The embodiments of the present description refer to solutions for generating a pulse-width modulation (PWM) signal.
Generally, as shown in
TSW=TON+TOFF. (1)
Moreover, often is defined the duty cycle D of the PWM signal, with D=TON/TSW.
Such a PWM signal may be generated in various modes. For example, as shown in
However, in such a (digital) implementation, the accuracy and resolution of the PWM signal is limited by the clock period TCLK (sampling frequency) of the clock signal CLK. Moreover, by increasing the clock frequency fCLK=1/TCLK also the switching losses will increase.
In many applications, high resolution PWM signals are required or strongly preferred. For example, this PWM signals may be used in many applications to control the average value of a voltage or current, such as for wireless battery chargers, switching mode power converters, motor control and lighting. For example, in such applications a half-bridge or full bridge may be used to drive a resonant tank, usually comprising one or more inductors and capacitors, wherein the electronic switches of the half-bridge or full bridge are driven by means of PWM signals.
In order to miniaturize the equipment, small inductors may be used leading to a high working frequency. Thus, often a high-frequency modulated waveform PWM signal with high precise resolution should be provided in order to keep power consumption at acceptable values. For example, in a switching power supply, the output voltage is often directly proportional to the PWM duty cycle. The smaller is the adjustment to the duty cycle, the smaller is the resulting change to the output, i.e., a more precise control of the output voltage that permits to achieve a better accuracy level and system stability.
Moreover, minimizing output voltage ripple means reduce noise levels.
An alternative solution for generating a PWM signal, in particular a High Resolution (HR) PWM signal, is based on the use of multiple clock phases, i.e., phase-shifted clock signals having the same frequency.
For example,
Specifically, in the example considered the clock signal CLK generated by an oscillator OSC is fed to a cascade of a plurality of (identical) delay stages DU1 . . . DUn. Specifically, in the example considered, the first phase ϕ0 corresponds to the clock signal CLK, and the other phases ϕ1 . . . ϕn correspond to the output signals of the delay stages DU1 . . . DUn.
In the example considered, each of the delay stages DU1 . . . DUn has a delay TDU being programmable/settable as a function of a (voltage or current) control signal CTRL. For example, such delay stages DU having a variable delay may be implemented with an even number of inverters, wherein one or more of the inverters charges a respective capacitance, such as a parasitic capacitance, connected to the output of the inverter. In this case, the control signal CTRL may be indicative of the current provided by the inverter to charge the respective capacitance, thereby varying the time until the following inverter switches.
In the example considered, the last phase ϕn (having a given delay TD=n·TDU with respect to the clock signal CLK) and the clock signal CLK is provided to a phase detector PD. The output of the phase detector PD is fed to a regulator CP having at least an I (Integral) component, such as a charge pump, wherein the regulator CP provides at output the control signal CTRL. Optionally the control signal CTRL may be passed through a loop filter LF.
Thus, essentially, the negative feedback loop, implemented by the blocks PD/CP/LF, synchronizes in time the last phase ϕn with the clock signal CLK. If the delay cells DU are identical, all the clock phases ϕ1 . . . ϕn will have the same frequency fCLK, but are phase shifted with respect to the preceding phase by a delay of TDU=TCLK/n.
Such multiple clock phases may also be provided by a Phase Locked Loop (PLL) comprising a Voltage Controlled Oscillator (VCO) comprising a ring-oscillator with a plurality of delay stages, wherein the PLL is locked to the frequency of a clock signal CLK. Also in this case, a locking of the PLL may be obtained by varying the delay introduced by the delay stages, e.g., by varying via a bias circuit the current provided by the inverter stages implementing such delay stages, until the oscillator signal at the output of the VCO corresponds to the clock signal CLK. Thus, each delay stage of the VCO may provide a respective clock phase, which is phase shifted by a given fraction of the period of the clock signal CLK.
For example,
Accordingly, as shown in
For example, the fraction may be added to the coarse PWM signal by:
Thus, assuming that the counter (and a respective comparator circuit) provides a coarse PWM signal having a switching period TSW=i·TCLK and a switch-on duration of TON=k·TCLK, with 0≤k≤i, the final PWM signal may have a switching period TSW=i·TCLK and a switch-on duration TON=k·TCLK+l·TCLK/n, with 0≤l<n. Thus, the switch-on duration TON of the PWM signal may be selected by setting the integer values of the parameters k and l. Thus, essentially the use of an additional DLL or PLL permits to vary the switch-on duration TON, or in general the duty cycle D, with a higher precision, while the switching period TSW remains constant.
Considering the foregoing, various embodiments of the present disclosure provide solutions for generating a PWM signal.
According to one or more embodiments, a PWM signal generator circuit is provided having the distinctive elements set forth in the following description. The embodiments also concern a corresponding integrated circuit.
Various embodiments of the present disclosure relate to a PWM signal generator circuit configured to generate a Pulse-Width Modulated signal having a given switching duration comprising a switch-on duration and a switch-off duration.
In various embodiments, the PWM signal generator circuit comprises a multiphase clock generator configured to generate a given number n of phase-shifted clock phases having the same clock period and being phase shifted by a time corresponding to a fraction 1/n of the clock period.
In various embodiments, the PWM signal generator circuit is configured to:
For example, in various embodiments, the PWM signal generator circuit may receive at input the first, second third, and fourth integer number.
In various embodiments, the PWM signal generator circuit comprises a clock switching circuit, a timer circuit, a phase accumulator circuit and a toggle circuit.
In various embodiments, the clock switching circuit is configured to generate a timer clock signal by selecting one of the phase-shifted clock phases as the timer clock signal as a function of a selection signal.
For example, in various embodiments, the clock switching circuit comprises:
In various embodiments, the timer circuit comprises one or more counters and one or more comparators, wherein the timer circuit is configured to:
For example, the timer circuit may comprise a single counter configured to generate the first count value and the second count value. In this case, the third integer number may be indicative of the integer number of clock periods of the switch-off duration, and the single counter may be reset at the beginning of each switch-on duration and each switch-off duration. Alternatively, the third integer number may be indicative of the integer number of clock periods of the switching duration, and the single counter may be reset only at the beginning of each switch-on duration.
In various embodiments, the phase accumulator circuit is configured to generate the selection signal by:
Generally, the variation of the selection signal may occur at any instant during the respective switch-on or switch-off period. However, preferably, the phase accumulator circuit is configured to generate the selection signal by:
In various embodiments, the toggle circuit is configured to:
In such embodiments, the timer circuit operates thus with an adaptive clock signal resulting from a switching/combination of the phase-shifted clock phases.
The inventors have observed that the switching of the clock phases may thus occur while the previous clock phase is high, resulting in a loss of an edge used to increase the timer circuit.
Accordingly, in order to compensate this missing edge, in various embodiments, the PWM signal generator circuit is configured to:
Alternatively, the PWM signal generator circuit may be configured to:
The embodiments of the present disclosure will now be described with reference to the drawings, which are provided purely to way of non-limiting example and in which:
In the ensuing description, various specific details are illustrated to enable an in-depth understanding of the embodiments. The embodiments may be provided without one or more of the specific details, or with other methods, components, materials, etc. In other cases, known structures, materials, or operations are not shown or described in detail so that various aspects of the embodiments will not be obscured.
Reference to “an embodiment” or “one embodiment” in the framework of this description is meant to indicate that a particular configuration, structure, or characteristic described in relation to the embodiment is comprised in at least one embodiment. Hence, phrases such as “in an embodiment”, “in one embodiment”, or the like that may be present in various points of this description do not necessarily refer to one and the same embodiment. Moreover, particular conformations, structures, or characteristics may be combined in any adequate way in one or more embodiments.
The references used herein are only provided for convenience and hence do not define the sphere of protection or the scope of the embodiments.
In
As explained in the foregoing, various embodiments of the present description relate to a PWM signal generator circuit configured to generate a high resolution PWM signal. In particular, in various embodiments, the PWM signal generator circuit is configured to receive a plurality of clock phases ϕ0 . . . ϕn and generate both the rising and the falling edges of the PWM signal as a function of these clock phases ϕ0 . . . ϕn, thereby controlling both the PWM duty cycle and the PWM frequency with a higher resolution.
In the embodiment considered, the PWM signal generator circuit receives the first clock phases ϕ0 (and/or the last clock phase ϕn=ϕ0) and the intermediate clock phases ϕ1 . . . ϕn-1. In some embodiments, the PWM signal generator circuit includes a multiphase clock generator that generates the various clock phases, which may include any multiphase clock generator configured to generate the clock phases described herein. Possible solutions for generating such clock phases are already described in the introduction of the present disclosure, and the relevant description applies in its entirety (see in particular the description of
Moreover, in the embodiment considered, the PWM signal generator circuit is configured to generate a PWM signal, wherein:
In various embodiments, the parameters i, j, k and l integer values, wherein the parameters i, j, k and l may be programmable.
Specifically, in the example shown in
TSW=i·TCLK+10·TCLK/17=Ti+10·TCLK/17,
a duty cycle of 50% (i.e., TON=TOFF=TSW/2), i.e., TON=TOFF=Ti/2+5·TCLK/17.
In the example considered, it will be assumed for simplicity that i is an even number, and k=p=i/2.
Specifically, in the embodiment considered, the PWM signal generator circuit is configured to use during the first switch-on period T1 the phase ϕ0 as clock signal for the digital counter counting the time period Ti/2=k·TCLK, and (as will be described in greater detail in the following) the PWM signal generator circuit adds at the end a fraction of 5/17 of the period TCLK by using the phase ϕ5.
However, instead of then tracking the accumulation of the various fractions, the PWM signal generator circuit uses then during the following switch-off period T2 the phase ϕ5 (i.e., the phase used to add the fraction) as clock signal for the timer circuit (i.e., the digital counter counting the time period p·TCLK. Moreover, the PWM signal generator circuit adds at the end again the respective fraction of 5/17 of the period TCLK by using in this case the phase ϕ10, insofar as the phase ϕ10 is shifted by a delay of 5·TCLK17 with respect to the phase ϕ5.
Next, the PWM signal generator circuit use during the second switch-on period T3 the phase ϕ10 as clock signal for the digital counter counting the time period k·TCLK, and the PWM signal generator circuit adds at the end a fraction of 5/17 of the period TCLK by using this time the phase ϕ15, insofar as the phase ϕ15 is shifted by a delay of 5·TCLK/17 with respect to the phase ϕ10.
Similarly, the PWM signal generator circuit use during the following switch-off period T4 the phase ϕ15 as clock signal for the digital counter counting the time period p·TCLK, and the PWM signal generator circuit adds at the end a fraction of 5/17 of the period TCLK by using this time the phase ϕ3, insofar as the phase ϕ3 is shifted by a delay of 5·TCLK/17 with respect to the phase ϕ15.
This operation continues also for the following switch-on and switch off periods.
In various embodiments, the PWM generator circuit is thus configured to generate a PWM signal, wherein:
In various embodiments, the parameter n (number of delay stages/phase) is fixed at a hardware level. However, the number n could also be programmable, e.g., by using in
Thus, in various embodiments, the timer circuit of the PWM signal generator circuit (comprising the counter circuit and the comparator circuit) is configured to:
However, in general, the timer circuit may also monitor the switching duration TSW, i.e., the timer circuit of the PWM signal generator circuit (comprising the counter circuit and the comparator circuit) may be configured to:
Thus, in various embodiments, the PWM signal generator circuit is configured to determine the parameters k/l, and at least one of p/q, and i/j wherein:
Specifically, in view of the above definitions:
TON=k·TCLK+l·TCLK/n (2)
TOFF=p·TCLK+q·TCLK/n (3)
TSW=TON+TOFF=i·TCLK+j·TCLK/n (4)
the integer values i and j are related to the integer values k, l, p and q according to the following equations:
Thus, in various embodiments, the PWM generator circuit is configured to receive at least two of the parameters i, k and p, and at least two of the parameters j, l and q. For example, the PWM signal generator circuit may directly receive the parameters k/l and/or p/q and/or i/j, such as:
Alternatively, the PWM signal generator circuit may receive other data permitting a calculation of these parameters according to equations (5) and (6), such as:
As shown in
As shown in
Alternatively, as shown in
In various embodiments, the timer circuit 102 is configured to generate one or more trigger signal when the output of the comparator indicates that the count value has reached the comparison threshold, e.g., by using a signal EOC_TMR at the output of the comparator 106, or respective signal EOC_TMRa and EOC_TMRb at the outputs of the comparators 106a and 106b.
In the embodiments considered, the signal EOC_TMR (
Specifically, even when monitoring the end of the switching duration TSW, it is preferably to obtain, e.g., calculate according to equations (5) and (6), the parameter q, because this parameter indicates the additional fractions which have to be added with respect to the previous switch-on period.
For example, the control circuit 110 may select the clock signal CLK_TMR by driving via a selection signal SEL1 a multiplexer 100 receiving at input the clock phases ϕ0 . . . ϕn-1. Similarly, the control signal may drive via a selection signal SEL2 a multiplexer 112 in order to select either the parameter l or the parameter q, i.e., the selection signal indicates whether the current period is a switch-on period or a switch-off period, and may thus also be used to drive the multiplexer 108.
Specifically, in various embodiments, in response to a trigger in the signal EOC_TMR (
Specifically, in various embodiments, the control circuit also performs a modulo operation in order to maintain the selection signal SEL1 between 0 and n=1. Accordingly, in response to a trigger in the signal EOC_TMR (
Thus, essentially, the control circuit 110 implements a phase accumulator circuit, which adds to the currently selected phase either l or q, wherein the parameters q may be calculated, e.g., as shown in equations (5) and (6) as a function of the parameters j and n.
Finally, in various embodiments, the respective period (either a switch-on or switch-off period) is terminated and the following period is started with the next clock pulse (i.e., with the next rising or falling edge based on which type of edge is used by the timer circuit 102) of the selected clock phase.
Thus essentially, during a switch-on period TON the trigger signal EOC_TMR (or EOC_TMRa) is generated after a time k·TCLK, and by changing the clock signal CLK_TMR the switch-on period is terminated, thereby starting the following switch-off period, after an additional time l/n·TCLK. Similarly, during a switch-off period TOFF the trigger signal EOC_TMR (or EOC_TMRb) is generated after a time p·TCLK (which may be obtained, e.g., by resetting the counter 104 and waiting for p cycles or by waiting until the count value reaches i), and by changing the clock signal CLK_TMR the switch-off period is terminated, thereby starting the following switch-on period, after an additional time q/n·TCLK.
For example, this is shown in
In the embodiment considered, during the following switch-off period, the timer circuit uses then the clock phase CLK_TMR=ϕy, and the trigger signal EOC_TMR is set after, e.g., p=8 periods of the phase ϕy, e.g., with the 9th rising edge. In response to the trigger signal EOC_TMR (EOC_TMRb) the control circuit selects a new phase CLK_TMR=ϕz (with z=(y+q) mod n). In response to the immediately following (e.g., rising) edge in the signal ϕz, the PWM signal generator circuit terminates the switch-off period and starts the following switch-on period, thereby introducing an additional time corresponding a fraction q/n of the clock period.
In the previous embodiments, the control circuit 110 is configured to drive the selection circuit 100 in order to changes the phase ϕ assigned to the clock signal CLK_TMR from the current phase ϕ(t) (e.g., ϕ0) to the next phase ϕ(t+1) (e.g., ϕ5) in response to the signal EOC_TMR, thereby adding the fractions (l or q) at the end of the respective switch-on or switch-off period.
However, in various embodiments, the switching from the current phase ϕ(t) to the next phase ϕ(t+1) may occur at any instant during the respective period. In this case, the control unit 110 may also be configured to either increase/decrease sequentially, e.g., in response to the clock signal CLK_TMR, the selection signal SEL1 from the old phase ϕ(t) to the new phase ϕ(t+1) (e.g., ϕ0, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) or by switching directly to the new phase.
Generally, while reference has been made to periods of the clock signal CLK, indeed the phases ϕ0 . . . ϕn-1 may also have a different clock period TPLL, e.g., the frequency fPLL=1/TPLL may be a multiple of the clock frequency fCLK, e.g., by using a frequency divider in the feedback loop of the phase ϕn-1. Accordingly, in general:
Specifically, in the embodiment considered, the PWM signal generator circuit comprises again a timer circuit 102, a clock switching circuit 100′ and a control circuit/phase accumulator 110′.
Specifically, with respect to
For example, a possible embodiment of the clock switching circuit 100′ is shown in
In the embodiment considered, the selection signal SEL1 (indicative of the next clock phase), is provided to a series of optional latches 1000 configured to store the value of the signal SEL1 in response to the trigger signal EOC_TMR. Substantially, these latches 1000 ensure that the circuit samples the value of the signal SEL1 only when a trigger in the signal EOC_TMR is generated.
In the embodiment considered, each clock phase ϕ0 . . . ϕn-1 is provided to a respective transmission gate (gated clock cells) 10020 . . . 1002n being enabled as a function of the selections signal SEL1 or optionally the latched selections signal SEL1, thereby generating respective (gated) signals Σ0_gtd . . . ϕn-1_gtd. For example, in various embodiments, the selection signal comprises (n) bits SEL0 . . . SELn-1 and uses a one-hot encoding, wherein a given bit is associated univocally with a given clock phase ϕ0 . . . ϕn-1, i.e., only one of the bits SEL0 . . . SELn-1 is set and indicates that the respective clock phase ϕ0 . . . ϕn-1 may pass through the respective transmission gate 10020 . . . 1002n-1, while the other clock phases ϕ0 . . . ϕn-1 cannot pass through the respective transmission gates 10020 . . . 1002n-1. In general, also other encoding schemes may be used for the selection signal (such as a binary encoding), and the transmission gates may be driven via a decoder circuit configured to generate the one-hot encoded drive signals for the transmission gates 10020 . . . 1002n-1 as a function of the selection signal SEL1.
As shown in
Thus, in case the selection signal SEL1 changes, the clock signal CLK_TMR switches from a first clock phase to a second clock phase in response to the selection signal.
Specifically, as shown in
Usually this occurs when the respective fraction l or q is smaller than n/2.
Conversely, as shown in
Thus, the lost clock edge (
Specifically, in the embodiment considered, the counter 104 is implemented with an accumulator comprising:
In the embodiment considered, the increment value INC may be set either to “1” or “2”, e.g., via a multiplexer 1044. Specifically, the selection is driven via a selection signal SEL3 provided by the control circuit 110 (or similarly by the control circuit 110′).
Specifically, in the embodiment considered, the control circuit 110 comprises:
Specifically, in the embodiment considered, the multiplexer 112 already provide the fraction value for the current period, wherein the selection signal SEL2 indicates whether the current period is a switch-on or switch-off period. Accordingly, the comparator 1100 may receive at input the signal provided by the multiplexer 112 and thus generates a comparison signal indicating whether the fraction value l or q is greater than n/2. Specifically, the circuits 110 and 112 are configured:
Accordingly, substantially, the timer circuit 104 is configured to increase for one clock cycle of the signal CLK_TMR (i.e., a single cycle for each switch-on or switch-off period) the count value by two (“2”) when the fraction l or q (based on the current period) is smaller than n/2.
Conversely,
Specifically, in the embodiment considered, the increment value INC is always set to “1”, and an additional digital subtractor is provided which is configured, e.g., via a multiplexer 1048, to:
In general, the embodiments may also be combined, i.e., during a switch-on duration may be implemented either the “plus-two” mechanism (
Accordingly, in the embodiments considered, the circuits 1100/1102 inform the timer circuit 102 that a counting edge has been missed or will be missed due to clock combination shown in
Using this clock change property, the timer may be incremented by “1” or “2”, or the threshold of the comparator 106 may be adapted with respect to this internal flag generated as shown in
In various embodiments, the PWM signal is switched in response to the next rising edge of the new clock phase, i.e., the selected clock phase ϕ0_gtd . . . ϕn-1_gtd of the following switch-on or switch-off period. However, the PWM signal may also be changed in response to the rising edge of the trigger signal EOC_TMR in the case of a SEL1 signal generated in any appropriate instant during the given time slot/period.
For example, as shown in
Generally, any suitable circuit may be used to toggle the level of the PWM signal in response to the signal EOC_TMR (or EOC_TMRa and EOC_TMRb) and the new clock phase.
For example,
Specifically, as shown in
Accordingly, in the embodiment considered, the output of the various rising edge detector 11400 . . . 1140n-1 may be connected to a combinational logic circuit, e.g., implementing a logic OR function (
Accordingly, in the embodiment considered, the signal TRIG may be used to drive a flip-flop FF1 in order to invert the output of the flip-flop FF1, wherein the PWM signal is generated as a function (and preferably corresponds to) the signal at the output of the flip-flop FF1.
For example, in the embodiment considered, the flip-flop FF1 is implemented with a D-type flip-flop, receiving at the data terminal D via an inverter INV1 the inverted output signal of the flip-flop FF1, thereby inverting the output of the flip-flop FF1 in response to the trigger signal TRIG.
Of course, without prejudice to the principle of the disclosure, the details of construction and the embodiments may vary widely with respect to what has been described and illustrated herein purely by way of example, without thereby departing from the scope of the present disclosure, as defined by the ensuing claims.
The various embodiments described above can be combined to provide further embodiments. These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
102019000019910 | Oct 2019 | IT | national |
Number | Name | Date | Kind |
---|---|---|---|
6819190 | Pearce et al. | Nov 2004 | B2 |
7206343 | Pearce | Apr 2007 | B2 |
7791387 | Wong | Sep 2010 | B1 |
11171632 | Tripodi | Nov 2021 | B2 |
11606083 | Tripodi | Mar 2023 | B2 |
20100127789 | Kenly et al. | May 2010 | A1 |
20120154005 | Frederiksen et al. | Jun 2012 | A1 |
20130271196 | Cao et al. | Oct 2013 | A1 |
20150171843 | Kim | Jun 2015 | A1 |
20180017944 | Lee et al. | Jan 2018 | A1 |
20190245528 | Reitsma | Aug 2019 | A1 |
20210112641 | Li et al. | Apr 2021 | A1 |
Number | Date | Country | |
---|---|---|---|
20230208404 A1 | Jun 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17515069 | Oct 2021 | US |
Child | 18175359 | US | |
Parent | 17077833 | Oct 2020 | US |
Child | 17515069 | US |