The present invention relates to pulse width modulation (PWM) direct current (DC)-DC converters, which may be used in radio frequency (RF) communications systems.
Traditional 2nd generation (2G) global system for mobile communications (GSM) cellphones, or other user equipment, may typically be battery powered using traditional high-power, high current, low-cost, and low drop-out (LDO) regulators. However, in applications having high efficiency requirements, linear DC power supplies may be inadequate because the efficiency of a linear voltage regulator degrades dramatically the more the linear regulator output voltage is below the battery voltage. As a result, a DC power supply, which includes a DC-DC converter and a linear voltage regulator, may be preferred. The linear voltage regulator may provide high output current when the output voltage approaches the battery voltage, and the DC-DC converter may provide high efficiency when the battery voltage is greater than the output voltage. In this regard, a 2G GSM cellphone may benefit from such a power supply. In general, for 2G cellular applications there is a need for a DC power supply having a combination of a DC-DC converter and a linear voltage regulator.
A DC power supply, which includes a DC-DC converter and a linear voltage regulator, is disclosed according to one embodiment of the present disclosure. The DC-DC converter provides a DC power supply signal to a load via a power supply output and a duty-cycle signal, which is based on the load. The linear voltage regulator provides assistance to the DC-DC converter when the DC-DC converter is incapable of supplying the load by itself.
In this regard, the DC power supply operates in either a normal mode or an assist mode. The normal mode is selected when the DC-DC converter is capable of supplying the load by itself. As such, during the normal mode, the DC-DC converter provides the duty-cycle signal to place the linear voltage regulator in a stand-by mode and supplies power to the load by itself.
Conversely, the assist mode is selected when DC-DC converter needs assistance from the linear voltage regulator.
In an example embodiment of the present disclosure, the normal mode is selected when an output voltage from the DC power supply is between 300 and 400 millivolts below a battery voltage.
Those skilled in the art will appreciate the scope of the present disclosure and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that when an element such as a layer, region, or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. Likewise, it will be understood that when an element such as a layer, region, or substrate is referred to as being “over” or extending “over” another element, it can be directly over or extend directly over the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly over” or extending “directly over” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “vertical” may be used herein to describe a relationship of one element, layer, or region to another element, layer, or region as illustrated in the Figures. It will be understood that these terms and those discussed above are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including” when used herein specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
A DC power supply, which includes a DC-DC converter and a linear voltage regulator, is disclosed according to one embodiment of the present disclosure. The DC-DC converter provides a DC power supply signal to a load via a power supply output and a duty-cycle signal, which is based on the load. The linear voltage regulator provides assistance to the DC-DC converter when the DC-DC converter is incapable of supplying the load by itself.
In this regard, the DC power supply operates in either a normal mode or an assist mode. The normal mode is selected when the DC-DC converter is capable of supplying the load by itself. As such, during the normal mode, the DC-DC converter provides the duty-cycle signal to place the linear voltage regulator in a stand-by mode and supplies power to the load by itself. Conversely, the assist mode is selected when DC-DC converter needs assistance from the linear voltage regulator.
In an example embodiment of the present disclosure, the normal mode is selected when an output voltage from the DC power supply is between 300 and 400 millivolts below a battery voltage.
The DC power supply 10 includes a DC-DC converter 14 and a linear voltage regulator 16. In one embodiment of the DC-DC converter 14, the DC-DC converter 14 functions as a switching power supply, such that the DC-DC converter 14 has a duty-cycle. In one embodiment of the linear voltage regulator 16, the linear voltage regulator 16 functions as an analog power supply. In one embodiment of the DC-DC converter 14 and the linear voltage regulator 16, the DC-DC converter 14 provides power more efficiently than the linear voltage regulator 16, such that an efficiency of the DC-DC converter 14 is greater than an efficiency of the linear voltage regulator 16. Each of the DC-DC converter 14 and the linear voltage regulator 16 receives a power supply control signal VRMP, which is representative of the setpoint of the DC power supply 10.
In one embodiment of the linear voltage regulator 16, when the DC source voltage DCV minus the setpoint of the DC power supply 10 is greater than a voltage threshold, the DC-DC converter 14 disables the DC assist signal DCA to reduce power output of the linear voltage regulator 16. In a first embodiment of the voltage threshold, the voltage threshold is equal to 150 millivolts. In a second embodiment of the voltage threshold, the voltage threshold is equal to 250 millivolts. In a third embodiment of the voltage threshold, the voltage threshold is equal to 350 millivolts. In a fourth embodiment of the voltage threshold, the voltage threshold is equal to 450 millivolts. In a fifth embodiment of the voltage threshold, the voltage threshold is equal to 550 millivolts.
In one embodiment of the DC-DC converter 14, the DC-DC converter 14 provides the DC power supply signal PPS using the DC source signal VDC and using the setpoint of the DC power supply 10. In one embodiment of the linear voltage regulator 16, the linear voltage regulator 16 provides a DC assist signal DCA to assist the DC-DC converter 14 using the DC source signal VDC. As such, the DC power source 12 provides the DC source signal VDC to both the DC-DC converter 14 and the linear voltage regulator 16. The DC-DC converter 14 provides the DC power supply signal PPS via the power supply output PCP and the linear voltage regulator 16 provides the DC assist signal DCA via the power supply output PCP.
Each of the DC-DC converter 14 and the linear voltage regulator 16 receives a feedback signal FBS via the power supply output PCP. As such, the feedback signal FBS is representative of the DC power supply signal PPS. The DC-DC converter 14 further provides a duty-cycle signal DCS to the linear voltage regulator 16 based on the duty-cycle of the DC-DC converter 14. In one embodiment of the linear voltage regulator 16, the linear voltage regulator 16 provides the DC assist signal DCA to assist the DC-DC converter 14 via the power supply output PCP when an adjusted setpoint is greater than the DC power supply voltage PPV. In addition, the linear voltage regulator 16 provides the adjusted setpoint of the DC power supply 10 using the setpoint and the duty-cycle signal DCS, such that the adjusted setpoint is directly related to the setpoint and directly related to the duty-cycle of the DC-DC converter 14. In an alternate embodiment of the linear voltage regulator 16, the linear voltage regulator 16 provides the DC assist signal DCA to assist the DC-DC converter 14 via the power supply output PCP when an adjusted setpoint is within an assist range of the DC power supply signal PPS.
In one embodiment of the DC-DC converter 14 and the linear voltage regulator 16, when the duty-cycle of the DC-DC converter 14 is less than a maximum duty-cycle, the adjusted setpoint is less than the setpoint. In one embodiment of the DC-DC converter 14 and the linear voltage regulator 16, the maximum duty-cycle is equal to 100 percent. In one embodiment of the DC-DC converter 14 and the linear voltage regulator 16, when the duty-cycle of the DC-DC converter 14 is essentially equal to the maximum duty-cycle, the adjusted setpoint is essentially equal to the setpoint. In an exemplary embodiment of the DC-DC converter 14, when the duty-cycle of the DC-DC converter 14 is equal to zero, a portion of the DC power supply voltage PPV that is provided by the DC-DC converter 14 is equal to essentially zero volts. When the duty-cycle of the DC-DC converter 14 is equal to 100 percent, the portion of the DC power supply voltage PPV that is provided by the DC-DC converter 14 is equal to essentially the DC source voltage DCV. When the duty-cycle is between zero and 100 percent, the portion of the DC power supply voltage PPV that is provided by the DC-DC converter 14 varies based on the duty-cycle signal DCS. In this regard, the adjusted setpoint is used to control the assistance that is provided by the linear voltage regulator 16.
In general, the DC-DC converter 14 provides the DC power supply signal PPS using the error signal ERR. Since the feedback signal FBS is based on the DC power supply signal PPS and since the power supply control signal VRMP is representative of the setpoint of the DC power supply 10, the error signal ERR is indicative of the accuracy of the DC power supply signal PPS with respect to the setpoint of the DC power supply 10.
The error signal ERR is used to control the pulse-width modulation controller 22, which provides a charge pump control signal CPC based on the error signal ERR and a clock signal CLK, which is provided by the dithering clock generator 28. The charge pump control signal CPC is used to control the charge pump 24. In this regard, in one embodiment of the pulse-width modulation controller 22, a frequency of the charge pump control signal CPC is based on the frequency of the clock signal CLK. In one embodiment of the DC-DC converter 14, the dithering clock generator 28 dithers a frequency of the clock signal CLK to dither a frequency of the charge pump control signal CPC and a frequency of the duty-cycle signal DCS. Dithering the frequency of the charge pump control signal CPC dithers a frequency of a switching output signal SWT. Dithering the frequency of the switching output signal SWT may reduce output noise of the DC-DC converter 14.
However, in one embodiment of the pulse-width modulation controller 22, when the error signal ERR has a constant maximum value, the charge pump control signal CPC has a constant maximum value. Conversely, when the error signal ERR has a constant minimum value, the charge pump control signal CPC has a constant minimum value. Otherwise, a frequency of the charge pump control signal CPC is based on the frequency of the clock signal CLK, such that a duty-cycle of the charge pump control signal CPC is based on the error signal ERR. In addition, the pulse-width modulation controller 22 provides the duty-cycle signal DCS, such that the duty-cycle of the duty-cycle signal DCS is based on the duty-cycle of the charge pump control signal CPC.
The error voltage clamping circuit 18 is coupled to inputs to the converter error amplifier 20. The error voltage clamping circuit 18 receives the power supply control signal VRMP and the feedback signal FBS and limits the difference between the power supply control signal VRMP and the feedback signal FBS that is presented to the converter error amplifier 20. By limiting the difference between the power supply control signal VRMP and the feedback signal FBS presented to the converter error amplifier 20, the error voltage clamping circuit 18 allows fast recovery of the DC-DC converter 14 when the difference between the power supply control signal VRMP and the feedback signal FBS is large.
The charge pump 24 receives the charge pump control signal CPC and provides the switching output signal SWT based on the charge pump control signal CPC. The charge pump 24 includes at least one energy storage element, such as one or more capacitive element. The first lowpass filter 26 receives and filters the switching output signal SWT to provide the DC power supply signal PPS.
In one embodiment of the DC-DC converter 14, when the setpoint for the DC power supply voltage PPV (
The error amplifier 34 receives the duty-cycle signal DCS via the non-inverting input to the error amplifier 34. In one embodiment of the duty-cycle signal DCS, the duty-cycle signal DCS is a current signal, such that a magnitude of the duty-cycle signal DCS is inversely related to the duty-cycle of the DC-DC converter 14.
An output from the error amplifier 34 is coupled to a gate of the PFET 36. The linear voltage regulator 16 provides the DC assist signal DCA via a drain of the PFET 36. The PFET 36 provides an open-drain output of the linear voltage regulator 16, such that the open-drain output of the linear voltage regulator 16 is coupled to the power supply output PCP (
In this regard, the DC power source 12 (
In one embodiment of the RF communications system 100, the RF front-end circuitry 106 receives via the RF antenna 108, processes, and forwards an RF receive signal RFR to the RF system control circuitry 104. The RF system control circuitry 104 provides the power supply control signal VRMP to the DC power supply 10. The RF system control circuitry 104 provides an RF input signal RFN to the RF PA 110. In this regard, the RF system control circuitry 104 provides the setpoint of the DC power supply 10 using the power supply control signal VRMP.
The DC power supply 10 provides power to the RF PA 110 using the DC power supply signal PPS. The DC power supply signal PPS has the DC power supply voltage PPV. In one embodiment of the power supply control signal VRMP, the power supply control signal VRMP is representative of a setpoint of the DC power supply signal PPS. The RF PA 110 receives and amplifies the RF input signal RFN to provide an RF transmit signal RFT using the DC power supply signal PPS. In one embodiment of the DC power supply 10, the DC power supply 10 provides power for amplification via the DC power supply signal PPS. The RF front-end circuitry 106 receives, processes, and transmits the RF transmit signal RFT via the RF antenna 108.
In one embodiment of the RF PA 110, the RF transmit signal RFT is amplitude modulated, such that the RF transmit signal RFT has an envelope. In one embodiment of the DC power supply 10, the DC power supply 10 modulates the DC power supply signal PPS to at least partially track the envelope of the RF transmit signal RFT, thereby providing envelope tracking. As such, in one embodiment of the RF system control circuitry 104, the RF system control circuitry 104 uses the power supply control signal VRMP to modulate the DC power supply signal PPS. In one embodiment of the RF transmit signal RFT, the RF transmit signal RFT is a second generation wireless telephone transmit signal.
Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
5510753 | French | Apr 1996 | A |
5838732 | Carney | Nov 1998 | A |
6107862 | Mukainakano | Aug 2000 | A |
6141377 | Sharper et al. | Oct 2000 | A |
6985033 | Shirali et al. | Jan 2006 | B1 |
7043213 | Robinson et al. | May 2006 | B2 |
7471155 | Levesque | Dec 2008 | B1 |
7570931 | McCallister et al. | Aug 2009 | B2 |
7994862 | Pukhovski | Aug 2011 | B1 |
8461928 | Yahav et al. | Jun 2013 | B2 |
8493141 | Khlat et al. | Jul 2013 | B2 |
8519788 | Khlat | Aug 2013 | B2 |
8588713 | Khlat | Nov 2013 | B2 |
8718188 | Balteanu et al. | May 2014 | B2 |
8725218 | Brown et al. | May 2014 | B2 |
8774065 | Khlat et al. | Jul 2014 | B2 |
8803603 | Wimpenny | Aug 2014 | B2 |
8818305 | Schwent et al. | Aug 2014 | B1 |
8854129 | Wilson | Oct 2014 | B2 |
8879665 | Xia et al. | Nov 2014 | B2 |
8913690 | Onishi | Dec 2014 | B2 |
8989682 | Ripley et al. | Mar 2015 | B2 |
9018921 | Gurlahosur | Apr 2015 | B2 |
9020451 | Khlat | Apr 2015 | B2 |
9041364 | Khlat | May 2015 | B2 |
9041365 | Kay et al. | May 2015 | B2 |
9055529 | Shih | Jun 2015 | B2 |
9065509 | Yan et al. | Jun 2015 | B1 |
9069365 | Brown et al. | Jun 2015 | B2 |
9098099 | Park et al. | Aug 2015 | B2 |
9166538 | Hong et al. | Oct 2015 | B2 |
9166830 | Camuffo et al. | Oct 2015 | B2 |
9167514 | Dakshinamurthy et al. | Oct 2015 | B2 |
9197182 | Baxter et al. | Nov 2015 | B2 |
9225362 | Drogi et al. | Dec 2015 | B2 |
9247496 | Khlat | Jan 2016 | B2 |
9263997 | Vinayak | Feb 2016 | B2 |
9270230 | Henshaw et al. | Feb 2016 | B2 |
9270239 | Drogi et al. | Feb 2016 | B2 |
9271236 | Drogi | Feb 2016 | B2 |
9280163 | Kay et al. | Mar 2016 | B2 |
9288098 | Yan et al. | Mar 2016 | B2 |
9298198 | Kay et al. | Mar 2016 | B2 |
9344304 | Cohen | May 2016 | B1 |
9356512 | Chowdhury et al. | May 2016 | B2 |
9377797 | Kay et al. | Jun 2016 | B2 |
9379667 | Khlat et al. | Jun 2016 | B2 |
9515622 | Nentwig et al. | Dec 2016 | B2 |
9520907 | Peng et al. | Dec 2016 | B2 |
9584071 | Khlat | Feb 2017 | B2 |
9595869 | Lerdworatawee | Mar 2017 | B2 |
9595981 | Khlat | Mar 2017 | B2 |
9596110 | Jiang et al. | Mar 2017 | B2 |
9614477 | Rozenblit et al. | Apr 2017 | B1 |
9634666 | Krug | Apr 2017 | B2 |
9748845 | Kotikalapoodi | Aug 2017 | B1 |
9806676 | Balteanu et al. | Oct 2017 | B2 |
9831834 | Balteanu et al. | Nov 2017 | B2 |
9837962 | Mathe et al. | Dec 2017 | B2 |
9923520 | Abdelfattah et al. | Mar 2018 | B1 |
10003416 | Lloyd | Jun 2018 | B1 |
10090808 | Henzler et al. | Oct 2018 | B1 |
10097145 | Khlat et al. | Oct 2018 | B1 |
10110169 | Khesbak et al. | Oct 2018 | B2 |
10158329 | Khlat | Dec 2018 | B1 |
10158330 | Khlat | Dec 2018 | B1 |
10170989 | Balteanu et al. | Jan 2019 | B2 |
10291181 | Kim et al. | May 2019 | B2 |
10326408 | Khlat et al. | Jun 2019 | B2 |
10382071 | Rozek et al. | Aug 2019 | B2 |
10476437 | Nag et al. | Nov 2019 | B2 |
20020167827 | Umeda | Nov 2002 | A1 |
20040266366 | Robinson et al. | Dec 2004 | A1 |
20050090209 | Behzad | Apr 2005 | A1 |
20050227646 | Yamazaki et al. | Oct 2005 | A1 |
20050232385 | Yoshikawa et al. | Oct 2005 | A1 |
20060240786 | Liu | Oct 2006 | A1 |
20070052474 | Saito | Mar 2007 | A1 |
20070258602 | Vepsalainen et al. | Nov 2007 | A1 |
20090016085 | Rader | Jan 2009 | A1 |
20090045872 | Kenington | Feb 2009 | A1 |
20090191826 | Takinami et al. | Jul 2009 | A1 |
20100308919 | Adamski et al. | Dec 2010 | A1 |
20110074373 | Lin | Mar 2011 | A1 |
20110136452 | Pratt et al. | Jun 2011 | A1 |
20110175681 | Inamori et al. | Jul 2011 | A1 |
20110279179 | Vice | Nov 2011 | A1 |
20120194274 | Fowers et al. | Aug 2012 | A1 |
20120200435 | Ngo et al. | Aug 2012 | A1 |
20120299645 | Southcombe et al. | Nov 2012 | A1 |
20120299647 | Honjo et al. | Nov 2012 | A1 |
20130021827 | Ye | Jan 2013 | A1 |
20130100991 | Woo | Apr 2013 | A1 |
20130130724 | Kumar Reddy et al. | May 2013 | A1 |
20130162233 | Marty | Jun 2013 | A1 |
20130187711 | Goedken et al. | Jul 2013 | A1 |
20130200865 | Wimpenny | Aug 2013 | A1 |
20130271221 | Levesque | Oct 2013 | A1 |
20140009226 | Severson | Jan 2014 | A1 |
20140028370 | Wimpenny | Jan 2014 | A1 |
20140028390 | Davis | Jan 2014 | A1 |
20140057684 | Khlat | Feb 2014 | A1 |
20140103995 | Langer | Apr 2014 | A1 |
20140155002 | Dakshinamurthy et al. | Jun 2014 | A1 |
20140184335 | Nobbe et al. | Jul 2014 | A1 |
20140199949 | Nagode et al. | Jul 2014 | A1 |
20140210550 | Mathe et al. | Jul 2014 | A1 |
20140218109 | Wimpenny | Aug 2014 | A1 |
20140235185 | Drogi | Aug 2014 | A1 |
20140266423 | Drogi et al. | Sep 2014 | A1 |
20140266428 | Chiron et al. | Sep 2014 | A1 |
20140315504 | Sakai et al. | Oct 2014 | A1 |
20140361830 | Mathe et al. | Dec 2014 | A1 |
20140361837 | Strange et al. | Dec 2014 | A1 |
20150048883 | Vinayak | Feb 2015 | A1 |
20150071382 | Wu et al. | Mar 2015 | A1 |
20150098523 | Lim et al. | Apr 2015 | A1 |
20150155836 | Midya et al. | Jun 2015 | A1 |
20150188432 | Vannorsdel et al. | Jul 2015 | A1 |
20150236654 | Jiang et al. | Aug 2015 | A1 |
20150236729 | Peng et al. | Aug 2015 | A1 |
20150280652 | Cohen | Oct 2015 | A1 |
20150333781 | Alon et al. | Nov 2015 | A1 |
20160065137 | Khlat | Mar 2016 | A1 |
20160099687 | Khlat | Apr 2016 | A1 |
20160105151 | Langer | Apr 2016 | A1 |
20160118941 | Wang | Apr 2016 | A1 |
20160126900 | Shute | May 2016 | A1 |
20160173031 | Langer | Jun 2016 | A1 |
20160181995 | Nentwig et al. | Jun 2016 | A1 |
20160187627 | Abe | Jun 2016 | A1 |
20160197627 | Qin et al. | Jul 2016 | A1 |
20160226448 | Wimpenny | Aug 2016 | A1 |
20160294587 | Jiang et al. | Oct 2016 | A1 |
20170141736 | Pratt et al. | May 2017 | A1 |
20170302183 | Young | Oct 2017 | A1 |
20170317913 | Kim et al. | Nov 2017 | A1 |
20170338773 | Balteanu et al. | Nov 2017 | A1 |
20180013465 | Chiron et al. | Jan 2018 | A1 |
20180048265 | Nentwig | Feb 2018 | A1 |
20180048276 | Khlat | Feb 2018 | A1 |
20180076772 | Khesbak et al. | Mar 2018 | A1 |
20180123453 | Puggelli | May 2018 | A1 |
20180288697 | Camuffo et al. | Oct 2018 | A1 |
20180302042 | Zhang et al. | Oct 2018 | A1 |
20180309414 | Khlat et al. | Oct 2018 | A1 |
20180367101 | Chen et al. | Dec 2018 | A1 |
20190044480 | Khlat | Feb 2019 | A1 |
20190068234 | Khlat | Feb 2019 | A1 |
20190097277 | Fukae | Mar 2019 | A1 |
20190109566 | Folkmann et al. | Apr 2019 | A1 |
20190109613 | Khlat et al. | Apr 2019 | A1 |
20190222175 | Khlat et al. | Jul 2019 | A1 |
20190222178 | Khlat et al. | Jul 2019 | A1 |
20190238095 | Khlat | Aug 2019 | A1 |
20190267956 | Granger-Jones et al. | Aug 2019 | A1 |
20200007090 | Khlat et al. | Jan 2020 | A1 |
20200036337 | Khlat | Jan 2020 | A1 |
20200153394 | Khlat et al. | May 2020 | A1 |
20200177131 | Khlat | Jun 2020 | A1 |
Number | Date | Country |
---|---|---|
3174199 | May 2017 | EP |
Entry |
---|
Advisory Action for U.S. Appl. No. 15/986,948, dated Nov. 8, 2019, 3 pages. |
Notice of Allowance for U.S. Appl. No. 15/986,948, dated Dec. 13, 2019, 7 pages. |
Advisory Action for U.S. Appl. No. 16/018,426, dated Nov. 19, 2019, 3 pages. |
Notice of Allowance for U.S. Appl. No. 16/180,887, dated Jan. 13, 2020, 8 pages. |
Notice of Allowance for U.S. Appl. No. 15/888,300, dated Jan. 14, 2020, 11 pages. |
Final Office Action for U.S. Appl. No. 15/888,300, dated Feb. 15, 2019, 15 pages. |
Non-Final Office Action for U.S. Appl. No. 151986,948, dated Mar. 28, 2019, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 16/018,426, dated Apr. 11, 2019, 11 pages. |
Supplemental Notice of Allowability for U.S. Appl. No. 15/902,244, dated Mar. 20, 2019, 6 pages. |
Notice of Allowance for U.S. Appl. No. 15/902,244, dated Feb. 8, 2019, 8 pages. |
Pfister, Henry, “Discrete-Time Signal Processing,” Lecture Note, pfisteree.duke.edu/coursestece485/dtsp.pdf, Mar. 3, 2017, 22 pages. |
Advisory Action for U.S. Appl. No. 15/888,300, dated Jun. 5, 2019, 3 pages. |
Non-Final Office Action for U.S. Appl. No. 15/888,260, dated May 2, 2019, 14 pages. |
Notice of Allowance for U.S. Appl. No. 15/984,566, dated May 21, 2019, 6 pages. |
Notice of Allowance for U.S. Appl. No. 15/792,909, dated Dec. 19, 2018, 11 pages. |
Notice of Allowance for U.S. Appl. No. 15/993,705, dated Oct. 31, 2018, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 14/836,634, dated May 16, 2016, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 14/868,890, dated Jul. 14, 2016, 13 pages. |
Non-Final Office Action for U.S. Appl. No. 15/792,909, dated May 18, 2018, 13 pages. |
Notice of Allowance for U.S. Appl. No. 151459,449, dated Mar. 28, 2018, 7 pages. |
Notice of Allowance for U.S. Appl. No. 15/723,460, dated Jul. 24, 2018, 8 pages. |
Notice of Allowance for U.S. Appl. No. 151704,131, dated Jul. 17, 2018, 7 pages. |
Notice of Allowance for U.S. Appl. No. 15/728,202, dated Aug. 2, 2018, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 15/888,300, dated Aug. 28, 2018, 11 pages. |
Notice of Allowance for U.S. Appl. No. 16/150,556, dated Jul. 29, 2019, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 15/888,300, dated Jun. 27, 2019, 17 pages. |
Final Office Action for U.S. Appl. No. 15/986,948, dated Aug. 27, 2019, 9 pages. |
Final Office Action for U.S. Appl. No. 16/018,426, dated Sep. 4, 2019, 12 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 15/888,300, dated Feb. 25, 2020, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/018,426, dated Mar. 31, 2020, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 16/174,535, dated Feb. 4, 2020, 7 pages. |
Quayle Action for U.S. Appl. No. 16/354,234, mailed Mar. 6, 2020, 8 pages. |
Notice of Allowance for U.S. Appl. No. 16/155,127, dated Jun. 1, 2020, 8 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 15/888,300, dated May 13, 2020, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 16/246,859, dated Apr. 28, 2020, 9 pages. |
Notice of Allowance for U.S. Appl. No. 16/354,234, dated Apr. 24, 2020, 9 pages. |
Final Office Action for U.S. Appl. No. 16/174,535, dated Jul. 1, 2020, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/246,859, dated Sep. 18, 2020, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 16/284,023, dated Jun. 24, 2020, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 16/435,940, dated Jul. 23, 2020, 6 pages. |
Advisory Action for U.S. Appl. No. 16/174,535, dated Sep. 24, 2020, 3 pages. |
Notice of Allowance for U.S. Appl. No. 16/174,535, dated Oct. 29, 2020, 7 pages. |
Final Office Action for U.S. Appl. No. 16/284,023, dated Nov. 3, 2020, 7 pages. |
Quayle Action for U.S. Appl. No. 16/421,905, mailed Aug. 25, 2020, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 16/416,812, dated Oct. 16, 2020, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 161514,051, dated Nov. 13, 2020, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 16/774,060, dated Aug. 17, 2020, 6 pages. |
Quayle Action for U.S. Appl. No. 16/589,940, dated Dec. 4, 2020, 8 pages. |
Notice of Allowance for U.S. Appl. No. 16/284,023, dated Jan. 19, 2021, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/416,812, dated Feb. 16, 2021, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 16/689,236 dated Mar. 2, 2021, 15 pages. |
Notice of Allowance for U.S. Appl. No. 16/435,940, dated Dec. 21, 2020, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/774,060, dated Feb. 3, 2021, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/590,790, dated Jan. 27, 2021, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/661,061, dated Feb. 10, 2021, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/689,236 dated Jun. 9, 2021, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 16/775,554, dated Jun. 14, 2021, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 16/582,471, dated Mar. 24, 2021, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 16/597,952, dated May 26, 2021, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/582,471, dated Jun. 22, 2021, 9 pages. |
Notice of Allowance for U.S. Appl. No. 16/834,049, dated Jun. 24, 2021, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20200076297 A1 | Mar 2020 | US |