B2
8375654 West et al. Feb 2013 B1
8387319 Gilles-Gagnon et al. Mar 2013 B1
8404963 Kobayashi Mar 2013 B2
8407895 Hartelius et al. Apr 2013 B2
8413946 Hartelius et al. Apr 2013 B2
8424821 Liu Apr 2013 B2
8430372 Haddock Apr 2013 B2
8448405 Schaefer May 2013 B2
8453986 Schnitzer Jun 2013 B2
8458967 Kalkanoglu et al. Jun 2013 B2
8495997 Laubach Jul 2013 B1
8505254 Welter et al. Aug 2013 B2
8528888 Header Sep 2013 B2
8584424 Smith Nov 2013 B2
8590223 Kilgore et al. Nov 2013 B2
8627617 Haddock Jan 2014 B2
D699176 Salomon et al. Feb 2014 S
8640402 Bilge Feb 2014 B1
8656649 Haddock Feb 2014 B2
8683751 Stearns Apr 2014 B2
8695290 Kim et al. Apr 2014 B1
8701354 Stearns et al. Apr 2014 B2
8713881 DuPont et al. May 2014 B2
8733027 Marston et al. May 2014 B1
8745935 DuPont et al. Jun 2014 B2
8752338 Schaefer et al. Jun 2014 B2
8756870 Teller et al. Jun 2014 B2
8770885 Myers Jul 2014 B2
8776456 Schrock Jul 2014 B1
8782983 Stearns Jul 2014 B2
8791611 Arnould et al. Jul 2014 B2
8806813 Plaisted et al. Aug 2014 B2
8806815 Liu et al. Aug 2014 B1
8813441 Rizzo Aug 2014 B2
8826163 Chanin et al. Sep 2014 B1
8826618 Stearns Sep 2014 B2
8829330 Meyer et al. Sep 2014 B2
8833714 Haddock et al. Sep 2014 B2
8839573 Cusson et al. Sep 2014 B2
8839575 Liu et al. Sep 2014 B1
8844234 Haddock et al. Sep 2014 B2
8850754 Rizzo Oct 2014 B2
8854829 Bopp et al. Oct 2014 B1
8888431 Haney Nov 2014 B2
8893441 Hess, III et al. Nov 2014 B1
8894424 DuPont Nov 2014 B2
D718703 Rizzo Dec 2014 S
D718704 Rizzo Dec 2014 S
8910928 Header Dec 2014 B2
8925263 Haddock et al. Jan 2015 B2
8935893 Liu et al. Jan 2015 B2
8938932 Wentworth et al. Jan 2015 B1
8950157 Schrock Feb 2015 B1
8955259 Hemingway Feb 2015 B2
8966833 Ally Mar 2015 B2
8991065 Schrock Mar 2015 B1
9003728 Asci Apr 2015 B2
9003733 Simpson et al. Apr 2015 B1
9010042 Anderson et al. Apr 2015 B2
9011034 Liu Apr 2015 B2
9052123 Anderson et al. Jun 2015 B2
9065191 Martin et al. Jun 2015 B2
9076899 Schrock Jul 2015 B2
9085900 Haddock Jul 2015 B2
9086185 Haddock Jul 2015 B2
9097443 Liu et al. Aug 2015 B2
9127451 Boor Sep 2015 B1
9134044 Stearns et al. Sep 2015 B2
9147785 Haddock et al. Sep 2015 B2
D740113 Olenick Oct 2015 S
9200456 Murphy Dec 2015 B2
9222263 Haddock Dec 2015 B2
9223907 Chanin et al. Dec 2015 B2
9306490 Haddock et al. Apr 2016 B2
9309910 Anderson et al. Apr 2016 B2
9331629 Cheung et al. May 2016 B2
9341285 Magno, Jr. et al. May 2016 B2
9447988 Stearns et al. Sep 2016 B2
9473066 Stehan et al. Oct 2016 B2
9479110 Patton et al. Oct 2016 B2
9496697 Wentworth Nov 2016 B1
9530916 Haddock et al. Dec 2016 B2
9534390 Pendley et al. Jan 2017 B2
9608559 Haddock et al. Mar 2017 B2
9611652 Haddock et al. Apr 2017 B2
9647433 Meine May 2017 B2
9647607 Patton et al. May 2017 B2
9689411 Meine et al. Jun 2017 B2
9712106 Wentworth et al. Jul 2017 B2
9714670 Header Jul 2017 B2
9722532 Almy Aug 2017 B2
9732512 Haddock Aug 2017 B2
9742173 Wentworth Aug 2017 B2
9755572 Wentworth et al. Sep 2017 B2
D800055 Rothschild Oct 2017 S
9813012 Wentworth et al. Nov 2017 B2
9819303 Ash Nov 2017 B2
9831817 Rothschild Nov 2017 B2
9845584 Goldammer Dec 2017 B1
9850661 Kovacs Dec 2017 B2
9853593 Cinnamon et al. Dec 2017 B2
9865938 Meine et al. Jan 2018 B2
9876463 Jasmin Jan 2018 B2
9893676 Anderson et al. Feb 2018 B2
9893677 Liu Feb 2018 B1
9920958 Haddock et al. Mar 2018 B2
9926706 Hockman Mar 2018 B2
9957988 Kovacs et al. May 2018 B2
9966745 Wentworth May 2018 B2
10036414 Wiley et al. Jul 2018 B2
D827160 Menton Aug 2018 S
10053856 Haddock Aug 2018 B2
10054336 Haddock et al. Aug 2018 B2
D827873 Menton Sep 2018 S
D827874 Menton Sep 2018 S
10077562 Haddock et al. Sep 2018 B2
10103682 Haddock et al. Oct 2018 B2
10103683 Wentworth Oct 2018 B2
10106987 Haddock et al. Oct 2018 B2
10141662 Bernard et al. Nov 2018 B2
10186791 Meine et al. Jan 2019 B2
10202991 Lewis Feb 2019 B2
10205418 Nayar Feb 2019 B2
10211773 Jasmin et al. Feb 2019 B2
10211775 Wentworth et al. Feb 2019 B1
10218305 Schrock Feb 2019 B1
10291176 Wentworth et al. May 2019 B2
10312855 Lester et al. Jun 2019 B2
10337764 Ash et al. Jul 2019 B2
10359069 Ash et al. Jul 2019 B2
10385573 Van Leuven Aug 2019 B2
10443896 Haddock et al. Oct 2019 B2
10454190 Martin Oct 2019 B1
10472828 Stearns et al. Nov 2019 B2
10502457 Haddock et al. Dec 2019 B2
10511252 Wentworth et al. Dec 2019 B2
10530293 Legall et al. Jan 2020 B2
10551090 De Vogel et al. Feb 2020 B2
10594251 Stearns et al. Mar 2020 B2
10622935 Liu Apr 2020 B1
10634175 Haddock Apr 2020 B2
10640980 Haddock May 2020 B2
10644643 Stearns et al. May 2020 B2
10673151 Ash et al. Jun 2020 B2
10686401 Ash et al. Jun 2020 B2
10731355 Haddock et al. Aug 2020 B2
10749459 Liu Aug 2020 B1
10749466 Smeja Aug 2020 B2
10763777 Stearns et al. Sep 2020 B2
10797634 Jasmin et al. Oct 2020 B1
10837476 Lewis Nov 2020 B2
10851826 Ash et al. Dec 2020 B2
10859292 Haddock et al. Dec 2020 B2
10868491 Wentworth et al. Dec 2020 B2
10903785 Haddock et al. Jan 2021 B2
D909853 Jasmin Feb 2021 S
10931225 Yang et al. Feb 2021 B2
11009262 Ash et al. May 2021 B2
11012023 Stearns et al. May 2021 B2
D923203 Muther Jun 2021 S
D923823 Muther Jun 2021 S
11118353 Stearns et al. Sep 2021 B2
11121484 Ash et al. Sep 2021 B2
11121669 Stearns et al. Sep 2021 B2
11139773 Eriksson Oct 2021 B2
11139774 Wentworth et al. Oct 2021 B2
11189941 Ash et al. Nov 2021 B2
11196187 Ash et al. Dec 2021 B2
11201581 Stearns et al. Dec 2021 B2
11296648 Jasmin et al. Apr 2022 B1
11368005 Meine et al. Jun 2022 B2
20020026765 Vahey Mar 2002 A1
20020088196 Haddock Jul 2002 A1
20030015637 Liebendorfer Jan 2003 A1
20030062078 Mimura Apr 2003 A1
20030070368 Shingleton Apr 2003 A1
20030131551 Mollinger et al. Jul 2003 A1
20030146346 Chapman, Jr. Aug 2003 A1
20030173460 Chapman, Jr. Sep 2003 A1
20030201009 Nakajima et al. Oct 2003 A1
20040035065 Orszulak et al. Feb 2004 A1
20040055233 Showalter Mar 2004 A1
20040164208 Nielson et al. Aug 2004 A1
20040231949 Le et al. Nov 2004 A1
20040237465 Refond Dec 2004 A1
20050102958 Anderson May 2005 A1
20050115176 Russell Jun 2005 A1
20050117997 Pinzl Jun 2005 A1
20050210769 Harvey Sep 2005 A1
20050257434 Hockman Nov 2005 A1
20060065805 Barton et al. Mar 2006 A1
20060075691 Verkamlp Apr 2006 A1
20060096061 Weiland et al. May 2006 A1
20060118163 Plaisted Jun 2006 A1
20060174571 Panasik et al. Aug 2006 A1
20060174931 Mapes et al. Aug 2006 A1
20060254192 Fennell, Jr. Nov 2006 A1
20070075198 Foser Apr 2007 A1
20070131273 Kobayashi Jun 2007 A1
20070199590 Tanaka et al. Aug 2007 A1
20070241238 Neace Oct 2007 A1
20070246039 Brazier et al. Oct 2007 A1
20070248434 Wiley Oct 2007 A1
20070289229 Aldo Dec 2007 A1
20070289233 Haddock Dec 2007 A1
20080035140 Placer et al. Feb 2008 A1
20080041011 Kannisto Feb 2008 A1
20080184639 Cotter Aug 2008 A1
20080190047 Allen Aug 2008 A1
20080236520 Maehara et al. Oct 2008 A1
20080265232 Terrels et al. Oct 2008 A1
20080302407 Kobayashi Dec 2008 A1
20090000220 Lenox Jan 2009 A1
20090007520 Navon Jan 2009 A1
20090194098 Placer Aug 2009 A1
20090229213 Mistelski Sep 2009 A1
20090230205 Hepner et al. Sep 2009 A1
20090320826 Kufner Dec 2009 A1
20100058701 Yao et al. Mar 2010 A1
20100133040 London Jun 2010 A1
20100154784 King et al. Jun 2010 A1
20100162641 Reyal et al. Jul 2010 A1
20100171016 Haddock Jul 2010 A1
20100175738 Huss et al. Jul 2010 A1
20100193651 Railsback et al. Aug 2010 A1
20100206303 Thorne Aug 2010 A1
20100212720 Meyer et al. Aug 2010 A1
20100276558 Faust et al. Nov 2010 A1
20100288337 Rizzo Nov 2010 A1
20100293874 Liebendorfer Nov 2010 A1
20100314517 Patzer Dec 2010 A1
20110039458 Byrne Feb 2011 A1
20110078892 Hartelius et al. Apr 2011 A1
20110120047 Stearns et al. May 2011 A1
20110138585 Kmita Jun 2011 A1
20110154750 Welter et al. Jun 2011 A1
20110174360 Plaisted Jul 2011 A1
20110179606 Magno, Jr. et al. Jul 2011 A1
20110209745 Korman Sep 2011 A1
20110214365 Aftanas Sep 2011 A1
20110214388 London Sep 2011 A1
20110232212 Pierson et al. Sep 2011 A1
20110239546 Tsuzuki et al. Oct 2011 A1
20110247292 Li Oct 2011 A1
20110260027 Farnham, Jr. Oct 2011 A1
20110271611 Maracci et al. Nov 2011 A1
20110272545 Liu Nov 2011 A1
20110314752 Meier Dec 2011 A1
20120073630 Wu Mar 2012 A1
20120079781 Koller Apr 2012 A1
20120085041 Place Apr 2012 A1
20120099943 Chiu Apr 2012 A1
20120102853 Rizzo May 2012 A1
20120153108 Schneider Jun 2012 A1
20120167364 Koch et al. Jul 2012 A1
20120175322 Park et al. Jul 2012 A1
20120192519 Ray Aug 2012 A1
20120193310 Fluhrer et al. Aug 2012 A1
20120201601 Rizzo Aug 2012 A1
20120244729 Rivera et al. Sep 2012 A1
20120248271 Zeilenga Oct 2012 A1
20120298188 West et al. Nov 2012 A1
20120299233 Header Nov 2012 A1
20120325761 Kubsch et al. Dec 2012 A1
20130011187 Schuit et al. Jan 2013 A1
20130048056 Kilgore et al. Feb 2013 A1
20130089388 Liu et al. Apr 2013 A1
20130091692 Stanley Apr 2013 A1
20130118545 Bosler et al. May 2013 A1
20130149030 Merhar et al. Jun 2013 A1
20130167470 Montgomery et al. Jul 2013 A1
20130168525 Haddock Jul 2013 A1
20130220403 Rizzo Aug 2013 A1
20130227833 Rizzo Sep 2013 A1
20130263917 Hamamura Oct 2013 A1
20130313043 Lallier Nov 2013 A1
20130340358 Danning Dec 2013 A1
20140000681 Zhao et al. Jan 2014 A1
20140003861 Cheung Jan 2014 A1
20140041202 Schnitzer et al. Feb 2014 A1
20140069048 Ally Mar 2014 A1
20140096462 Haddock Apr 2014 A1
20140179133 Redel Jun 2014 A1
20140220834 Rizzo Aug 2014 A1
20140231605 Sharpe et al. Aug 2014 A1
20140260068 Pendley et al. Sep 2014 A1
20140283467 Chabas et al. Sep 2014 A1
20140338273 Stapleton Nov 2014 A1
20140341645 Liu et al. Nov 2014 A1
20150052834 Gies et al. Feb 2015 A1
20150060620 Smeja Mar 2015 A1
20150107168 Kobayashi Apr 2015 A1
20150129517 Wildes May 2015 A1
20150200620 Haddock et al. Jul 2015 A1
20150214884 Rizzo Jul 2015 A1
20150249423 Braunstein et al. Sep 2015 A1
20150288320 Stearns Oct 2015 A1
20160025262 Stearns et al. Jan 2016 A1
20160049901 Muther et al. Feb 2016 A1
20160060869 Smeja Mar 2016 A1
20160087576 Johansen et al. Mar 2016 A1
20160111835 Nayar Apr 2016 A1
20160111997 Ganshaw Apr 2016 A1
20160111998 Schmid Apr 2016 A1
20160130815 Menegoli May 2016 A1
20160160524 Malins Jun 2016 A1
20160177984 Kovacs et al. Jun 2016 A1
20160268958 Wildes Sep 2016 A1
20170040928 Schuit et al. Feb 2017 A1
20170067258 Stearns et al. Mar 2017 A1
20170073974 Kovacs Mar 2017 A1
20170107723 Stearns et al. Apr 2017 A1
20170237386 Stephan et al. Aug 2017 A1
20170301265 Kyle et al. Oct 2017 A1
20170302221 Jasmin Oct 2017 A1
20170336021 Anderson Nov 2017 A1
20180013382 Smeja Jan 2018 A1
20180167026 Xie Jun 2018 A1
20190013772 Bamat Jan 2019 A1
20190049151 Harris et al. Feb 2019 A1
20190106885 Stearns et al. Apr 2019 A1
20190123460 Ash Apr 2019 A1
20190165717 Haddock et al. May 2019 A1
20190195252 Pryor et al. Jun 2019 A1
20190226214 Van Leuven Jul 2019 A1
20190273460 Kovacs Sep 2019 A1
20190285224 McKechnie et al. Sep 2019 A1
20190330853 Van Leuven Oct 2019 A1
20190343085 Donado Nov 2019 A1
20190345719 Header Nov 2019 A1
20190363667 Braunstein et al. Nov 2019 A1
20190372501 Wada et al. Dec 2019 A1
20200032523 Haddock et al. Jan 2020 A1
20200144959 Stearns et al. May 2020 A1
20200191180 Haddock Jun 2020 A1
20200208658 Roman Jul 2020 A1
20200217339 Haddock Jul 2020 A1
20200252023 Stearns et al. Aug 2020 A1
20200263432 Haddock Aug 2020 A1
20200313604 Harris et al. Oct 2020 A1
20200313611 Ash et al. Oct 2020 A1
20200318349 Stearns et al. Oct 2020 A1
20200321763 Joshi et al. Oct 2020 A1
20200340712 Leitch et al. Oct 2020 A1
20200362632 Fort Nov 2020 A1
20210005115 Johnson Jan 2021 A1
20210028741 Stearns et al. Jan 2021 A1
20210067085 Stearns et al. Mar 2021 A1
20210079947 Ash et al. Mar 2021 A1
20210104973 Stearns et al. Apr 2021 A1
20210111546 Varale Apr 2021 A1
20210159843 Stearns et al. May 2021 A1
20210167720 Stearns et al. Jun 2021 A1
20210184626 Yang et al. Jun 2021 A1
20210194157 Ash et al. Jun 2021 A1
20210194158 Ash et al. Jun 2021 A1
20210265940 Stearns et al. Aug 2021 A1
20210376781 Stearns et al. Dec 2021 A1
20210376782 Stearns et al. Dec 2021 A1
20210388618 Stearns et al. Dec 2021 A1
20220010823 Moss Jan 2022 A1
20220140771 Stearns et al. May 2022 A1
20220145634 Stearns et al. May 2022 A1
20220149545 Ash et al. May 2022 A1
20220178586 Ash et al. Jun 2022 A1
20220278516 Meine et al. Sep 2022 A1
20220298795 Haddock et al. Sep 2022 A1
Foreign Referenced Citations (160)
Number Date Country
13076 Aug 1903 AT
26329 Nov 1906 AT
298762 May 1972 AT
2005201707 Nov 2006 AU
2009101276 Jan 2010 AU
2009245849 Jun 2010 AU
2014362215 Jun 2015 AU
2017203660 Oct 2018 AU
2016294152 Dec 2018 AU
2704915 Sep 2011 CA
204783 May 1939 CH
388590 Feb 1965 CH
469159 Feb 1969 CH
671063 Jul 1989 CH
202025767 Nov 2011 CN
202577780 Dec 2012 CN
103774795 May 2014 CN
104254654 Dec 2014 CN
105208941 Dec 2015 CN
206628755 Nov 2017 CN
206717199 Dec 2017 CN
206737192 Dec 2017 CN
206849001 Jan 2018 CN
108105222 Jun 2018 CN
6511275 Aug 2012 CO
298762 Apr 1916 DE
941690 Apr 1956 DE
2126082 Dec 1972 DE
2523087 Nov 1976 DE
2556095 Jun 1977 DE
3326223 Apr 1984 DE
3617225 Nov 1987 DE
3723020 Jan 1989 DE
3728831 Jan 1989 DE
9112788 Dec 1991 DE
4115240 Oct 1992 DE
10056177 May 2002 DE
10062697 Jul 2002 DE
10344202 Apr 2004 DE
202005006951 Aug 2005 DE
102005002828 Aug 2006 DE
202006015336 Dec 2006 DE
202007002252 Apr 2007 DE
202007018367 Jul 2008 DE
102007036206 Feb 2009 DE
202009010984 Dec 2009 DE
102008032985 Jan 2010 DE
202015102936 Sep 2016 DE
202012013476 Feb 2017 DE
0481905 Apr 1992 EP
0722023 Jul 1996 EP
0952272 Oct 1999 EP
1126098 Aug 2001 EP
1447494 Aug 2004 EP
1804008 Jul 2007 EP
2105971 Sep 2009 EP
2327942 Jun 2011 EP
2375185 Oct 2011 EP
2746695 Jun 2014 EP
2528166 Sep 2015 EP
3092350 Apr 2019 EP
3364124 Oct 2019 EP
3552307 Oct 2019 EP
3361183 Dec 2019 EP
469159 Jul 1914 FR
1215468 Apr 1960 FR
2468209 Apr 1981 FR
2515236 Apr 1983 FR
2638772 May 1990 FR
2697060 Apr 1994 FR
2793827 Nov 2000 FR
2950375 Mar 2011 FR
2971577 Aug 2012 FR
2997169 Apr 2014 FR
3074369 Dec 2019 FR
2149829 Jun 1985 GB
2364077 Jan 2002 GB
2430946 Apr 2007 GB
2465484 May 2010 GB
2476104 Jun 2011 GB
S56-158486 Dec 1981 JP
H03-166452 Jul 1991 JP
H04-73367 Mar 1992 JP
H04-366294 Dec 1992 JP
H05-346055 Dec 1993 JP
H08-189150 Jul 1996 JP
H09-177272 Jul 1997 JP
H09-256562 Sep 1997 JP
H11-172861 Jun 1999 JP
2000-120235 Apr 2000 JP
2000-179106 Jun 2000 JP
2000-234423 Aug 2000 JP
2000-303638 Oct 2000 JP
2001-193231 Jun 2001 JP
2001-303724 Oct 2001 JP
2002-146978 May 2002 JP
2002-180609 Jun 2002 JP
2003-096986 Apr 2003 JP
2003-155803 May 2003 JP
2003-213854 Jul 2003 JP
2004-060358 Feb 2004 JP
2004-068270 Mar 2004 JP
2004-092134 Mar 2004 JP
2004-124583 Apr 2004 JP
2004-156326 Jun 2004 JP
2004-264009 Sep 2004 JP
2004-278145 Oct 2004 JP
2005-171623 Jun 2005 JP
2005-322821 Nov 2005 JP
2006-097291 Apr 2006 JP
2009-052278 Mar 2009 JP
2009-179955 Aug 2009 JP
2009-185599 Aug 2009 JP
2011-069130 Apr 2011 JP
2011-185014 Sep 2011 JP
2011-236611 Nov 2011 JP
2012-144903 Aug 2012 JP
6033922 Nov 2016 JP
2018-091009 Jun 2018 JP
100957530 May 2010 KR
2017016056 Aug 2018 MX
2021378 Jan 2020 NL
2021379 Jan 2020 NL
2021380 Jan 2020 NL
2021740 May 2020 NL
3066398 Dec 2019 PT
3066399 Dec 2019 PT
WO 9608617 Mar 1996 WO
WO 9630606 Oct 1996 WO
WO 9708399 Mar 1997 WO
WO 9955982 Nov 1999 WO
WO 0139331 May 2001 WO
WO 03098126 Nov 2003 WO
WO 2008021714 Feb 2008 WO
WO 2008028151 Mar 2008 WO
WO 2010112049 Oct 2010 WO
WO 2010113003 Oct 2010 WO
WO 2010121830 Oct 2010 WO
WO 2010140878 Dec 2010 WO
WO 2011019460 Feb 2011 WO
WO 2011154019 Dec 2011 WO
WO 2012014203 Feb 2012 WO
WO 2012017711 Feb 2012 WO
WO 2012048056 Apr 2012 WO
WO 2012116121 Aug 2012 WO
WO 2013009375 Jan 2013 WO
WO 2014194576 Dec 2014 WO
WO 2015061113 Apr 2015 WO
WO 2016198305 Dec 2016 WO
WO 2018169391 Sep 2018 WO
WO 2019239024 Dec 2019 WO
WO 2020022879 Jan 2020 WO
WO 2020022880 Jan 2020 WO
WO 2020162746 Aug 2020 WO
WO 2020187472 Sep 2020 WO
WO 2021043407 Mar 2021 WO
WO 2021061866 Apr 2021 WO
WO 2021086185 May 2021 WO
WO 2021102062 May 2021 WO
WO 2021119458 Jun 2021 WO
Non-Patent Literature Citations (141)
Entry
“Ace Clamp Cut Sheet | 5031 Z1-2,” Ace Clamp, Nov. 2018, 1 page.
“S-5! WindClamp™ Install,” Metal Roof Innovations, Ltd., 2014, 1 page.
“Universal Clamps Brochure for Web,” Universal Clamps, 2020, 2 pages.
“Wind Clamps for Metal Roofs,” Metal Roof Innovations, Ltd., 2017, Version 081717, 2 pages.
“Wind Clamp Ultra DEK,” Metal Roof Innovations, Ltd., Mar. 7, 2011, Drawing No. WC14-A-0-A_CCD, 1 page.
“Wind Clamp Double LOK,” Metal Roof Innovations, Ltd., Mar. 7, 2011, Drawing No. WC15-A-0-A_CCD, 1 page.
Official Action for New Zealand Patent Application No. 768908, dated Jan. 21, 2021, 4 pages.
U.S. Appl. No. 08/091,176, filed Jul. 13, 1993 now U.S. Pat. No. 5,483,772.
U.S. Appl. No. 08/482,274, filed Jun. 7, 1995 now U.S. Pat. No. 5,715,640.
U.S. Appl. No. 08/987,368, filed Dec. 9, 1997 now U.S. Pat. No. 5,983,588.
U.S. Appl. No. 09/312,013, filed May 14, 1990 now U.S. Pat. No. 6,164,033.
U.S. Appl. No. 09/698,358, filed Oct. 27, 2000.
U.S. Appl. No. 10/118,057, filed Apr. 8, 2002 now U.S. Pat. No. 6,718,718.
U.S. Appl. No. 10/824,320, filed Apr. 13, 2004.
U.S. Appl. No. 08/335,987, filed Nov. 8, 1994 now U.S. Pat. No. 5,694,721.
U.S. Appl. No. 08/336,288, filed Nov. 8, 1994 now U.S. Pat. No. 5,491,931.
U.S. Appl. No. 09/313,105, filed May 17, 1999 now U.S. Pat. No. 6,536,729.
U.S. Appl. No. 09/313,103, filed May 17, 1999, now U.S. Pat. No. 6,470,629.
U.S. Appl. No. 09/758,805, filed Jan. 11, 2001.
U.S. Appl. No. 10/746,546, filed Dec. 23, 2003 now U.S. Pat. No. 7,100,338.
U.S. Appl. No. 10/746,596, filed Dec. 23, 2003 now U.S. Pat. No. 7,013,612.
U.S. Appl. No. 10/818,469, filed Apr. 5, 2004.
U.S. Appl. No. 10/823,410, filed Apr. 13, 2004 now U.S. Pat. No. 7,703,256.
U.S. Appl. No. 12/767,983, filed Apr. 27, 2010.
U.S. Appl. No. 12/960,679, filed Dec. 6, 2010.
U.S. Appl. No. 11/325,704, filed Jan. 5, 2006.
U.S. Appl. No. 11/425,338, filed Jun. 20, 2006.
U.S. Appl. No. 12/707,724, filed Feb. 18, 2010.
U.S. Appl. No. 11/759,172, filed Jun. 6, 2007 now U.S. Pat. No. 7,758,011.
U.S. Appl. No. 12/832,281, filed Jul. 8, 2010 now U.S. Pat. No. 8,430,372.
U.S. Appl. No. 13/857,759, filed Apr. 5, 2013.
U.S. Appl. No. 14/697,387, filed Apr. 27, 2015.
U.S. Appl. No. 14/789,607, filed Jul. 1, 2015 now U.S. Pat. No. 9,732,512.
U.S. Appl. No. 15/471,179, filed Mar. 28, 2017 now U.S. Pat. No. 10,053,856.
U.S. Appl. No. 15/663,081, filed Jul. 28, 2017 now U.S. Pat. No. 10,443,896.
U.S. Appl. No. 12/629,179, filed Dec. 2, 2009.
U.S. Appl. No. 12/542,132, filed Aug. 17, 2009 now U.S. Pat. No. 8,312,678.
U.S. Appl. No. 13/667,816, filed Nov. 2, 2012 now U.S. Pat. No. 8,656,649.
U.S. Appl. No. 14/153,925, filed Jan. 13, 2014 now U.S. Pat. No. 9,222,263.
U.S. Appl. No. 13/403,463, filed Feb. 23, 2012 now U.S. Pat. No. 8,833,714.
U.S. Appl. No. 14/444,405, filed Jul. 28, 2014.
U.S. Appl. No. 14/500,919, filed Sep. 29, 2014 now U.S. Pat. No. 9,611,652.
U.S. Appl. No. 15/452,388, filed Mar. 7, 2017.
U.S. Appl. No. 15/621,092, filed Jun. 13, 2017 now U.S. Pat. No. 10,077,562.
U.S. Appl. No. 15/621,739, filed Jun. 13, 2017 now U.S. Pat. No. 10,106,987.
U.S. Appl. No. 16/129,606, filed Sep. 12, 2018 now U.S. Pat. No. 10,731,355.
U.S. Appl. No. 16/592,521, filed Oct. 3, 2019.
U.S. Appl. No. 14/030,615, filed Sep. 18, 2013.
U.S. Appl. No. 14/005,784, filed Jun. 13, 2014 now U.S. Pat. No. 9,530,916.
U.S. Appl. No. 15/386,911, filed Dec. 21, 2016.
U.S. Appl. No. 14/205,613, filed Mar. 12, 2014 now U.S. Pat. No. 9,147,785.
U.S. Appl. No. 14/840,206, filed Aug. 31, 2015 now U.S. Pat. No. 9,608,559.
U.S. Appl. No. 15/470,533, filed Mar. 27, 2017 now U.S. Pat. No. 10,103,682.
U.S. Appl. No. 16/139,853, filed Sep. 24, 2018.
U.S. Appl. No. 16/754,519, filed Apr. 8, 2020.
U.S. Appl. No. 10/810,114, filed Mar. 25, 2004 now U.S. Pat. No. 7,513,080.
U.S. Appl. No. 13/545,808, filed Jul. 10, 2012.
U.S. Appl. No. 13/724,976, filed Dec. 21, 2012 now U.S. Pat. No. 9,086,185.
U.S. Appl. No. 14/789,714, filed Jul. 1, 2015.
U.S. Appl. No. 13/712,474, filed Dec. 12, 2012 now U.S. Pat. No. 8,844,234.
U.S. Appl. No. 14/469,153, filed Aug. 26, 2014.
U.S. Appl. No. 16/539,960, filed Aug. 13, 2019 now U.S. Pat. No. 10,859,292.
U.S. Appl. No. 17/110,621, filed Dec. 3, 2020.
U.S. Appl. No. 15/798,023, filed Oct. 30, 2017 now U.S. Pat. No. 10,640,980.
U.S. Appl. No. 13/965,441, filed Aug. 13, 2013 now U.S. Pat. No. 8,925,263.
U.S. Appl. No. 14/558,356, filed Dec. 2, 2014 now U.S. Pat. No. 9,306,490.
U.S. Appl. No. 16/821,885, filed Mar. 17, 2020.
U.S. Appl. No. 16/866,080, filed May 4, 2020.
U.S. Appl. No. 16/360,923, filed Mar. 21, 2019 now U.S. Pat. No. 10,903,785.
U.S. Appl. No. 16/714,060, filed Dec. 13, 2019.
U.S. Appl. No. 13/720,461, filed Dec. 19, 2012.
U.S. Appl. No. 15/628,927, filed Jun. 21, 2017 now U.S. Pat. No. 10,634,175.
U.S. Appl. No. 16/824,651, filed Mar. 19, 2020.
U.S. Appl. No. 12/855,850, filed Aug. 13, 2010 now U.S. Pat. No. 10,054,336.
U.S. Appl. No. 12/856,827, filed Aug. 16, 2010 now U.S. Pat. No. 9,920,958.
U.S. Appl. No. 12/856,844, filed Aug. 16, 2010 now U.S. Pat. No. 8,627,617.
U.S. Appl. No. 16/106,299, filed Aug. 21, 2018 now U.S. Pat. No. 10,502,457.
U.S. Appl. No. 08/383,477, filed Feb. 2, 1995.
U.S. Appl. No. 08/285,280, filed Aug. 1, 1994 now U.S. Pat. No. 5,557,903.
Official Action for Panama Patent Application No. 92309-01, dated Jul. 8, 2021 4 pages.
“ERK-TRB-C16 RiverClack Roofing Profile Interface,” Enerack, 2021, 2 pages [retrieved online from: www.enerack.com/erk-trb-c16-riverclack-roofing-profile-interface-p00231p1.html].
Official Action with machine translation for Mexico Patent Application No. MX/a/2020/009805, dated Jul. 27, 2021 10 pages.
Notice of Acceptance for New Zealand Patent Application No. 768908, dated Jul. 23, 2021 2 pages.
“ADJ Heavy Duty Lighting C-clamp,” Sweetwater, 2011, 3 pages [retrieved online from: http://web.archive.org/web/20111112045516/http://www.sweetwater.com/store/detail/CClamp/].
“Aluminum,” Wikipedia, Jul. 3, 2016, 21 pages [retrieved Oct. 3, 2017 from: en.wikipedia.org/w1ki/Aluminium].
“ClampFit-H Product Sheet,” Schletter GmbH, Kirchdorf, Germany, Nov. 2015, 2 pages.
IDEEMATEC Tracking & Mounting Systems [online], Apr. 2008, [retrieved Mar. 6, 2012], Retrieved from http://www.ideematec.de.
“Kee Walk—Roof Top Walkway,” Simplified Safety, 2011, 3 pages [retrieved online from: https://web.archive.org/web/20120207115154/http://simplifiedsafety.com/solutions/keewalk-rooftop-walkway/].
“KeeLine® The Safety Solution for Horizontal Life Lines,” Kee Safety, Ltd. 2012, 2 pages [retrieved online from: https://web.archive.org/web/20120305120830/http://keesafety.co.uk/products/kee_line].
“Miller Fusion Roof Anchor Post,” Miller Fall Protection, 2011, 3 pages [retrieved online from: https://web.archive.org/web/20111211154954/www.millerfallprotection.com/fall-protection-products/roofing-products/miller-fusion-roof-anchor-post].
“New ‘Alzone 360 system’”, Arrid, 2008, 34 pages [retrieved online from: https://web.archive.org/web/20120317120735/www.arrid.com.au/?act=racking_parts].
“Oil Canning—Solutions,” Pac-Clad, 2001, 2 pages [retrieved online from: pac-clad.com/aiapresentation/sld021.htm].
“Oil Canning,” Metal Construction Association, 2003, Technical Bulletin #95-1060, 2 pages.
“REES-Snow Retention Systems,” Weerbewind, 2010, 3 pages [retrieved online from: https://web.archive.org/web/20100310075027/www.rees-oberstdorf.de/en/products/snow-retention-system.html].
“Solar mount. System,” Schletter GmbH, 2012, 1 page [retrieved online from: https://web.archive.org/web/20120316154604/www.schletter.de/152-1-Solar-mounting-systems.html].
Gallo “Oil-Canning,” Metal Roofing Alliance, Ask-the-experts forum, Jun. 7, 2005, 4 pages [retrieved online from: www.metalroofingalliance.net/v2/forums/printview.cfm?action=mboard.members/viewmessages&ForumTopicID=4921&ForumCategoryID=1].
Haddock “History and Materials,” Metalmag, Metal roofing from A (Aluminum) to Z (Zinc)—Part I, Sep./Oct. 2001, 4 pages.
Haddock “Metallic Coatings for Carbon Steel,” Metalmag, Metal roofing from a (Aluminum) to Z (Zinc)—Part II, Nov./Dec. 2001, 8 pages.
Notice of Allowance with English Translation for China Patent Application No. 201830515191.4, dated May 6, 2019 4 pages.
Notice of Allowance with English Translation for China Patent Application No. 201830515375.0, dated Feb. 12, 2019 4 pages.
Notice of Allowance with English Translation for China Patent Application No. 201830515387.3, dated Apr. 10, 2019 4 pages.
Notice of Allowance with English Translation for China Patent Application No. 201830515406.2, dated Mar. 26, 2019 4 pages.
Notice of Allowance with English Translation for China Patent Application No. 201830515409.6, dated Mar. 26, 2019 4 pages.
Notice of Allowance with English Translation for China Patent Application No. 201830515288.5, dated Mar. 26, 2019 4 pages.
International Search Report and Written Opinion for International (PCT) Patent Application No. PCT/US19/23423, dated Jun. 13, 2019 11 pages.
Official Action for U.S. Appl. No. 16/360,923, dated Nov. 14, 2019 6 pages Restriction Requirement.
Official Action for U.S. Appl. No. 16/360,923, dated Feb. 10, 2020 11 pages.
Official Action for U.S. Appl. No. 16/360,923, dated Jul. 10, 2020 11 pages.
Notice of Allowance for U.S. Appl. No. 16/360,923, dated Sep. 24, 2020 10 pages.
Corrected Notice of Allowance for U.S. Appl. No. 16/360,923, dated Nov. 3, 2020 6 pages.
“Wiley Grounding & Bonding Solutions,” Hubbell, 2020, 2 pages [retrieved online from: www.hubbell.com/wiley/en/grounding-and-bonding].
International Preliminary Report on Patentability for International (PCT) Patent Application No. PCT/US2019/023423, dated Oct. 1, 2020 10 pages.
“Aerocompact® Compactmetal TR Checklist,” Aerocompact, Aug. 30, 2021, CL TR Eng EU V1, 2 pages [retrieved online from: cdn.intelligencebank.com/eu/share/8MnR/YJMd/ZBPL4/original/AEROCOMPACT_CL_TR_Eng_V1_WEB].
“Aerocompact® Compactmetal TR,” Aerocompact, Sep. 2, 2021, PB TR ENG EU V1, 3 pages[retrieved online from: cdn.intelligencebank.com/eu/share/8MnR/qMBXP/VYrWa/original/AEROCOMPACT_Leaflet_TR_Eng_V1_WEB].
“CompactMetal TR59 | TR74 Assembly Instructions,” Aerocompact, Sep. 2021, 27 pages.
“Grounding Clip for Electrical Protection,” ARaymond, 2016, 2 pages.
“Installation Instructions for Rayvolt®—Grounding clip for Framed PV Modules,” ARaymond, Feb. 2016, Version 2.2, 1 page.
Official Action for Australia Patent Application No. 2019240320, dated Oct. 7, 2021 3 pages.
Official Action for Canada Patent Application No. 3,094,498, dated Oct. 5, 2021 4 pages.
Official Action with machine translation for Chile Patent Application No. 2408-2020, dated Sep. 14, 2021 24 pages.
Official Action with partial machine translation for China Patent Application No. 201980032371.9, dated Oct. 15, 2021 6 pages.
Extended Search Report for European Patent Application No. 19771033.8, dated Nov. 9, 2021 10 pages.
“Standing Seam RiverClack Clamp,” Shanghai Woqin New Energy Technology Co., Ltd., 2018, 4 pages [retrieved online on Mar. 23, 2022 from: www.wochnmount.com/Details.html?product_id=36].
Official Action with machine translation for Chile Patent Application No. 202002408, dated Apr. 4, 2022 29 pages.
Notice of Allowance with English Translation for China Patent Application No. 201980032371.9, dated Apr. 26, 2022 5 pages.
Official Action with English Summary for Mexico Patent Application No. MX/a/2020/009805, dated Feb. 24, 2022 8 pages.
Official Action with English Summary for Saudi Arabia Patent Application No. 520420174, dated Mar. 30, 2022 8 pages.
“EZ Grip Metal Deck Mount,” SunModo Corp., 2019, 1 page.
“EZ Grip Metal Deck Mount,” SunModo Corp., 2019, Product page, 3 pages [retrieved online May 30, 2019 from: sunmodo.com/product/ez-grip-metal-deck-mount/#].
“Fix2000 check list,” Schletter GmbH, last updated Jul. 2010, 1 page.
“Metal Roof Deck Mount Kit,” SunModo Corp., Oct. 16, 2018, Product Drawing, 1 page.
“Slot definition,” Merriam-Webster Dictionary, 2022, 1 page [retrieved online Aug. 24, 2022 from www.merriam-webster.com/dictionary/slot].
“Standing Seam Rail Free One Sheet,” SunModo, Corp., 2020, 2 pages.
“SunDock™ Standing Seam Rail-Free Attachment System,” SunModo Corp., 2018, 1 page.
“SunDock Standing Seam PV Mounting System Installation Manual,” SunModo, 2019, Doc. No. D10160-V006, 14 pages.
Official Action for ARIPO Patent Application No. AP/P/2020/012727, dated Jul. 4, 2022 6 pages.
Notice of Acceptance for Australia Patent Application No. 2019240320, dated Sep. 28, 2022 4 pages.
Official Action with machine translation for Colombia Patent Application No. NC2020/0012829, dated Jul. 21, 2022 12 pages.
Official Action for Panama Patent Application No. 92309-01, dated Sep. 20, 2022 3 pages.
Official Action with English Summary for Saudi Arabia Patent Application No. 520420174, dated Jun. 30, 2022 7 pages.
Official Action with machine translation for Saudi Arabia Patent Application No. 522431324, dated Sep. 25, 2022 17 pages.
Related Publications (1)
Number Date Country
20210143771 A1 May 2021 US
Provisional Applications (1)
Number Date Country
62645963 Mar 2018 US
Continuations (1)
Number Date Country
Parent 16360923 Mar 2019 US
Child 17156469 US