This invention relates generally to microelectromechanical system (MEMS) devices. More particularly, it relates to actuating and measuring the motion of a micro-machined electrostatic actuator.
Prior methods for capacitive position sensing of MEMS devices have been focused towards inertial sensors such as accelerometers and gyroscopes. These earlier techniques were subject to the following disadvantages:
The disadvantages associated with the prior art are overcome by embodiments of the present invention directed to methods and apparatus for varying and measuring the position of a micromachined electrostatic actuator using a pulse width modulated (PWM) pulse train. According to a method for varying the position of the actuator, one or more voltage pulses are applied to the actuator. In each of the pulses, a voltage changes from a first state to a second state and remains in the second state for a time Δtpulse before returning to the first state. The position of the actuator may be varied by varying the time Δtpulse. A position of the actuator may be determined by measuring a capacitance of the actuator when the voltage changes state, whether the time Δt is varied or not.
An apparatus for varying the position of a MEMS device may include a pulse width modulation generator coupled to the MEMS device an integrator coupled to the MEMS device and an analog-to-digital converter coupled to the integrator. The integrator may measure a charge transferred during a transition of a pulse from the pulse generator. The integrator may comprise an amplifier, an integrator capacitor, a hold capacitor, a compensation voltage generator and three switches. The hold capacitor and integrator capacitor may be coupled to a MEMS device. The integrator capacitor, hold capacitor, and compensation voltage generator may be selectively coupled to the amplifier by two of the switches. The MEMS device and hold capacitor may be selectively coupled to ground by a third switch.
Embodiments of the present invention that use a switching integration technique are relatively insensitive to noise sources that have been problematic in the prior art.
Embodiments of the present invention use time-multiplexing to separate the measurement period from the driving period, eliminating cross-talk between the drive and measurement signals.
Because embodiments of the present invention use a constant amplitude PWM pulse train, they are not subject to the quadratic voltage to force non-linearity found in typical electrostatic actuation techniques.
Embodiments of the present invention use an entirely digital interface, rendering them compatible with modern digital feedback control systems.
It will be clear to one skilled in the art that the above embodiment may be altered in many ways without departing from the scope of the invention.
A circuit diagram according to an embodiment of the invention is illustrated in
A switched-capacitor implementation of the integrator portion of the circuit is illustrated in
The advantage of this approach is that it is insensitive to low-frequency noise, such as amplifier offset and 1/f noise. A simple explanation of the circuit function is as follows. During the reset phase, all three switches are switched to position 1. The amplifier becomes a voltage follower, and charges the hold capacitor, Ch, with the amplifier offset voltage. The compensation voltage generator CVG charges the integrator capacitor, Ci, with a compensation voltage Vc. During the integration phase, the switches S1, S2, S3 are all switched into position 2, in anticipation of the PWM pulse. The output voltage, Vo, is initially equal to the compensation voltage, Vc. Finally, the PWM pulse is applied to the sense capacitor, causing charge to flow through the sense capacitor. A compensating charge flows through the integrator capacitor, and the output voltage becomes (Vc−(Cs/Ci)Vp), where Vp is the amplitude of the input PWM pulse.
The principle by which the MEMS device represented by the variable capacitance Cs is actuated may be described as follows. A PWM signal is generated by modulating the duty cycle of a fast pulse train with a slower base-band signal. In
The digital input word, Din, is first converted into a PWM signal that is input to the micro-machined actuator represented by the variable capacitor, Cs. The resulting current is integrated, and the result is sampled and converted into a digital word, Dout, by the analog to digital converter.
The position of the micro-machined actuator is only capable of responding to the components of the PWM signal that are within its mechanical bandwidth. Provided that the fundamental PWM frequency is well above this bandwidth, the actuator behaves like a demodulator, recovering only the base-band signal.
For measurement purposes, because the pulse rate is much faster than the maximum base-band component, the sensor capacitance may be considered to be approximately constant for the duration of each pulse. In addition, to allow sufficient time for each measurement, the PWM pulse must be guaranteed high at the beginning of each pulse period and guaranteed low at the end of each period. Some of the dynamic range of the PWM input is lost as a consequence of this requirement, but it also effectively separates the measurement phase from the actuation phase, ensuring that the measurement signal of a particular sensor is not corrupted by cross-talk from adjacent devices. For example, in an array of devices, if the capacitances of the devices are measured on the rise of the pulses and since all of the drive pulses rise at the same time, any cross talk between different MEMS devices will be constant and, therefore, can be calibrated. Any cross-talk resulting from pulses falling at different times may be rendered irrelevant by simply not measuring capacitance when the pulses fall.
Because each PWM pulse has a constant amplitude, the amplitude of the voltage output from the integrator is directly proportional to this amplitude scaled by the ratio of the sensor capacitance to the integrator capacitance. For reduced sensitivity to temperature variations, this integrator capacitor may be a micro-machined capacitor whose temperature coefficient is matched to that of the sensor capacitor. Additionally, for reduced sensitivity to variations in the PWM pulse amplitude, the PWM voltage source may be used to generate a reference voltage for the ADC.
The various embodiments of the present invention may be applied to systems having multiple MEMS devices such as arrays of optical switching mirrors.
The present application is a continuation of U.S. patent application Ser. No. 10/012,688 (now U.S. Pat. No. 6,674,383) filed Oct. 30, 2001, which is based on and claims priority from Provisional application 60/245,249 filed Nov. 1, 2000, the entire disclosure of both of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5095750 | Suzuki et al. | Mar 1992 | A |
5852242 | Devolk et al. | Dec 1998 | A |
5867302 | Fleming | Feb 1999 | A |
6082196 | Nonoyama et al. | Jul 2000 | A |
6137941 | Robinson | Oct 2000 | A |
6296779 | Clark et al. | Oct 2001 | B1 |
6373682 | Goodwin-Johansson | Apr 2002 | B1 |
6386032 | Lemkin et al. | May 2002 | B1 |
6674383 | Horsley et al. | Jan 2004 | B2 |
6829131 | Loeb et al. | Dec 2004 | B1 |
20010047689 | McIntosh | Dec 2001 | A1 |
Number | Date | Country |
---|---|---|
0683414 | Nov 1995 | EP |
Number | Date | Country | |
---|---|---|---|
60245249 | Nov 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10012688 | Oct 2001 | US |
Child | 10747875 | US |