PYK2 crystal structure and uses

Abstract
A crystal structure of PYK2 is described that was determined by X-ray crystallography. The use of PYK2 crystals and strucural information can, for example, be used for identifying molecular scaffolds and for developing ligands that bind to and modulate PYK2.
Description
BACKGROUND OF THE INVENTION

This invention relates to the field of development of ligands for protein tyrosine kinase 2 (PYK2) and to the use of crystal structures of PYK2. The information provided is intended solely to assist the understanding of the reader. None of the information provided nor references cited is admitted to be prior art to the present invention.


Cellular signal transduction is a fundamental mechanism whereby external stimuli that regulate diverse cellular processes are relayed to the interior of cells. One of the key biochemical mechanisms of signal transduction involves the reversible phosphorylation of tyrosine residues on proteins. The phosphorylation state of a protein is modified through the reciprocal actions of tyrosine phosphatases (TPs) and tyrosine kinases (TKs), including receptor tyrosine kinases and non-receptor tyrosine kinases.


Receptor tyrosine kinases (RTKs) belong to a family of transmembrane proteins and have been implicated in cellular signaling pathways. The predominant biological activity of some RTKs is the stimulation of cell growth and proliferation, while other RTKs are involved in arresting growth and promoting differentiation. In some instances, a single tyrosine kinase can inhibit, or stimulate, cell proliferation depending on the cellular environment in which it is expressed.


RTKs are composed of at least three domains: an extra-cellular ligand binding domain, a transmembrane domain and a cytoplasmic catalytic domain that can phosphorylate tyrosine residues. Ligand binding to membrane-bound receptors induces the formation of receptor dimers and allosteric changes that activate the intracellular kinase domains and result in the self-phosphorylation (autophosphorylation and/or transphosphorylation) of the receptor on tyrosine residues. Individual phosphotyrosine residues of the cytoplasmic domains of receptors may serve as specific binding sites that interact with a host of cyto-plasmic signaling molecules, thereby activating various signal transduction pathways.


The intracellular, cytoplasmic, non-receptor protein tyrosine kinases do not contain a hydrophobic transmembrane domain or an extracellular domain and share non-catalytic domains in addition to sharing their catalytic kinase domains. Such non-catalytic domains include the SH2 domains and SH3 domains. The non-catalytic domains are thought to be important in the regulation of protein-protein interactions during signal transduction.


A central feature of signal transduction is the reversible phosphorylation of certain proteins. Receptor phosphorylation stimulates a physical association of the activated receptor with target molecules, which either are or are not phosphorylated.


Some of the target molecules such as phospholipase Cγ are in turn phosphorylated and activated. Such phosphorylation transmits a signal to the cytoplasm. Other target molecules are not phosphorylated, but assist in signal transmission by acting as adapter molecules for secondary signal transducer proteins. For example, receptor phosphorylation and the subsequent allosteric changes in the receptor recruit the Grb-2/SOS complex to the catalytic domain of the receptor where its proximity to the membrane allows it to activate ras.


The secondary signal transducer molecules generated by activated receptors result in a signal cascade that regulates cell functions such as cell division or differentiation. Reviews describing intracellular signal transduction include Aaronson, Science 254:1146-1153, 1991; Schlessinger, Trends Biochem. Sci., 13:443-47, 1988; and Ullrich and Schlessinger, Cell, 61:203-212, 1990.


Signal transduction pathways that regulate ion channels (e.g., potassium channels and calcium channels) involve G proteins which function as intermediaries between receptors and effectors. Gilman, Ann. Rev. Biochem., 56:615-649 (1987); Brown and Bimbaumer, Ann. Rev. Physiol., 52: 197-213 (1990). G-coupled protein receptors are receptors for neurotransmitters, ligands that are responsible for signal production in nerve cells as well as for regulation of proliferation and differentiation of nerves and other cell types. Neurotransmitter receptors exist as different subtypes which are differentially expressed in various tissues and neurotransmitters such as acetylcholine evoke responses throughout the central and peripheral nervous systems.


The muscarinic acetylcholine receptors play important roles in a variety of complex neural activities such as learning, memory, arousal and motor and sensory modulation. These receptors have also been implicated in several central nervous system disorders such as Alzheimer's disease, Parkinson's disease, depression and schizophrenia.


Some agents that are involved in a signal transduction pathway regulating one ion channel, for example a potassium channel, may also be involved in one or more other pathways regulating one or more other ion channels, for example a calcium channel. Dolphin, Ann. Rev. Physiol., 52:243-55 (1990); Wilk-Blaszczak et al., Neuron, 12: 109-116 (1994). Ion channels may be regulated either with or without a cytosolic second messenger. Hille, Neuron, 9:187-195 (1992). One possible cytosolic second messenger is a tyrosine kinase. Huang et al., Cell, 75:1145-1156 (1993), incorporated herein by reference in its entirety, including any drawings.


The receptors involved in the signal transduction pathways that regulate ion channels are ultimately linked to the ion channels by various intermediate events and agents. For example, such events include an increase in intracellular calcium and inositol triphosphate and production of endothelin. Frucht, et al., Cancer Research, 52:1114-1122 (1992); Schrey, et al., Cancer Research, 52:1786-1790 (1992). Intermediary agents include bombesin, which stimulates DNA synthesis and the phosphorylation of a specific protein kinase C substrate. Rodriguez-Pena, et al., Biochemical and Biophysical Research Communication, 140(1):379-385 (1986); Fisher and Schonbrunn, J. Biol. Chem., 263(6):2208-2816 (1988).


Focal adhesion kinase (FAK) is a cytoplasmic protein tyrosine kinase localized to focal adhesions that is known to associate with two Src family kinases. Schaller, et al., Proc. Natl. Acad. Sci. U.S.A., 89:5192-5196 (1992), incorporated herein by reference in its entirety, including any drawings; Cobb et al., Mol. Cell. Biol., 14(1):147-155 (1994). The proteins associated with the cytoplasmic surface of adhesion molecules are reviewed in Gumbiner, Neuron, 11:551-564 (1993).


FAK may regulate interactions of integrins, agonist receptors, and/or stress fibers. Shattil et al., J. Biol. Chem., 269(20):14738-14745 (1994); Ridley and Hall, The EMBO Journal, 13(11):2600-2610 (1994). FAK does not contain SH2 or SH3 domains and the amino acid sequence of FAK is highly conserved among birds, rodents and man.


In some cells the C-terminal domain of FAK is expressed autonomously as a 41 kDa protein called FRNK and the 140 C-terminal residues of FAK contain a focal adhesiori targeting (FAT) domain. The cDNA's encoding FRNK are given in Schaller et al., Mol. Cell. Biol., 13(2):785-791 (1993), incorporated herein by reference in its entirety, including any drawings. The FAT domain was identified and said to be required for localization of FAK to cellular focal adhesions in Hilderbrand et al., J. Cell Biol., 123(4):993-1005 (1993).


The non-receptor tyrosine kinase, PYK2, is activated by binding of ligand to G-coupled protein receptors such as bradykinin and acetylcholine. PYK2 has a predicted molecular weight of 111 kD and contains five domains: (1) a relatively long N-terminal domain; (2) a kinase catalytic domain; (3) a proline rich domain; (4) another proline rich domain; and (5) a C-terminal focal adhesion targeting (FAT) domain. PYK2 does not contain a SH2 or SH3 domain.


The FAT domain of PYK2 has 62% similarity to the FAT domain of another non-receptor tyrosine kinase, FAK, which is also activated by G-coupled proteins. The overall similarity between PYK2 and FAK is 52%. PYK2 is expressed principally in neural tissues, although expression can also be detected in hematopoietic cells at early stages of develop-ment and in some tumor cell lines. The expression of PYK2 does not correspond with the expression of FAK.


PYK2 is also known as Cell Adhesion Kinase β (CAK β) and Related Adhesion Focal Tyrosine Kinase (RAFTK). Nucleotide and amino acid sequences for PYK2 are described in a set of related patents, including U.S. Pat. Nos. 8,837,815; 5,837,524; and Patent Publication U.S. 2002/0048782, which also provided additional information on PYK2 and a related protein, FAK, including some of the information described below. Each of these documents describes nucleotide and amino acid sequences for PYK2. U.S. Pat. No. 5,837,524 describes a method of screening for agents “able to promote or disrupt the interaction” between “a PYK2 polypeptide and a natural binding partner (NBP).” (Col. 8, lines 60-67.) Patent Publication U.S. 2002/0048782 provides examples describing cloning and the testing of certain properties of PYK2. Each of these patents and patent publication are incorporated by reference herein in their entireties, including drawings.


PYK2 is believed to regulate the activity of potassium channels in response to neurotransmitter signalling. PYK2 enzymatic activity is positively regulated by phosphorylation on tyrosine and results in response to binding of bradykinin, TPA, calcium ionophore, carbachol, TPA+ forskolin, and membrane depolarization. The combination of toxins known to positively regulate G-coupled receptor signalling (such as pertusis toxin, cholera toxins, TPA and bradykinin) increases the phosphorylation of PYK2. Activated PYK2 phosphorylates RAK, a delayed rectifier type potassium channel, and thus suppresses RAK activity. In the same system, FAK does not phosphorylate RAK.


Further, integrin-linked signaling is important for regulating cell adhesion and motility. (Hynes, R. (2002) Integrins: bidirectional, allosteric signaling machines. Cell, 110, 673-687.) The FAK and PYK2 tyrosine kinases are key mediators of integrin-dependent signals. (Hauck et al. (2000) Focal adhesion kinase functions as a receptor-proximal signaling component required for directed cell migration. Immunol Res, 21, 293-303.) Both FAK and PYK2 mediate cytoskeletal rearrangements as a consequence of integrin ligation. FAK, which localizes to focal adhesions, is activated by binding of cell-surface integrins to the extracellular matrix. In response to external stimuli, growth factors associate with integrins, and FAK also becomes phosphorylated in response to growth factors. (Sieg, et al. (2000) FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol, 2, 249-256.) In addition to its role in regulating the cytoskeleton and cell movements, FAK also helps to coordinate these processes with growth signals and cellular survival.


By contrast, PYK2 is localized to the sites of cell-cell contacts, and becomes activated in response to calcium mobilization. (Lev, et al. (1995) Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature, 376, 737-745.) Indeed, whereas FAK appears to mediate cellular survival, PYK2 activation leads to apoptosis in fibroblasts. (Xiong, W. and Parsons, J. T. (1997) Induction of apoptosis after expression of PYK2, a tyrosine kinase structurally related to focal adhesion kinase. J Cell Biol, 139, 529-539.) In monocytes and osteoclasts, PYK2 localizes to the podosome, a cellular protrusion that contacts the extracellular matrix and mediates adhesion and motility in these cell types. (Duong et al. (1998) PYK2 in osteoclasts is an adhesion kinase, localized in the sealing zone, activated by ligation of alpha(v)beta3 integrin, and phosphorylated by src kinase. J Clin Invest, 102, 881-892; Lakkakorpi et al. (1999) Stable association of PYK2 and p130(Cas) in osteoclasts and their co-localization in the sealing zone. J Biol Chem, 274, 4900-4907.)


In spite of the different biological functions, FAK and PYK2 are the only members of the FAK family of tyrosine kinases, and they share 45% sequence identity overall, with higher homology in the kinase catalytic domain (60%). (Lev et al. (1995) Nature, 376, 737-745; Sasaki et al. (1995) Cloning and characterization of cell adhesion kinase beta, a novel protein-tyrosine kinase of the focal adhesion kinase subfamily. J Biol Chem, 270, 21206-21219.) Furthermore, most of the key regulatory sites are highly conserved. In the N-terminus is a large integrin-binding domain. In the C-terminus is the so-called FAT (focal adhesion targeting) domain that mediates subcellular localization via binding sites for the cytoskeleton-associated proteins paxillin and talin. The kinase catalytic domain is in the center of the proteins. In addition, proline-rich regions in the C-terminus serve to bind to the SH3 domains of the adaptor proteins CAS and GRAF. (Hildebrand et al. (1996) An SH3 domain-containing GTPase-activating protein for Rho and Cdc42 associates with focal adhesion kinase. Mol Cell Biol, 16, 3169-3178; Polte, T. R. and Hanks, S. K. (1995) Interaction between focal adhesion kinase and Crk-associated tyrosine kinase substrate p130Cas. Proc Natl Acad Sci USA, 92, 10678-10682.)


The primary autophosphorylation site (Y397 in FAK, Y402 in PYK2, just upstream of the catalytic domain) serves as a binding site for the SH2 domain of a Src-family tyrosine kinase. (Dikic et al. (1996) A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature, 383, 547-550.) This site is also a substrate for the Src kinase. Additional tyrosine phosphorylation events occur at residues within the catalytic domain (Y576, Y577 in FAK, Y579, Y580 in PYK2) whose function is unclear, and at a C-terminal site (Y925 in FAK, Y881 in PYK2) that serves as binding site for the SH2 domain of GRB2. (Schlaepfer et al. (1999) Signaling through focal adhesion kinase. Prog Biophys Mol Biol, 71, 435-478.) In addition to assembling a variety of proteins, FAK and PYK2 also play important roles by phosphorylating key substrates such as paxillin and CAS. (Bellis et al. (1995) Characterization of tyrosine phosphorylation of paxillin in vitro by focal adhesion kinase. J Biol Chem, 270, 17437-17441; Li, X. and Earp, H. S. (1997) Paxillin is tyrosine-phosphorylated by and preferentially associates with the calcium-dependent tyrosine kinase in rat liver epithelial cells. J Biol Chem, 272, 14341-14348.) Tyrosine phosphorylation of paxillin and CAS creates a new binding site for SH2 adaptor proteins. For example, paxillin binds to and is phosphorylated by PYK2 in hematopoietic cells. (McShan et al. (2002) Csk homologous kinase associates with RAFTK/Pyk2 in breast cancer cells and negatively regulates its activation and breast cancer cell migration. Internat. J. Oncology 21:197-205.)


Furthermore, expression of PYK2 and FAK was observed in breast cancer cells, and it was reported that PYK2 participates in intracellular signaling upon heregulin (HRG) stimulation and promotes breast carcinoma invasion. CHK acted as a negative regulator of PYK2, significantly reducing the migration of PYK2 expressing breast cancer cells. (McShan et al. (2002) Internat. J. Oncology 21:197-205.)


Methods of identifying a compound that binds to and/or modulates the activity of PYK2 are described in Duong et al., PCT/US98/02797, WO 98/35056, where the method involves contacting the compound and PYK2 and determining if binding has occurred. If binding has occurred, the activity of the bound PYK2 can be compared to the activity of PYK2 which is not bound to the compound to determine if the compound modulates PYK2 activity. (p.2, lines 9-15) The compounds identified are indicated to be useful in the prevention or teatment of osteoporosis, inflammation, and other conditions dependent on monocyte migration and invasion activities. (p.3, lines 1-5) This application is hereby incorporated by reference in its entirety.


SUMMARY OF THE INVENTION

The present invention concerns structural information about PYK2 kinase, crystals of PYK2 kinases with and without binding compounds, and the use of the PYK2 kinase crystals and structural information about the PYK2 kinase to develop PYK2 ligands, e.g., inhibitors.


Thus, in a first aspect, the invention concerns a method for determining the orientation of compounds that bind to PYK2 and/or identifying binding compounds by determining the orientation of at least one compound bound to PYK2 in co-crystals of PYK2 with binding compound. The method also characterizes the binding of a PYK2 binding compound bound to PYK2. In particular embodiments, the method can also involve one or more of: identifying as molecular scaffolds one or more compounds that bind weakly (with low or very low affinity) to a binding site of PYK2 kinase and have molecular weight less than 350 daltons; determining activity of the compounds or molecular scaffolds against PYK2 (activity can also be determined against 1, 2, 3, or more additional kinases; scaffolds preferably have low activity); determining the orientation of at least one molecular scaffold in co-crystals with PYK2 kinase; identifying chemical structures of one or more of the molecular scaffolds that, when modified, alter the binding affinity or binding specificity or both between the molecular scaffold and the PYK2 kinase; synthesizing or otherwise obtaining a ligand in which one or more of the chemical structures of the molecular scaffold is modified to provide a ligand that binds to the PYK2 kinase with altered binding affinity or binding specificity or both. Thus, the invention provides a method for identifying or developing PYK2 ligands, e.g., by identifying derivatives of PYK2 binding compounds, which may be molecular scaffolds, that have greater affinity and/or greater specificity for PYK2 than the parent compound. For example, the method can involve determining the binding orientation, identifying one or more chemical structures of one or more compounds that, when modified, alter the binding affinity and/or specificity; and synthesizing or otherwise obtaining a ligand in which one or more of those chemical structures is modified to provide a ligand that binds to PYK2 kinase with altered binding affinity or binding specificity or both. The method can also include identifying a molecular scaffold that binds to PYK2. Highly preferably the modified compound (ligand) also has altered activity (i.e., altered effect on the activity of PYK2 kinase).


The terms “PYK2 kinase” and “PYK2” mean an enzymatically active kinase that contains a portion at least 50 amino acid residues in length with greater than 90% amino acid sequence identity to at least a portion of PYK2 kinase domain (SEQ ID NO.: 1), for a maximal alignment over an equal length segment; or that contains a portion with greater than 90% amino acid sequence identity to SEQ ID NO.: 1 that retains binding to ATP. Preferably the sequence identity is at least 95, 97, 98, 99, or even 100% with SEQ ID NO. 1. Preferably the identity is over a portion of SEQ ID NO: 1 that is at least 100, 150, 200, 250, or 272 amino acid in length.


The term “PYK2 kinase domain” refers to a reduced length PYK2 (i.e., shorter than a full-length PYK2 by at least 100 amino acids at each of the N-terminus and the C-terminus) that includes the kinase catalytic region in PYK2, which is located near the center of the full-length molecule. Highly preferably for use in this invention, the kinase domain retains kinase activity, preferably at least 50% the level of kinase activity as compared to the native PYK2, more preferably at least 60, 70, 80, 90, or 100% of the native activity in a competitive kinase assay with ATP as a substrate and ATPγS as competitive inhibitor. An example is the PYK2 kinase domain of SEQ ID NO: 1.


As used herein, the terms “ligand” and “modulator” are used equivalently to refer to a compound that modulates the activity of a target biomolecule, e.g., an enzyme such as a kinase. Generally a ligand or modulator will be a small molecule, where “small molecule refers to a compound with a molecular weight of 1500 daltons or less, or preferably 1000 daltons or less, 800 daltons or less, or 600 daltons or less. Thus, an “improved ligand” is one that possesses better pharmacological and/or pharmacokinetic properties than a reference compound, where “better” can be defined by a person for a particular biological system or therapeutic use. In terms of the development of ligands from scaffolds, a ligand is a derivative of a scaffold.


In the context of binding compounds, molecular scaffolds, and ligands, the term “derivative” or “derivative compound” refers to a compound having a chemical structure that contains a common core chemical structure as a parent or reference compound, but differs by having at least one structural difference, e.g., by having one or more substituents added and/or removed and/or substituted, and/or by having one or more atoms substituted with different atoms. Unless clearly indicated to the contrary, the term “derivative” does not mean that the derivative is synthesized using the parent compound as a starting material or as an intermediate, although in some cases, the derivative may be synthesized from the parent.


Thus, the term “parent compound” refers to a reference compound for another compound, having structural features continued in the derivative compound. Often but not always, a parent compound has a simpler chemical structure than the derivative.


By “chemical structure” or “chemical substructure” is meant any definable atom or group of atoms that constitute a part of a molecule. Normally, chemical substructures of a scaffold or ligand can have a role in binding of the scaffold or ligand to a target molecule, or can influence the three-dimensional shape, electrostatic charge, and/or conformational properties of the scaffold or ligand.


The term “binds” in connection with the interaction between a target and a potential binding compound indicates that the potential binding compound preferentially associates with the target to a statistically significant degree as compared to association with proteins generally (i.e., non-specific binding). Thus, the term “binding compound” refers to a compound that has such a statistically significant association with a target molecule. Preferably a binding compound interacts with a specified target with a dissociation constant (kd) of 1 mM or less. A binding compound can bind with “low affinity”, “very low affinity”, “extremely low affinity”, “moderate affinity”, “moderately high affinity”, or “high affinity” as described herein.


In the context of compounds binding to a target, the term “greater affinity” indicates that the compound binds more tightly than a reference compound, or than the same compound in a reference condition, i.e., with a lower dissociation constant. In particular embodiments, the greater affinity is at least 2, 3, 4, 5, 8, 10, 50, 100, 200, 400, 500, 1000, or 10,000-fold greater affinity.


Also in the context of compounds binding to a biomolecular target, the term “greater specificity” indicates that a compound binds to a specified target to a greater extent than to another biomolecule or biomolecules that may be present under relevant binding conditions, where binding to such other biomolecules produces a different biological activity than binding to the specified target. Typically, the specificity is with reference to a limited set of other biomolecules, e.g., in the case of PYK2, other kinases or even other type of enzymes. In particular embodiments, the greater specificity is at least 2, 3, 4, 5, 8, 10, 50, 100, 200, 400, 500, or 1000-fold greater specificity.


As used in connection with binding of a compound with PYK2, the term “interact” indicates that the distance from a bound compound to a particular amino acid residue will be 5.0 angstroms or less, or 6 angstroms or less with one water molecule coordinated between the compound and the residue, or 9 angstroms or less with two water molecules coordinated between the compound and the residue. In particular embodiments, the distance from the compound to the particular amino acid residue is 4.5 angstroms or less, 4.0 angstroms or less, or 3.5 angstroms or less. Such distances can be determined, for example, using co-crystallography, or estimated using computer fitting of a compound in a PYK2 active site.


Reference to particular amino acid residues in PYK2 polypeptide residue number is defined by the numbering provided in Lev et al. (1995) “Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions” Nature 376:737-745.


In a related aspect, the invention provides a method for developing ligands specific for PYK2 kinase, where the method involves determining whether a derivative of a compound that binds to a plurality of kinases has greater specificity for the PYK2 kinase than the parent compound with respect to other kinases. In particular embodiments, the method also involves identifying such a compound that binds to a plurality of kinases.


As used herein in connection with binding compounds or ligands, the term “specific for PYK2 kinase”, “specific for PYK2” and terms of like import mean that a particular compound binds to the particular PYK2 kinase to a statistically greater extent than to other kinases that may be present in a particular organism. Also, where biological activity other than binding is indicated, the term “specific for a PYK2 kinase” indicates that a particular compound has greater biological activity associated with binding PYK2 than to other kinases. Preferably, the specificity is also with respect to other biomolecules (not limited to kinases) that may be present from an organism.


In another aspect, the invention provides a method for obtaining improved ligands binding to PYK2, where the method involves identifying a compound that binds to PYK2, determining whether that compound interacts with one or more of PYK2 residues 503, 505, 457, 488, 567, and 554, and determining whether a derivative of that compound binds to the PYK2 kinase with greater affinity or greater specificity or both than the parent binding compound. Binding with greater affinity or greater specificity or both than the parent compound indicates that the derivative is an improved ligand. This process can also be carried out in successive rounds of selection and derivatization and/or with multiple parent compounds to provide a compound or compounds with improved ligand characteristics. Likewise, the derivative compounds can be tested and selected to give high selectivity for the PYK2 kinase, or to give cross-reactivity to a particular set of targets, for example to a subset of kinases that includes PYK2. Certain compounds interact with the specified residues as 503, 505 (direct interacting), 457, 488, 567 (interact through 1 water), and 554 (interact through 2 waters). In particular embodiments, a molecular scaffold, binding compound, or ligand interacts with at least residues 503 and 505; residues 503 and 505 and at least one of residues 457, 488, and 567; at least residues 503, 505, 457, 488, and 567.


By “molecular scaffold” or “scaffold” is meant a simple target binding molecule to which one or more additional chemical moieties can be covalently attached, modified, or eliminated to form a plurality of molecules with common structural elements. The moieties can include, but are not limited to, a halogen atom, a hydroxyl group, a methyl group, a nitro group, a carboxyl group, or any other type of molecular group including, but not limited to, those recited in this application. Molecular scaffolds bind to at least one target molecule, preferably to a plurality of molecules in a target family, e.g., a protein family. Preferred target molecules include enzymes and receptors, as well as other proteins. Preferred characteristics of a scaffold can include binding at a target molecule binding site such that one or more substituents on the scaffold are situated in binding pockets in the target molecule binding site; having chemically tractable structures that can be chemically modified, particularly by synthetic reactions, e.g., so that a combinatorial library can be easily constructed; having chemical positions where moieties can be attached that do not interfere with binding of the scaffold to a protein binding site, such that the scaffold or library members can be modified to form ligands, to achieve additional desirable characteristics, e.g., enabling the ligand to be actively transported into cells and/or to specific organs, or enabling the ligand to be attached to a chromatography column for additional analysis. Thus, a molecular scaffold is an identified target binding molecule prior to modification to improve binding affinity and/or specificity, or other pharmacalogic properties.


The term “scaffold core” refers to the core structure of a molecular scaffold onto which various substituents can be attached. Thus, for a number of scaffold molecules of a particular chemical class, the scaffold core is common to all the scaffold molecules. In many cases, the scaffold core will consist of or include one or more ring structures.


By “binding site” is meant an area of a target molecule to which a ligand can bind non-covalently. Binding sites embody particular shapes and often contain multiple binding pockets present within the binding site. The particular shapes are often conserved within a class of molecules, such as a protein family. Binding sites within a class also can contain conserved structures such as, for example, chemical moieties, the presence of a binding pocket, and/or an electrostatic charge at the binding site or some portion of the binding site, all of which can influence the shape of the binding site.


By “binding pocket” is meant a specific volume within a binding site. A binding pocket can often be a particular shape, indentation, or cavity in the binding site. Binding pockets can contain particular chemical groups or structures that are important in the non-covalent binding of another molecule such as, for example, groups that contribute to ionic, hydrogen bonding, or van der Waals interactions between the molecules.


By “orientation”, in reference to a binding compound bound to a target molecule is meant the spatial relationship of the binding compound (which can be defined by reference to at least some of its consitituent atoms) to the binding site and/or atoms of the target molecule at least partially defining the binding site, typically including one or more binding pockets and/or atoms defining one or more binding pockets.


In the context of target molecules in this invention, the term “crystal” refers to a regular assemblage of a target molecule of a type suitable for X-ray crystallography. That is, the assemblage produces an X-ray diffraction pattern when illuminated with a beam of X-rays. Thus, a crystal is distinguished from an agglomeration or other complex of target molecule that does not give a diffraction pattern.


By “co-crystal” is meant a complex of the compound, molecular scaffold, or ligand bound non-covalently to the target molecule and present in a crystal form appropriate for analysis by X-ray or protein crystallography. In preferred embodiments the target molecule-ligand complex can be a protein-ligand complex.


The phrase “alter the binding affinity or binding specificity” refers to changing the binding constant of a first compound for another, and/or changing the level of binding of a first compound for a second compound as compared to the level of binding of the first compound for third compounds, respectively. For example, the binding specificity of a compound for a particular protein is increased if the relative level of binding to that particular protein is increased as compared to binding of the compound to unrelated proteins.


As used herein in connection with test compounds, binding compounds, and modulators (ligands), the term “synthesizing” and like terms means chemical synthesis from one or more precursor materials.


The phrase “chemical structure of the molecular scaffold is modified” means that a derivative molecule has a chemical structure that differs from that of the molecular scaffold but still contains common core chemical structural features. The phrase does not necessarily mean that the molecular scaffold is used as a precursor in the synthesis of the derivative.


By “assaying” is meant the creation of experimental conditions and the gathering of data regarding a particular result of the experimental conditions. For example, enzymes can be assayed based on their ability to act upon a detectable substrate. A compound or ligand can be assayed, for example, based on its ability to bind to a particular target molecule or molecules.


Certain compounds have been identified as molecular scaffolds and binding compounds for PYK2. Thus, in another aspect, the invention provides a method for identifying a ligand binding to PYK2, that includes determining whether a derivative compound that includes a core structure of Formula I as described herein binds to PYK2 with altered binding affinity or specificity or both as compared to a parent compound.


In reference to compounds of Formula I, the term “core structure” refers to the ring structure shown diagramatically as part of the description of compounds of Formula I, but excluding substituents. More generally, the term “core structure” refers to a characteristic chemical structure common to a set of compounds, especially a chemical structure than carries variable substituents in the compound set.


By a “set” of compounds is meant a collection of compounds. The compounds may or may not be structurally related.


In another aspect, structural information about PYK2 can also be used to assist in determining a struture for another kinase, e.g., FAK, by creating a homology model from an electronic representation of a PYK2 structure.


Typically creating such a homology model involves identifying conserved amino acid residues between PYK2 and the other kinase of interest; transferring the atomic coordinates of a plurality of conserved amino acids in the PYK2 structure to the corresponding amino acids of the other kinase to provide a rough structure of that kinase; and constructing structures representing the remainder of the other kinase using electronic representations of the structures of the remaining amino acid residues in the other kinase. In particular, coordinates from Table 1 or Table 2 for conserved residues can be used. Conserved residues in a binding site, e.g., PYK2 residues 503, 505, 457, 488, 567, and 554, can be used.


To assist in developing other portions of the kinase structure, the homology model can also utilize, or be fitted with, low resolution X-ray diffraction data from one or more crystals of the kinase, e.g., to assist in linking conserved residues and/or to better specify coordinates for terminal portions of a polypeptide.


The PYK2 structural information used can be for a variety of different PYK2 variants, including full-length wild type, naturally-occurring variants (e.g., allelic variants and splice variants), truncated variants of wild type or naturally-occuring variants, and mutants of full-length or truncated wild-type or naturally-occurring variants (that can be mutated at one or more sites). For example, in order to provide a PYK2 structure closer to a variety of other kinase structures, a mutated PYK2 that includes a mutation to a conserved residue in a binding site can be used (or a plurality of such mutations).


In another aspect, the invention provides a crystalline form of PYK2, which may be a reduced length PYK2 such as a PYK2 kinase domain, e.g., having atomic coordinates as described in Table 1 or Table 2. The crystalline form can contain one or more heavy metal atoms, for example, atoms useful for X-ray crystallography. The crystalline form can also include a binding compound in a co-crystal, e.g., a binding compound that interacts with one more more of PYK2 residues residues 503, 505, 457, 488, 567, and 554 or any two, any three, any four, any five, or all six of those residues, and can, for example, be a compound of Formula I. PYK2 crystals can be in various environments, e.g., in a crystallography plate, mounted for X-ray crystallography, and/or in an X-ray beam. The PYK2 may be of various forms, e.g., a wild-type, variant, truncated, and/or mutated form as described herein.


The invention further concerns co-crystals of PYK2, which may a reduced length PYK2, e.g., a PYK2 kinase domain, and a PYK2 binding compound. Advantageously, such co-crystals are of sufficient size and quality to allow structural determination of PYK2 to at least 3 Angstroms, 2.5 Angstroms, 2.0 Angstroms, or 1.8 Angstroms. The co-crystals can, for example, be in a crystallography plate, be mounted for X-ray crystallography and/or in an X-ray beam. Such co-crystals are beneficial, for example, for obtaining structural information concerning interaction between PYK2 and binding compounds.


PYK2 binding compounds can include compounds that interact with at least one of PYK2 residues 503, 505, 457, 488, 567, and 554, or any 2, 3, 4, 5, or all 6 of those residues. Exemplary compounds that bind to PYK2 include compounds of Formula I.


Likewise, in additional aspects, methods for obtaining PYK2 crystals and co-crystals are provided. In one aspect is provided a method for obtaining a crystal of PYK2 kinase domain, by subjecting PYK2 kinase domain protein at 5-20 mg/ml, preferably 8-12 mg/ml, to crystallization condition as described below, or conditions substantially equivalent thereto:

    • 2-10% (e.g., 8%) polyethylene glycol (PEG) 8000, 0.2 M sodium acetate, 0.1% sodium cacodylate pH 6.5, 20% glycerol.


      In general, the PYK2 will be in a solution containing the protein and suitable buffer. For example, the solution can contain 20 mM Tris-HCl ph 8.0, 150 mM NaCl, 14 mM β-mercaptoethanol (BME), and 1 mM dithiothreitol (DTT).


Crystallization conditions can be initially identified using a screening kit, such as a Hampton Research (Riverside, Calif.) screening kit 1 and/or 2. Conditions resulting in crystals can be selected and crystallization conditions optimized based on the demonstrated crystallization conditions. To assist in subsequent crystallography, the PYK2 can be seleno-methionine labeled. Also, as indicated above, the PYK2 may be any of various forms, e.g., truncated to provide a PYK2 kinase domain, which can be selected to be of various lengths.


In connection with chemical concentrations, the terms “approximately” and “about” mean±20% of the indicated value.


In the context of crystallization conditions, the term “substantially equivalent” means conditions in a range around identified crystallization conditions such that the concentrations of solution components are within ±10% of the stated value, pH is ±1 pH unit, preferable ±0.5 pH unit, polymer, salt, and buffer substitutions may be made so long as one of ordinary skill in the art of protein crystallization would recognize the solution with the substituted component as being likely to also result in crystallization (though re-optimization may be useful). An example of such a substitution can be the substitution of a particular size PEG with a slightly smaller or larger PEG product, or a mixture of both a larger and a smaller PEG product.


A related aspect provides a method for obtaining co-crystals of PYK2, which can be a reduced length PYK2, with a binding compound, by subjecting PYK2 protein at 5-20 mg/ml to crystallization conditions substantially equivalent to the conditions as described above, in the presence of binding compound, for a time sufficient for cystal development. The binding compound may be added at various concentrations depending on the nature of the compound, e.g., final concentration of 0.5 to 1.0 mM. In many cases, the binding compound will be in an organic solvent such as demethyl sulfoxide solution (DMSO). While not preferred, binding compound can also be soaked into a PYK2 crystal, e.g., using conventional techniques.


In another aspect, provision of compounds active on PYK2 also provides a method for modulating PYK2 activity by contacting PYK2 with a compound that binds to PYK2 and interacts with one more of residues residues 503, 505, 457, 488, 567, and 554, for example a compound of Formula I. The compound is preferably provided at a level sufficient to modulate the activity of PYK2 by at least 10%, more preferably at least 20%, 30%, 40%, or 50%. In many embodiments, the compound will be at a concentration of about 1 μM, 100 μM, or 1 mM, or in a range of 1-100 nM, 100-500 nM, 500-1000 nM, 1-100 μM, 100-500 μM, or 500-1000 μM.


As used herein, the term “modulating” or “modulate” refers to an effect of altering a biological activity, especially a biological activity associated with a particular biomolecule such as PYK2. For example, an agonist or antagonist of a particular biomolecule modulates the activity of that biomolecule, e.g., an enzyme.


The term “PYK2 activity” refers to a biological activity of PYK2, particularly including kinase activity.


In the context of the use, testing, or screening of compounds that are or may be modulators, the term “contacting” means that the compound(s) are caused to be in sufficient proximity to a particular molecule, complex, cell, tissue, organism, or other specified material that potential binding interactions and/or chemical reaction between the compound and other specified material can occur.


In a related aspect, the invention provides a method for treating a patient suffering from or at risk of a disease or condition for which modulation of PYK2 activity provides a therapeutic or prophylactic effect, e.g., a disease or condition characterized by abnormal PYK2 kinase activity, where the method involves administering to the patient a compound that interacts with at least 2, or three or more of PYK2 residues residues 503, 505, 457, 488, 567, and 554 (e.g., a compound of Formula I).


Specific diseases or disorders which might be treated or prevented cells include: myasthenia gravis; neuroblastoma; disorders caused by neuronal toxins such as cholera toxin, pertusis toxin, or snake venom; acute megakaryocytic myelosis; thrombocytopenia; those of the central nervous system such as seizures, stroke, head trauma, spinal cord injury, hypoxia-induced nerve cell damage such as in cardiac arrest or neonatal distress, epilepsy, neurodegenerative diseases such as Alzheimer's disease, Huntington's disease and Parkinson's disease, dementia, muscle tension, depression, anxiety, panic disorder, obsessive-compulsive disorder, post-traumatic stress disor-der, schizophrenia, neuroleptic malignant syndrome, and Tourette's syndrome. Conditions that may be treated by PYK2 inhibitors include epilepsy, schizophrenia, extreme hyperactivity in children, chronic pain, and acute pain. Examples of conditions that may be treated by PYK2 enhancers (for example a phosphatase inhibitor) include stroke, Alzheimer's, Parkinson's, other neurodegenerative diseases, and migraine.


Preferred disorders include epilepsy, stroke, schizophrenia, and Parkinson's disorder, as there is a well established relationship between these disorders and the function of potassium channels.


In addition, PYK2 can act as a target for therapeutics for treating cell proliferative diseases. Thus, in certain embodiments, the disease or condition is a proliferative disease or neoplasia, such as benign or malignant tumors, psoriasis, leukemias (such as myeloblastic leukemia), lymphoma, prostate cancer, liver cancer, breast cancer, sarcoma, neuroblastima, Wilm's tumor, bladder cancer, thyroid cancer, neoplasias of the epithelialorigin such as mammacarcinoma, a cancer of hematopoietic cells, or a chronic inflammatory disease or condition, resulting, for example, from a persistent infection (e.g., tuberculosis, syphilis, fungal infection), from prolonged exposure to endogenous (e.g., elevated plasma lipids) or exogenous (e.g., silica, asbestos, cigarette tar, surgical sutures) toxins, and from autoimmune reactions (e.g., rheumatoid arthritis, systemic lupus erythrymatosis, multiple sclerosis, psoriasis). Thus, chronic inflammatory diseases include many common medical conditions, such as rheumatoid arthritis, restenosis, psoriasis, multiple sclerosis, surgical adhesions, tuberculosis, and chronic inflammatory lung and airway diseases, such as asthma pheumoconiosis, chronic obstructive pulmonary disease, nasal polyps, and pulmonary fibrosis. PYK2 modulators may also be useful in inhibiting development of hematomous plaque and restinosis, in controlling restinosis, as anti-metastatic agents, in treating diabetic complications, as immunosuppressants, and in control of angiogenesis to the extent a PYK2 kinase is involved in a particular disease or condition.


As crystals of PYK2 have been developed and analyzed, another aspect concerns an electronic representation of PYK2 (which may be a reduced length PYK2), for example, an electronic representation containing atomic coordinate representations corresponding to the coordinates listed for PYK2 in Table 1 or Table 2, or a schematic representation such as one showing secondary structure and/or chain folding, and may also show conserved active site residues. The PYK2 may be wild type, an allelic variant, a mutant form, or a modifed form, e.g., as described herein.


The electronic representation can also be modified by replacing electronic representations of particular residues with electronic representations of other residues. Thus, for example, an electronic representation containing atomic coordinate representations corresponding to the coordinates for PYK2 listed in Table 1 or Table 2 can be modified by the replacement of coordinates for a particular conserved residue in a binding site by a different amino acid. Likewise, a PYK2 representation can be modified by the respective substitutions, insertions, and/or deletions of amino acid residues to provide a representation of a structure for FAK kinase. Following a modification or modifications, the representation of the overall structure can be adjusted to allow for the known interactions that would be affected by the modification or modifications. In most cases, a modification involving more than one residue will be performed in an iterative manner.


In addition, an electronic representation of a PYK2 binding compound or a test compound in the binding site can be included, e.g., a compound of Formula I.


Likewise, in a related aspect, the invention concerns an electronic representation of a portion of a PYK2 kinase, a binding site (which can be an active site) or kinase domain, for example, residues 419-691. A binding site or kinase domain can be represented in various ways, e.g., as representations of atomic coordinates of residues around the binding site and/or as a binding site surface contour, and can include representations of the binding character of particular residues at the binding site, e.g., conserved residues. As for electronic representations of PYK2, a binding compound or test compound may be present in the binding site; the binding site may be of a wild type, variant, mutant form, or modified form of PYK2.


In yet another aspect, the structural information of PYK2 can be used in a homology model (based on PYK2) for another kinase (such as FAK), thus providing an electronic representation of a PYK2 based homology model for a kinase. For example, the homology model can utilize atomic coordinates from Table 1 for conserved amino acid residues. In particular embodiments; atomic coordinates for a wild type, variant, modified form, or mutated form of PYK2 can be used, including, for example, wild type, variants, modified forms, and mutant forms as described herein. In particular, PYK2 structure provides a very close homology model for FAK kinases. Thus, in particular embodiments the invention provides PYK2-based homology models of FAK.


In still another aspect, the invention provides an electronic representation of a modified PYK2 crystal structure, that includes an electronic representation of the atomic coordinates of a modified PYK2. In an exemplary embodiment, atomic coordinates of Table 1 or Table 2 can be modified by the replacement of atomic coordinates for a particular amino acid with atomic coordinates for a different amino acid. Modifications can include substitutions, deletions (e.g., C-terminal and/or N-terminal detections), insertions (internal, C-terminal, and/or N-terminal) and/or side chain modifications.


In another aspect, the PYK2 structural information provides a method for developing useful biological agents based on PYK2, by analyzing a PYK2 structure to identify at least one sub-structure for forming the biological agent. Such sub-structures can include epitopes for antibody formation, and the method includes developing antibodies against the epitopes, e.g., by injecting an epitope presenting composition in a mammal such as a rabbit, guinea pig, pig, goat, or horse. The sub-structure can also include a mutation site at which mutation is expected to or is known to alter the activity of the PYK2, and the method includes creating a mutation at that site. Still further, the sub-structure can include an attachment point for attaching a separate moiety, for example, a peptide, a polypeptide, a solid phase material (e.g., beads, gels, chromatographic media, slides, chips, plates, and well surfaces), a linker, and a label (e.g., a direct label such as a fluorophore or an indirect label, such as biotin or other member of a specific binding pair). The method can include attaching the separate moiety.


In another aspect, the invention provides a method for identifying potential PYK2, binding compounds by fitting at least one electronic representation of a compound in an electronic representation of a PYK2 binding site. The representation of the binding site may be part of an electronic representation of a larger portion(s) or all of a PYK2 molecule or may be a representation of only the binding site or active site. The electronic representation may be as described above or otherwise described herein.


In particular embodiments, the method involves fitting a computer representation of a compound from a computer database with a computer representation of the active site of a PYK2 kinase, and involves removing a computer representation of a compound complexed with the PYK2 molecule and identifying compounds that best fit the active site based on favorable geometric fit and energetically favorable complementary interactions as potential binding compounds.


In other embodiments, the method involves modifying a computer representation of a compound complexed with a PYK2 molecule, by the deletion or addition or both of one or more chemical groups; fitting a computer representation of a compound from a computer database with a computer representation of the active site of the PYK2 molecule; and identifying compounds that best fit the active site based on favorable geometric fit and energetically favorable complementary interactions as potential binding compounds.


In still other embodiments, the method involves removing a computer representation of a compound complexed with a PYK2 kinase, and searching a database for compounds having structural similarity to the complexed compound using a compound searching computer program or replacing portions of the complexed compound with similar chemical structures using a compound construction computer program.


Fitting a compound can include determining whether a compound will interact with one or more of PYK2 residues residues 503, 505, 457, 488, 567, and 554. Compounds selected for fitting or that are complexed with PYK2 can, for example, be compounds of Formula I.


In another aspect, the invention concerns a method for attaching a PYK2 kinase binding compound to an attachment component, as well as a method for indentifying attachment sites on a PYK2 kinase binding compound. The method involves identifying energetically allowed sites for attachment of an attachment component for the binding compound bound to a binding site of PYK2; and attaching the compound or a derivative thereof to the attachment component at the energetically allowed site.


As used in connection with binding compounds, an “attachment component” refers to a moiety that is attached to a binding compound for adding a functionality other than binding with the target molecule and that does not prevent such binding. Examples include direct and indirect labels, linkers, and hapten and other specific recognition moieties. Linkers (including traceless linkers) can be incorporated, for example, for attachment to a solid phase or to another molecule or other moiety. Such attachment can be formed by synthesizing the compound or derivative on the linker attached to a solid phase medium e.g., in a combinatorial synthesis in a plurality of compound. Likewise, the attachment to a solid phase medium can provide an affinity medium (e.g., for affinity chromatography). Labels can be a directly detectable label such as a fluorophore, or an indirectly detectable such as a member of a specific binding pair, e.g., biotin.


The ability to identify energentically allowed sites on a PYK2 kinase binding compound also, in a related aspect, provides modified binding compounds that have linkers attached, for example, compounds of Formula I, preferably at an energetically allowed site for binding of the modified compound to PYK2. The linker can be attached to an attachment component as described above.


Another aspect concerns a modified PYK2 polypeptide that includes a modification that makes the modified PYK2 more similar than native PYK2 to another kinase, and can also include other mutations or other modifications. In various embodiments, the polypeptide includes a full-length PYK2 polypeptide, includes a modified PYK2 binding site, includes at least 20, 30, 40, 50, 60, 70, or 80 contiguous amino acid residues derived from PYK2 including a conserved site.


Still another aspect of the invention concerns a method for developing a ligand for a kinase that includes conserved residues matching any one, 2, 3, 4, 5, or 6 of PYK2 residues 503, 505, 457, 488, 567, and 554, by determining whether a compound of Formula I binds to the kinase. The method can also include determining whether the compound modulates the activity of the kinase. Preferably the kinase has at least 50, 55, 60, or 70% identity over an equal length kinase domain segment.


In particular embodiments, the determining includes computer fitting the compound in a binding site of the kinase and/or the method includes forming a co-crystal of the kinase and the compound. Such co-crystals can be used for determing the binding orientation of the compound with the kinase and/or provide structural information on the kinase, e.g., on the binding site and interacting amino acid residues. Such binding orientation and/or other structural information can be accomplished using X-ray crystallography.


Reference to “matching” of a specified conserved amino acid residue in a kinase domain means that in a maximal alignment of the amino acid sequences of that kinase domain with a different kinase domain, there is an amino acid residue aligned with the specified residue that is either the same amino acid or represents a conservative substitution. Preferably, the matching amino acid residue is within 5 angstroms rms in an overlay of crystal structure atomic coordinates for backbone atoms.


The invention also provides compounds that bind to and/or modulate (e.g., inhibit) PYK2, e.g., PYK2 kinase activity. Accordingly, in aspects and embodiments involving PYK2 binding compounds, molecular scaffolds, and ligands or modulators, the compound is a weak binding compound; a moderate binding compound; a strong binding compound; the compound interacts with one or more of PYK2 residues 503, 505, 457, 488, 567, and 554; the compound is a small molecule; the compound binds to a plurality of different kinases (e.g., at least 3, 5, 10, 15, 20 different kinases). In particular embodiments, the invention concerns compounds of Formula I, as described below.


Thus, in certain embodiments, the invention concerns compounds of Formula I:
embedded image

where:

    • R1 is hydrogen, trifluormethyl, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroaralkyl, or NR16R17;
    • R2 is hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroaralkyl, —C(X)R20, C(X)NR16R17, or —S(O2)R21;
    • R3 is hydrogen, trifluoromethyl, optionally substituted alkoxyl, optionally substituted thioalkoxy, optionally substituted amine, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl;
    • R16 and R17 are independently hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroaralkyl;
    • R20 is hydroxyl, optionally substituted lower alkoxy, optionally substituted amine, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl;
    • R21 is optionally substituted lower alkoxy, optionally substituted amine, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl;
    • X=O, or S.
    • Y=S, O, NR16R17, —C(X)R20, or optionally substituted alkyl.


In Formula I and the descriptions of substituents, subscripts and superscripts are to be regarded as equivalent.


In certain embodiments involving compounds of Formula I, X and Y are 0; X is O and Y is S; X is O and Y is NR16R17; X is O and Y is —C(X)R20; X is S and Y is O; X is S and Y is S; X is S and Y is and Y is NR16R17; X is S and Y is —C(X)R20.


In certain embodiments, X=O, Y=O, and R1 is hydrogen; X=O, Y=O, and R2 is hydrogen; X=O, Y=S, and R1 is hydrogen; X=O, Y=S, and R is hydrogen; X=O, Y=NR16R17, and R1 is hydrogen; X=O, Y=S, and R2 is hydrogen; X=O, Y=N R16R17, and R2 is hydrogen; X=O, Y=—C(X)R20, and R1 is hydrogen; X=O, Y=—C(X)R20, and R2 is hydrogen; X=O, Y=optionally substituted alkyl, and R1 is hydrogen; X=O, Y=optionally substituted alkyl, and R2 is hydrogen.


In certain embodiments, X=S, Y=O, and R1 is hydrogen; X=S, Y=O, and R2 is hydrogen; X=S, Y=S, and R1 is hydrogen; X=S, Y=S, and R2 is hydrogen; X=S, Y=NR16R17, and R1 is hydrogen; X=S, Y=S. and R2 is hydrogen; X=S, Y=N R=6R7, and R2 is hydrogen; X=S, Y=C(X)R20, and R1 is hydrogen; X=S, Y=—C(X)R20, and R2 is hydrogen; X=S. Y=optionally substituted alkyl, and R1 is hydrogen; X=S. Y=optionally substituted alkyl, and R1 is hydrogen.


In certain embodiments, R1 is hydrogen, optionally substituted lower alkyl, optionally substituted cycloalkyl, or NR16R17.


In certain embodiments, R2 is hydrogen, optionally substituted lower alkyl, optionally substituted cycloalkyl, C(X)NR16R17, or —S(O2)R21.


An additional aspect of this invention relates to pharmaceutical formulations, that include a therapeutically effective amount of a compound of Formula I and at least one pharmaceutically acceptable carrier or excipient. The composition can include a plurality of different pharmacalogically active compounds.


“Halo” or “Halogen”—alone or in combination means all halogens, that is, chloro (Cl), fluoro (F), bromo (Br), iodo (I).


“Hydroxyl” refers to the group —OH.


“Thiol” or “mercapto” refers to the group —SH.


“Alkyl”—alone or in combination means an alkane-derived radical containing from 1 to 20, preferably 1 to 15, carbon atoms (unless specifically defined). It is a straight chain alkyl, branched alkyl or cycloalkyl. Preferably, straight or branched alkyl groups containing from 1-15, more preferably 1 to 8, even more preferably 1-6, yet more preferably 1-4 and most preferably 1-2, carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, t-butyl and the like. The term “lower alkyl” is used herein to describe the straight chain alkyl groups described immediately above. Preferably, cycloalkyl groups are monocyclic, bicyclic or tricyclic ring systems of 3-8, more preferably 3-6, ring members per ring, such as cyclopropyl, cyclopentyl, cyclohexyl, adamantyl and the like. Alkyl also includes a straight chain or branched alkyl group that contains or is interrupted by a cycloalkyl portion. The straight chain or branched alkyl group is attached at any available point to produce a stable compound. Examples of this include, but are not limited to, 4-(isopropyl)-cyclohexylethyl or 2-methyl-cyclopropylpentyl. A substituted alkyl is a straight chain alkyl, branched alkyl, or cycloalkyl group defined previously, independently substituted with 1 to 3 groups or substituents of halo, hydroxy, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, acyloxy, aryloxy, heteroaryloxy, amino optionally mono- or di-substituted with alkyl, aryl or heteroaryl groups, amidino, urea optionally substituted with alkyl, aryl, heteroaryl or heterocyclyl groups, aminosulfonyl optionally N-mono- or N,N-di-substituted with alkyl, aryl or heteroaryl groups, alkylsulfonylamino, arylsulfonylamino, heteroarylsulfonylamino, alkylcarbonylamino, arylcarbonylamino, heteroarylcarbonylamino, or the like.


“Alkenyl”—alone or in combination means a straight, branched, or cyclic hydrocarbon containing 2-20, preferably 2-17, more preferably 2-10, even more preferably 2-8, most preferably 2-4, carbon atoms and at least one, preferably 1-3, more preferably 1-2, most preferably one, carbon to carbon double bond. In the case of a cycloalkyl group, conjugation of more than one carbon to carbon double bond is not such as to confer aromaticity to the ring. Carbon to carbon double bonds may be either contained within a cycloalkyl portion, with the exception of cyclopropyl, or within a straight chain or branched portion. Examples of alkenyl groups include ethenyl, propenyl, isopropenyl, butenyl, cyclohexenyl, cyclohexenylalkyl and the like. A substituted alkenyl is the straight chain alkenyl, branched alkenyl or cycloalkenyl group defined previously, independently substituted with 1 to 3 groups or substituents of halo, hydroxy, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, acyloxy, aryloxy, heteroaryloxy, amino optionally mono- or di-substituted with alkyl, aryl or heteroaryl groups, amidino, urea optionally substituted with alkyl, aryl, heteroaryl or heterocyclyl groups, aminosulfonyl optionally N-mono- or N,N-di-substituted with alkyl, aryl or heteroaryl groups, alkylsulfonylamino, arylsulfonylamino, heteroarylsulfonylamino, alkylcarbonylamino, arylcarbonylamino, heteroarylcarbonylamino, carboxy, alkoxycarbonyl, aryloxycarbonyl, heteroaryloxycarbonyl, or the like attached at any available point to produce a stable compound.


“Alkynyl”—alone or in combination means a straight or branched hydrocarbon containing 2-20, preferably 2-17, more preferably 2-10, even more preferably 2-8, most preferably 2-4, carbon atoms containing at least one, preferably one, carbon to carbon triple bond. Examples of alkynyl groups include ethynyl, propynyl, butynyl and the like. A substituted alkynyl refers to the straight chain alkynyl or branched alkenyl defined previously, independently substituted with 1 to 3 groups or substituents of halo, hydroxy, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, acyloxy, aryloxy, heteroaryloxy, amino optionally mono- or di-substituted with alkyl, aryl or heteroaryl groups, amidino, urea optionally substituted with alkyl, aryl, heteroaryl or heterocyclyl groups, aminosulfonyl optionally N-mono- or N,N-di-substituted with alkyl, aryl or heteroaryl groups, alkylsulfonylamino, arylsulfonylamino, heteroarylsulfonylamino, alkylcarbonylamino, arylcarbonylamino, heteroarylcarbonylamino, or the like attached at any available point to produce a stable compound.


“Alkyl alkenyl” refers to a group —R—CR′═CR′″ R″″, where R is lower alkyl, or substituted lower alkyl, R′, R′″, R″″ may independently be hydrogen, halogen, lower alkyl, substituted lower alkyl, acyl, aryl, substituted aryl, hetaryl, or substituted hetaryl as defined below.


“Alkyl alkynyl” refers to a groups —RCCR′ where R is lower alkyl or substituted lower alkyl, R′ is hydrogen, lower alkyl, substituted lower alkyl, acyl, aryl, substituted aryl, hetaryl, or substituted hetaryl as defined below.


“Alkoxy” denotes the group —OR, where R is lower alkyl, substituted lower alkyl, acyl, aryl, substituted aryl, aralkyl, substituted aralkyl, heteroalkyl, heteroarylalkyl, cycloalkyl, substituted cycloalkyl, cycloheteroalkyl, or substituted cycloheteroalkyl as defined.


“Alkylthio” or “thioalkoxy” denotes the group —SR, —S(O)n=1-2—R, where R is lower alkyl, substituted lower alkyl, aryl, substituted aryl, aralkyl or substituted aralkyl as defined herein.


“Acyl” denotes groups —C(O)R, where R is hydrogen, lower alkyl substituted lower alkyl, aryl, substituted aryl and the like as defined herein.


“Aryloxy” denotes groups —OAr, where Ar is an aryl, substituted aryl, heteroaryl, or substituted heteroaryl group as defined herein.


“Amino” or substituted amine denotes the group NRR′, where R and R′ may independently by hydrogen, lower alkyl, substituted lower alkyl, aryl, substituted aryl, hetaryl, or substituted heteroaryl as defined herein, acyl or sulfonyl.


“Amido” denotes the group —C(O)NRR′, where R and R′ may independently by hydrogen, lower alkyl, substituted lower alkyl, aryl, substituted aryl, hetaryl, substituted hetaryl as defined herein.


“Carboxyl” denotes the group —C(O)OR, where R is hydrogen, lower alkyl, substituted lower alkyl, aryl, substituted aryl, hetaryl, and substituted hetaryl as defined herein.


“Aryl”—alone or in combination means phenyl or naphthyl optionally carbocyclic fused with a cycloalkyl of preferably 5-7, more preferably 5-6, ring members and/or optionally substituted with 1 to 3 groups or substituents of halo, hydroxy, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, acyloxy, aryloxy, heteroaryloxy, amino optionally mono- or di-substituted with alkyl, aryl or heteroaryl groups, amidino, urea optionally substituted with alkyl, aryl, heteroaryl or heterocyclyl groups, aminosulfonyl optionally N-mono- or N,N-di-substituted with alkyl, aryl or heteroaryl groups, alkylsulfonylamino, arylsulfonylamino, heteroarylsulfonylamino, alkylcarbonylamino, arylcarbonylamino, heteroarylcarbonylamino, or the like.


“Substituted aryl” refers to aryl optionally substituted with one or more functional groups, e.g., halogen, lower alkyl, lower alkoxy, alkylthio, acetylene, amino, amido, carboxyl, hydroxyl, aryl, aryloxy, heterocycle, heteroaryl, substituted heteroaryl, nitro, cyano, thiol, sulfamido and the like.


“Heterocycle” refers to a saturated, unsaturated, or aromatic carbocyclic group having a single ring (e.g., morpholino, pyridyl or furyl) or multiple condensed rings (e.g., naphthpyridyl, quinoxalyl, quinolinyl, indolizinyl or benzo[b]thienyl) and having at least one hetero atom, such as N, O or S, within the ring, which can optionally be unsubstituted or substituted with, e.g., halogen, lower alkyl, lower alkoxy, alkylthio, acetylene, amino, amido, carboxyl, hydroxyl, aryl, aryloxy, heterocycle, hetaryl, substituted hetaryl, nitro, cyano, thiol, sulfamido and the like.


“Heteroaryl”—alone or in combination means a monocyclic aromatic ring structure containing 5 or 6 ring atoms, or a bicyclic aromatic group having 8 to 10 atoms, containing one or more, preferably 1-4, more preferably 1-3, even more preferably 1-2, heteroatoms independently selected from the group O, S, and N, and optionally substituted with 1 to 3 groups or substituents of halo, hydroxy, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, acyloxy, aryloxy, heteroaryloxy, amino optionally mono- or di-substituted with alkyl, aryl or heteroaryl groups, amidino, urea optionally substituted with alkyl, aryl, heteroaryl or heterocyclyl groups, aminosulfonyl optionally N-mono- or N,N-di-substituted with alkyl, aryl or heteroaryl groups, alkylsulfonylamino, arylsulfonylamino, heteroarylsulfonylamino, alkylcarbonylamino, arylcarbonylamino, heteroarylcarbonylamino, or the like. Heteroaryl is also intended to include oxidized S or N, such as sulfinyl, sulfonyl and N-oxide of a tertiary ring nitrogen. A carbon or nitrogen atom is the point of attachment of the heteroaryl ring structure such that a stable aromatic ring is retained. Examples of heteroaryl groups are pyridinyl, pyridazinyl, pyrazinyl, quinazolinyl, purinyl, indolyl, quinolinyl, pyrimidinyl, pyrrolyl, oxazolyl, thiazolyl, thienyl, isoxazolyl, oxathiadiazolyl, isothiazolyl, tetrazolyl, imidazolyl, triazinyl, furanyl, benzofuryl, indolyl and the like. A substituted heteroaryl contains a substituent attached at an available carbon or nitrogen to produce a stable compound.


“Heterocyclyl”—alone or in combination means a non-aromatic cycloalkyl group having from 5 to 10 atoms in which from 1 to 3 carbon atoms in the ring are replaced by heteroatoms of O, S or N, and are optionally benzo fused or fused heteroaryl of 5-6 ring members and/or are optionally substituted as in the case of cycloalkyl. Heterocycyl is also intended to include oxidized S or N, such as sulfinyl, sulfonyl and N-oxide of a tertiary ring nitrogen. The point of attachment is at a carbon or nitrogen atom. Examples of heterocyclyl groups are tetrahydrofuranyl, dihydropyridinyl, piperidinyl, pyrrolidinyl, piperazinyl, dihydrobenzofuryl, dihydroindolyl, and the like. A substituted hetercyclyl contains a substituent nitrogen attached at an available carbon or nitrogen to produce a stable compound.


“Substituted heteroaryl” refers to a heterocycle optionally mono or poly substituted with one or more functional groups, e.g., halogen, lower alkyl, lower alkoxy, alkylthio, acetylene, amino, amido, carboxyl, hydroxyl, aryl, aryloxy, heterocycle, substituted heterocycle, hetaryl, substituted hetaryl, nitro, cyano, thiol, sulfamido and the like.


“Aralkyl” refers to the group —R—Ar where Ar is an aryl group and R is lower alkyl or substituted lower alkyl group. Aryl groups can optionally be unsubstituted or substituted with, e.g., halogen, lower alkyl, alkoxy, alkylthio, acetylene, amino, amido, carboxyl, hydroxyl, aryl, aryloxy, heterocycle, substituted heterocycle, hetaryl, substituted hetaryl, nitro, cyano, thiol, sulfamido and the like.


“Heteroalkyl” refers to the group -R-Het where Het is a heterocycle group and R is a lower alkyl group. Heteroalkyl groups can optionally be unsubstituted or substituted with e.g., halogen, lower alkyl, lower alkoxy, alkylthio, acetylene, amino, amido, carboxyl, aryl, aryloxy, heterocycle, substituted heterocycle, hetaryl, substituted hetaryl, nitro, cyano, thiol, sulfamido and the like.


“Heteroarylalkyl” refers to the group -R-HetAr where HetAr is an heteroaryl group and R lower alkyl or substituted lower alkyl. Heteroarylalkyl groups can optionally be unsubstituted or substituted with, e.g., halogen, lower alkyl, substituted lower alkyl, alkoxy, alkylthio, acetylene, aryl, aryloxy, heterocycle, substituted heterocycle, hetaryl, substituted hetaryl, nitro, cyano, thiol, sulfamido and the like.


“Cycloalkyl” refers to a divalent cyclic or polycyclic alkyl group containing 3 to 15 carbon atoms.


“Substituted cycloalkyl” refers to a cycloalkyl group comprising one or more substituents with, e.g., halogen, lower alkyl, substituted lower alkyl, alkoxy, alkylthio, acetylene, aryl, aryloxy, heterocycle, substituted heterocycle, hetaryl, substituted hetaryl, nitro, cyano, thiol, sulfamido and the like.


“Cycloheteroalkyl” refers to a cycloalkyl group wherein one or more of the ring carbon atoms is replaced with a heteroatom (e.g., N, O, S or P).


“Substituted cycloheteroalkyl” refers to a cycloheteroalkyl group as herein defined which contains one or more substituents, such as halogen, lower alkyl, lower alkoxy, alkylthio, acetylene, amino, amido, carboxyl, hydroxyl, aryl, aryloxy, heterocycle, substituted heterocycle, hetaryl, substituted hetaryl, nitro, cyano, thiol, sulfamido and the like.


“Alkyl cycloalkyl” denotes the group —R-cycloalkyl where cycloalkyl is a cycloalkyl group and R is a lower alkyl or substituted lower alkyl. Cycloalkyl groups can optionally be unsubstituted or substituted with e.g. halogen, lower alkyl, lower alkoxy, alkylthio, acetylene, amino, amido, carboxyl, hydroxyl, aryl, aryloxy, heterocycle, substituted heterocycle, hetaryl, substituted hetaryl, nitro, cyano, thiol, sulfamido and the like.


“Alkyl cycloheteroalkyl” denotes the group -R-cycloheteroalkyl where R is a lower alkyl or substituted lower alkyl. Cycloheteroalkyl groups can optionally be unsubstituted or substituted with e.g. halogen, lower alkyl, lower alkoxy, alkylthio, amino, amido, carboxyl, acetylene, hydroxyl, aryl, aryloxy, heterocycle, substituted heterocycle, hetaryl, substituted hetaryl, nitro, cyano, thiol, sulfamido and the like.


In addition to compounds (including molecular scaffolds) of Formula I as described herein, additional types of compounds can be used as modulators (e.g., inhibitors) of PYK2, and for development of further PYK2 ligands. In particular, compounds of the types described in Bremer et al., U.S. application Ser. No. 10/664,421, filed Sep. 16, 2003, and Bremer et al., U.S. Application 60/503,277, filed Sep. 15, 2003, both of which are incorporated herein in their entireties, including drawings.


An additional aspect of this invention relates to pharmaceutical formulations, that include a therapeutically effective amount of a compound of Formula I, and at least one pharmaceutically acceptable carrier or excipient. The composition can include a plurality of different pharmacalogically active compounds.


Additional aspects and embodiments will be apparent from the following Detailed Description and from the claims.




BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a ribbon diagram schematic representation of PYK2 active site.




DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The Tables will first be briefly described.


Table 1 provides atomic coordinates for human PYK2 kinase domain. In this table and in Table 2, the various columns in the lines beginning with “ATOM” have the following content, beginning with the left-most column:

  • ATOM: Refers to the relevant moiety for the table row.
  • Atom number: Refers to the arbitrary atom number designation within the coordinate table.
  • Atom Name: Identifier for the atom present at the particular coordinates.
  • Chain ID: Chain ID refers to one monomer of the protein in the crystal, e.g., chain “A”, or to other compound present in the crystal, e.g., HOH for water, and L for a ligand or binding compound. Multiple copies of the protein monomers will have different chain Ids.
  • Residue Number: The amino acid residue number in the chain.
  • X, Y, Z: Respectively are the X, Y, and Z coordinate values.
  • Occupancy: Describes the fraction of time the atom is observed in the crystal. For example, occupancy=1 means that the atom is present all the time; occupancy=0.5 indicates that the atom is present in the location 50% of the time.
  • B-factor: A measure of the thermal motion of the atom.
  • Element: Identifier for the element.


In addition, the lines that begin with “ANISOU” present the anisotropic temperature factors. The anisotropic temperture factors are related to the corresponding isotropic temperature factors (B-factors) in the “ATOM” lines in the table. Following “ANISOU”, the next 4 entries are “Atom number”, “Atom name”, Residue name”, and “Residue number”, and are the same as the respective corresponding “ATOM” line entries. The next 6 entries are the anisotropic temperature factors U(1,1 l), U(2,2), U(3,3), U1,2), U(1,3), and U(2,3) in order (scaled by a factor of 104 (Angstroms2) and presented as integers).


Table 2 provides atomic coordinates for PYK2 with (5′-adenylylimidodiphosphate) AMPPNP in the binding site.


Table 3 provides an alignment of kinase domains for several kinases, including human PYK2, providing identification of residues conserved between various members of the set. The residue number is for PYK2.


Table 4 provides the nucleic acid and amino acid sequences for human PYK2 kinase domain.


Table 5 provides representative assay results for kinase activity of PYK2 kinase domain in the presence of ATP and in the presence of several ATP analogs.


I. Introduction


The present invention concerns the use of PYK2 kinase structures, structural information, and related compositions for identifying compounds that modulate PYK2 kinase activity and for determining structuctures of other kinases.


PYK2 kinase is involved in a number of disease conditions. For example, as indicated in the Background above, PYK2 functions as a neurotransmitter regulator, and thus modulation of PYK2 can enhance or inhibit such signaling. In addition, due to the involve ment of PYK2 in linking the G protein-coupled pathway with the sos/grb pathway for MAP kinase signal tranduction activation. This may involve the binding of src. Thus, PYK2 can also affect cell proliferation.


Exemplary Diseases Associated with PYK2.


As indicated above, modulation of PYK2 activity is beneficial for treatment or prevention of a variety of diseases and conditions, such as those relating to its roles in signal transduction. As a result, PYK2 inhibitors have therapeutic applications in the treatment of proliferative diseases, such as various cancers, osteoporosis, and inflammation, as well as other disease states, such as those referenced in the Summary above and those otherwise indicated herein. PYK2, sceening for PYK2 modulators, and methods for using PYK2 modulators, along with related assays, techniques, and data, are described, for example, in Duong et al., PCT Application No. PCT/US98/02792, PCT Publication WO/98/35056; Schlessinger et al., PCT Application No. PCT/US98/27871, PCT Publication WO 00/40971; Lev, et al., PCT Application PCT/US97/22565, PCT Publication WO 98/26054; Lev et al., PCT Application PCT/US95/15846, PCT Publication WO 96/18738, which are incorporated herein in their entireties.


Osteoporosis


Activation of osteoclasts is initiated by adhesion of osteoclast to bone surface. Cytoskeletal rearrangement results in formation of a sealing zone and a polarized ruffled membrane. Pyk2 was found to be highly expressed in osteoclasts. (Duong et al. (1998) “Pyk2 in osteoclasts is an adhesion kinase, localized in the sealing zone, activated by ligation of alpha(v)beta3 integrin, and phosphorylated by Src kinase.” J. Clin. Invest. 102:881-892.) Studies indicate that Pyk2 is involved in the adhesion-induced formation of the sealing zone and is required for osteoclast bone resorption. (Duong and Rodan (1998) Integrin-mediated signaling in the regulation of osteoclast adhesion and activation.” Front. Biosci. 3:757-768.)


Proliferative Diseases


In another example, modulation of PYK2 has been indicated for treatment of proliferative diseases such as cancer, e.g., for cancers of hematopoietic cells, among others. (Avraham et al., PCT Publication 98/07870, which is incorporated herein by reference in its entirety.)


Inflammation


Modulation of PYK2 has also been linked with treatment of inflammatory response-related diseases, generally those that have an aberrent inflammatory response, for example, inflammatory bowel diseases such as ulcerative colitis and Crohn's Disease, and connective tissue diseases such as rheumatoid arthritis, system lupus erythrmatosus, progressive systemin sclerosis, mixed connective tissue disease, and Sjogren's syndrome. (Schlessinger et al., PCT Publication WO 00/40971, which is incorporated herein by reference in its entirety.) A pathologic inflammatory response may be a continuation of an acute inflammatory response, or a prolonged low-grade inflammatory response, and typically results in tissue damage. Macrophage and T-cell recruitment, and process such as cytokine production can directly contribute to inflammatory pathogenesis.


II. Crystalline PYK2 Kinase


Crystalline PYK2 kinases (e.g., human PYK2) include native crystals, kinase domain crystals, derivative crystals, and co-crystals. The crystals generally comprise substantially pure polypeptides corresponding to the PYK2 kinase polyeptide in crystalline form. In connection with the development of inhibitors of PYK2 kinase function, it is advantageous to use PYK2 kinase domain for structural determination, because use of the reduced sequence simplifies structure determination. To be useful for this purpose, the kinase domain should be active and/or retain native-type binding, thus indicating that the kinase domain takes on substantially normal 3D structure.


It is to be understood that the crystalline kinases and kinase domains useful in the the invention are not limited to naturally occurring or native kinase. Indeed, the crystals include crystals of mutants of native kinases. Mutants of native kinases are obtained by replacing at least one amino acid residue in a native kinase with a different amino acid residue, or by adding or deleting amino acid residues within the native polypeptide or at the N- or C-terminus of the native polypeptide, and have substantially the same three-dimensional structure as the native kinase from which the mutant is derived.


By having substantially the same three-dimensional structure is meant having a set of atomic structure coordinates that have a root-mean-square deviation of less than or equal to about 2 Å when superimposed with the atomic structure coordinates of the native kinase from which the mutant is derived when at least about 50% to 100% of the Ca atoms of the native kinase or kinase domain are included in the superposition.


Amino acid substitutions, deletions and additions which do not significantly interfere with the three-dimensional structure of the kinase will depend, in part, on the region of the kinase where the substitution, addition or deletion occurs. In highly variable regions of the molecule, non-conservative substitutions as well as conservative substitutions may be tolerated without significantly disrupting the three-dimensional, structure of the molecule. In highly conserved regions, or regions containing significant secondary structure, conservative amino acid substitutions are preferred. Such conserved and variable regions can be identified by sequence alignment of PYK2 with other kinases. Such alignment of PYK2 kinase domain along with a number of other kinase domains is provided in Table 3.


Conservative amino acid substitutions are well known in the art, and include substitutions made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphipathic nature of the amino acid residues involved. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; amino acids with uncharged polar head groups having similar hydrophilicity values include the following: leucine, isoleucine, valine; glycine, alanine; asparagine, glutamine; serine, threonine; phenylalanine, tyrosine. Other conservative amino acid substitutions are well known in the art.


For kinases obtained in whole or in part by chemical synthesis, the selection of amino acids available for substitution or addition is not limited to the genetically encoded amino acids. Indeed, the mutants described herein may contain non-genetically encoded amino acids. Conservative amino acid substitutions for many of the commonly known non-genetically encoded amino acids are well known in the art. Conservative substitutions for other amino acids can be determined based on their physical properties as compared to the properties of the genetically encoded amino acids.


In some instances, it may be particularly advantageous or convenient to substitute, delete and/or add amino acid residues to a native kinase in order to provide convenient cloning sites in cDNA encoding the polypeptide, to aid in purification of the polypeptide, and for crystallization of the polypeptide. Such substitutions, deletions and/or additions which do not substantially alter the three dimensional structure of the native kinase domain will be apparent to those of ordinary skill in the art.


It should be noted that the mutants contemplated herein need not all exhibit kinase activity. Indeed, amino acid substitutions, additions or deletions that interfere with the kinase activity but which do not significantly alter the three-dimensional structure of the domain are specifically contemplated by the invention. Such crystalline polypeptides, or the atomic structure coordinates obtained therefrom, can be used to identify compounds that bind to the native domain. These compounds can affect the activity of the native domain.


The derivative crystals of the invention can comprise a crystalline kinase polypeptide in covalent association with one or more heavy metal atoms. The polypeptide may correspond to a native or a mutated kinase. Heavy metal atoms useful for providing derivative crystals include, by way of example and not limitation, gold, mercury, selenium, etc.


The co-crystals of the invention generally comprise a crystalline kinase domain polypeptide in association with one or more compounds. The association may be covalent or non-covalent. Such compounds include, but are not limited to, cofactors, substrates, substrate analogues, inhibitors, allosteric effectors, etc.


Exemplary mutations for PYK2 family kinases include the insertion of a sequence having the FAK sequence shown in the FIG. 3 alignment between PYK2 residues 482 and 483. Such insertion is useful, for example, to assist in using PYK2 kinases to model FAK kinase. Mutations at other sites can likewise be carried out, e.g., to make a mutated PYK2 kinase more similar to another kinase for structure modeling and/or compound fitting purposes, such as a kinase in the kinase domain alignment in Table 3.


III. Three Dimensional Structure Determination Using X-ray Crystallography


X-ray crystallography is a method of solving the three dimensional structures of molecules. The structure of a molecule is calculated from X-ray diffraction patterns using a crystal as a diffraction grating. Three dimensional structures of protein molecules arise from crystals grown from a concentrated aqueous solution of that protein. The process of X-ray crystallography can include the following steps:

    • (a) synthesizing and isolating (or otherwise obtaining) a polypeptide;
    • (b) growing a crystal from an aqueous solution comprising the polypeptide with or without a modulator; and
    • (c) collecting X-ray diffraction patterns from the crystals, determining unit cell dimensions and symmetry, determining electron density, fitting the amino acid sequence of the polypeptide to the electron density, and refining the structure.


Production of Polypeptides


The native and mutated kinase polypeptides described herein may be chemically synthesized in whole or part using techniques that are well-known in the art (see, e.g., Creighton (1983) Biopolymers 22(1):49-58).


Alternatively, methods which are well known to those skilled in the art can be used to construct expression vectors containing the native or mutated kinase polypeptide coding sequence and appropriate transcriptional/translational control signals. These methods include in vitro recombinant DNA techniques, synthetic techniques and in vivo recombination/genetic recombination. See, for example, the techniques described in Maniatis, T (1989). Molecular cloning: A laboratory Manual. Cold Spring Harbor Laboratory, N.Y. Cold Spring Harbor Laboratory Press; and Ausubel, F. M. et al. (1994) Current Protocols in Molecular Biology. John Wiley & Sons, Secaucus, N.J.


A variety of host-expression vector systems may be utilized to express the kinase coding sequence. These include but are not limited to microorganisms such as bacteria transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing the kinase domain coding sequence; yeast transformed with recombinant yeast expression vectors containing the kinase domain coding sequence; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing the kinase domain coding sequence; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing the kinase domain coding sequence; or animal cell systems. The expression elements of these systems vary in their strength and specificities.


Depending on the host/vector system utilized, any of a number of suitable transcription and translation elements, including constitutive and inducible promoters, may be used in the expression vector. For example, when cloning in bacterial systems, inducible promoters such as pL of bacteriophage λ, plac, ptrp, ptac (ptrp-lac hybrid promoter) and the like may be used; when cloning in insect cell systems, promoters such as the baculovirus polyhedrin promoter may be used; when cloning in plant cell systems, promoters derived from the genome of plant cells (e.g., heat shock promoters; the promoter for the small subunit of RUBISCO; the promoter for the chlorophyll a/b binding protein) or from plant viruses (e.g., the 35S RNA promoter of CaMV; the coat protein promoter of TMV) may be used; when cloning in mammalian cell systems, promoters derived from the genorne of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter) may be used; when generating cell lines that contain multiple copies of the kinase domain DNA, SV4O-, BPV- and EBV-based vectors may be used with an appropriate selectable marker.


Exemplary methods describing methods of DNA manipulation, vectors, various types of cells used, methods of incorporating the vectors into the cells, expression techniques, protein purification and isolation methods, and protein concentration methods are disclosed in detail in PCT publication WO 96/18738. This publication is incorporated herein by reference in its entirety, including any drawings. Those skilled in the art will appreciate that such descriptions are applicable to the present invention and can be easily adapted to it.


Crystal Growth


Crystals are grown from an aqueous solution containing the purified and concentrated polypeptide by a variety of techniques. These techniques include batch, liquid, bridge, dialysis, vapor diffusion, and hanging and sitting drop methods. McPherson (1982) John Wiley, New York; McPherson (1990) Eur. J. Biochem. 189:1-23; Webber (1991) Adv. Protein Chem. 41:1-36, incorporated by reference herein in their entireties, including all figures, tables, and drawings.


The native crystals of the invention are, in general, grown by adding precipitants to the concentrated solution of the polypeptide. The precipitants are added at a concentration just below that necessary to precipitate the protein. Water is removed by controlled evaporation to produce precipitating conditions, which are maintained until crystal growth ceases.


For crystals of the invention, exemplary crystallization conditions are described in the Examples. Those of ordinary skill in the art will recognize that the exemplary crystallization conditions can be varied. Such variations may be used alone or in combination. In addition, other crystallization conditions may be found, e.g., by using crystallization screening plates to identify such other conditions. Those alternate conditions can then be optimized if needed to provide larger or better quality crystals.


Derivative crystals of the invention can be obtained by soaking native crystals in mother liquor containing salts of heavy metal atoms. Exemplary conditions for such soaking a native crystal utilizes a solution containing about 0.1 mM to about 5 mM thimerosal, 4-chloromeruribenzoic acid or KAu(CN)2 for about 2 hr to about 72 hr to provide derivative crystals suitable for use as isomorphous replacements in determining the X-ray crystal structure.


Co-crystals of the invention can be obtained by soaking a native crystal in mother liquor containing compound that binds the kinase, or can be obtained by co-crystallizing the kinase polypeptide in the presence of a binding compound.


In many cases, co-crystallization of kinase and binding compound can be accomplished using conditions identified for crystallizing the corresponding kinase without binding compound. It is advantageous if a plurality of different crystallization conditions have been identified for the kinase, and these can be tested to determine which condition gives the best co-crystals. It may also be benficial to optimize the conditions for co-crystallization. Alternatively, new crystallization conditions can be determined for obtaining co-crystals, e.g., by screening for crystallization and then optimizing those conditions. Exemplary co-crystallization conditions are provided in the Examples.


Determining Unit Cell Dimensions and the Three Dimensional Structure of a Polypeptide or Polypeptide Complex


Once the crystal is grown, it can be placed in a glass capillary tube or other mounting device and mounted onto a holding device connected to an X-ray generator and an X-ray detection device. Collection of X-ray diffraction patterns are well documented by those in the art. See, e.g., Ducruix and Geige, (1992), IRL Press, Oxford, England, and references cited therein. A beam of X-rays enters the crystal and then diffracts from the crystal. An X-ray detection device can be utilized to record the diffraction patterns emanating from the crystal. Although the X-ray detection device on older models of these instruments is a piece of film, modern instruments digitally record X-ray diffraction scattering. X-ray sources can be of various types, but advantageously, a high intensity source is used, e.g., a synchrotron beam source.


Methods for obtaining the three dimensional structure of the crystalline form of a peptide molecule or molecule complex are well known in the art. See, e.g., Ducruix and Geige, (1992), IRL Press, Oxford, England, and references cited therein. The following are steps in the process of determining the three dimensional structure of a molecule or complex from X-ray diffraction data.


After the X-ray diffraction patterns are collected from the crystal, the unit cell dimensions and orientation in the crystal can be determined. They can be determined from the spacing between the diffraction emissions as well as the patterns made from these emissions. The unit cell dimensions are characterized in three dimensions in units of Angstroms (one Å=10−10 meters) and by angles at each vertices. The symmetry of the unit cell in the crystals is also characterized at this stage. The symmetry of the unit cell in the crystal simplifies the complexity of the collected data by identifying repeating patterns. Application of the symmetry and dimensions of the unit cell is described below.


Each diffraction pattern emission is characterized as a vector and the data collected at this stage of the method determines the amplitude of each vector. The phases of the vectors can be determined using multiple techniques. In one method, heavy atoms can be soaked into a crystal, a method called isomorphous replacement, and the phases of the vectors can be determined by using these heavy atoms as reference points in the X-ray analysis. (Otwinowski, (1991), Daresbury, United Kingdom, 80-86). The isomorphous replacement method usually utilizes more than one heavy atom derivative.


In another method, the amplitudes and phases of vectors from a crystalline polypeptide with an already determined structure can be applied to the amplitudes of the vectors from a crystalline polypeptide of unknown structure and consequently determine the phases of these vectors. This second method is known as molecular replacement and the protein structure which is used as a reference should have a closely related structure to the protein of interest. (Naraza (1994) Proteins 11:281-296). Thus, the vector information from a kinase of known structure, such as those reported herein, are useful for the molecular replacement analysis of another kinase with unknown structure.


Once the phases of the vectors describing the unit cell of a crystal are determined, the vector amplitudes and phases, unit cell dimensions, and unit cell symmetry can be used as terms in a Fourier transform function. The Fourier transform function calculates the electron density in the unit cell from these measurements. The electron density that describes one of the molecules or one of the molecule complexes in the unit cell can be referred to as an electron density map. The amino acid structures of the sequence or the molecular structures of compounds complexed with the crystalline polypeptide may then be fitted to the electron density using a variety of computer programs. This step of the process is sometimes referred to as model building and can be accomplished by using computer programs such as Turbo/FRODO or “O”. (Jones (1985) Methods in Enzymology 115:157-171).


A theoretical electron density map can then be calculated from the amino acid structures fit to the experimentally determined electron density. The theoretical and experimental electron density maps can be compared to one another and the agreement between these two maps can be described by a parameter called an R-factor. A low value for an R-factor describes a high degree of overlapping electron density between a theoretical and experimental electron density map.


The R-factor is then minimized by using computer programs that refine the theoretical electron density map. A computer program such as X-PLOR can be used for model refinement by those skilled in the art. (Brünger (1992) Nature 355:472-475.) Refinement may be achieved in an iterative process. A first step can entail altering the conformation of atoms defined in an electron density map. The conformations of the atoms can be altered by simulating a rise in temperature, which will increase the vibrational frequency of the bonds and modify positions of atoms in the structure. At a particular point in the atomic perturbation process, a force field, which typically defines interactions between atoms in terms of allowed bond angles and bond lengths, Van der Waals interactions, hydrogen bonds, ionic interactions, and hydrophobic interactions, can be applied to the system of atoms. Favorable interactions may be described in terms of free energy and the atoms can be moved over many iterations until a free energy minimum is achieved. The refinement process can be iterated until the R-factor reaches a minimum value.


The three dimensional structure of the molecule or molecule complex is described by atoms that fit the theoretical electron density characterized by a minimum R-value. A file can then be created for the three dimensional structure that defines each atom by coordinates in three dimensions. An example of such a structural coordinate file is shown in Table 1.


IV. Structures of PYK2


The present invention provides high-resolution three-dimensional structures and atomic structure coordinates of crystalline PYK2 kinase domain and PYK2 kinase domain co-complexed with exemplary binding compounds as determined by X-ray crystallography. The methods used to obtain the structure coordinates are provided in the examples. The atomic structure coordinates of crystalline PYK2 are listed in Table 1, and atomic coordinates for PYK2 co-crystallized with AMPPNP are provided in Table 2. Co-crystal coordinates can be used in the same way, e.g., in the various aspects described herein, as coordinates for the protein by itself.


Those having skill in the art will recognize that atomic structure coordinates as determined by X-ray crystallography are not without error. Thus, it is to be understood that any set of structure coordinates obtained for crystals of PYK2, whether native crystals, kinase domain crystals, derivative crystals or co-crystals, that have a root mean square deviation (“r.m.s.d.”) of less than or equal to about 1.5 Å when superimposed, using backbone atoms (N, Cα, C and 0), on the structure coordinates listed in Table 1 (or Table 2) are considered to be identical with the structure coordinates listed in the Table 1 (or Table 2) when at least about 50% to 100% of the backbone atoms of PYK2 or PYK2 kinase domain are included in the superposition.


V. Uses of the Crystals and Atomic Structure Coordinates


The crystals of the invention, and particularly the atomic structure coordinates obtained therefrom, have a wide variety of uses. For example, the crystals described herein can be used as a starting point in any of the methods of use for kinases known in the art or later developed. Such methods of use include, for example, identifying molecules that bind to the native or mutated catalytic domain of kinases. The crystals and structure coordinates are particularly useful for identifying ligands that modulate kinase activity as an approach towards developing new therapeutic agents. In particular, the crystals and structural information are useful in methods for ligand development utilizing molecular scaffolds.


The structure coordinates described herein can be used as phasing models or homology models for determining the crystal structures of additional kinases, as well as the structures of co-crystals of such kinases with ligands such as inhibitors, agonists, antagonists, and other molecules. The structure coordinates, as well as models of the three-dimensional structures obtained therefrom, can also be used to aid the elucidation of solution-based structures of native or mutated kinases, such as those obtained via NMR.


VI. Electronic Representations of Kinase Structures


Structural information of kinases or portions of kinases (e.g., kinase active sites) can be represented in many different ways. Particularly useful are electronic representations, as such representations allow rapid and convenient data manipulations and structural modifications. Electronic representations can be embedded in many different storage or memory media, frequently computer readable media. Examples include without limitations, computer random access memory (RAM), floppy disk, magnetic hard drive, magnetic tape (analog or digital), compact disk (CD), optical disk, CD-ROM, memory card, digital video disk (DVD), and others. The storage medium can be separate or part of a computer system. Such a computer system may be a dedicated, special purpose, or embedded system, such as a computer system that forms part of an X-ray crystallography system, or may be a general purpose computer (which may have data connection with other equipment such as a sensor device in an X-ray crystallographic system. In many cases, the information provided by such electronic representations can also be represented physically or visually in two or three dimensions, e.g., on paper, as a visual display (e.g., on a computer monitor as a two-dimensional or pseudo-three-dimensional image) or as a three-dimensional physical model. Such physical representations can also be used, alone or in connection with electronic representations. Exemplary useful representations include, but are not limited to, the following:


Atomic Coordinate Representation


One type of representation is a list or table of atomic coordinates representing positions of particular atoms in a molecular structure, portions of a structure, or complex (e.g., a co-crystal). Such a representation may also include additional information, for example, information about occupancy of particular coordinates. One such atomic coordinate representation contains the coordinate information of Table 1 in electronic form.


Energy Surface or Surface of Interaction Representation


Another representation is an energy surface representation, e.g., of an active site or other binding site, representing an energy surface for electronic and steric interactions. Such a representation may also include other features. An example is the inclusion of representation of a particular amino acid residue(s) or group(s) on a particular amino acid residue(s), e.g., a residue or group that can participate in H-bonding or ionic interaction. Such energy surface representations can be readily generated from atomic coordinate representations using any of a variety of available computer programs.


Structural Representation


Still another representation is a structural representation, i.e., a physical representation or an electronic representation of such a physical representation. Such a structural representation includes representations of relative positions of particular features of a molecule or complex, often with linkage between structural features. For example, a structure can be represented in which all atoms are linked; atoms other than hydrogen are linked; backbone atoms, with or without representation of sidechain atoms that could participate in significant electronic interaction, are linked; among others. However, not all features need to be linked. For example, for structural representations of portions of a molecule or complex, structural features significant for that feature may be represented (e.g., atoms of amino acid residues that can have significant binding interation with a ligand at a binding site. Those amino acid residues may not be linked with each other.


A structural representation can also be a schematic representation. For example, a schematic representation can represent secondary and/or tertiary structure in a schematic manner. Within such a schematic representation of a polypeptide, a particular amino acid residue(s) or group(s) on a residue(s) can be included, e.g., conserved residues in a binding site, and/or residue(s) or group(s) that may interact with binding compounds. Electronic structural representations can be generated, for example, from atomic coordinate information using computer programs designed for that function and/or by constructing an electronic representation with manual input based on interpretation of another form of structural information. Physical representations can be created, for example, by printing an image of a computer-generated image, by constructing a 3D model.


VII. Structure Determination for Kinases with Unknown Structure Using Structural Coordinates


Structural coordinates, such as those set forth in Table 1, can be used to determine the three dimensional structures of kinases with unknown structure. The methods described below can apply structural coordinates of a polypeptide with known structure to another data set, such as an amino acid sequence, X-ray crystallographic diffraction data, or nuclear magnetic resonance (NMR) data. Preferred embodiments of the invention relate to determining the three dimensional structures of other serine/threonine kinases, and related polypeptides.


Structures Using Amino Acid Homology


Homology modeling is a method of applying structural coordinates of a polypeptide of known structure to the amino acid sequence of a polypeptide of unknown structure. This method is accomplished using a computer representation of the three dimensional structure of a polypeptide or polypeptide complex, the computer representation of amino acid sequences of the polypeptides with known and unknown structures, and standard computer representations of the structures of amino acids. Homology modeling generally involves (a) aligning the amino acid sequences of the polypeptides with and without known structure; (b) transferring the coordinates of the conserved amino acids in the known structure to the corresponding amino acids of the polypeptide of unknown structure; refining the subsequent three dimensional structure; and (d) constructing structures of the rest of the polypeptide. One skilled in the art recognizes that conserved amino acids between two proteins can be determined from the sequence alignment step in step (a).


The above method is well known to those skilled in the art. (Greer (1985) Science 228:1055; Blundell et al. A(1988) Eur. J. Biochem. 172:513. An exemplary computer program that can be utilized for homology modeling by those skilled in the art is the Homology module in the Insight II modeling package distributed by Accelerys Inc.


Alignment of the amino acid sequence is accomplished by first placing the computer representation of the amino acid sequence of a polypeptide with known structure above the amino acid sequence of the polypeptide of unknown structure. Amino acids in the sequences are then compared and groups of amino acids that are homologous (e.g., amino acid side chains that are similar in chemical nature—aliphatic, aromatic, polar, or charged) are grouped together. This method will detect conserved regions of the polypeptides and account for amino acid insertions or deletions. Such alignment and/or can also be performed fully electronically using sequence alignment and analyses software.


Once the amino acid sequences of the polypeptides with known and unknown structures are aligned, the structures of the conserved amino acids in the computer representation of the polypeptide with known structure are transferred to the corresponding amino acids of the polypeptide whose structure is unknown. For example, a tyrosine in the amino acid sequence of known structure may be replaced by a phenylalanine, the corresponding homologous amino acid in the amino acid sequence of unknown structure.


The structures of amino acids located in non-conserved regions are to be assigned manually by either using standard peptide geometries or molecular simulation techniques, such as molecular dynamics. The final step in the process is accomplished by refining the entire structure using molecular dynamics and/or energy minimization. The homology modeling method is well known to those skilled in the art and has been practiced using different protein molecules. For example, the three dimensional structure of the polypeptide corresponding to the catalytic domain of a serine/threonine protein kinase, myosin light chain protein kinase, was homology modeled from the cAMP-dependent protein kinase catalytic subunit. (Knighton et al. (1992) Science 258:130-135.)


Structures Using Molecular Replacement


Molecular replacement is a method of applying the X-ray diffraction data of a polypeptide of known structure to the X-ray diffraction data of a polypeptide of unknown sequence. This method can be utilized to define the phases describing the X-ray diffraction data of a polypeptide of unknown structure when only the amplitudes are known. X-PLOR is a commonly utilized computer software package used for molecular replacement. Brunger (1992) Nature 355:472-475. AMORE is another program used for molecular replacement. Navaza (1994) Acta Crystallogr. A50:157-163. Preferably, the resulting structure does not exhibit a root-mean-square deviation of more than 3 Å.


A goal of molecular replacement is to align the positions of atoms in the unit cell by matching electron diffraction data from two crystals. A program such as X-PLOR can involve four steps. A first step can be to determine the number of molecules in the unit cell and define the angles between them. A second step can involve rotating the diffraction data to define the orientation of the molecules in the unit cell. A third step can be to translate the electron density in three dimensions to correctly position the molecules in the unit cell. Once the amplitudes and phases of the X-ray diffraction data is determined, an R-factor can be calculated by comparing electron diffraction maps calculated experimentally from the reference data set and calculated from the new data set. An R-factor between 30-50% indicates that the orientations of the atoms in the unit cell are reasonably determined by this method. A fourth step in the process can be to decrease the R-factor to roughly 20% by refining the new electron density map using iterative refinement techniques described herein and known to those or ordinary skill in the art.


Structures Using NMR Data


Structural coordinates of a polypeptide or polypeptide complex derived from X-ray crystallographic techniques can be applied towards the elucidation of three dimensional structures of polypeptides from nuclear magnetic resonance (NMR) data. This method is used by those skilled in the art. (Wuthrich, (1986), John Wiley and Sons, New York: 176-199; Pflugrath et al. (1986) J. Mol. Biol. 189:383-386; Kline et al. (1986) J. Mol. Biol. 189:377-382.) While the secondary structure of a polypeptide is often readily determined by utilizing two-dimensional NMR data, the spatial connections between individual pieces of secondary structure are not as readily determinable. The coordinates defining a three-dimensional structure of a polypeptide derived from X-ray crystallographic techniques can guide the NMR spectroscopist to an understanding of these spatial interactions between secondary structural elements in a polypeptide of related structure.


The knowledge of spatial interactions between secondary structural elements can greatly simplify Nuclear Overhauser Effect (NOE) data from two-dimensional NMR experiments. Additionally, applying the crystallographic coordinates after the determination of secondary structure by NMR techniques only simplifies the assignment of NOEs relating to particular amino acids in the polypeptide sequence and does not greatly bias the NMR analysis of polypeptide structure. Conversely, using the crystallographic coordinates to simplify NOE data while determining secondary structure of the polypeptide would bias the NMR analysis of protein structure.


VIII. Structure-Based Design of Modulators of Kinase Function Utilizing Structural Coordinates


Structure-based modulator design and identification methods are powerful techniques that can involve searches of computer databases containing a wide variety of potential modulators and chemical functional groups. The computerized design and identification of modulators is useful as the computer databases contain more compounds than the chemical libraries, often by an order of magnitude. For reviews of structure-based drug design and identification (see Kuntz et al. (1994), Acc. Chem. Res. 27:117; Guida (1994) Current Opinion in Struc. Biol. 4: 777; Colman (1994) Current Opinion in Struc. Biol. 4: 868).


The three dimensional structure of a polypeptide defined by structural coordinates can be utilized by these design methods, for example, the structural coordinates of Table 1. In addition, the three dimensional structures of kinases determined by the homology, molecular replacement, and NMR techniques described herein can also be applied to modulator design and identification methods.


For identifying modulators, structural information for a native kinase, in particular, structural information for the active site of the kinase, can be used. However, it may be advantageous to utilize structural information from one or more co-crystals of the kinase with one or more binding compounds. It can also be advantageous if the binding compound has a structural core in common with test compounds.


Design by Searching Molecular Data Bases


One method of rational design searches for modulators by docking the computer representations of compounds from a database of molecules. Publicly available databases include, for example:

    • a) ACD from Molecular Designs Limited
    • b) NCI from National Cancer Institute
    • c) CCDC from Cambridge Crystallographic Data Center
    • d) CAST from Chemical Abstract Service
    • e) Derwent from Derwent Information Limited
    • f) Maybridge from Maybridge Chemical Company LTD
    • g) Aldrich from Aldrich Chemical Company
    • h) Directory of Natural Products from Chapman & Hall


One such data base (ACD distributed by Molecular Designs Limited Information Systems) contains compounds that are synthetically derived or are natural products. Methods available to those skilled in the art can convert a data set represented in two dimensions to one represented in three dimensions. These methods are enabled by such computer programs as CONCORD from Tripos Associates or DE-Converter from Molecular Simulations Limited.


Multiple methods of structure-based modulator design are known to those in the art. (Kuntz et al., (1982), J. Mol. Biol. 162: 269; Kuntz et aZ., (1994), Acc. Chern. Res. 27: 117; Meng et al., (1992), J. Compt. Chem. 13: 505; Bohm, (1994), J. Comp. Aided Molec. Design 8: 623.)


A computer program widely utilized by those skilled in the art of rational modulator design is DOCK from the University of California in San Francisco. The general methods utilized by this computer program and programs like it are described in three applications below. More detailed information regarding some of these techniques can be found in the Accelerys User Guide, 1995. A typical computer program used for this purpose can perform a processes comprising the following steps or functions:

    • (a) remove the existing compound from the protein;
    • (b) dock the structure of another compound into the active-site using the computer program (such as DOCK) or by interactively moving the compound into the active-site;
    • (c) characterize the space between the compound and the active-site atoms;
    • (d) search libraries for molecular fragments which (i) can fit into the empty space between the compound and the active-site, and (ii) can be linked to the compound; and
    • (e) link the fragments found above to the compound and evaluate the new modified compound.


Part (c) refers to characterizing the geometry and the complementary interactions formed between the atoms of the active site and the compounds. A favorable geometric fit is attained when a significant surface area is shared between the compound and active-site atoms without forming unfavorable steric interactions. One skilled in the art would note that the method can be performed by skipping parts (d) and (e) and screening a database of many compounds.


Structure-based design and identification of modulators of kinase function can be used in conjunction with assay screening. As large computer databases of compounds (around 10,000 compounds) can be searched in a matter of hours or even less, the computer-based method can narrow the compounds tested as potential modulators of kinase function in biochemical or cellular assays.


The above descriptions of structure-based modulator design are not all encompassing and other methods are reported in the literature and can be used, e.g.:

    • (1) CAVEAT: Bartlett et al., (1989), in Chemical and Biological Problems in Molecular Recognition, Roberts, S. M.; Ley, S. V.; Campbell, M. M. eds.; Royal Society of Chemistry: Cambridge, pp.182-196.


(2) FLOG: Miller et al., (1994), J. Comp. Aided Molec. Design 8:153.


(3) PRO Modulator: Clark et al., (1995), J. Comp. Aided Molec. Design 9:13.


(4) MCSS: Miranker and Karplus, (1991), Proteins: Structure, Function, and Genetics 11:29.


(5) AUTODOCK: Goodsell and Olson, (1990), Proteins: Structure, Function, and Genetics 8:195.


(6) GRID: Goodford, (1985), J. Med. Chem. 28:849.


Design by Modifying Compounds in Complex with PYK2 Kinase


Another way of identifying compounds as potential modulators is to modify an existing modulator in the polypeptide active site. For example, the computer representation of modulators can be modified within the computer representation of a PYK2 active site. Detailed instructions for this technique can be found, for example, in the Accelerys User Manual, 1995 in LUDI. The computer representation of the modulator is typically modified by the deletion of a chemical group or groups or by the addition of a chemical group or groups.


Upon each modification to the compound, the atoms of the modified compound and active site can be shifted in conformation and the distance between the modulator and the active-site atoms may be scored along with any complementary interactions formed between the two molecules. Scoring can be complete when a favorable geometric fit and favorable complementary interactions are attained. Compounds that have favorable scores are potential modulators.


Design by Modifying the Structure of Compounds that Bind PYK2 Kinase


A third method of structure-based modulator design is to screen compounds designed by a modulator building or modulator searching computer program. Examples of these types of programs can be found in the Molecular Simulations Package, Catalyst. Descriptions for using this program are documented in the Molecular Simulations User Guide (1995). Other computer programs used in this application are ISIS/HOST, ISIS/BASE, ISIS/DRAW) from Molecular Designs Limited and UNITY from Tripos Associates.


These programs can be operated on the structure of a compound that has been removed from the active site of the three dimensional structure of a compound-kinase complex. Operating the program on such a compound is preferable since it is in a biologically active conformation.


A modulator construction computer program is a computer program that may be used to replace computer representations of chemical groups in a compound complexed with a kinase or other biomolecule with groups from a computer database. A modulator searching computer program is a computer program that may be used to search computer representations of compounds from a computer data base that have similar three dimensional structures and similar chemical groups as compound bound to a particular biomolecule.


A typical program can operate by using the following general steps:

    • (a) map the compounds by chemical features such as by hydrogen bond donors or acceptors, hydrophobic/lipophilic sites, positively ionizable sites, or negatively ionizable sites;
    • (b) add geometric constraints to the mapped features; and
    • (c) search databases with the model generated in (b).


Those skilled in the art also recognize that not all of the possible chemical features of the compound need be present in the model of (b). One can use any subset of the model to generate different models for data base searches.


Modulator Design Using Molecular Scaffolds


The present invention can also advantageously utilize methods for designing compounds, designated as molecular scaffolds, that can act broadly across families of molecules and/or for using a molecular scaffold to design ligands that target individual or multiple members of those families. In preferred embodiments, the molecules can be proteins and a set of chemical compounds can be assembled that have properties such that they are 1) chemically designed to act on certain protein families and/or 2) behave more like molecular scaffolds, meaning that they have chemical substructures that make them specific for binding to one or more proteins in a family of interest. Alternatively, molecular scaffolds can be designed that are preferentially active on an individual target molecule.


Useful chemical properties of molecular scaffolds can include one or more of the following characteristics, but are not limited thereto: an average molecular weight below about 350 daltons, or between from about 150 to about 350 daltons, or from about 150 to about 300 daltons; having a clogP below 3; a number of rotatable bonds of less than 4; a number of hydrogen bond donors and acceptors below 5 or below 4; a polar surface area of less than 50 Å2; binding at protein binding sites in an orientation so that chemical substituents from a combinatorial library that are attached to the scaffold can be projected into pockets in the protein binding site; and possessing chemically tractable structures at its substituent attachment points that can be modified, thereby enabling rapid library construction.


By “clog P” is meant the calculated log P of a compound, “P” referring to the partition coefficient between octanol and water.


The term “Molecular Polar Surface Area (PSA)” refers to the sum of surface contributions of polar atoms (usually oxygens, nitrogens and attached hydrogens) in a molecule. The polar surface area has been shown to correlate well with drug transport properties, such as intestinal absorption, or blood-brain barrier penetration.


Additional useful chemical properties of distinct compounds for inclusion in a combinatorial library include the ability to attach chemical moieties to the compound that will not interfere with binding of the compound to at least one protein of interest, and that will impart desirable properties to the library members, for example, causing the library members to be actively transported to cells and/or organs of interest, or the ability to attach to a device such as a chromatography column (e.g., a streptavidin column through a molecule such as biotin) for uses such as tissue and proteomics profiling purposes.


A person of ordinary skill in the art will realize other properties that can be desirable for the scaffold or library members to have depending on the particular requirements of the use, and that compounds with these properties can also be sought and identified in like manner. Methods of selecting compounds for assay are known to those of ordinary skill in the art, for example, methods and compounds described in U.S. Pat. Nos. 6,288,234, 6,090,912, 5,840,485, each of which is hereby incorporated by reference in its entirety, including all charts and drawings.


In various embodiments, the present invention provides methods of designing ligands that bind to a plurality of members of a molecular family, where the ligands contain a common molecular scaffold. Thus, a compound set can be assayed for binding to a plurality of members of a molecular family, e.g., a protein family. One or more compounds that bind to a plurality of family members can be identified as molecular scaffolds. When the orientation of the scaffold at the binding site of the target molecules has been determined and chemically tractable structures have been identified, a set of ligands can be synthesized starting with one or a few molecular scaffolds to arrive at a plurality of ligands, wherein each ligand binds to a separate target molecule of the molecular family with altered or changed binding affinity or binding specificity relative to the scaffold. Thus, a plurality of drug lead molecules can be designed to preferentially target individual members of a molecular family based on the same molecular scaffold, and act on them in a specific manner.


IX. Binding Assays


The methods of the present invention can involve assays that are able to detect the binding of compounds to a target molecule. Such binding is at a statistically significant level, preferably with a confidence level of at least 90%, more preferably at least 95, 97, 98, 99% or greater confidence level that the assay signal represents binding to the target molecule, i.e., is distinguished from background. Preferably controls are used to distinguish target binding from non-specific binding. The assays of the present invention can also include assaying compounds for low affinity binding to the target molecule. A large variety of assays indicative of binding are known for different target types and can be used for this invention. Compounds that act broadly across protein families are not likely to have a high affinity against individual targets, due to the broad nature of their binding. Thus, assays described herein allow for the identification of compounds that bind with low affinity, very low affinity, and extremely low affinity. Therefore, potency (or binding affinity) is not the primary, nor even the most important, indicia of identification of a potentially useful binding compound. Rather, even those compounds that bind with low affinity, very low affinity, or extremely low affinity can be considered as molecular scaffolds that can continue to the next phase of the ligand design process.


By binding with “low affinity” is meant binding to the target molecule with a dissociation constant (kd) of greater than 1 μM under standard conditions. By binding with “very low affinity” is meant binding with a kd of above about 100 μM under standard conditions. By binding with “extremely low affinity” is meant binding at a kd of above about 1 mM under standard conditions. By “moderate affinity” is meant binding with a kd of from about 200 nM to about 1 μM under standard conditions. By “moderately high affinity” is meant binding at a kd of from about 1 nM to about 200 nM. By binding at “high affinity” is meant binding at a kd of below about 1 nM under standard conditions. For example, low affinity binding can occur because of a poorer fit into the binding site of the target molecule or because of a smaller number of non-covalent bonds, or weaker covalent bonds present to cause binding of the scaffold or ligand to the binding site of the target molecule relative to instances where higher affinity binding occurs. The standard conditions for binding are at pH 7.2 at 37° C. for one hour. For example, 100 μl/well can be used in HEPES 50 mM buffer at pH 7.2, NaCl 15 mM, ATP 2 μM, and bovine serum albumin 1 ug/well, 37° C. for one hour.


Binding compounds can also be characterized by their effect on the activity of the target molecule. Thus, a “low activity” compound has an inhibitory concentration (IC50) or excitation concentration (EC50) of greater than 1 μM under standard conditions. By “very low activity” is meant an IC50 or EC50 of above 100 μM under standard conditions. By “extremely low activity” is meant an IC50 or EC50 of above 1 mM under standard conditions. By “moderate activity” is meant an IC50 or EC50 of 200 nM to 1 μM under standard conditions. By “moderately high activity” is meant an IC50 or EC50 of 1 nM to 200 nM. By “high activity” is meant an IC50 or EC50 of below 1 nM under standard conditions. The IC50 (or EC50) is defined as the concentration of compound at which 50% of the activity of the target molecule (e.g., enzyme or other protein) activity being measured is lost (or gained) relative to activity when no compound is present. Activity can be measured using methods known to those of ordinary skill in the art, e.g., by measuring any detectable product or signal produced by occurrence of an enzymatic reaction, or other activity by a protein being measured.


By “background signal” in reference to a binding assay is meant the signal that is recorded under standard conditions for the particular assay in the absence of a test compound, molecular scaffold, or ligand that binds to the target molecule. Persons of ordinary skill in the art will realize that accepted methods exist and are widely available for determining background signal.


By “standard deviation” is meant the square root of the variance. The variance is a measure of how spread out a distribution is. It is computed as the average squared deviation of each number from its mean. For example, for the numbers 1, 2, and 3, the mean is 2 and the variance is:
σ2=(1-2)2+(2-2)2+(3-2)23=0.667


To design or discover scaffolds that act broadly across protein families, proteins of interest can be assayed against a compound collection or set. The assays can preferably be enzymatic or binding assays. In some embodiments it may be desirable to enhance the solubility of the compounds being screened and then analyze all compounds that show activity in the assay, including those that bind with low affinity or produce a signal with greater than about three times the standard deviation of the background signal. The assays can be any suitable assay such as, for example, binding assays that measure the binding affinity between two binding partners. Various types of screening assays that can be useful in the practice of the present invention are known in the art, such as those described in U.S. Pat. Nos. 5,763,198, 5,747,276, 5,877,007, 6,243,980, 6,294,330, and 6,294,330, each of which is hereby incorporated by reference in its entirety, including all charts and drawings.


In various embodiments of the assays at least one compound, at least about 5%, at least about 10%, at least about 15%, at least about 20%, or at least about 25% of the compounds can bind with low affinity. In general, up to about 20% of the compounds can show activity in the screening assay and these compounds can then be analyzed directly with high-throughput co-crystallography, computational analysis to group the compounds into classes with common structural properties (e.g., structural core and/or shape and polarity characteristics), and the identification of common chemical structures between compounds that show activity.


The person of ordinary skill in the art will realize that decisions can be based on criteria that are appropriate for the needs of the particular situation, and that the decisions can be made by computer software programs. Classes can be created containing almost any number of scaffolds, and the criteria selected can be based on increasingly exacting criteria until an arbitrary number of scaffolds is arrived at for each class that is deemed to be advantageous.


Surface Plasmon Resonance


Binding parameters can be measured using surface plasmon resonance, for example, with a BIAcore® chip (Biacore, Japan) coated with immobilized binding components. Surface plasmon resonance is used to characterize the microscopic association and dissociation constants of reaction between an sFv or other ligand directed against target molecules. Such methods are generally described in the following references which are incorporated herein by reference. Vely F. et al., (2000) BIAcore® analysis to test phosphopeptide-SH2 domain interactions, Methods in Molecular Biology. 121:313-21; Liparoto et al., (1999) Biosensor analysis of the interleukin-2 receptor complex, Journal of Molecular Recognition. 12:316-21; Lipschultz et al., (2000) Experimental design for analysis of complex kinetics using surface plasmon resonance, Methods. 20(3):310-8; Malmqvist., (1999) BIACORE: an affinity biosensor system for characterization of biomolecular interactions, Biochemical Society Transactions 27:335-40; Alfthan, (1998) Surface plasmon resonance biosensors as a tool in antibody engineering, Biosensors & Bioelectronics. 13:653-63; Fivash et al., (1998) BIAcore for macromolecular interaction, Current Opinion in Biotechnology. 9:97-101; Price et al.; (1998) Summary report on the ISOBM TD-4 Workshop: analysis of 56 monoclonal antibodies against the MUC 1 mucin. Tumour Biology 19 Suppl 1:1-20; Malmqvist et al, (1997) Biomolecular interaction analysis: affinity biosensor technologies for functional analysis of proteins, Current Opinion in Chemical Biology. 1:378-83; O'Shannessy et al., (1996) Interpretation of deviations from pseudo-first-order kinetic behavior in the characterization of ligand binding by biosensor technology, Analytical Biochemistry. 236:275-83; Malmborg et al., (1995) BIAcore as a tool in antibody engineering, Journal of Immunological Methods. 183:7-13; Van Regenmortel, (1994) Use of biosensors to characterize recombinant proteins, Developments in Biological Standardization. 83:143-51; and O'Shannessy, (1994) Determination of kinetic rate and equilibrium binding constants for macromolecular interactions: a critique of the surface plasmon resonance literature, Current Opinions in Biotechnology. 5:65-71.


BIAcore® uses the optical properties of surface plasmon resonance (SPR) to detect alterations in protein concentration bound to a dextran matrix lying on the surface of a gold/glass sensor chip interface, a dextran biosensor matrix. In brief, proteins are covalently bound to the dextran matrix at a known concentration and a ligand for the protein is injected through the dextran matrix. Near infrared light, directed onto the opposite side of the sensor chip surface is reflected and also induces an evanescent wave in the gold film, which in turn, causes an intensity dip in the reflected light at a particular angle known as the resonance angle. If the refractive index of the sensor chip surface is altered (e.g., by ligand binding to the bound protein) a shift occurs in the resonance angle. This angle shift can be measured and is expressed as resonance units (RUs) such that 1000 RUs is equivalent to a change in surface protein concentration of 1 ng/mm2. These changes are displayed with respect to time along the y-axis of a sensorgram, which depicts the association and dissociation of any biological reaction.


High Throughput Screening (HTS) Assays


HTS typically uses automated assays to search through large numbers of compounds for a desired activity. Typically HTS assays are used to find new drugs by screening for chemicals that act on a particular enzyme or molecule. For example, if a chemical inactivates an enzyme it might prove to be effective in preventing a process in a cell which causes a disease. High throughput methods enable researchers to assay thousands of different chemicals against each target molecule very quickly using robotic handling systems and automated analysis of results.


As used herein, “high throughput screening” or “HTS” refers to the rapid in vitro screening of large numbers of compounds (libraries); generally tens to hundreds of thousands of compounds, using robotic screening assays. Ultra high-throughput Screening (uHTS) generally refers to the high-throughput screening accelerated to greater than 100,000 tests per day.


To achieve high-throughput screening, it is advantageous to house samples on a multicontainer carrier or platform. A multicontainer carrier facilitates measuring reactions of a plurality of candidate compounds simultaneously. Multi-well microplates may be used as the carrier. Such multi-well microplates, and methods for their use in numerous assays, are both known in the art and commercially available.


Screening assays may include controls for purposes of calibration and confirmation of proper manipulation of the components of the assay. Blank wells that contain all of the reactants but no member of the chemical library are usually included. As another example, a known inhibitor (or activator) of an enzyme for which modulators are sought, can be incubated with one sample of the assay, and the resulting decrease (or increase) in the enzyme activity used as a comparator or control. It will be appreciated that modulators can also be combined with the enzyme activators or inhibitors to find modulators which inhibit the enzyme activation or repression that is otherwise caused by the presence of the known the enzyme modulator. Similarly, when ligands to a sphingolipid target are sought, known ligands of the target can be present in control/calibration assay wells.


Measuring Enzymatic and Binding Reactions During Screening Assays


Techniques for measuring the progression of enzymatic and binding reactions, e.g., in multicontainer carriers, are known in the art and include, but are not limited to, the following.


Spectrophotometric and spectrofluorometric assays are well known in the art. Examples of such assays include the use of colorimetric assays for the detection of peroxides, as disclosed in Example 1(b) and Gordon, A. J. and Ford, R. A., (1972) The Chemist's Companion: A Handbook Of Practical Data, Techniques, And References, John Wiley and Sons, N.Y., Page 437.


Fluorescence spectrometry may be used to monitor the generation of reaction products. Fluorescence methodology is generally more sensitive than the absorption methodology. The use of fluorescent probes is well known to those skilled in the art. For reviews, see Bashford et al., (1987) Spectrophotometry and Spectrofluorometry: A Practical Approach, pp. 91-114, IRL Press Ltd.; and Bell, (1981) Spectroscopy In Biochemistry, Vol. I, pp. 155-194, CRC Press.


In spectrofluorometric methods, enzymes are exposed to substrates that change their intrinsic fluorescence when processed by the target enzyme. Typically, the substrate is nonfluorescent and is converted to a fluorophore through one or more reactions. As a non-limiting example, SMase activity can be detected using the Amplex® Red reagent (Molecular Probes, Eugene, Oreg.). In order to measure sphingomyelinase activity using Amplex® Red, the following reactions occur. First, SMase hydrolyzes sphingomyelin to yield ceramide and phosphorylcholine. Second, alkaline phosphatase hydrolyzes phosphorylcholine to yield choline. Third, choline is oxidized by choline oxidase to betaine. Finally, H2O2, in the presence of horseradish peroxidase, reacts with Amplex® Red to produce the fluorescent product, Resorufin, and the signal therefrom is detected using spectrofluorometry.


Fluorescence polarization (FP) is based on a decrease in the speed of molecular rotation of a fluorophore that occurs upon binding to a larger molecule, such as a receptor protein, allowing for polarized fluorescent emission by the bound ligand. FP is empirically determined by measuring the vertical and horizontal components of fluorophore emission following excitation with plane polarized light. Polarized emission is increased when the molecular rotation of a fluorophore is reduced. A fluorophore produces a larger polarized signal when it is bound to a larger molecule (i.e. a receptor), slowing molecular rotation of the fluorophore. The magnitude of the polarized signal relates quantitatively to the extent of fluorescent ligand binding. Accordingly, polarization of the “bound” signal depends on maintenance of high affinity binding.


FP is a homogeneous technology and reactions are very rapid, taking seconds to minutes to reach equilibrium. The reagents are stable, and large batches may be prepared, resulting in high reproducibility. Because of these properties, FP has proven to be highly automatable, often performed with a single incubation with a single, premixed, tracer-receptor reagent. For a review, see Owicki et al., (1997), Application of Fluorescence Polarization Assays in High-Throughput Screening, Genetic Engineering News, 17:27.


FP is particularly desirable since its readout is independent of the emission intensity (Checovich, W. J., et al., (1995) Nature 375:254-256; Dandliker, W. B., et al., (1981) Methods in Enzymology 74:3-28) and is thus insensitive to the presence of colored compounds that quench fluorescence emission. FP and FRET (see below) are well-suited for identifying compounds that block interactions between sphingolipid receptors and their ligands. See, for example, Parker et al., (2000) Development of high throughput screening assays using fluorescence polarization: nuclear receptor-ligand-binding and kinase/phosphatase assays, J Biomol Screen 5:77-88.


Fluorophores derived from sphingolipids that may be used in FP assays are commercially available. For example, Molecular Probes (Eugene, Oreg.) currently sells sphingomyelin and one ceramide flurophores. These are, respectively, N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)sphingosyl phosphocholine (BODIPY® FL C5-sphingomyelin); N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoyl)sphingosyl phosphocholine (BODIPY® FL C12-sphingomyelin); and N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)sphingosine (BODIPY® FL C5-ceramide). U.S. Pat. No. 4,150,949, (Immunoassay for gentamicin), discloses fluorescein-labelled gentamicins, including fluoresceinthiocarbanyl gentamicin. Additional fluorophores may be prepared using methods well known to the skilled artisan.


Exemplary normal-and-polarized fluorescence readers include the POLARION® fluorescence polarization system (Tecan AG, Hombrechtikon, Switzerland). General multiwell plate readers for other assays are available, such as the VERSAMAX® reader and the SPECTRAMAX® multiwell plate spectrophotometer (both from Molecular Devices).


Fluorescence resonance energy transfer (FRET) is another useful assay for detecting interaction and has been described. See, e.g., Heim et al., (1996) Curr. Biol. 6:178-182; Mitra et al., (1996) Gene 173:13-17; and Selvin et al., (1995) Meth. Enzymol. 246:300-345. FRET detects the transfer of energy between two fluorescent substances in close proximity, having known excitation and emission wavelengths. As an example, a protein can be expressed as a fusion protein with green fluorescent protein (GFP). When two fluorescent proteins are in proximity, such as when a protein specifically interacts with a target molecule, the resonance energy can be transferred from one excited molecule to the other. As a result, the emission spectrum of the sample shifts, which can be measured by a fluorometer, such as a fMAX multiwell fluorometer (Molecular Devices, Sunnyvale Calif.).


Scintillation proximity assay (SPA) is a particularly useful assay for detecting an interaction with the target molecule. SPA is widely used in the pharmaceutical industry and has been described (Hanselman et al., (1997) J. Lipid Res. 38:2365-2373; Kahl et al., (1996) Anal. Biochem. 243:282-283; Undenfriend et al., (1987) Anal. Biochem. 161:494-500). See also U.S. Pat. Nos. 4,626,513 and 4,568,649, and European Patent No. 0,154,734. One commercially available system uses FLASHPLATE® scintillant-coated plates (NEN Life Science Products, Boston, Mass.).


The target molecule can be bound to the scintillator plates by a variety of well known means. Scintillant plates are available that are derivatized to bind to fusion proteins such as GST, His6 or Flag fusion proteins. Where the target molecule is a protein complex or a multimer, one protein or subunit can be attached to the plate first, then the other components of the complex added later under binding conditions, resulting in a bound complex.


In a typical SPA assay, the gene products in the expression pool will have been radiolabeled and added to the wells, and allowed to interact with the solid phase, which is the immobilized target molecule and scintillant coating in the wells. The assay can be measured immediately or allowed to reach equilibrium. Either way, when a radiolabel becomes sufficiently close to the scintillant coating, it produces a signal detectable by a device such as a TOPCOUNT NXT® microplate scintillation counter (Packard BioScience Co., Meriden Conn.). If a radiolabeled expression product binds to the target molecule, the radiolabel remains in proximity to the scintillant long enough to produce a detectable signal.


In contrast, the labeled proteins that do not bind to the target molecule, or bind only briefly, will not remain near the scintillant long enough to produce a signal above background. Any time spent near the scintillant caused by random Brownian motion will also not result in a significant amount of signal. Likewise, residual unincorporated radiolabel used during the expression step may be present, but will not generate significant signal because it will be in solution rather than interacting with the target molecule. These non-binding interactions will therefore cause a certain level of background signal that can be mathematically removed. If too many signals are obtained, salt or other modifiers can be added directly to the assay plates until the desired specificity is obtained (Nichols et al., (1998) Anal. Biochem. 257:112-119).


Assay Compounds and Molecular Scaffolds


Preferred characteristics of a scaffold include being of low molecular weight (e.g., less than 350 Da, or from about 100 to about 350 daltons, or from about 150 to about 300 daltons). Preferably clog P of a scaffold is from −1 to 8, more preferably less than 6, 5, or 4, most preferably less than 3. In particular embodiments the clogP is in a range −1 to an upper limit of 2, 3, 4, 5, 6, or 8; or is in a range of 0 to an upper limit of 2, 3, 4, 5, 6, or 8. Preferably the number of rotatable bonds is less than 5, more preferably less than 4. Preferably the number of hydrogen bond donors and acceptors is below 6, more preferably below 5. An additional criterion that can be useful is a polar surface area of less than 5. Guidance that can be useful in identifying criteria for a particular application can be found in Lipinski et al., (1997) Advanced Drug Delivery Reviews 23 3-25, which is hereby incorporated by reference in its entirety.


A scaffold may preferably bind to a given protein binding site in a configuration that causes substituent moieties of the scaffold to be situated in pockets of the protein binding site. Also, possessing chemically tractable groups that can be chemically modified, particularly through synthetic reactions, to easily create a combinatorial library can be a preferred characteristic of the scaffold. Also preferred can be having positions on the scaffold to which other moieties can be attached, which do not interfere with binding of the scaffold to the protein(s) of interest but do cause the scaffold to achieve a desirable property, for example, active transport of the scaffold to cells and/or organs, enabling the scaffold to be attached to a chromatographic column to facilitate analysis, or another desirable property. A molecular scaffold can bind to a target molecule with any affinity, such as binding at high affinity, moderate affinity, low affinity, very low affinity, or extremely low affinity.


Thus, the above criteria can be utilized to select many compounds for testing that have the desired attributes. Many compounds having the criteria described are available in the commercial market, and may be selected for assaying depending on the specific needs to which the methods are to be applied.


A “compound library” or “library” is a collection of different compounds having different chemical structures. A compound library is screenable, that is, the compound library members therein may be subject to screening assays. In preferred embodiments, the library members can have a molecular weight of from about 100 to about 350 daltons, or from about 150 to about 350 daltons. Examples of libraries are provided above.


Libraries of the present invention can contain at least one compound than binds to the target molecule at low affinity. Libraries of candidate compounds can be assayed by many different assays, such as those described above, e.g., a fluorescence polarization assay. Libraries may consist of chemically synthesized peptides, peptidomimetics, or arrays of combinatorial chemicals that are large or small, focused or nonfocused. By “focused” it is meant that the collection of compounds is prepared using the structure of previously characterized compounds and/or pharmacophores.


Compound libraries may contain molecules isolated from natural sources, artificially synthesized molecules, or molecules synthesized, isolated, or otherwise prepared in such a manner so as to have one or more moieties variable, e.g., moieties that are independently isolated or randomly synthesized. Types of molecules in compound libraries include but are not limited to organic compounds, polypeptides and nucleic acids as those terms are used herein, and derivatives, conjugates and mixtures thereof.


Compound libraries of the invention may be purchased on the commercial market or prepared or obtained by any means including, but not limited to, combinatorial chemistry techniques, fermentation methods, plant and cellular extraction procedures and the like (see, e.g., Cwirla et al., (1990) Biochemistry, 87, 6378-6382; Houghten et al., (1991) Nature, 354, 84-86; Lam et al., (1991) Nature, 354, 82-84; Brenner et al., (1992) Proc. Natl. Acad. Sci. USA, 89, 5381-5383; R. A. Houghten, (1993) Trends Genet., 9, 235-239; E. R. Felder, (1994) Chimia, 48, 512-541; Gallop et al., (1994) J. Med. Chem., 37, 1233-1251; Gordon et al., (1994) J. Med. Chem., 37, 1385-1401; Carell et al., (1995) Chem. Biol., 3, 171-183; Madden et al., Perspectives in Drug Discovery and Design 2, 269-282; Lebl et al., (1995) Biopolymers, 37 177-198); small molecules assembled around a shared molecular structure; collections of chemicals that have been assembled by various commercial and noncommercial groups, natural products; extracts of marine organisms, fungi, bacteria, and plants.


Preferred libraries can be prepared in a homogenous reaction mixture, and separation of unreacted reagents from members of the library is not required prior to screening. Although many combinatorial chemistry approaches are based on solid state chemistry, liquid phase combinatorial chemistry is capable of generating libraries (Sun C M., (1999) Recent advances in liquid-phase combinatorial chemistry, Combinatorial Chemistry & High Throughput Screening. 2:299-318).


Libraries of a variety of types of molecules are prepared in order to obtain members therefrom having one or more preselected attributes that can be prepared by a variety of techniques, including but not limited to parallel array synthesis (Houghton, (2000) Annu Rev Pharmacol Toxicol 40:273-82, Parallel array and mixture-based synthetic combinatorial chemistry; solution-phase combinatorial chemistry (Merritt, (1998) Comb Chem High Throughput Screen 1(2):57-72, Solution phase combinatorial chemistry, Coe et al., (1998-99) Mol Divers;4(1):31-8, Solution-phase combinatorial chemistry, Sun, (1999) Comb Chem High Throughput Screen 2(6):299-318, Recent advances in liquid-phase combinatorial chemistry); synthesis on soluble polymer (Gravert et al., (1997) Curr Opin Chem Biol 1(1):107-13, Synthesis on soluble polymers: new reactions and the construction of small molecules); and the like. See, e.g., Dolle et al., (1999) J Comb Chem 1(4):235-82, Comprehensive survey of cominatorial library synthesis: 1998. Freidinger R M., (1999) Nonpeptidic ligands for peptide and protein receptors, Current Opinion in Chemical Biology; and Kundu et al., Prog Drug Res; 53:89-156, Combinatorial chemistry: polymer supported synthesis of peptide and non-peptide libraries). Compounds may be clinically tagged for ease of identification (Chabala, (1995) Curr Opin Biotechnol 6(6):633-9, Solid-phase combinatorial chemistry and novel tagging methods for identifying leads).


The combinatorial synthesis of carbohydrates and libraries containing oligosaccharides have been described (Schweizer et al., (1999) Curr Opin Chem Biol 3(3):291-8, Combinatorial synthesis of carbohydrates). The synthesis of natural-product based compound libraries has been described (Wessjohann, (2000) Curr Opin Chem Biol 4(3):303-9, Synthesis of natural-product based compound libraries).


Libraries of nucleic acids are prepared by various techniques, including by way of non-limiting example the ones described herein, for the isolation of aptamers. Libraries that include oligonucleotides and polyaminooligonucleotides (Markiewicz et al., (2000) Synthetic oligonucleotide combinatorial libraries and their applications, Farmaco. 55:174-7) displayed on streptavidin magnetic beads are known. Nucleic acid libraries are known that can be coupled to parallel sampling and be deconvoluted without complex procedures such as automated mass spectrometry (Enjalbal C. Martinez J. Aubagnac J L, (2000) Mass spectrometry in combinatorial chemistry, Mass Spectrometry Reviews. 19:139-61) and parallel tagging. (Perrin D M., Nucleic acids for recognition and catalysis: landmarks, limitations, and looking to the future, Combinatorial Chemistry & High Throughput Screening 3:243-69).


Peptidomimetics are identified using combinatorial chemistry and solid phase synthesis (Kim H O. Kahn M., (2000) A merger of rational drug design and combinatorial chemistry: development and application of peptide secondary structure mimetics, Combinatorial Chemistry & High Throughput Screening 3:167-83; al-Obeidi, (1998) Mol Biotechnol 9(3):205-23, Peptide and peptidomimetric libraries. Molecular diversity and drug design). The synthesis may be entirely random or based in part on a known polypeptide.


Polypeptide libraries can be prepared according to various techniques. In brief, phage display techniques can be used to produce polypeptide ligands (Gram H., (1999) Phage display in proteolysis and signal transduction, Combinatorial Chemistry & High Throughput Screening. 2:19-28) that may be used as the basis for synthesis of peptidomimetics. Polypeptides, constrained peptides, proteins, protein domains, antibodies, single chain antibody fragments, antibody fragments, and antibody combining regions are displayed on filamentous phage for selection.


Large libraries of individual variants of human single chain Fv antibodies have been produced. See, e.g., Siegel R W. Allen B. Pavlik P. Marks J D. Bradbury A., (2000) Mass spectral analysis of a protein complex using single-chain antibodies selected on a peptide target: applications to functional genomics, Journal of Molecular Biology 302:285-93; Poul M A. Becerril B. Nielsen U B. Morisson P. Marks J D., (2000) Selection of tumor-specific internalizing human antibodies from phage libraries. Source Journal of Molecular Biology. 301:1149-61; Amersdorfer P. Marks J D., (2001) Phage libraries for generation of anti-botulinum scFv antibodies, Methods in Molecular Biology. 145:219-40; Hughes-Jones N C. Bye J M. Gorick B D. Marks J D. Ouwehand W H., (1999) Synthesis of Rh Fv phage-antibodies using VH and VL germline genes, British Journal of Haematology. 105:811-6; McCall A M. Amoroso A R. Sautes C. Marks J D. Weiner L M., (1998) Characterization of anti-mouse Fc gamma RII single-chain Fv fragments derived from human phage display libraries, Immunotechnology. 4:71-87; Sheets M D. Amersdorfer P. Finnern R. Sargent P. Lindquist E. Schier R. Hemingsen G. Wong C. Gerhart J C. Marks J D. Lindquist E., (1998) Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens (published erratum appears in Proc Natl Acad Sci USA 1999 96:795), Proc Natl Acad Sci USA 95:6157-62).


Focused or smart chemical and pharmacophore libraries can be designed with the help of sophisticated strategies involving computational chemistry (e.g., Kundu B. Khare S K. Rastogi S K., (1999) Combinatorial chemistry: polymer supported synthesis of peptide and non-peptide libraries, Progress in Drug Research 53:89-156) and the use of structure-based ligands using database searching and docking, de novo drug design and estimation of ligand binding affinities (Joseph-McCarthy D., (1999) Computational approaches to structure-based ligand design, Pharmacology & Therapeutics 84:179-91; Kirkpatrick D L. Watson S. Ulhaq S., (1999) Structure-based drug design: combinatorial chemistry and molecular modeling, Combinatorial Chemistry & High Throughput Screening. 2:211-21; Eliseev A V. Lehn J M., (1999) Dynamic combinatorial chemistry: evolutionary formation and screening of molecular libraries, Current Topics in Microbiology & Immunology 243:159-72; Bolger et al., (1991) Methods Enz. 203:21-45; Martin, (1991) Methods Enz. 203:587-613; Neidle et al., (1991) Methods Enz. 203:433-458; U.S. Pat. No. 6,178,384).


X. Crystallography


After binding compounds have been determined, the orientation of compound bound to target is determined. Preferably this determination involves crystallography on co-crystals of molecular scaffold compounds with target. Most protein crystallographic platforms can preferably be designed to analyze up to about 500 co-complexes of compounds, ligands, or molecular scaffolds bound to protein targets due to the physical parameters of the instruments and convenience of operation. If the number of scaffolds that have binding activity exceeds a number convenient for the application of crystallography methods, the scaffolds can be placed into groups based on having at least one common chemical structure or other desirable characteristics, and representative compounds can be selected from one or more of the classes. Classes can be made with increasingly exacting criteria until a desired number of classes (e.g., 500) is obtained. The classes can be based on chemical structure similarities between molecular scaffolds in the class, e.g., all possess a pyrrole ring, benzene ring, or other chemical feature. Likewise, classes can be based on shape characteristics, e.g., space-filling characteristics.


The co-crystallography analysis can be performed by co-complexing each scaffold with its target at concentrations of the scaffold that showed activity in the screening assay. This co-complexing can be accomplished with the use of low percentage organic solvents with the target molecule and then concentrating the target with each of the scaffolds. In preferred embodiments these solvents are less than 5% organic solvent such as dimethyl sulfoxide (DMSO), ethanol, methanol, or ethylene glycol in water or another aqueous solvent. Each scaffold complexed to the target molecule can then be screened with a suitable number of crystallization screening conditions at both 4 and 20 degrees. In preferred embodiments, about 96 crystallization screening conditions can be performed in order to obtain sufficient information about the co-complexation and crystallization conditions, and the orientation of the scaffold at the binding site of the target molecule. Crystal structures can then be analyzed to determine how the bound scaffold is oriented physically within the binding site or within one or more binding pockets of the molecular family member.


It is desirable to determine the atomic coordinates of the compounds bound to the target proteins in order to determine which is a most suitable scaffold for the protein family. X-ray crystallographic analysis is therefore most preferable for determining the atomic coordinates. Those compounds selected can be further tested with the application of medicinal chemistry. Compounds can be selected for medicinal chemistry testing based on their binding position in the target molecule. For example, when the compound binds at a binding site, the compound's binding position in the binding site of the target molecule can be considered with respect to the chemistry that can be performed on chemically tractable structures or sub-structures of the compound, and how such modifications on the compound might interact with structures or sub-structures on the binding site of the target. Thus, one can explore the binding site of the target and the chemistry of the scaffold in order to make decisions on how to modify the scaffold to arrive at a ligand with higher potency and/or selectivity. This process allows for more direct design of ligands, by utilizing structural and chemical information obtained directly from the co-complex, thereby enabling one to more efficiently and quickly design lead compounds that are likely to lead to beneficial drug products. In various embodiments it may be desirable to perform co-crystallography on all scaffolds that bind, or only those that bind with a particular affinity, for example, only those that bind with high affinity, moderate affinity, low affinity, very low affinity, or extremely low affinity. It may also be advantageous to perform co-crystallography on a selection of scaffolds that bind with any combination of affinities.


Standard X-ray protein diffraction studies such as by using a Rigaku RU-200® (Rigaku, Tokyo, Japan) with an X-ray imaging plate detector or a synchrotron beam-line can be performed on co-crystals and the diffraction data measured on a standard X-ray detector, such as a CCD detector or an X-ray imaging plate detector.


Performing X-ray crystallography on about 200 co-crystals should generally lead to about 50 co-crystals structures, which should provide about 10 scaffolds for validation in chemistry, which should finally result in about 5 selective leads for target molecules.


Virtual Assays


Commercially available software that generates three-dimensional graphical representations of the complexed target and compound from a set of coordinates provided can be used to illustrate and study how a compound is oriented when bound to a target. (e.g., QUANTA®, Accelerys, San Diego, Calif.). Thus, the existence of binding pockets at the binding site of the targets can be particularly useful in the present invention. These binding pockets are revealed by the crystallographic structure determination and show the precise chemical interactions involved in binding the compound to the binding site of the target. The person of ordinary skill will realize that the illustrations can also be used to decide where chemical groups might be added, substituted, modified, or deleted from the scaffold to enhance binding or another desirable effect, by considering where unoccupied space is located in the complex and which chemical substructures might have suitable size and/or charge characteristics to fill it. The person of ordinary skill will also realize that regions within the binding site can be flexible and its properties can change as a result of scaffold binding, and that chemical groups can be specifically targeted to those regions to achieve a desired effect. Specific locations on the molecular scaffold can be considered with reference to where a suitable chemical substructure can be attached and in which conformation, and which site has the most advantageous chemistry available.


An understanding of the forces that bind the compounds to the target proteins reveals which compounds can most advantageously be used as scaffolds, and which properties can most effectively be manipulated in the design of ligands. The person of ordinary skill will realize that steric, ionic, hydrogen bond, and other forces can be considered for their contribution to the maintenance or enhancement of the target-compound complex. Additional data can be obtained with automated computational methods, such as docking and/or Free Energy Perturbations (FEP), to account for other energetic effects such as desolvation penalties. The compounds selected can be used to generate information about the chemical interactions with the target or for elucidating chemical modifications that can enhance selectivity of binding of the compound.


Computer models, such as homology models (i.e., based on a known, experimentally derived structure) can be constructed using data from the co-crystal structures. When the target molecule is a protein or enzyme, preferred co-crystal structures for making homology models contain high sequence identity in the binding site of the protein sequence being modeled, and the proteins will preferentially also be within the same class and/or fold family. Knowledge of conserved residues in active sites of a protein class can be used to select homology models that accurately represent the binding site. Homology models can also be used to map structural information from a surrogate protein where an apo or co-crystal structure exists to the target protein.


Virtual screening methods, such as docking, can also be used to predict the binding configuration and affinity of scaffolds, compounds, and/or combinatorial library members to homology models. Using this data, and carrying out “virtual experiments” using computer software can save substantial resources and allow the person of ordinary skill to make decisions about which compounds can be suitable scaffolds or ligands, without having to actually synthesize the ligand and perform co-crystallization. Decisions thus can be made about which compounds merit actual synthesis and co-crystallization. An understanding of such chemical interactions aids in the discovery and design of drugs that interact more advantageously with target proteins and/or are more selective for one protein family member over others. Thus, applying these principles, compounds with superior properties can be discovered.


Additives that promote co-crystallization can of course be included in the target molecule formulation in order to enhance the formation of co-crystals. In the case of proteins or enzymes, the scaffold to be tested can be added to the protein formulation, which is preferably present at a concentration of approximately 1 mg/ml. The formulation can also contain between 0%-10% (v/v) organic solvent, e.g. DMSO, methanol, ethanol, propane diol, or 1,3 dimethyl propane diol (MPD) or some combination of those organic solvents. Compounds are preferably solubilized in the organic solvent at a concentration of about 10 mM and added to the protein sample at a concentration of about 100 mM. The protein-compound complex is then concentrated to a final concentration of protein of from about 5 to about 20 mg/ml. The complexation and concentration steps can conveniently be performed using a 96-well formatted concentration apparatus (e.g., Amicon Inc., Piscataway, N.J.). Buffers and other reagents present in the formulation being crystallized can contain other components that promote crystallization or are compatible with crystallization conditions, such as DTT, propane diol, glycerol.


The crystallization experiment can be set-up by placing small aliquots of the concentrated protein-compound complex (1 μl) in a 96 well format and sampling under 96 crystallization conditions. (Other screening formats can also be used, e.g., plates with greater than 96 wells.) Crystals can typically be obtained using standard crystallization protocols that can involve the 96 well crystallization plate being placed at different temperatures. Co-crystallization varying factors other than temperature can also be considered for each protein-compound complex if desirable. For example, atmospheric pressure, the presence or absence of light or oxygen, a change in gravity, and many other variables can all be tested. The person of ordinary skill in the art will realize other variables that can advantageously be varied and considered.


Ligand Design and Preparation


The design and preparation of ligands can be performed with or without structural and/or co-crystallization data by considering the chemical structures in common between the active scaffolds of a set. In this process structure-activity hypotheses can be formed and those chemical structures found to be present in a substantial number of the scaffolds, including those that bind with low affinity, can be presumed to have some effect on the binding of the scaffold. This binding can be presumed to induce a desired biochemical effect when it occurs in a biological system (e.g., a treated mammal). New or modified scaffolds or combinatorial libraries derived from scaffolds can be tested to disprove the maximum number of binding and/or structure-activity hypotheses. The remaining hypotheses can then be used to design ligands that achieve a desired binding and biochemical effect.


But in many cases it will be preferred to have co-crystallography data for consideration of how to modify the scaffold to achieve the desired binding effect (e.g., binding at higher affinity or with higher selectivity). Using the case of proteins and enzymes, co-crystallography data shows the binding pocket of the protein with the molecular scaffold bound to the binding site, and it will be apparent that a modification can be made to a chemically tractable group on the scaffold. For example, a small volume of space at a protein binding site or pocket might be filled by modifying the scaffold to include a small chemical group that fills the volume. Filling the void volume can be expected to result in a greater binding affinity, or the loss of undesirable binding to another member of the protein family. Similarly, the co-crystallography data may show that deletion of a chemical group on the scaffold may decrease a hindrance to binding and result in greater binding affinity or specificity.


It can be desirable to take advantage of the presence of a charged chemical group located at the binding site or pocket of the protein. For example, a positively charged group can be complemented with a negatively charged group introduced on the molecular scaffold. This can be expected to increase binding affinity or binding specificity, thereby resulting in a more desirable ligand. In many cases, regions of protein binding sites or pockets are known to vary from one family member to another based on the amino acid differences in those regions. Chemical additions in such regions can result in the creation or elimination of certain interactions (e.g., hydrophobic, electrostatic, or entropic) that allow a compound to be more specific for one protein target over another or to bind with greater affinity, thereby enabling one to synthesize a compound with greater selectivity or affinity for a particular family member. Additionally, certain regions can contain amino acids that are known to be more flexible than others. This often occurs in amino acids contained in loops connecting elements of the secondary structure of the protein, such as alpha helices or beta strands. Additions of chemical moieties can also be directed to these flexible regions in order to increase the likelihood of a specific interaction occurring between the protein target of interest and the compound. Virtual screening methods can also be conducted in silico to assess the effect of chemical additions, subtractions, modifications, and/or substitutions on compounds with respect to members of a protein family or class.


The addition, subtraction, or modification of a chemical structure or sub-structure to a scaffold can be performed with any suitable chemical moiety. For example the following moieties, which are provided by way of example and are not intended to be limiting, can be utilized: hydrogen, alkyl, alkoxy, phenoxy, alkenyl, alkynyl, phenylalkyl, hydroxyalkyl, haloalkyl, aryl, arylalkyl, alkyloxy, alkylthio, alkenylthio, phenyl, phenylalkyl, phenylalkylthio, hydroxyalkyl-thio, alkylthiocarbbamylthio, cyclohexyl, pyridyl, piperidinyl, alkylamino, amino, nitro, mercapto, cyano, hydroxyl, a halogen atom, halomethyl, an oxygen atom (e.g., forming a ketone or N-oxide) or a sulphur atom (e.g., forming a thiol, thione, di-alkylsulfoxide or sulfone) are all examples of moieties that can be utilized.


Additional examples of structures or sub-structures that may be utilized are an aryl optionally substituted with one, two, or three substituents independently selected from the group consisting of alkyl, alkoxy, halogen, trihalomethyl, carboxylate, carboxamide, nitro, and ester moieties; an amine of formula -NX2X3, where X2 and X3 are independently selected from the group consisting of hydrogen, saturated or unsaturated alkyl, and homocyclic or heterocyclic ring moieties; halogen or trihalomethyl; a ketone of formula —COX4, where X4 is selected from the group consisting of alkyl and homocyclic or heterocyclic ring moieties; a carboxylic acid of formula —(X5)nCOOH or ester of formula (X6)nCOOX7, where X5, X6, and X7 and are independently selected from the group consisting of alkyl and homocyclic or heterocyclic ring moieties and where n is 0 or 1; an alcohol of formula (X8)nOH or an alkoxy moiety of formula —(X8)nOX9, where X8 and X9 are independently selected from the group consisting of saturated or unsaturated alkyl and homocyclic or heterocyclic ring moieties, wherein said ring is optionally substituted with one or more substituents independently selected from the group consisting of alkyl, alkoxy, halogen, trihalomethyl, carboxylate, nitro, and ester and where n is 0 or 1; an amide of formula NHCOX10, where X10 is selected from the group consisting of alkyl, hydroxyl, and homocyclic or heterocyclic ring moieties, wherein said ring is optionally substituted with one or more substituents independently selected from the group consisting of alkyl, alkoxy, halogen, trihalomethyl, carboxylate, nitro, and ester; SO2, NX11X12, where X11 and X12 are selected from the group consisting of hydrogen, alkyl, and homocyclic or heterocyclic ring moieties; a homocyclic or heterocyclic ring moiety optionally substituted with one, two, or three substituents independently selected from the group consisting of alkyl, alkoxy, halogen, trihalomethyl, carboxylate, carboxamide, nitro, and ester moieties; an aldehyde of formula —CHO; a sulfone of formula —SO2X13, where X13 is selected from the group consisting of saturated or unsaturated alkyl and homocyclic or heterocyclic ring moieties; and a nitro of formula —NO2.


Identification of Attachment Sites on Molecular Scaffolds and Ligands


In addition to the identification and development of ligands for kinases and other enzymes, determination of the orientation of a molecular scaffold or other binding compound in a binding site allows identification of energetically allowed sites for attachment of the binding molecule to another component. For such sites, any free energy change associated with the presence of the attached component should not destablize the binding of the compound to the kinase to an extent that will disrupt the binding. Preferably, the binding energy with the attachment should be at least 4 kcal/mol., more preferably at least 6, 8, 10, 12, 15, or 20 kcal/mol. Preferably, the presence of the attachment at the particular site reduces binding energy by no more than 3, 4, 5, 8, 10, 12, or 15 kcal/mol.


In many cases, suitable attachment sites will be those that are exposed to solvent when the binding compound is bound in the binding site. In some cases, attachment sites can be used that will result in small displacements of a portion of the enzyme without an excessive energetic cost. Exposed sites can be identified in various ways. For example, exposed sites can be identified using a graphic display or 3-dimensional model. In a grahic display, such as a computer display, an image of a compound bound in a binding site can be visually inspected to reveal atoms or groups on the compound that are exposed to solvent and oriented such that attachment at such atom or group would not preclude binding of the enzyme and binding compound. Energetic costs of attachment can be calculated based on changes or distortions that would be caused by the attachment as well as entropic changes.


Many different types of components can be attached. Persons with skill are familiar with the chemistries used for various attachments. Examples of components that can be attached include, without limitation: solid phase components such as beads, plates, chips, and wells; a direct or indirect label; a linker, which may be a traceless linker; among others. Such linkers can themselves be attached to other components, e.g., to solid phase media, labels, and/or binding moieties.


The binding energy of a compound and the effects on binding energy for attaching the molecule to another component can be calculated approximately using any of a variety of available software or by manual calculation. An example is the following:


Calculations were performed to estimate binding energies of different organic molecules to two Kinases: PIM-1 and CDK2. The organic molecules considered included Staurosporine, identified compounds that bind to PIM-1, and several linkers.


Calculated binding energies between protein-ligand complexes were obtained using the FlexX score (an implementation of the Bohm scoring function) within the Tripos software suite. The form for that equation is shown in Eqn. 1 below:

ΔGbind=ΔGtr+ΔGhb+ΔGion+ΔGlipo+ΔGarom+ΔGrot

    • where: ΔGtr is a constant term that accounts for the overall loss of rotational and translational entropy of the lignand, ΔGhb accounts for hydrogen bonds formed between the ligand and protein, ΔGion accounts for the ionic interactions between the ligand and protein, ΔGlipo accounts for the lipophilic interaction that corresponds to the protein-ligand contact surface, ΔGarom accounts for interactions between aromatic rings in the protein and ligand, and ΔGrot accounts for the entropic penalty of restricting rotatable bonds in the ligand upon binding.


This method estimates the free energy that a lead compound should have to a target protein for which there is a crystal structure, and it accounts for the entropic penalty of flexible linkers. It can therefore be used to estimate the free energy penalty incurred by attaching linkers to molecules being screened and the binding energy that a lead compound should have in order to overcome the free energy penalty of the linker. The method does not account for solvation and the entropic penalty is likely overestimated for cases where the linker is bound to a solid phase through another binding complex, such as a biotin:streptavidin complex.


Co-crystals were aligned by superimposing residues of PIM-1 with corresponding residues in CDK2. The PIM-1 structure used for these calculations was a co-crystal of PYK2 with a binding compound. The CDK2:Staurosporine co-crystal used was from the Brookhaven database file 1aq1. Hydrogen atoms were added to the proteins and atomic charges were assigned using the AMBER95 parameters within Sybyl. Modifications to the compounds described were made within the Sybyl modeling suite from Tripos.


These calcualtions indicate that the calculated binding energy for compounds that bind strongly to a given target (such as Staurosporine:CDK2) can be lower than −25 kcal/mol, while the calculated binding affinity for a good scaffold or an unoptimized binding compound can be in the range of −15 to −20. The free energy penalty for attachment to a linker such as the ethylene glycol or hexatriene is estimated as typically being in the range of +5 to +15 kcal/mol.


Linkers


Linkers suitable for use in the invention can be of many different types. Linkers can be selected for particular applications based on factors such as linker chemistry compatible for attachment to a binding compound and to another component utilized in the particular application. Additional factors can include, without limitation, linker length, linker stability, and ability to remove the linker at an appropriate time. Exemplary linkers include, but are not limited to, hexyl, hexatrienyl, ethylene glycol, and peptide linkers. Traceless linkers can also be used, e.g., as described in Plunkett, M. J., and Ellman, J. A., (1995), J. Org. Chem., 60:6006.


Typical functional groups, that are utilized to link binding compound(s), include, but not limited to, carboxylic acid, amine, hydroxyl, and thiol. (Examples can be found in Solid-supported combinatorial and parallel synthesis of small molecular weight compound libraries; (1998) Tetrahedron organic chemistry series Vol.17; Pergamon; p85).


Labels


As indicated above, labels can also be attached to a binding compound or to a linker attached to a binding compound. Such attachment may be direct (attached directly to the binding compound) or indirect (attached to a component that is directly or indirectly attached to the binding compound). Such labels allow detection of the compound either directly or indirectly. Attachement of labels can be performed using conventional chemistries. Labels can include, for example, fluorescent labels, radiolabels, light scattering particles, light absorbent particles, magnetic particles, enzymes, and specific binding agents (e.g., biotin or an antibody target moiety).


Solid Phase Media


Additional examples of components that can be attached directly or indirectly to a binding compound include various solid phase media. Similar to attachment of linkers and labels, attachment to solid phase media can be performed using conventional chemistries. Such solid phase media can include, for example, small components such as beads, nanoparticles, and fibers (e.g., in suspension or in a gel or chromatographic matrix). Likewise, solid phase media can include larger objects such as plates, chips, slides, and tubes. In many cases, the binding compound will be attached in only a portion of such an objects, e.g., in a spot or other local element on a generally flat surface or in a well or portion of a well.


Identification of Biological Agents


The posession of structural information about a protein also provides for the identification of useful biological agents, such as epitpose for development of antibodies, identification of mutation sites expected to affect activity, and identification of attachment sites allowing attachment of the protein to materials such as labels, linkers, peptides, and solid phase media.


Antibodies (Abs) finds multiple applications in a variety of areas including biotechnology, medicine and diagnosis, and indeed they are one of the most powerful tools for life science research. Abs directed against protein antigens can recognize either linear or native three-dimensional (3D) epitopes. The obtention of Abs that recognize 3D epitopes require the use of whole native protein (or of a portion that assumes a native conformation) as immunogens. Unfortunately, this not always a choice due to various technical reasons: for example the native protein is just not available, the protein is toxic, or its is desirable to utilize a high density antigen presentation. In such cases, immunization with peptides is the alternative. Of course, Abs generated in this manner will recognize linear epitopes, and they might or might not recognize the source native protein, but yet they will be useful for standard laboratory applications such as western blots. The selection of peptides to use as immunogens can be accomplished by following particular selection rules and/or use of epitope prediction software.


Though methods to predict antigenic peptides are not infallible, there are several rules that can be followed to determine what peptide fragments from a protein are likely to be antigenic. These rules are also dictated to increase the likelihood that an Ab to a particular peptide will recognize the native protein.

    • 1. Antigenic peptides should be located in solvent accessible regions and contain both hydrophobic and hydrophilic residues.
      • For proteins of known 3D structure, solvent accessibility can be determined using a variety of programs such as DSSP, NACESS, or WHATIF, among others.
      • If the 3D structure is not known, use any of the following web servers to predict accessibilities: PHD, JPRED, PredAcc (c) ACCpro
    • 2. Preferably select peptides lying in long loops connecting Secondary Structure (SS) motifs, avoiding peptides located in helical regions. This will increase the odds that the Ab recognizes the native protein. Such peptides can, for example, be identified from a crystal structure or crystal structure-based homology model.
      • For protein with known 3D coordinates, SS can be obtained from the sequence link of the relevant entry at the Brookhaven data bank. The PDBsum server also offer SS analysis of pdb records.
      • When no structure is available secondary structure predictions can be obtained from any of the following servers: PHD, JPRED, PSI—PRED, NNSP, etc
    • 3. When possible, choose peptides that are in the N- and C-terminal region of the protein. Because the N- and C-terminal regions of proteins are usually solvent accessible and unstructured, Abs against those regions are also likely to recognize the native protein.
    • 4. For cell surface glycoproteins, eliminate from initial peptides those containing consesus sites for N-glycosilation.
      • N-glycosilation sites can be detected using Scanprosite, or NetNGlyc


In addition, several methods based on various physio-chemical properties of experimental determined epitopes (flexibility, hydrophibility, accessibility) have been published for the prediction of antigenic determinants and can be used. The antigenic index and Preditop are example.


Perhaps the simplest method for the prediction of antigenic determinants is that of Kolaskar and Tongaonkar, which is based on the occurrence of amino acid residues in experimentally determined epitopes. (Kolaskar and Tongaonkar (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBBS Lett. 276(1-2):172-174.) The prediction algorithm works as follows:

    • 1. Calculate the average propensity for each overlapping 7-mer and assign the result to the central residue (i+3) of the 7-mer.
    • 2. Calculate the average for the whole protein.
    • 3. (a) If the average for the whole protein is above 1.0 then all residues having average propensity above 1.0 are potentially antigenic.
    • 3. (b) If the average for the whole protein is below 1.0 then all residues having above the average for the whole protein are potentially antigenic.
    • 4. Find 8-mers where all residues are selected by step 3 above (6-mers in the original paper)


The Kolaskar and Tongaonkar method is also available from the GCG package, and it runs using the command egcg.


Crystal structures also allow identification of residues at which mutation is likely to alter the activity of the protein. Such residues include, for example, residues that interact with susbtrate, conserved active site residues, and residues that are in a region of ordered secondary structure of involved in tertiary interactions. The mutations that are likely to affect activity will vary for different molecular contexts. Mutations in an active site that will affect activity are typically substitutions or deletions that eliminate a charge-charge or hydrogen bonding interaction, or introduce a steric interference. Mutations in secondary structure regions or molecular interaction regions that are likely to affect activity include, for example, substitutions that alter the hydrophobicity/hydrophilicity of a region, or that introduce a sufficient strain in a region near or including the active site so that critical residue(s) in the active site are displaced. Such substitutions and/or deletions and/or insertions are recognized, and the predicted structural and/or energetic effects of mutations can be calculated using conventional software.


IX. Kinase Activity Assays


A number of different assays for kinase activity can be utilized for assaying for active modulators and/or determining specificity of a modulator for a particular kinase or group or kinases. In addition to the assays mentioned below, one of ordinary skill in the art will know of other assays that can be utilized and can modify an assay for a particular application.


An exemplary assay for kinase activity that can be used for PYK2 can be performed according to the following procedure using purified kinase using myelin basic protein (MBP) as substrate. An exemplary assay can use the following materials: MBP (M-1891, Sigma); Kinase buffer (KB=HEPES 50 mM, pH7.2, MgCl2:MnCl2 (200 μM:200 μM); ATP (γ-33P):NEG602H (10 mCi/mL)(Perkin-Elmer); ATP as 100 mM stock in kinase buffer; EDTA as 100 mM stock solution.


Coat scintillation plate suitable for radioactivity counting (e.g., FlashPlate from Perkin-Elmer, such as the SMP200(basic)) with kinase+MBP mix (final 100 ng+300 ng/well) at 90-μL/well in kinase buffer. Add compounds at 1 μL/well from 10 mM stock in DMSO. Positive control wells are added with 1 μL of DMSO. Negative control wells are added with 2 μL of EDTA stock solution. ATP solution (10 μL) is added to each well to provide a final concentration of cold ATP is 2 μM, and 50 nCi ATPγ[33P]. The plate is shaken briefly, and a count is taken to initiate count (IC) using an apparatus adapted for counting with the plate selected, e.g., Perkin-Elmer Trilux. Store the plate at 37° C. for 4 hrs, then count again to provide final count (FC).


Net 33P incorporation (NI) is calculated as: NI=FC−IC.


The effect of the present of a test compound can then be calculated as the percent of the positive control as: % PC=[(NI−NC)/(PC−NC)]×100, where NC is the net incorporation for the negative control, and PC is the net incorporation for the positive control.


As indicated above, other assays can also be readily used. For example, kinase activity can be measured on standard polystyrene plates, using biotinylated MBP and ATPγ[33P] and with Streptavidin-coated SPA (scintillation proximity) beads providing the signal.


Additional alternative assays can employ phospho-specific antibodies as detection reagents with biotinylated peptides as substrates for the kinase. This sort of assay can be formatted either in a fluorescence resonance energy transfer (FRET) format, or using an AlphaScreen (amplified luminescent proximity homogeneous assay) format by varying the donor and acceptor reagents that are attached to streptavidin or the phosphor-specific antibody.


X. Organic Synthetic Techniques


The versatility of computer-based modulator design and identification lies in the diversity of structures screened by the computer programs. The computer programs can search databases that contain very large numbers of molecules and can modify modulators already complexed with the enzyme with a wide variety of chemical functional groups. A consequence of this chemical diversity is that a potential modulator of kinase function may take a chemical form that is not predictable. A wide array of organic synthetic techniques exist in the art to meet the challenge of constructing these potential modulators. Many of these organic synthetic methods are described in detail in standard reference sources utilized by those skilled in the art. One example of suh a reference is March, 1994, Advanced Organic Chemistry; Reactions Mechanisms and Structure, New York, McGraw Hill. Thus, the techniques useful to synthesize a potential modulator of kinase function identified by computer-based methods are readily available to those skilled in the art of organic chemical synthesis.


XI. Administration


The methods and compounds will typically be used in therapy for human patients. However, they may also be used to treat similar or identical diseases in other vertebrates such as other primates, sports animals, and pets such as horses, dogs and cats.


Suitable dosage forms, in part, depend upon the use or the route of administration, for example, oral, transdermal, transmucosal, or by injection (parenteral). Such dosage forms should allow the compound to reach target cells. Other factors are well known in the art, and include considerations such as toxicity and dosage forms that retard the compound or composition from exerting its effects. Techniques and formulations generally may be found in Remington's Pharmaceutical Sciences, 18th ed., Mack Publishing Co., Easton, Pa., 1990 (hereby incorporated by reference herein).


Compounds can be formulated as pharmaceutically acceptable salts. Pharmaceutically acceptable salts are non-toxic salts in the amounts and concentrations at which they are administered. The preparation of such salts can facilitate the pharmacological use by altering the physical characteristics of a compound without preventing it from exerting its physiological effect. Useful alterations in physical properties include lowering the melting point to facilitate transmucosal administration and increasing the solubility to facilitate administering higher concentrations of the drug.


Pharmaceutically acceptable salts include acid addition salts such as those containing sulfate, chloride, hydrochloride, fumarate, maleate, phosphate, sulfamate, acetate, citrate, lactate, tartrate, methane sulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate, cyclohexylsulfamate and quinate. Pharmaceutically acceptable salts can be obtained from acids such as hydrochloric acid, maleic acid, sulfuric acid, phosphoric acid, sulfamic acid, acetic acid, citric acid, lactic acid, tartaric acid, malonic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, cyclohexylsulfamic acid, fumaric acid, and quinic acid.


Pharmaceutically acceptable salts also include basic addition salts such as those containing benzathine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine, procaine, aluminum, calcium, lithium, magnesium, potassium, sodium, ammonium, alkylamine, and zinc, when acidic functional groups, such as carboxylic acid or phenol are present. For example, see Remington's Pharmaceutical Sciences, 19th ed., Mack Publishing Co., Easton, Pa., Vol. 2, p. 1457, 1995. Such salts can be prepared using the appropriate corresponding bases.


Pharmaceutically acceptable salts can be prepared by standard techniques. For example, the free-base form of a compound is dissolved in a suitable solvent, such as an aqueous or aqueous-alcohol in solution containing the appropriate acid and then isolated by evaporating the solution. In another example, a salt is prepared by reacting the free base and acid in an organic solvent.


The pharmaceutically acceptable salt of the different compounds may be present as a complex. Examples of complexes include 8-chlorotheophylline complex (analogous to, e.g., dimenhydrinate: diphenhydramine 8-chlorotheophylline (1:1) complex; Dramamine) and various cyclodextrin inclusion complexes.


Carriers or excipients can be used to produce pharmaceutical compositions. The carriers or excipients can be chosen to facilitate administration of the compound. Examples of carriers include calcium carbonate, calcium phosphate, various sugars such as lactose, glucose, or sucrose, or types of starch, cellulose derivatives, gelatin, vegetable oils, polyethylene glycols and physiologically compatible solvents. Examples of physiologically compatible solvents include sterile solutions of water for injection (WFI), saline solution, and dextrose.


The compounds can be administered by different routes including intravenous, intraperitoneal, subcutaneous, intramuscular, oral, transmucosal, rectal, or transdermal. Oral administration is preferred. For oral administration, for example, the compounds can be formulated into conventional oral dosage forms such as capsules, tablets, and liquid preparations such as syrups, elixirs, and concentrated drops.


Pharmaceutical preparations for oral use can be obtained, for example, by combining the active compounds with solid excipients, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose (CMC), and/or polyvinylpyrrolidone (PVP: povidone). If desired, disintegrating agents may be added, such as the cross-linked polyvinylpyrrolidone, agar, or alginic acid, or a salt thereof such as sodium alginate.


Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain, for example, gum arabic, talc, poly-vinylpyrrolidone, carbopol gel, polyethylene glycol (PEG), and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dye-stuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.


Pharmaceutical preparations that can be used orally include push-fit capsules made of gelatin (“gelcaps”), as well as soft, sealed capsules made of gelatin, and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols (PEGs). In addition, stabilizers may be added.


Alternatively, injection (parenteral administration) may be used, e.g., intramuscular, intravenous, intraperitoneal, and/or subcutaneous. For injection, the compounds of the invention are formulated in sterile liquid solutions, preferably in physiologically compatible buffers or solutions, such as saline solution, Hank's solution, or Ringer's solution. In addition, the compounds may be formulated in solid form and redissolved or suspended immediately prior to use. Lyophilized forms can also be produced.


Administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, bile salts and fusidic acid derivatives. In addition, detergents may be used to facilitate permeation. Transmucosal administration, for example, may be through nasal sprays or suppositories (rectal or vaginal).


The amounts of various compound to be administered can be determined by standard procedures taking into account factors such as the compound IC50, the biological half-life of the compound, the age, size, and weight of the patient, and the disorder associated with the patient. The importance of these and other factors are well known to those of ordinary skill in the art. Generally, a dose will be between about 0.01 and 50 mg/kg, preferably 0.1 and 20 mg/kg of the patient being treated. Multiple doses may be used.


Manipulation of PYK2


As the full-length coding sequence and amino acid sequence of PYK2 is known, cloning, construction of recombinant hPIM-3, production and purification of recombinant protein, introduction of PYK2 into other organisms, and other molecular biological manipulations of PYK2 are readily performed.


Techniques for the manipulation of nucleic acids, such as, e.g., subcloning, labeling probes (e.g., random-primer labeling using Klenow polymerase, nick translation, amplification), sequencing, hybridization and the like are well disclosed in the scientific and patent literature, see, e.g., Sambrook, ed., Molecular Cloning: a Laboratory Manual (2nd ed.), Vols. 1-3, Cold Spring Harbor Laboratory, (1989); Current Protocols in Molecular Biology, Ausubel, ed. John Wiley & Sons, Inc., New York (1997); Laboratory Techniques in Biochemistry and Molecular Biology: Hybridization With Nucleic Acid Probes, Part I. Theory and Nucleic Acid Preparation, Tijssen, ed. Elsevier, N.Y. (1993).


Nucleic acid sequences can be amplified as necessary for further use using amplification methods, such as PCR, isothermal methods, rolling circle methods, etc., are well known to the skilled artisan. See, e.g., Saiki, “Amplification of Genomic DNA” in PCR Protocols, Innis et al., Eds., Academic Press, San Diego, Calif. 1990, pp 13-20; Wharam et al., Nucleic Acids Res. 2001 Jun 1;29(11):E54-E54; Hafner et al., Biotechniques 2001 April; 30(4):852-6, 858, 860 passim; Zhong et al., Biotechniques 2001 April; 30(4):852-6, 858, 860 passim.


Nucleic acids, vectors, capsids, polypeptides, and the like can be analyzed and quantified by any of a number of general means well known to those of skill in the art. These include, e.g., analytical biochemical methods such as NMR, spectrophotometry, radiography, electrophoresis, capillary electrophoresis, high performance liquid chromatography (HPLC), thin layer chromatography (TLC), and hyperdiffusion chromatography, various immunological methods, e.g. fluid or gel precipitin reactions, immunodiffusion, immuno-electrophoresis, radioimmunoassays (RIAs), enzyme-linked immunosorbent assays (ELISAs), immuno-fluorescent assays, Southern analysis, Northern analysis, dot-blot analysis, gel electrophoresis (e.g., SDS-PAGE), nucleic acid or target or signal amplification methods, radiolabeling, scintillation counting, and affinity chromatography.


Obtaining and manipulating nucleic acids used to practice the methods of the invention can be performed by cloning from genomic samples, and, if desired, screening and re-cloning inserts isolated or amplified from, e.g., genomic clones or cDNA clones. Sources of nucleic acid used in the methods of the invention include genomic or cDNA libraries contained in, e.g., mammalian artificial chromosomes (MACs), see, e.g., U.S. Pat. Nos. 5,721,118; 6,025,155; human artificial chromosomes, see, e.g., Rosenfeld (1997) Nat. Genet. 15:333-335; yeast artificial chromosomes (YAC); bacterial artificial chromosomes (BAC); P1 artificial chromosomes, see, e.g., Woon (1998) Genomics 50:306-316; P1-derived vectors (PACs), see, e.g., Kern (1997) Biotechniques 23:120-124; cosmids, recombinant viruses, phages or plasmids. Typically, nucleic acid molecules having a sequence of interest are available from commercial sources and/or from sequence repositories, or can be obtained using PCR from a suitable cDNA or genomic library, e.g., a library from an appropriate tissue. A number of different such libraries are commercially or publicly available.


The nucleic acids can be operatively linked to a promoter. A promoter can be one motif or an array of nucleic acid control sequences which direct transcription of a nucleic acid. A promoter can include necessary nucleic acid sequences near the start site of transcription, such as, in the case of a polymerase II type promoter, a TATA element. A promoter also optionally includes distal enhancer or repressor elements which can be located as much as several thousand base pairs from the start site of transcription. A “constitutive” promoter is a promoter which is active under most environmental and developmental conditions. An “inducible” promoter is a promoter which is under environmental or developmental regulation. A “tissue specific” promoter is active in certain tissue types of an organism, but not in other tissue types from the same organism. The term “operably linked” refers to a functional linkage between a nucleic acid expression control sequence (such as a promoter, or array of transcription factor binding sites) and a second nucleic acid sequence, wherein the expression control sequence directs transcription of the nucleic acid corresponding to the second sequence.


The nucleic acids of the invention can also be provided in expression vectors and cloning vehicles, e.g., sequences encoding the polypeptides of the invention. Expression vectors and cloning vehicles of the invention can comprise viral particles, baculovirus, phage, plasmids, phagemids, cosmids, fosmids, bacterial artificial chromosomes, viral DNA (e.g., vaccinia, adenovirus, foul pox virus, pseudorabies and derivatives of SV40), P1-based artificial chromosomes, yeast plasmids, yeast artificial chromosomes, and any other vectors specific for specific hosts of interest (such as bacillus, Aspergillus and yeast). Vectors of the invention can include chromosomal, non-chromosomal and synthetic DNA sequences. Large numbers of suitable vectors are known to those of skill in the art, and are commercially available.


The nucleic acids of the invention can be cloned, if desired, into any of a variety of vectors using routine molecular biological methods; methods for cloning in vitro amplified nucleic acids are disclosed, e.g., U.S. Pat. No. 5,426,039. To facilitate cloning of amplified sequences, restriction enzyme sites can be “built into” a PCR primer pair. Vectors may be introduced into a genome or into the cytoplasm or a nucleus of a cell and expressed by a variety of conventional techniques, well described in the scientific and patent literature. See, e.g., Roberts (1987) Nature 328:731; Schneider (1995) Protein Expr. Purif. 6435:10; Sambrook, Tijssen or Ausubel. The vectors can be isolated from natural sources, obtained from such sources as ATCC or GenBank libraries, or prepared by synthetic or recombinant methods. For example, the nucleic acids of the invention can be expressed in expression cassettes, vectors or viruses which are stably or transiently expressed in cells (e.g., episomal expression systems). Selection markers can be incorporated into expression cassettes and vectors to confer a selectable phenotype on transformed cells and sequences. For example, selection markers can code for episomal maintenance and replication such that integration into the host genome is not required.


The nucleic acids can be administered in vivo for in situ expression of the peptides or polypeptides of the invention. The nucleic acids can be administered as “naked DNA” (see, e.g., U.S. Pat. No. 5,580,859) or in the form of an expression vector, e.g., a recombinant virus. The nucleic acids can be administered by any route, including peri- or intra-tumorally, as described below. Vectors administered in vivo can be derived from viral genomes, including recombinantly modified enveloped or non-enveloped DNA and RNA viruses, preferably selected from baculoviridiae, parvoviridiae, picornoviridiae, herpesveridiae, poxyiridae, adenoviridiae, or picornnaviridiae. Chimeric vectors may also be employed which exploit advantageous merits of each of the parent vector properties (See e.g., Feng (1997) Nature Biotechnology 15:866-870). Such viral genomes may be modified by recombinant DNA techniques to include the nucleic acids of the invention; and may be further engineered to be replication deficient, conditionally replicating or replication competent. In alternative aspects, vectors are derived from the adenoviral (e.g., replication incompetent vectors derived from the human adenovirus genome, see, e.g., U.S. Pat. Nos. 6,096,718; 6,110,458; 6,113,913; 5,631,236); adeno-associated viral and retroviral genomes. Retroviral vectors can include those based upon murine leukemia virus (MuLV), gibbon ape leukemia virus (GaLV), Simian Immuno deficiency virus (SIV), human immuno deficiency virus (HIV), and combinations thereof; see, e.g., U.S. Pat. Nos. 6,117,681; 6,107,478; 5,658,775; 5,449,614; Buchscher (1992) J. Virol. 66:2731-2739; Johann (1992) J. Virol. 66:1635-1640). Adeno-associated virus (AAV)-based vectors can be used to transduce cells with target nucleic acids, e.g., in the in vitro production of nucleic acids and peptides, and in in vivo and ex vivo gene therapy procedures; see, e.g., U.S. Pat. Nos. 6,110,456; 5,474,935; Okada (1996) Gene Ther. 3:957-964.


The present invention also relates to fusion proteins, and nucleic acids encoding them. A polypeptide of the invention can be fused to a heterologous peptide or polypeptide, such as N-terminal identification peptides which impart desired characteristics, such as increased stability or simplified purification. Peptides and polypeptides of the invention can also be synthesized and expressed as fusion proteins with one or more additional domains linked thereto for, e.g., producing a more immunogenic peptide, to more readily isolate a recombinantly synthesized peptide, to identify and isolate antibodies and antibody-expressing B cells, and the like. Detection and purification facilitating domains include, e.g., metal chelating peptides such as polyhistidine tracts and histidine-tryptophan modules that allow purification on immobilized metals, protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system (Immunex Corp, Seattle Wash.). The inclusion of a cleavable linker sequences such as Factor Xa or enterokinase (Invitrogen, San Diego Calif.) between a purification domain and the motif-comprising peptide or polypeptide to facilitate purification. For example, an expression vector can include an epitope-encoding nucleic acid sequence linked to six histidine residues followed by a thioredoxin and an enterokinase cleavage site (see e.g., Williams (1995) Biochemistry 34:1787-1797; Dobeli (1998) Protein Expr. Purif 12:404-414). The histidine residues facilitate detection and purification while the enterokinase cleavage site provides a means for purifying the epitope from the remainder of the fusion protein. In one aspect, a nucleic acid encoding a polypeptide of the invention is assembled in appropriate phase with a leader sequence capable of directing secretion of the translated polypeptide or fragment thereof. Technology pertaining to vectors encoding fusion proteins and application of fusion proteins are well disclosed in the scientific and patent literature, see e.g., Kroll (1993) DNA Cell. Biol. 12:441-53.


The nucleic acids and polypeptides of the invention can be bound to a solid support, e.g., for use in screening and diagnostic methods. Solid supports can include, e.g., membranes (e.g., nitrocellulose or nylon), a microtiter dish (e.g., PVC, polypropylene, or polystyrene), a test tube (glass or plastic), a dip stick (e.g., glass, PVC, polypropylene, polystyrene, latex and the like), a microfuge tube, or a glass, silica, plastic, metallic or polymer bead or other substrate such as paper. One solid support uses a metal (e.g., cobalt or nickel)-comprising column which binds with specificity to a histidine tag engineered onto a peptide.


Adhesion of molecules to a solid support can be direct (i.e., the molecule contacts the solid support) or indirect (a “linker” is bound to the support and the molecule of interest binds to this linker). Molecules can be immobilized either covalently (e.g., utilizing single reactive thiol groups of cysteine residues (see, e.g., Colliuod (1993) Bioconjugate Chem. 4:528-536) or non-covalently but specifically (e.g., via immobilized antibodies (see, e.g., Schuhmann (1991) Adv. Mater. 3:388-391; Lu (1995) Anal. Chem. 67:83-87; the biotin/strepavidin system (see, e.g., Iwane (1997) Biophys. Biochem. Res. Comm. 230:76-80); metal chelating, e.g., Langmuir-Blodgett films (see, e.g., Ng (1995) Langmuir 11:4048-55); metal-chelating self-assembled monolayers (see, e.g., Sigal (1996) Anal. Chem. 68:490-497) for binding of polyhistidine fusions.


Indirect binding can be achieved using a variety of linkers which are commercially available. The reactive ends can be any of a variety of functionalities including, but not limited to: amino reacting ends such as N-hydroxysuccinimide (NHS) active esters, imidoesters, aldehydes, epoxides, sulfonyl halides, isocyanate, isothiocyanate, and nitroaryl halides; and thiol reacting ends such as pyridyl disulfides, maleimides, thiophthalimides, and active halogens. The heterobifunctional crosslinking reagents have two different reactive ends, e.g., an amino-reactive end and a thiol-reactive end, while homobifunctional reagents have two similar reactive ends, e.g., bismaleimidohexane (BMH) which permits the cross-linking of sulfhydryl-containing compounds. The spacer can be of varying length and be aliphatic or aromatic. Examples of commercially available homobifunctional cross-linking reagents include, but are not limited to, the imidoesters such as dimethyl adipimidate dihydrochloride (DMA); dimethyl pimelimidate dihydrochloride (DMP); and dimethyl suberimidate dihydrochloride (DMS). Heterobifunctional reagents include commercially available active halogen-NHS active esters coupling agents such as N-succinimidyl bromoacetate and N-succinimidyl (4-iodoacetyl)aminobenzoate (SIAB) and the sulfosuccinimidyl derivatives such as sulfosuccinimidyl(4-iodoacetyl)aminobenzoate (sulfo-SIAB) (Pierce). Another group of coupling agents is the heterobifunctional and thiol cleavable agents such as N-succinimidyl 3-(2-pyridyidithio)propionate (SPDP) (Pierce Chemicals, Rockford, Ill.).


Antibodies can also be used for binding polypeptides and peptides of the invention to a solid support. This can be done directly by binding peptide-specific antibodies to the column or it can be done by creating fusion protein chimeras comprising motif-containing peptides linked to, e.g., a known epitope (e.g., a tag (e.g., FLAG, myc) or an appropriate immunoglobulin constant domain sequence (an “immunoadhesin,” see, e.g., Capon (1989) Nature 377:525-531 (1989).


Nucleic acids or polypeptides of the invention can be immobilized to or applied to an array. Arrays can be used to screen for or monitor libraries of compositions (e.g., small molecules, antibodies, nucleic acids, etc.) for their ability to bind to or modulate the activity of a nucleic acid or a polypeptide of the invention. For example, in one aspect of the invention, a monitored parameter is transcript expression of a gene comprising a nucleic acid of the invention. One or more, or, all the transcripts of a cell can be measured by hybridization of a sample comprising transcripts of the cell, or, nucleic acids representative of or complementary to transcripts of a cell, by hybridization to immobilized nucleic acids on an array, or “biochip.” By using an “array” of nucleic acids on a microchip, some or all of the transcripts of a cell can be simultaneously quantified. Alternatively, arrays comprising genomic nucleic acid can also be used to determine the genotype of a newly engineered strain made by the methods of the invention. Polypeptide arrays” can also be used to simultaneously quantify a plurality of proteins.


The terms “array” or “microarray” or “biochip” or “chip” as used herein is a plurality of target elements, each target element comprising a defined amount of one or more polypeptides (including antibodies) or nucleic acids immobilized onto a defined area of a substrate surface. In practicing the methods of the invention, any known array and/or method of making and using arrays can be incorporated in whole or in part, or variations thereof, as disclosed, for example, in U.S. Pat. Nos. 6,277,628; 6,277,489; 6,261,776; 6,258,606; 6,054,270; 6,048,695; 6,045,996; 6,022,963; 6,013,440; 5,965,452; 5,959,098; 5,856,174; 5,830,645; 5,770,456; 5,632,957; 5,556,752; 5,143,854; 5,807,522; 5,800,992; 5,744,305; 5,700,637; 5,556,752; 5,434,049; see also, e.g., WO 99/51773; WO 99/09217; WO 97/46313; WO 96/17958; see also, e.g., Johnston (1998) Curr. Biol. 8:R171-R174; Schummer (1997) Biotechniques 23:1087-1092; Kern (1997) Biotechniques 23:120-124; Solinas-Toldo (1997) Genes, Chromosomes & Cancer 20:399-407; Bowtell (1999) Nature Genetics Supp. 21:25-32. See also published U.S. patent applications Nos. 20010018642; 20010019827; 20010016322; 20010014449; 20010014448; 20010012537; 20010008765.


Host Cells and Transformed Cells


The invention also provides a transformed cell comprising a nucleic acid sequence of the invention, e.g., a sequence encoding a polypeptide of the invention, or a vector of the invention. The host cell may be any of the host cells familiar to those skilled in the art, including prokaryotic cells, eukaryotic cells, such as bacterial cells, fungal cells, yeast cells, mammalian cells, insect cells, or plant cells. Exemplary bacterial cells include E. coli, Streptomyces, Bacillus subtilis, Salmonella typhimurium and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus. Exemplary insect cells include Drosophila S2 and Spodoptera Sf9. Exemplary animal cells include CHO, COS or Bowes melanoma or any mouse or human cell line. The selection of an appropriate host is within the abilities of those skilled in the art.


Vectors may be introduced into the host cells using any of a variety of techniques, including transformation, transfection, transduction, viral infection, gene guns, or Ti-mediated gene transfer. Particular methods include calcium phosphate transfection, DEAE-Dextran mediated transfection, lipofection, or electroporation.


Engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the genes of the invention. Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter may be induced by appropriate means (e.g., temperature shift or chemical induction) and the cells may be cultured for an additional period to allow them to produce the desired polypeptide or fragment thereof.


Cells can be harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract is retained for further purification. Microbial cells employed for expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Such methods are well known to those skilled in the art. The expressed polypeptide or fragment can be recovered and purified from recombinant cell cultures by methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Protein refolding steps can be used, as necessary, in completing configuration of the polypeptide. If desired, high performance liquid chromatography (HPLC) can be employed for final purification steps.


Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts and other cell lines capable of expressing proteins from a compatible vector, such as the C127, 3T3, CHO, HeLa and BHK cell lines.


The constructs in host cells can be used in a conventional manner to produce the gene product encoded by the recombinant sequence. Depending upon the host employed in a recombinant production procedure, the polypeptides produced by host cells containing the vector may be glycosylated or may be non-glycosylated. Polypeptides of the invention may or may not also include an initial methionine amino acid residue.


Cell-free translation systems can also be employed to produce a polypeptide of the invention. Cell-free translation systems can use mRNAs transcribed from a DNA construct comprising a promoter operably linked to a nucleic acid encoding the polypeptide or fragment thereof. In some aspects, the DNA construct may be linearized prior to conducting an in vitro transcription reaction. The transcribed mRNA is then incubated with an appropriate cell-free translation extract, such as a rabbit reticulocyte extract, to produce the desired polypeptide or fragment thereof.


The expression vectors can contain one or more selectable marker genes to provide a phenotypic trait for selection of transformed host cells such as dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, or such as tetracycline or ampicillin resistance in E. coli.


For transient expression in mammalian cells, cDNA encoding a polypeptide of interest may be incorporated into a mammalian expression vector, e.g. pcDNA1, which is available commercially from Invitrogen Corporation (San Diego, Calif., U.S.A.; catalogue number V490-20). This is a multifunctional 4.2 kb plasmid vector designed for cDNA expression in eukaryotic systems, and cDNA analysis in prokaryotes, incorporated on the vector are the CMV promoter and enhancer, splice segment and polyadenylation signal, an SV40 and Polyoma virus origin of replication, and M13 origin to rescue single strand DNA for sequencing and mutagenesis, Sp6 and T7 RNA promoters for the production of sense and anti-sense RNA transcripts and a Col E1-like high copy plasmid origin. A polylinker is located appropriately downstream of the CMV promoter (and 3′ of the T7 promoter).


The cDNA insert may be first released from the above phagemid incorporated at appropriate restriction sites in the pcDNA1 polylinker. Sequencing across the junctions may be performed to confirm proper insert orientation in pcDNAI. The resulting plasmid may then be introduced for transient expression into a selected mammalian cell host, for example, the monkey-derived, fibroblast like cells of the COS-1 lineage (available from the American Type Culture Collection, Rockville, Md. as ATCC CRL 1650).


For transient expression of the protein-encoding DNA, for example, COS-1 cells may be transfected with approximately 8 μg DNA per 106 COS cells, by DEAE-mediated DNA transfection and treated with chloroquine according to the procedures described by Sambrook et al, Molecular Cloning: A Laboratory Manual, 1989, Cold Spring Harbor Laboratory Press, Cold Spring Harbor N.Y, pp. 16.30-16.37. An exemplary method is as follows. Briefly, COS-1 cells are plated at a density of 5×106 cells/dish and then grown for 24 hours in FBS-supplemented DMEM/F12 medium. Medium is then removed and cells are washed in PBS and then in medium. A transfection solution containing DEAE dextran (0.4 mg/ml), 100 μM chloroquine, 10% NuSerum, DNA (0.4 mg/ml) in DMEM/F12 medium is then applied on the cells 10 ml volume. After incubation for 3 hours at 37° C., cells are washed in PBS and medium as just described and then shocked for 1 minute with 10% DMSO in DMEM/F12 medium. Cells are allowed to grow for 2-3 days in 10% FBS-supplemented medium, and at the end of incubation dishes are placed on ice, washed with ice cold PBS and then removed by scraping. Cells are then harvested by centrifugation at 1000 rpm for 10 minutes and the cellular pellet is frozen in liquid nitrogen, for subsequent use in protein expression. Northern blot analysis of a thawed aliquot of frozen cells may be used to confirm expression of receptor-encoding cDNA in cells under storage.


In a like manner, stably transfected cell lines can also prepared, for example, using two different cell types as host: CHO K1 and CHO Pro5. To construct these cell lines, cDNA coding for the relevant protein may be incorporated into the mammalian expression vector pRC/CMV (Invitrogen), which enables stable expression. Insertion at this site places the cDNA under the expression control of the cytomegalovirus promoter and upstream of the polyadenylation site and terminator of the bovine growth hormone gene, and into a vector background comprising the neomycin resistance gene (driven by the SV40 early promoter) as selectable marker.


An exemplary protocol to introduce plasmids constructed as described above is as follows. The host CHO cells are first seeded at a density of 5×105 in 10% FBS-supplemented MEM medium. After growth for 24 hours, fresh medium is added to the plates and three hours later, the cells are transfected using the calcium phosphate-DNA co-precipitation procedure (Sambrook et al, supra). Briefly, 3 μg of DNA is mixed and incubated with buffered calcium solution for 10 minutes at room temperature. An equal volume of buffered phosphate solution is added and the suspension is incubated for 15 minutes at room temperature. Next, the incubated suspension is applied to the cells for 4 hours, removed and cells were shocked with medium containing 15% glycerol. Three minutes later, cells are washed with medium and incubated for 24 hours at normal growth conditions. Cells resistant to neomycin are selected in 10% FBS-supplemented alpha-MEM medium containing G418 (1 mg/ml). Individual colonies of G418-resistant cells are isolated about 2-3 weeks later, clonally selected and then propagated for assay purposes.


EXAMPLES

A number of examples involved in the present invention are described below. In most cases, alternative techniques could also be used. For example, techniques, methods, and other information described in U.S. Pat. No. 5,837,815; U.S. Pat. No. 5,837,524; U.S. Patent Publication 2002/0048782; PCT/US98/02797, WO 98/35056; and McShan et al., Internat. J. Oncology 21:197-205 (2002) can be used in the present invention. Such techniques and information include, without limitation, cloning, culturing, purification, assaying, screening, use of modulators, sequence information, and information concerning biological role of PYK2. Each of these references is incorporated by reference herein in its entirety, including drawings.


Example 1
Cloning of PYK2 Kinase Domain

Kinase domain of PYK2 (amino acids 420-691) was amplified by polymerase chain reaction (PCR) using the specific primers 5′-TCCACAGCATATGATTGCCCGTGAAGA TGTGGT-3′ (SEQ ID NO: 5) and 5′-CTCTCGTCGACCTACATGGCAATGTCCTTCTCCA-3′ (SEQ ID NO: 6). The resulting PCR fragment was digested with NdeI and SalI and was ligated into a modified pET15b vector (Novagen) with a cleavable N-terminal hexa-histidine tag (designated pET1S). PYK2 coding sequence has been deposited with GenBank under accession number U33284. A desired PYK2 sequence can be obtained using PCR with a brain (e.g., human brain) cDNA library, such as obtaining kinase domain using the above primers in PCR. The multi-cloning site of the pET15S vector is shown in the following sequence (SEQ ID NO: 7), including the sequence encoding the N-terminal hexa-histadine tag:
embedded image


pET15S vector is derived from pET15b vector (Novagen) for bacterial expression to produce the proteins with N-terminal His6. This vector was modified by replacement of NdeI-BamHI fragment to others to create SalI site and stop codon (TAG). Vector size is 5814 bp. Insert can be put using NdeI-SalI site.


The amino acid and nucleic acid sequences for the PYK2 kinase domain utilized are provided in Table 4 (SEQ ID NO: 1 and 3 respectively).


Example 2
Expression and Purification of PYK2 Kinase Domain

For protein expression Pyk2 kinase domain was transformed into E. coli strain BL21 (DE3) pLysS and transformants were selected on LB plates containing Kanamycin. Single colonies were grown overnight at 37° C. in 200 ml TB (terrific broth) media. 16×1 L of fresh TB media in 2.8 L flasks were inoculated with 10 ml of overnight culture and grown with constant shaking at 37° C. Once cultures reached an absorbance of 1.0 at 600 nm, 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) was added and cultures were allowed to grow for a further 12 hrs at 22° C. with constant shaking. Cells were harvested by centrifugation at 7000×g and pellets were frozen in liquid nitrogen and stored at −80° C. until ready for lysis.


The cell pellet was suspended in lysis buffer containing 0.1M Potassium phosphate buffer pH 8.0, 200 mM NaCl, 10% Glycerol, 2 mm PMSF and EDTA free protease inhibitor cocktail tablets (Roche). Cells were lysed using a microfuidizer processor (Microfuidics Corporation) and insoluble cellular debris was removed using centrifugation at 30,000×g. The cleared supernatant was added to Talon resin (Clonetech) and incubated for 4 hrs at 4° C. with constant rocking. The suspension was loaded onto a column and washed with 20 column volumes of lysis buffer plus 10 mM Imadazole. Protein was eluted step wise with addition of lysis buffer plus 200 mM Imadazole pH7.5 and 1 ml fractions collected. Fractions containing PYK2 were pooled, concentrated and loaded onto a Pharmacia HiLoad 26/60 Superdex 200 sizing column (Pharmacia) pre-equilibrated with 20 mM Tris pH7.5, 150 mM NaCl.


Peak fractions were collected and assayed by SDS-PAGE. Fractions containing PYK2 were pooled and diluted in Tris buffer pH 7.5, until 30 mM NaCl was reached. Diluted protein was further subjected to anion exchange chromatography using a Source 15Q (Pharmacia) sepharose column equilibrated with 20 mM Tris pH7.5. Elution was performed using a linear gradient of sodium chloride (0-500 mM). Eluted protein was treated with 2U thrombin per mg protein to remove N-terminal Histidine tag. Following cleavage Pyk2 was re-applied to Source 15Q (Pharmacia) sepharose column equilibrated with 20 mM Tris pH7.5, and eluted using a linear sodium chloride gradient. Purified protein was concentrated to 100 mg/ml and stored at −80° C. until ready for crystallization screening.


Example 3
Crystallization of PYK2 Kinase Domain

Crystallization conditions were initially identified in the Hampton Research (Riverside, Calif.) screening kit (1). Optimized crystals were grown by vapor diffusion in sitting drop plates with equal volumes of protein solution of 10 mg/ml containing 20 mM Tris-HCl pH 8.0, 150 mM NaCl, 14 mM BME, 1 mM DTT and reservoir solution containing 8% polyethylene glycol (PEG) 8000, 0.2M Sodium Acetate, 0.1 M Cacodylate pH 6.5, 20% Glycerol). Blades of crystals grew overnight at 4° C. Microseeding was used to produce larger, single crystals, the largest crystal being around 0.3 mm×0.05 mm×0.02 mm.


Example 4
Diffraction Analysis of PYK2

Synchrotron X-ray data for Pyk2 was collected at beamline 8.3.1 of the Advanced Light Source (ALS, Lawrence Berkeley National Laboratory, Berkeley) on a Quantum 210 charge-coupled device detector (λ=1.10 Å). The mother liquor from the reservoir was used as cryo-protectant for the crystal. Detector distance was 110 mm and exposure time was 10 s per frame. 200 frames were collected with 0.5° oscillation over a wedge of 100°. The quality and resolution limits of the diffraction pattern were considerably improved by annealing the crystal. The crystal was briefly allowed to warm up for 10 seconds by shutting off the Nitrogen cryo stream and refrozen by resuming cooling with the cryo stream. Crystals of PYK2 diffracted to a resolution limit of 1.45 Å with cell dimensions of a=37 Å, b=47 Å, c=81 Å, α=90°, β=92°, γ=90°. The data were processed using Mosflm ( ) and scaled and reduced with Scala ( ) in CCP40 in space group P2. The data processing process was driven by the ELVES automation scripts (J. M. Holton, unpublished data). An inspection of the 0K0 zone indicated that all odd (2n+1) reflections were very weak compared with the even reflections, suggesting the space group to be P21.


PYK2 Structure Determination and Refinement


The initial phases for the dataset were obtained by molecular replacement. A homology model of the protein Pyk2 was generated using the LCK kinase structure (PDBID: 1qpc) as a template. This model was trimmed by excising all loops before being used in molecular replacement program EPMR ( ), which resulted in a solution with CC=0.372. The molecular replacement solution phases were improved by the program Arp-Warp ( ). The resultant model was further improved by manual model building and extension in O ( ) and refinement with CNX ( ) and Refinac5 ( ) in CCP4. The cycle of model building and refinement continued till the model was complete and refinement converged to the R/Rfree of 20.83/26.94%. The geometric analysis of the model was performed by PROCHECK ( ) which indicated the structure to have excellent geometry.


Data collection and refinement statistics for PYK2 kinase domain crystal, and for PYK2 kinase domain/binding compound cocrystal are summarized in the following table:

Data Collection and Refinement StatisticsPyk2 (APO)Pyk2 + AMPPNPCrystal ParametersSpace GroupP21P21Unit Cell (Å)a = 37.17, b = 46.97,a = 37.32, b = 46.98,c = 80.36, custom character = 92.63c = 81.11, custom character = 92.83Number of11molecules/AUVM (Å3/Dalton)2.42.4Solvent content (%)4848Data Collection andProcessingResolution (Å)1.451.80Wavelength (Å)1.11.1Unique reflections4784326149Redundancy (last shell*)2.0 (1.8)4.0 (2.9)Completeness (last97.5 (88.9)99.8 (97.8)shell) (%)I/custom character (last shell)10.9 (1.3)12.0 (2.3)Rsym (last shell)0.043 (0.487)0.063 (0.459)*Last shell (Å)1.49-1.451.85-1.80RefinementRwork/Rfree (%)16.93/20.6818.62/22.81Number of Atoms25832507Rmsd from ideal0.012 (bond distance),0.010 (bond distance),geometry1.434 (bond angle)1.372 (bond angle)SigmaA coordinate error0.16 Å0.14 Å(for 5.0-1.45 Å)(for 5.0-1.80 Å)Average B-factors19.320.5(Å2)Protein atoms16.419.0Waters37.634.3Ligand44.41


The model of Pyk2 contains 273 amino acids (spanning the PYK2 sequence 420-691 with one residue from the cloning vector) and 180 water molecules. The Pyk2 structure adopts the standard kinase fold consisting of an N-terminal β-sheet domain and a C-terminal α-helical domain linked by a 5 residue linker. The linker segment contains the canonical H-bond acceptor/donor residues E503 and Y505 that would normally interact with the adenosine ring of ATP. In the apo structure these residues make H-bonds with water molecules.


A ribbon diagram of the PYK2 active site is shown in FIG. 1. Atomic coordinates for the apo protein are provided in Table 1, while atomic coordinates for a PYK2 co-crystallized with a binding compound (AMPPNP) are provided in Table 2.


Active Loop Conformation


In many protein kinases, the activation loop, or A-loop, plays an important role in regulating the kinase activity. In active kinases, the A-loops adopt a highly similar conformation characterized by the formation of three small β-sheet moieties: two with the main body of the protein (the beginning of the catalytic or C-loop and the αEF/αF loop, respectively), and one with the substrate peptide. In contrast, the inactive conformation of A-loop differs markedly from protein to protein, albeit having the similar effect of blocking ATP binding, substrate-binding, or both. In comparison with the active insulin receptor (INSR) and IGFR1 kinase domain strutures, the A-loop in the solved Pyk2 structure is clearly in an inactive conformation. The loop is stabilized by a unique set of intra- and inter-loop interactions that differentiate it from all known A-loop structures.


The A-loop in our Pyk2 structure starts to deviate from the standard active conformation at the DFG motif (for comparison, we modeled the active A-loop conformation of Pyk2 based on the IGFR1 structure). The first two residues of the DFG motif (D567 and F568) have similar orientations as their counterparts in the active A-loop form, with D567 interacting with K457 (β3) and F568 locked in a hydrophobic pocket sandwiched by two residues (I477 and M478) from αC. However, the third residue in the motif, G569, adopts a completely different conformation, resulting in the formation of a hydrogen bond beween G567:NH and H547:CO. This hydrogen bond forces the A-loop to a different path that precludes it from forming a β-sheet with C-loop. A similar hydrogen bond has also been observed in two other tyrosine kinases: HCK (1qcf) and SRC (1fmk).


There are multiple interactions that help to stabilize the A-loop in its observed conformation. Most of them involve a unique sequence moiety of Pyk2. Among the tyrosine kinases of known structure, Pyk2 contains a unique ED repeat (E575-D578) in the A-loop. In the Pyk2 structure, E575 is exposed to solvent, whereas D576 initiates a tight β -turn. Beside providing the canonical β-turn backbone hydrogen bond between D576:CO—Y579:NH, the side chain of D576 also interacts with D578:NH. The β-turn region of A-loop is held to the αEF/αF loop by two side-chain-backbone hydrogen bonds: one between E577:CO—R600:Ne and the other between K581:NZ-N598:CO. The side chain of E577 interacts with the end of the activation loop via two hydrogen bonds, one with T585 (OG) and the other with R586 (NH). The most interesting feature of the Pyk2 A-loop is the salt bridge formed between D588 and R547 from the C-loop (the distances between the two OD and two NH atoms are 2.9 Å). Neither of the two tyrosines Y579 and Y580 is phosphorylated in our structure. Y579 is exposed to solvent, whereas Y580 binds to the hydrophobic portions of the E575 and E577 side chains.


Because FAK does not have the second ED, the conformation of the A-loop in an inactive FAK is expected to be different.


Implications for Substrate Binding and Autophosphorylation


An important event in the enzymatic activation of FAK/Pyk2 is the autophosphorylation of a tyrosine residue before the catalytic domain (Y402). The phosphorylated Y402 provides the binding site for Src and other related kinases and facilitates Src-dependent phosphorylation of other tyrosine residues on Pyk2 including Y579 and Y580. It is not clear how autophosphorylation could occur before Y579 and Y580 are phosphorylated.


To test whether Y402 can reach the substrate binding site, we modeled the 7 residue peptide D400IYAEIPD407 containing Y402 into the substrate binding site based on the cocrystal structure of IGFR1 kinase domain with its substrate peptide. In our protein construct, the Pyk2 insert starts at 1420. There are four residues (GSHM) N-terminal to 1420 left by the His-tag used, of those only M419 is visible. We then modeled the 11 residues that link D419 to M407. The model shows that, in order to reach the substrate binding site, the N-terminal region has to transverse along the back of aC. The link would also fix the A-loop in the active conformation. This may provide the mechanism that the protein used to autophosphorylate Y402. Once Y402 is phosphorylated, the N-terminus is then released and subject to SH2 binding. The A-loop also becomes flexible and accessible to Src.


Because the residues surrounding the P+1 and P+3 binding pocket are mostly hydrophobic in tyrosine kinases, substrate P+1 and P+3 sites are mostly hydrophobic residues. The residue that might interact with P+2 varies. Acidic and other polar site chains might be preferred because of the nearby residue R586. The P−1 site is an acidic residue in INSR and IGFR1. The residue for interacting with P−1 is Arg; this residue is changed to Gly in Pyk2, leaving the space largely hydrophobic. The autophosphorylation site sequence in Pyk2, IYAEIPD, and the sequences of several other known Pyk2 phosphorylation sites fit well the substrate selectivity profile of Pyk2.


Example 5
PYK2 Binding Assays

Binding assays can be performed in a variety of ways, including a variety of ways known in the art. For example, competitive binding to PYK2 can be measured on Nickel-FlashPlates, using His-tagged PYK2 (˜100 ng) and ATPγ[35S] (˜10 nCi). As compound is added, the signal decreases, since less ATPγ[35S] is bound to PYK2 which is proximal to the scintillant in the FlashPlate. The binding assay can be performed by the addition of compound (10 μl; 20 mM) to PYK2 protein or kinase domain (90 10 μl) followed by the addition of ATPγ[35S] and incubating for 1 hr at 37° C. The radioactivity is measured through scintillation counting in Trilus (Perkin-Elmer).


Alternatively, any method which can measure binding of a ligand to the ATP-binding site can be used. For example, a fluorescent ligand can be used. When bound to PYK2, the emitted fluorescence is polarized. Once displaced by inhibitor binding, the polarization decreases.


Determination of IC50 for compounds by competitive binding assays. (Note that KI is the dissociation constant for inhibitor binding; KD is the dissociation constant for substrate binding.) For this system, the IC50, inhibitor binding constant and substrate binding constant can be interrelated according to the following formula:


When using radiolabeled substrate
KI=IC501+[L*]/KD,

    • the IC50˜KI when there is a small amount of labeled substrate.


Example 6
PYK2 Activity Assay

As an exemplary kinase assay, the kinase activity of PYK2 was measured in AlphaScreening (Packard BioScience). The kinase buffer (HMNB) contains HEPES 50 mM at pH7.2, Mg/Mn 5 mM each, NP-40 0.1%, and BSA at final 50 ug/ml. AlphaScreening is conducted as described by the manufacturer. In brief, the kinase reaction is performed in 384-well plate in 25 ul volume. The substrate is biotin-(E4Y)3 at final concentration of 1 nM. The final concentration of ATP is 10 uM. For compound testing the final DMSO concentration is 1%. The reaction is incubated in 31° C. for 1 hour.


The Pyk2 kinase domain residues 419 to 691 is an active kinase in AlphaScreen. At a concentration of 8 ng/well in 384-well plate, PYK2 shows a Kd of 7.34 uM, which is in general agreement with most protein kinases (Table 5). Inhibition by ATP analogs was tested with Pyk2 at 8 ng/well and ATP at 10 uM. The data is shown in Table 5. The affinity of ATP-g-S and ADP with Pyk2 is at 14 uM. Adenosine and AMP-PCP have little effect on PYK2 in the concentration tested.


Example 9
Synthesis of the Compounds of Formula I:



embedded image


The triazole derivatives, represented by Formula I, can be prepared as shown in Scheme-1.


Step-1 Preparation of Formula (3)


The compound of formula (3) is prepared conventionally by reaction of a compound of formula (1), where R1=alkyl, aryl, heteroaryl (e.g. m-toluic hydrazide), with an isothiocyanate of formula (2), in a basic solvent (e.g. pyridine), typically heated near 65° C. for 2-6 hours.


Step-2 Preparation of Formula (5)


The compound of formula (5) is prepared conventionally by reaction of a compound of formula (3) with an alkylating agent of formula (4)(e.g. methyl iodide), in an inert solvent (e.g. THF) at room temperature for 24-48 hours.


Step-3 Preparation of Formula I


The compound of Formula I is prepared by dissolving a compound of formula (5) in POCl3 and heated near 80° C. for 8-12 hours. When the reaction is substantially complete, the product of Formula I is isolated by conventional means (e.g. reverse phase HPLC). Smith, et. al., J. Comb. Chem., 1999, 1, 368-370; and references therein.


Example 10
Site-Directed Mutagenesis of PYK2 kinase

Mutagenesis of PYK2 kinase can be carried out according to the following procedure as described in Molecular Biology: Current Innovations and Future Trends. Eds. A. M. Griffin and H. G. Griffin. (1995) ISBN 1-898486-01-8, Horizon Scientific Press, PO Box 1, Wymondham, Norfolk, U.K., among others.


In vitro site-directed mutagenesis is an invaluable technique for studying protein structure-function relationships, gene expression and vector modification. Several methods have appeared in the literature, but many of these methods require single-stranded DNA as the template. The reason for this, historically, has been the need for separating the complementary strands to prevent reannealing. Use of PCR in site-directed mutagenesis accomplishes strand separation by using a denaturing step to separate the complementing strands and allowing efficient polymerization of the PCR primers. PCR site-directed methods thus allow site-specific mutations to be incorporated in virtually any double-stranded plasmid; eliminating the need for M13-based vectors or single-stranded rescue.


It is often desirable to reduce the number of cycles during PCR when performing PCR-based site-directed mutagenesis to prevent clonal expansion of any (undesired) second-site mutations. Limited cycling which would result in reduced product yield, is offset by increasing the starting template concentration. A selection is used to reduce the number of parental molecules coming through the reaction. Also, in order to use a single PCR primer set, it is desirable to optimize the long PCR method. Further, because of the extendase activity of some thermostable polymerases it is often necessary to incorporate an end-polishing step into the procedure prior to end-to-end ligation of the PCR-generated product containing the incorporated mutations in one or both PCR primers.


The following protocol provides a facile method for site-directed mutagenesis and accomplishes the above desired features by the incorporation of the following steps:

    • (i) increasing template concentration approximately 1000-fold over conventional PCR conditions; (ii) reducing the number of cycles from 25-30 to 5-10; (iii) adding the restriction endonuclease DpnI (recognition target sequence: 5-Gm6ATC-3, where the A residue is methylated) to select against parental DNA (note: DNA isolated from almost all common strains of E. coli is Dam-methylated at the sequence 5-GATC-3); (iv) using Taq Extender in the PCR mix for increased reliability for PCR to 10 kb; (v) using Pfu DNA polymerase to polish the ends of the PCR product, and (vi) efficient intramolecular ligation in the presence of T4 DNA ligase.


Plasmid template DNA (approximately 0.5 pmole) is added to a PCR cocktail containing, in 25 ul of 1× mutagenesis buffer: (20 mM Tris HCl, pH 7.5; 8 mM MgCl2; 40 ug/ml BSA); 12-20 pmole of each primer (one of which must contain a 5-prime phosphate), 250 uM each dNTP, 2.5 U Taq DNA polymerase, 2.5 U of Taq Extender (Stratagene).


The PCR cycling parameters are 1 cycle of: 4 min at 94 C, 2 min at 50 C and 2 min at 72 C; followed by 5-10 cycles of 1 min at 94 C, 2 min at 54 C and 1 min at 72 C (step 1).


The parental template DNA and the linear, mutagenesis-primer incorporating newly synthesized DNA are treated with DpnI (10 U) and Pfu DNA polymerase (2.5U). This results in the DpnI digestion of the in vivo methylated parental template and hybrid DNA and the removal, by Pfu DNA polymerase, of the Taq DNA polymerase-extended base(s) on the linear PCR product.


The reaction is incubated at 37 C for 30 min and then transferred to 72 C for an additional 30 min (step 2).


Mutagenesis buffer (1×, 115 ul, containing 0.5 mM ATP) is added to the DpnI-digested, Pfu DNA polymerase-polished PCR products.


The solution is mixed and 10 ul is removed to a new microfuge tube and T4 DNA ligase (2-4 U) added.


The ligation is incubated for greater than 60 min at 37 C (step 3).


The treated solution is transformed into competent E. coli (step 4).


In addition to the PCT-based site-directed mutagenesis described above, other methods are available. Examples include those described in Kunkel (1985) Proc. Natl. Acad. Sci. 82:488-492; Eckstein et al. (1985) Nucl. Acids Res. 13:8764-8785; and using the GeneEditor™ Site-Directed Mutageneis Sytem from Promega.


All patents and other references cited in the specification are indicative of the level of skill of those skilled in the art to which the invention pertains, and are incorporated by reference in their entireties, including any tables and figures, to the same extent as if each reference had been incorporated by reference in its entirety individually.


One skilled in the art would readily appreciate that the present invention is well adapted to obtain the ends and advantages mentioned, as well as those inherent therein. The methods, variances, and compositions described herein as presently representative of preferred embodiments are exemplary and are not intended as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art, which are encompassed within the spirit of the invention, are defined by the scope of the claims.


It will be readily apparent to one skilled in the art that varying substitutions and modifications may be made to the invention disclosed herein without departing from the scope and spirit of the invention. For example, variations can be made to crystallization or co-crystallization conditions for PYK2 proteins and/or various kinase domain sequences can be used. Thus, such additional embodiments are within the scope of the present invention and the following claims.


The invention illustratively described herein suitably may be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein. Thus, for example, in each instance herein any of the terms “comprising”, “consisting essentially of” and “consisting of” may be replaced with either of the other two terms. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the appended claims.


In addition, where features or aspects of the invention are described in terms of Markush groups or other grouping of alternatives, those skilled in the art will recognize that the invention is also thereby described in terms of any individual member or subgroup of members of the Markush group or other group.


Also, unless indicated to the contrary, where various numerical values are provided for embodiments, additional embodiments are described by taking any 2 different values as the endpoints of a range. Such ranges are also within the scope of the described invention.


Thus, additional embodiments are within the scope of the invention and within the following claims.

TABLE 1REMARK Written by DEALPDB Version 1.13 (06/02)REMARK Fri Nov 8 15:01:36 2002HEADER ----XX-XXX-XX   xxxxCOMPND ---REMARK3REMARK3REFINEMENT.REMARK3 PROGRAM   : REFMAC 5.1.25REMARK3 AUTHORS   : MURSHUDOV, VAGIN, DODSONREMARK3REMARK3  REFINEMENT TARGET : MAXIMUM LIKELIHOODREMARK3REMARK3 DATA USED IN REFINEMENT.REMARK3 RESOLUTION RANGE HIGH  (ANGSTROMS):   1.45REMARK3 RESOLUTION RANGE LOW  (ANGSTROMS):  79.06REMARK3 DATA CUTOFF         (SIGMA(F)): NONEREMARK3 COMPLETENESS FOR RANGE      (%):  97.02REMARK3 NUMBER OF REFLECTIONS:   45396REMARK3REMARK3 FIT TO DATA USED IN REFINEMENT.REMARK3 CROSS-VALIDATION METHOD: THROUGHOUTREMARK3 FREE R VALUE TEST SET SELECTION: RANDOMREMARK3 R VALUE    (WORKING + TEST SET):  0.17122REMARK3 R VALUE        (WORKING SET):  0.16934REMARK3 FREE R VALUE:  0.20676REMARK3 FREE R VALUE TEST SET SIZE   (%):  5.0REMARK3 FREE R VALUE TEST SET COUNT:  2407REMARK3REMARK3 FIT IN THE HIGHEST RESOLUTION BIN.REMARK3 TOTAL NUMBER OF BINS USED:    20REMARK3 BIN RESOLUTION RANGE HIGH:  1.450REMARK3 BIN RESOLUTION RANGE LOW:  1.488REMARK3 REFLECTION IN BIN     (WORKING SET):   3077REMARK3 BIN R VALUE        (WORKING SET):  0.283REMARK3 BIN FREE R VALUE SET COUNT:    151REMARK3 BIN FREE R VALUE:  0.287REMARK3REMARK3 NUMBER OF NON-HYDROGEN ATOMS USED IN REFINEMENT.REMARK3 ALL ATOMS       :    2583REMARK3REMARK3 B VALUES.REMARK3 FROM WILSON PLOT       (A**2): NULLREMARK3 MEAN B VALUE    (OVERALL, A**2):  15.129REMARK3 OVERALL ANISOTROPIC B VALUE.REMARK3  B11 (A**2) :  −0.45REMARK3  B22 (A**2) :    0.51REMARK3  B33 (A**2) :  −0.07REMARK3  B12 (A**2) :    0.00REMARK3  B13 (A**2) :  −0.23REMARK3  B23 (A**2) :    0.00REMARK3REMARK3 ESTIMATED OVERALL COORDINATE ERROR.REMARK3 ESU BASED ON R VALUE  (A):0.083REMARK3 ESU BASED ON FREE R VALUE  (A):0.073REMARK3 ESU BASED ON MAXIMUM LIKELIHOOD  (A):0.046REMARK3 ESU FOR B VALUES BASED ON MAXIMUM LIKELIHOOD(A**2):1.218REMARK3REMARK3CORRELATION COEFFICIENTS.REMARK3 CORRELATION COEFFICIENT FO-FC    :  0.966REMARK3 CORRELATION COEFFICIENT FO-FC FREE :  0.949REMARK3REMARK3 RMS DEVIATIONS FROM IDEAL VALUESCOUNTRMSWEIGHTREMARK3 BOND LENGTHS REFINED ATOMS(A):2278 ;0.012 ;0.022REMARK3 BOND LENGTHS OTHERS(A):2095 ;0.002 ;0.020REMARK3 BOND ANGLES REFINED ATOMS(DEGREES):3079 ;1.434 ;1.970REMARK3 BOND ANGLES OTHERS(DEGREES):4880 ;1.216 ;3.000REMARK3 TORSION ANGLES, PERIOD 1(DEGREES): 271 ;5.456 ;5.000REMARK3 CHIRAL-CENTER RESTRAINTS(A**3): 339 ;0.083 ;0.200REMARK3 GENERAL PLANES REFINED ATOMS(A):2465 ;0.009 ;0.020REMARK3 GENERAL PLANES OTHERS(A): 462 ;0.011 ;0.020REMARK3 NON-BONDED CONTACTS REFINED ATOMS(A): 517 ;0.238 ;0.200REMARK3 NON-BONDED CONTACTS OTHERS(A):2522 ;0.234 ;0.200REMARK3 NON-BONDED TORSION OTHERS(A):1336 ;0.088 ;0.200REMARK3 H-BOND (X...Y) REFINED ATOMS(A): 241 ;0.163 ;0.200REMARK3 SYMMETRY VDW REFINED ATOMS(A): 16 ;0.108 ;0.200REMARK3 SYMMETRY VDW OTHERS(A): 93 ;0.279 ;0.200REMARK3 SYMMETRY H-BOND REFINED ATOMS(A): 23 ;0.131 ;0.200REMARK3REMARK3 ISOTROPIC THERMAL FACTOR RESTRAINTS.COUNTRMSWEIGHTREMARK3 MAIN-CHAIN BOND REFINED ATOMS(A**2):1362 ;1.094 ;1.500REMARK3 MAIN-CHAIN ANGLE REFINED ATOMS(A**2):2217 ;1.859 ;2.000REMARK3 SIDE-CHAIN BOND REFINED ATOMS(A**2): 916 ;2.488 ;3.000REMARK3 SIDE-CHAIN ANGLE REFINED ATOMS(A**2): 862 ;3.822 ;4.500REMARK3REMARK3ANISOTROPIC THERMAL FACTOR RESTRAINTS.COUNTRMSWEIGHTREMARK3 RIGID-BOND RESTRAINTS(A**2):2278 ;1.321 ;2.000REMARK3 SPHERICITY; BONDED ATOMS(A**2):2226 ;1.814 ;2.000REMARK3REMARK3 NCS RESTRAINTS STATISTICSREMARK3 NUMBER OF NCS GROUPS : NULLREMARK3REMARK3REMARK3 TLS DETAILSREMARK3 NUMBER OF TLS GROUPS  :   1REMARK3REMARK3 TLS GROUP  :   1REMARK3  NUMBER OF COMPONENTS GROUP :   1REMARK3  COMPONENTS    C SSSEQI  TO  C SSSEQIREMARK3  RESIDUE RANGE :   A   419    A   691REMARK3  ORIGIN FOR THE GROUP (A) :  7.0590  1.6770  18.9230REMARK3  T TENSORREMARK3   T11:    0.0106 T22:    0.0198REMARK3   T33:    0.0169 T12:  −0.0142REMARK3   T13:  −0.0005 T23:    0.0042REMARK3  L TENSORREMARK3   L11:    0.7756 L22:    0.7085REMARK3   L33:    0.5853 L12:  −0.2205REMARK3   L13:    0.1565 L23:  −0.0117REMARK3  S TENSORREMARK3   S11:  −0.0307 S12:  −0.0104 S13:    0.0730REMARK3   S21:    0.0204 S22:    0.0478 S23:  −0.0005REMARK3   S31:  −0.0401 S32:    0.0386 S33:  −0.0171REMARK3REMARK3REMARK3 BULK SOLVENT MODELLING.REMARK3 METHOD USED : BABINET MODEL WITH MASKREMARK3 PARAMETERS FOR MASK CALCULATIONREMARK3 VDW PROBE RADIUS:  1.40REMARK3 ION PROBE RADIUS:  0.80REMARK3 SHRINKAGE RADIUS:  0.80REMARK3REMARK3 OTHER REFINEMENT REMARKS:REMARK3 HYDROGENS HAVE BEEN ADDED IN THE RIDING POSITIONSREMARK3CRYST137.173 46.970 80.360 90.00 92.63 90.00 P 1 21 1SCALE10.0269010.0000000.0012350.00000SCALE20.0000000.0212900.0000000.00000SCALE30.0000000.0000000.0124570.00000ATOM1NMETA419−17.79813.82426.7161.0037.08ANANISOU1NMETA4194698470446862−1312ANATOM3CAMETA419−17.14114.62925.6451.0036.94ACANISOU3CAMETA419467246814680−19−7−4ACATOM5CBMETA419−18.18615.17324.6681.0037.63ACANISOU5CBMETA4194763477847579−924ACATOM8CGMETA419−19.07814.09824.0491.0039.47ACANISOU8CGMETA419498350174994−61−508ACATOM11SDMETA419−18.14912.77823.2181.0042.55ASANISOU11SDMETA4195414534354091126−34ASATOM12CEMETA419−17.96311.57124.5481.0042.75ACANISOU12CEMETA419541754015423−17−1912ACATOM16CMETA419−16.34315.77626.2571.0035.96ACANISOU16CMETA419453845704553−2214ACATOM17OMETA419−16.82316.46927.1611.0036.07AOANISOU17OMETA419456145814561−515−19AOATOM20NILEA420−15.13615.98025.7301.0034.59ANANISOU20NILEA4204374437843887−11−22ANATOM22CAILEA420−14.14016.85026.3471.0033.36ACANISOU22CAILEA4204229421942252027ACATOM24CBILEA420−12.74116.14126.3761.0033.70ACANISOU24CBILEA420425542864261154−12ACATOM26CG1ILEA420−11.77016.91127.2821.0034.11ACANISOU26CG1ILEA42042974329433212−130ACATOM29CD1ILEA420−10.79717.81326.5771.0034.87ACANISOU29CD1ILEA420442344064417−51328ACATOM33CG2ILEA420−12.18015.88524.9481.0034.10ACANISOU33CG2ILEA4204312433143101236ACATOM37CILEA420−14.05718.23325.6941.0031.72ACANISOU37CILEA42040024045400325−4−28ACATOM38OILEA420−13.90218.36524.4801.0032.15AOANISOU38OILEA42040334132405036−2013AOATOM39NALAA421−14.15219.26526.5221.0029.54ANANISOU39NALAA42137283740375713−2149ANATOM41CAALAA421−14.11020.64226.0551.0027.85ACANISOU41CAALAA421349735503531−15−126ACATOM43CBALAA421−15.02521.51426.8991.0027.73ACANISOU43CBALAA4213508351635122−423ACATOM47CALAA421−12.68321.13826.1411.0026.04ACANISOU47CALAA42133093286329718047ACATOM48OALAA421−11.90520.64226.9481.0025.36AOANISOU48OALAA42131593228324737−36AOATOM49NARGA422−12.35522.13825.3311.0024.01ANANISOU49NARGA42229923084304616−127ANATOM51CAARGA422−11.04122.75625.3661.0022.30ACANISOU51CAARGA42228452819280627327ACATOM53CBARGA422−10.91723.84724.2901.0021.96ACANISOU53CBARGA42227712807276636−432ACATOM56CGARGA422−9.49024.34924.0851.0021.12ACANISOU56CGARGA422276526182642−5139ACATOM59CDARGA422−9.37825.52323.1381.0019.52ACANISOU59CDARGA42225052472243615−28−27ACATOM62NEARGA422−9.89925.20221.8121.0018.34ANANISOU62NEARGA42223632273233280−1323ANATOM64CZARGA422−9.21324.60820.8401.0016.29ACANISOU64CZARGA422211020222056−41−637ACATOM65NH1ARGA422−7.96524.21421.0251.0014.80ANANISOU65NH1ARGA422202219251676−41−5−25ANATOM68NH2ARGA422−9.79024.37919.6711.0016.03ANANISOU68NH2ARGA42220442056199155−106122ANATOM71CARGA422−10.71123.32326.7381.0021.24ACANISOU71CARGA422268827032677312734ACATOM72OARGA422−9.57823.20927.1881.0020.08AOANISOU72OARGA422256325892475428071AOATOM73NGLUA423−11.70623.89727.4111.0020.34ANANISOU73NGLUA42325802572257657−148ANATOM75CAGLUA423−11.50324.53328.7071.0020.07ACANISOU75CAGLUA42325502531254252138ACATOM77CBGLUA423−12.72425.40629.0901.0020.68ACANISOU77CBGLUA423258426402634713531ACATOM80CGGLUA423−12.47626.41430.2161.0023.54ACANISOU80CGGLUA423302730082907−79−35−10ACATOM83CDGLUA423−13.57427.47730.3621.0026.82ACANISOU83CDGLUA42334093383339545−91ACATOM84OE1GLUA423−14.77727.12230.4161.0029.98AOANISOU84OE1GLUA423362439863778−1021877AOATOM85OE2GLUA423−13.25128.68830.4331.0027.61AOANISOU85OE2GLUA423358134493461−64−77−21AOATOM86CGLUA423−11.20923.49929.8101.0018.81ACANISOU86CGLUA423238123732390431920ACATOM87OGLUA423−10.73723.87530.8661.0018.11AOANISOU87OGLUA423233521982347163391AOATOM88NASPA424−11.48322.21429.5551.0017.37ANANISOU88NASPA424217022512179934040ANATOM90CAASPA424−11.10621.13430.4861.0016.78ACANISOU90CAASPA424207621782122636233ACATOM92CBASPA424−11.80119.81030.1261.0016.79ACANISOU92CBASPA424212421862066651551ACATOM95CGASPA424−13.31019.87230.2351.0018.67ACANISOU95CGASPA424232224112361−322588ACATOM96OD1ASPA424−13.82220.68931.0121.0020.52AOANISOU96OD1ASPA42425012731256598552AOATOM97OD2ASPA424−14.05919.11729.5901.0020.81AOANISOU97OD2ASPA424267028022434−141−145110AOATOM98CASPA424−9.59120.88730.5101.0016.59ACANISOU98CASPA424204521752084581979ACATOM99OASPA424−9.09520.19331.3941.0015.30AOANISOU99OASPA42417602109194495117137AOATOM100NVALA425−8.86621.43929.5371.0015.79ANANISOU100NVALA425196820341998813653ANATOM102CAVALA425−7.43321.18029.4001.0016.53ACANISOU102CAVALA42520602116210436647ACATOM104CBVALA425−7.08420.49228.0621.0016.10ACANISOU104CBVALA42520522052201463694ACATOM106CG1VALA425−5.57720.29927.9431.0017.51ACANISOU106CG1VALA425216922412244194056ACATOM110CG2VALA425−7.78019.16227.9341.0016.93ACANISOU110CG2VALA4252140218021111345−29ACATOM114CVALA425−6.71522.49929.4641.0016.70ACANISOU114CVALA425209521092141352139ACATOM115OVALA425−7.00623.39228.6501.0017.77AOANISOU115OVALA425222922672253−18−21164AOATOM116NVALA426−5.82122.63530.4421.0016.43ANANISOU116NVALA42620462074212162−256ANATOM118CAVALA426−4.99323.82330.6161.0016.84ACANISOU118CAVALA426210620972194491637ACATOM120CBVALA426−5.07824.35232.0521.0017.23ACANISOU120CBVALA42621472187221020−453ACATOM122CG1VALA426−4.20725.58632.2331.0018.25ACANISOU122CG1VALA426229923252309−3030ACATOM126CG2VALA426−6.53424.67432.4021.0017.11ACANISOU126CG2VALA426215320932254482425ACATOM130CVALA426−3.53423.50630.2921.0016.82ACANISOU130CVALA426211421042170384346ACATOM131OVALA426−2.93522.61530.8891.0017.14AOANISOU131OVALA4262107216522374132125AOATOM132NLEUA427−2.97324.23529.3401.0016.42ANANISOU132NLEUA427211219922133313713ANATOM134CALEUA427−1.59524.02828.9261.0016.16ACANISOU134CALEUA427205719942087−413−1ACATOM136CBLEUA427−1.40924.45227.4731.0015.99ACANISOU136CBLEUA427202620062044−10−40ACATOM139CGLEUA427−2.39723.85926.4531.0015.54ACANISOU139CGLEUA427189820221982−241622ACATOM141CD1LEUA427−2.11324.39325.0521.0015.79ACANISOU141CD1LEUA427186621162017−363523ACATOM145CD2LEUA427−2.41722.33326.4811.0015.07ACANISOU145CD2LEUA427179020241911−155733ACATOM149CLEUA427−0.66724.82329.8261.0016.42ACANISOU149CLEUA427212220102105−1511−28ACATOM150OLEUA427−0.93125.98530.0991.0016.32AOANISOU150OLEUA427216918422188151518AOATOM151NASNA4280.41724.19930.2841.0016.65ANANISOU151NASNA428213920312154−4−2−29ANATOM153CAASNA4281.37524.84831.1921.0017.77ACANISOU153CAASNA428226622072279−14−32−45ACATOM155CBASNA4281.59823.98132.4301.0018.50ACANISOU155CBASNA428237723442306−40−65−41ACATOM158CGASNA4280.30423.64633.1561.0020.68ACANISOU158CGASNA428257727042574−19−10−38ACATOM159OD1ASNA4280.06622.48833.5321.0024.63AOANISOU159OD1ASNA428319530723091−115−67140AOATOM160ND2ASNA428−0.54424.64833.3451.0023.16ANANISOU160ND2ASNA4282906294829437029−1ANATOM163CASNA4282.73125.18030.5621.0018.24ACANISOU163CASNA428230222722355−18−21−40ACATOM164OASNA4283.38426.11731.0021.0018.80AOANISOU164OASNA428234623452452−87−40−69AOATOM165NARGA4293.17824.39129.5821.0018.33ANANISOU165NARGA429231822752371−42−38−47ANATOM167CAARGA4294.44124.64928.8741.0018.98ACANISOU167CAARGA429238623942430−23−8−32ACATOM169CBARGA4295.65324.35229.7801.0019.78ACANISOU169CBARGA429250125392476−3−45−60ACATOM172CGARGA4295.76022.91230.2421.0022.03ACANISOU172CGARGA429280127572810−16426ACATOM175CDARGA4297.01522.59131.0611.0025.73ACANISOU175CDARGA42931743365323432−104−3ACATOM178NEARGA4298.24123.03830.3941.0027.84ANANISOU178NEARGA429347735533548−371277ANATOM180CZARGA4299.06722.27629.6711.0029.91ACANISOU180CZARGA429375038273785282−36ACATOM181NH1ARGA4298.85120.97629.4961.0031.32ANANISOU181NH1ARGA429397338784047−411−1ANATOM184NH2ARGA42910.14322.82529.1251.0031.16ANANISOU184NH2ARGA429395539643918−215965ANATOM187CARGA4294.57223.85527.5781.0018.59ACANISOU187CARGA429233823192403−35−13−39ACATOM188OARGA4293.76922.95727.3241.0017.92AOANISOU188OARGA429214123432323−126−43−100AOATOM189NILEA4305.57624.17626.7621.0018.50ANANISOU189NILEA430231022962421−75−32−40ANATOM191CAILEA4305.88323.38125.5721.0019.36ACANISOU191CAILEA430242924512475−268−3ACATOM193CBILEA4306.30524.27724.3501.0019.16ACANISOU193CBILEA430238924132478−2922ACATOM195CG1ILEA4305.08224.97123.7691.0018.82ACANISOU195CG1ILEA430237923362433−523934ACATOM198CD1ILEA4305.35426.10822.7661.0017.44ACANISOU198CD1ILEA430219721732255−152−12ACATOM202CG2ILEA4306.95423.42823.2501.0020.27ACANISOU202CG2ILEA430254526022553−3052−11ACATOM206CILEA4306.95822.35925.9131.0020.29ACANISOU206CILEA430252026132574−3−299ACATOM207OILEA4308.05422.72226.3571.0020.11AOANISOU207OILEA430248926152536−28−52−14AOATOM208NLEUA4316.62421.08425.7211.0021.10ANANISOU208NLEUA431264727062664−14−24−36ANATOM210CALEUA4317.55019.96825.9171.0022.54ACANISOU210CALEUA43128102899285618−278ACATOM212CBLEUA4316.79918.63525.8971.0022.99ACANISOU212CBLEUA43128922919292213−16−11ACATOM215CGLEUA4315.88718.34427.0861.0023.65ACANISOU215CGLEUA4312963303229907−216ACATOM217CD1LEUA4315.02017.14726.7741.0024.23ACANISOU217CD1LEUA43131392966310034119ACATOM221CD2LEUA4316.68718.12928.3771.0025.23ACANISOU221CD2LEUA4313176323331757−7317ACATOM225CLEUA4318.60419.93024.8291.0023.65ACANISOU225CLEUA43129493070296730−55ACATOM226OLEUA4319.77919.67125.0901.0024.47AOANISOU226OLEUA431291933123064911544AOATOM227NGLYA4328.18120.18223.6011.0024.46ANANISOU227NGLYA43230523167307323−239ANATOM229CAGLYA4329.09620.19722.4831.0024.89ACANISOU229CAGLYA43231273179314933149ACATOM232CGLYA4328.37020.26721.1641.0025.37ACANISOU232CGLYA4323191323032151−9−6ACATOM233OGLYA4327.13820.30021.1191.0025.05AOANISOU233OGLYA43231353225315600−2AOATOM234NGLUA4339.14720.30620.0921.0026.02ANANISOU234NGLUA4333270330433101434−7ANATOM236CAGLUA4338.61420.32118.7431.0026.75ACANISOU236CAGLUA433335534033403147−12ACATOM238CBGLUA4339.48321.19317.8291.0026.94ACANISOU238CBGLUA43333923422342021918ACATOM241CGGLUA4339.34122.70318.0531.0027.97ACANISOU241CGGLUA4333539351535711429−17ACATOM244CDGLUA43310.14623.24919.2351.0029.18ACANISOU244CDGLUA433366537493670−3−18−15ACATOM245OE1GLUA43311.39523.21619.1601.0030.69AOANISOU245OE1GLUA4333750400839002−10−14AOATOM246OE2GLUA4339.54123.73720.2341.0028.38AOANISOU246OE2GLUA43335323554369625−2316AOATOM247CGLUA4338.57118.88118.2351.0027.15ACANISOU247CGLUA4333398344234751027−21ACATOM248OGLUA4339.58518.32317.7951.0028.41AOANISOU248OGLUA4333499363336639049−61AOATOM249NGLYA4347.40518.26218.3311.0026.92ANANISOU249NGLYA4343365343634261311−13ANATOM251CAGLYA4347.19416.95117.7571.0026.85ACANISOU251CAGLYA43433893412339896−6ACATOM254CGLYA4347.11616.98916.2371.0026.79ACANISOU254CGLYA43433993396338308−15ACATOM255OGLYA4347.24318.04815.6001.0026.22AOANISOU255OGLYA434331033523297−1752−68AOATOM256NPHEA4356.89615.81315.6581.0027.04ANANISOU256NPHEA43534413400343181−23ANATOM258CAPHEA4356.78215.64714.2071.0027.52ACANISOU258CAPHEA435351234743469237−7ACATOM260CBPHEA4356.36914.20113.8931.0028.44ACANISOU260CBPHEA435360835633632180−16ACATOM263CGPHEA4356.30013.89912.4261.0031.95ACANISOU263CGPHEA43541224087392916−14−47ACATOM264CD1PHEA4357.46013.68211.6971.0034.08ACANISOU264CD1PHEA43542674393428929770ACATOM266CE1PHEA4357.40213.40310.3431.0035.40ACANISOU266CE1PHEA4354500456343844−24−22ACATOM268CZPHEA4356.18213.3469.7071.0035.84ACANISOU268CZPHEA435448646204512123−13ACATOM270CE2PHEA4355.01713.57110.4231.0035.45ACANISOU270CE2PHEA4354516455843922−1−25ACATOM272CD2PHEA4355.08113.84511.7731.0034.18ACANISOU272CD2PHEA43542554412431714−54−23ACATOM274CPHEA4355.75916.58913.5751.0026.36ACANISOU274CPHEA435336433093342−126−19ACATOM275OPHEA4356.03117.21312.5441.0026.24AOANISOU275OPHEA4353407328432782577−80AOATOM276NPHEA4364.58716.67414.2081.0025.12ANANISOU276NPHEA4363244314831523613−19ANATOM278CAPHEA4363.42917.40213.6751.0024.06ACANISOU278CAPHEA436309430153031817−49ACATOM280CBPHEA4362.12416.82614.2541.0024.95ACANISOU280CBPHEA4363157318031421912−9ACATOM283CGPHEA4361.94015.35114.0091.0028.95ACANISOU283CGPHEA436371835383741−7213−29ACATOM284CD1PHEA4361.70414.87212.7291.0031.70ACANISOU284CD1PHEA436410140313910−16−55−61ACATOM286CE1PHEA4361.54113.49812.4971.0033.36ACANISOU286CE1PHEA436432540994251−26−55ACATOM288CZPHEA4361.61212.60413.5521.0033.62ACANISOU288CZPHEA43643434232419914−31−2ACATOM290CE2PHEA4361.84113.06914.8391.0033.02ACANISOU290CE2PHEA436426440814198−24−20−42ACATOM292CD2PHEA4362.01414.43615.0621.0031.64ACANISOU292CD2PHEA4364094394639793−4286ACATOM294CPHEA4363.46418.89314.0131.0021.43ACANISOU294CPHEA436272927722639−1923−10ACATOM295OPHEA4362.84719.69513.3291.0019.47AOANISOU295OPHEA436256025022335−26134−54AOATOM296NGLYA4374.15219.23715.0991.0018.75ANANISOU296NGLYA437236023862379878−34ANATOM298CAGLYA4374.09420.57615.6621.0017.07ACANISOU298CAGLYA437219021932101−5732−19ACATOM301CGLYA4374.42420.60017.1441.0015.71ACANISOU301CGLYA437204119581969−143−18ACATOM302OGLYA4374.90719.60917.7081.0014.91AOANISOU302OGLYA437194119771747−1642−135AOATOM303NGLUA4384.12321.73117.7911.0014.54ANANISOU303NGLUA438184619171760−5462−10ANATOM305CAGLUA4384.46821.89919.1911.0014.13ACANISOU305CAGLUA438179118401738−638−4ACATOM307CBGLUA4384.18423.31819.6611.0014.11ACANISOU307CBGLUA438181317941754−23476ACATOM310CGGLUA4384.96024.38818.9161.0016.03ACANISOU310CGGLUA438208120281979−5411073ACATOM313CDGLUA4386.36824.56319.4161.0018.92ACANISOU313CDGLUA438233624582391−20−1461ACATOM314OE1GLUA4386.96323.59819.9381.0018.75AOANISOU314OE1GLUA438230423422479518365AOATOM315OE2GLUA4386.88425.69919.2991.0022.36AOANISOU315OE2GLUA438291026432941−1155523AOATOM316CGLUA4383.63520.92520.0121.0013.22ACANISOU316CGLUA4381653176316052046−9ACATOM317OGLUA4382.45920.71419.7351.0013.07AOANISOU317OGLUA438173019391297−7472−60AOATOM318NVALA4394.26420.33021.0141.0012.73ANANISOU318NVALA439156717241544−236716ANATOM320CAVALA4393.59819.45721.9631.0011.95ACANISOU320CAVALA439150415391497−17452ACATOM322CBVALA4394.26018.07022.0581.0012.24ACANISOU322CBVALA439148216241542−1910−21ACATOM324CG1VALA4393.50217.19723.0591.0012.64ACANISOU324CG1VALA43915921602160862−4485ACATOM328CG2VALA4394.32217.42020.6931.0012.04ACANISOU328CG2VALA439160713471619−24106−32ACATOM332CVALA4393.68420.15423.3151.0011.31ACANISOU332CVALA439138614731435−72−15−9ACATOM333OVALA4394.75920.59423.7141.0011.12AOANISOU333OVALA439131315561355−1416−48AOATOM334NTYRA4402.54920.24324.0101.0010.48ANANISOU334NTYRA440131912941369−937−21ANATOM336CATYRA4402.44220.92225.2901.0010.54ACANISOU336CATYRA440130213581344−83−2311ACATOM338CBTYRA4401.27421.90625.2651.0010.13ACANISOU338CBTYRA440129212961258−67−30−4ACATOM341CGTYRA4401.35722.99024.2081.009.13ACANISOU341CGTYRA440114711891134−9751−19ACATOM342CD1TYRA4401.83324.24824.5111.0010.81ACANISOU342CD1TYRA440146313101334−114−802ACATOM344CE1TYRA4401.89725.24123.5431.0012.32ACANISOU344CE1TYRA440173415621382−166−1876ACATOM346CZTYRA4401.51524.97222.2491.0011.63ACANISOU346CZTYRA440160414161396−86091ACATOM347OHTYRA4401.61825.99621.3161.0013.82AOANISOU347OHTYRA440185218921504−31445253AOATOM349CE2TYRA4401.06523.72721.9171.0010.58ACANISOU349CE2TYRA440135615171147−5679−18ACATOM351CD2TYRA4400.99622.73722.8911.009.78ACANISOU351CD2TYRA440119613281190−90−59−9ACATOM353CTYRA4402.19619.94026.4141.0011.30ACANISOU353CTYRA440140914221462−125−345ACATOM354OTYRA4401.52318.93226.2261.0011.93AOANISOU354OTYRA440152014491560−275−170−31AOATOM355NGLUA4412.72420.23927.5931.0011.57ANANISOU355NGLUA441142415071464−80−52−40ANATOM357CAGLUA4412.31219.57228.8101.0012.96ACANISOU357CAGLUA441163316461645−13−4−27ACATOM359CBGLUA4413.41819.56429.8621.0014.31ACANISOU359CBGLUA44117481885180424−44−27ACATOM362CGGLUA4413.02118.76631.0941.0018.27ACANISOU362CGGLUA441232323312285−759240ACATOM365CDGLUA4414.12318.61832.1151.0023.03ACANISOU365CDGLUA44128753010286341−14055ACATOM366OE1GLUA4415.32118.77431.7601.0027.63AOANISOU366OE1GLUA4413187382934791535124AOATOM367OE2GLUA4413.78618.34233.2851.0026.26AOANISOU367OE2GLUA441330135433134269936AOATOM368CGLUA4411.14020.35129.3421.0012.30ACANISOU368CGLUA4411566158015275−14−32ACATOM369OGLUA4411.15121.59629.3411.0012.57AOANISOU369OGLUA441164015791554−2934−28AOATOM370NGLYA4420.11819.63429.7691.0012.18ANANISOU370NGLYA4421611153114861421−26ANATOM372CAGLYA442−1.00120.25730.4521.0012.50ACANISOU372CAGLYA4421603160915341512−27ACATOM375CGLYA442−1.68619.35231.4541.0012.64ACANISOU375CGLYA4421609160215920−132ACATOM376OGLYA442−1.23718.24631.7521.0012.27AOANISOU376OGLYA442166215411457−49−21−114AOATOM377NVALA443−2.80719.84831.9631.0013.10ANANISOU377NVALA44316931666161627357ANATOM379CAVALA443−3.63919.10332.8891.0013.71ACANISOU379CAVALA443173817301741131418ACATOM381CBVALA443−3.57819.70334.2981.0014.27ACANISOU381CBVALA443178818451786−113−5ACATOM383CG1VALA443−4.58119.00735.2331.0014.54ACANISOU383CG1VALA443185919141752223438ACATOM387CG2VALA443−2.18119.56134.8591.0014.32ACANISOU387CG2VALA4431795187217735−10−59ACATOM391CVALA443−5.07419.06732.4031.0013.17ACANISOU391CVALA443168616601657203541ACATOM392OVALA443−5.67720.09432.1181.0013.26AOANISOU392OVALA443174215811716674355AOATOM393NTYRA444−5.61917.86432.3421.0012.72ANANISOU393NTYRA444167815751578542266ANATOM395CATYRA444−6.97617.62231.9441.0012.83ACANISOU395CATYRA444163716331604435091ACATOM397CBTYRA444−7.04116.41531.0151.0013.36ACANISOU397CBTYRA4441722167316802140108ACATOM400CGTYRA444−8.42515.82930.8501.0014.22ACANISOU400CGTYRA444177718701756−43288ACATOM401CD1TYRA444−9.52716.64430.5961.0015.71ACANISOU401CD1TYRA444198520231959401381ACATOM403CE1TYRA444−10.79316.09530.4601.0016.75ACANISOU403CE1TYRA4442039225320717−7299ACATOM405CZTYRA444−10.95414.72830.5561.0017.08ACANISOU405CZTYRA444218122652042−6632ACATOM406OHTYRA444−12.19314.15630.4221.0020.54AOANISOU406OHTYRA444256226652575−236−3865AOATOM408CE2TYRA444−9.89013.91730.8101.0016.31ACANISOU408CE2TYRA444211720002077−72664ACATOM410CD2TYRA444−8.63114.46230.9431.0016.63ACANISOU410CD2TYRA444205720402221−123628ACATOM412CTYRA444−7.73517.35033.2181.0013.67ACANISOU412CTYRA444176217271703525979ACATOM413OTYRA444−7.37916.43633.9531.0013.60AOANISOU413OTYRA4441743176716564251153AOATOM414NTHRA445−8.74918.17233.4851.0013.86ANANISOU414NTHRA445172317811762607236ANATOM416CATHRA445−9.58818.01134.6651.0014.76ACANISOU416CATHRA44518751910182104360ACATOM418CBTHRA445−9.81419.36135.3801.0014.26ACANISOU418CBTHRA445178018371800415872ACATOM420OG1THRA445−8.56119.91635.7771.0015.78AOANISOU420OG1THRA445203319741989−69−1655AOATOM422CG2THRA445−10.56619.19736.7211.0014.65ACANISOU422CG2THRA445194618521768101441ACATOM426CTHRA445−10.89217.47534.1171.0015.56ACANISOU426CTHRA44519262046193602372ACATOM427OTHRA445−11.58118.16933.3791.0015.80AOANISOU427OTHRA4451908212819663045188AOATOM428NASNA446−11.22516.23734.4411.0016.06ANANISOU428NASNA446207420691957−132444ANATOM430CAASNA446−12.49915.68434.0221.0016.90ACANISOU430CAASNA446218721802054−42−224ACATOM432CBASNA446−12.42514.15133.9971.0016.14ACANISOU432CBASNA446213420711925−312336ACATOM435CGASNA446−12.36613.52535.3951.0015.76ACANISOU435CGASNA446205820191908−2812−3ACATOM436OD1ASNA446−12.61014.17436.3941.0013.92AOANISOU436OD1ASNA446187218161598−97−66137AOATOM437ND2ASNA446−12.05912.25535.4421.0016.63ANANISOU437ND2ASNA446232020311967−36−35113ANATOM440CASNA446−13.66216.23534.8711.0018.01ACANISOU440CASNA446231723172205−35365ACATOM441OASNA446−13.46117.10535.7221.0017.82AOANISOU441OASNA446231223312128−1266422AOATOM442NHISA447−14.88215.77834.6061.0019.72ANANISOU442NHISA447252225302441−64−23−8ANATOM444CAHISA447−16.07016.34935.2511.0021.09ACANISOU444CAHISA447266527172628−16−520ACATOM446CBHISA447−17.34715.89034.5301.0022.10ACANISOU446CBHISA447278028412775−49−29−18ACATOM449CGHISA447−17.55416.52733.1871.0025.24ACANISOU449CGHISA44732873216308419−3171ACATOM450ND1HISA447−18.75316.44832.5071.0028.07ANANISOU450ND1HISA447351336313517−67−11037ANATOM452CE1HISA447−18.64717.09231.3571.0029.07ACANISOU452CE1HISA447367537563613−61−3265ACATOM454NE2HISA447−17.42517.58631.2671.0028.72ANANISOU454NE2HISA447361537293566−38−3064ANATOM456CD2HISA447−16.72017.24432.3971.0027.27ACANISOU456CD2HISA447342734673464−611069ACATOM458CHISA447−16.17016.02236.7581.0020.82ACANISOU458CHISA447263426772598−14−13−1ACATOM459OHISA447−16.93616.66837.4961.0021.25AOANISOU459OHISA447264227812649−12−4719AOATOM460NLYSA448−15.40015.02237.1921.0020.49ANANISOU460NLYSA448262626262530−48−3241ANATOM462CALYSA448−15.30414.65338.6081.0020.17ACANISOU462CALYSA448258625802496−44−264ACATOM464CBLYSA448−15.05813.15038.7341.0020.12ACANISOU464CBLYSA448259625622485−16−1621ACATOM467CGLYSA448−16.24312.32838.2641.0020.68ACANISOU467CGLYSA448261326562586−31−300ACATOM470CDLYSA448−15.88110.87138.1511.0021.62ACANISOU470CDLYSA448280326882721−50−6763ACATOM473CELYSA448−16.97910.06437.4831.0021.84ACANISOU473CELYSA448280627672725−25−365ACATOM476NZLYSA448−16.5958.63137.4331.0021.44ANANISOU476NZLYSA448281826912636−26−6464ANATOM480CLYSA448−14.21215.41639.3671.0019.90ACANISOU480CLYSA448256025562443−71−1829ACATOM481OLYSA448−14.05515.23440.5811.0020.18AOANISOU481OLYSA448264726142407−120−3745AOATOM482NGLYA449−13.46616.26138.6601.0018.93ANANISOU482NGLYA449242924362325−48−2316ANATOM484CAGLYA449−12.43817.08239.2681.0018.33ACANISOU484CAGLYA449233323592270−32217ACATOM487CGLYA449−11.09916.38439.3251.0018.11ACANISOU487CGLYA449230423342243−101125ACATOM488OGLYA449−10.15316.92939.8721.0018.44AOANISOU488OGLYA449234323832280−17−1319AOATOM489NGLUA450−11.01515.18638.7581.0017.86ANANISOU489NGLUA450225422942235−21−648ANATOM491CAGLUA450−9.76014.43938.7221.0018.01ACANISOU491CAGLUA450228023152249−182215ACATOM493CBGLUA450−10.03112.99138.3561.0018.11ACANISOU493CBGLUA450230323002276−2−34ACATOM496CGGLUA450−10.95212.28739.3401.0019.27ACANISOU496CGGLUA450247524722374−45−560ACATOM499CDGLUA450−11.21910.85738.9431.0021.94ACANISOU499CDGLUA450293426342768−79−3820ACATOM500OE1GLUA450−11.67210.63437.7951.0023.68AOANISOU500OE1GLUA450317829952822−111−6677AOATOM501OE2GLUA450−10.9629.95739.7741.0022.58AOANISOU501OE2GLUA450300728082765−104−108137AOATOM502CGLUA450−8.79915.04637.7131.0018.31ACANISOU502CGLUA450231923462292−46−250ACATOM503OGLUA450−9.19115.32336.5881.0017.45AOANISOU503OGLUA450214222952192−73949AOATOM504NLYSA451−7.54215.22638.1221.0018.88ANANISOU504NLYSA451234924502374−27349ANATOM506CALYSA451−6.53715.88637.2921.0019.30ACANISOU506CALYSA451242024742436−11841ACATOM508CBLYSA451−5.77316.93338.1011.0019.90ACANISOU508CBLYSA451250425532503−25025ACATOM511CGLYSA451−6.65618.00738.7341.0021.63ACANISOU511CGLYSA451270927292779248−12ACATOM514CDLYSA451−6.19119.43138.4051.0023.25ACANISOU514CDLYSA451295929052968−52053ACATOM517CELYSA451−7.06520.47439.0691.0023.83ACANISOU517CELYSA451299130523009−15−65ACATOM520NZLYSA451−7.84621.29438.1161.0024.29ANANISOU520NZLYSA451310330633062−44763ANATOM524CLYSA451−5.57614.86036.7071.0019.37ACANISOU524CLYSA451243625122411−9143ACATOM525OLYSA451−4.95414.06637.4311.0019.54AOANISOU525OLYSA45124362534245417−1687AOATOM526NILEA452−5.47014.88135.3831.0019.06ANANISOU526NILEA452241124632365−242150ANATOM528CAILEA452−4.69413.92834.6221.0019.44ACANISOU528CAILEA452244824712464−14859ACATOM530CBILEA452−5.68413.14033.6861.0020.36ACANISOU530CBILEA452258826032544−48−2927ACATOM532CG1ILEA452−6.67412.31634.5411.0022.71ACANISOU532CG1ILEA452287929052845−802368ACATOM535CD1ILEA452−7.85811.76833.7821.0024.16ACANISOU535CD1ILEA452303730863054−90−3950ACATOM539CG2ILEA452−4.97512.23332.7131.0020.63ACANISOU539CG2ILEA452257326512614−15−2036ACATOM543CILEA452−3.65414.73333.8341.0017.96ACANISOU543CILEA45222512313226147855ACATOM544OILEA452−4.01015.65233.1131.0017.20AOANISOU544OILEA4522194214621931318490AOATOM545NASNA453−2.37114.42233.9961.0016.81ANANISOU545NASNA45321392108213776−945ANATOM547CAASNA453−1.33115.05033.1941.0016.18ACANISOU547CAASNA45320222087203666−5218ACATOM549CBASNA4530.07014.75133.7471.0017.02ACANISOU549CBASNA45320922199217385−5836ACATOM552CGASNA4530.23415.22235.1661.0019.63ACANISOU552CGASNA4532501258523709−62−41ACATOM553OD1ASNA4530.68314.46236.0401.0024.36AOANISOU553OD1ASNA45331283251287794−220164AOATOM554ND2ASNA453−0.15416.45735.4211.0018.71ANANISOU554ND2ASNA45322822542228110−17818ANATOM557CASNA453−1.41514.57231.7581.0014.71ACANISOU557CASNA45318201874189574−2746ACATOM558OASNA453−1.53913.37931.4971.0015.20AOANISOU558OASNA45319371971186586−10137AOATOM559NVALA454−1.36715.52530.8361.0012.89ANANISOU559NVALA45416131593168850−480ANATOM561CAVALA454−1.51115.24629.4181.0011.46ACANISOU561CAVALA45414121412152860−4123ACATOM563CBVALA454−2.91015.64928.8801.0010.74ACANISOU563CBVALA45413361273146840−4314ACATOM565CG1VALA454−3.99114.80629.5341.0011.37ACANISOU565CG1VALA45413231411158782−821ACATOM569CG2VALA454−3.19117.14429.0471.0010.27ACANISOU569CG2VALA45413521251129624−24−6ACATOM573CVALA454−0.43215.91328.5861.0011.10ACANISOU573CVALA45413751356148728−759ACATOM574OVALA4540.15816.93428.9821.0011.62AOANISOU574OVALA45413411411166432−123−108AOATOM575NALAA455−0.16415.29027.4441.0010.28ANANISOU575NALAA45512931177143648−86−43ANATOM577CAALAA4550.60115.84126.3611.0010.79ACANISOU577CAALAA455136912511478−37−908ACATOM579CBALAA4551.60714.85825.8361.0010.88ACANISOU579CBALAA455129214241418−442527ACATOM583CALAA455−0.40716.22525.2751.0011.22ACANISOU583CALAA455145413771432−102−12232ACATOM584OALAA455−1.26115.41824.8721.0013.07AOANISOU584OALAA455174614211799−243−207112AOATOM585NVALA456−0.34517.46824.8401.0010.13ANANISOU585NVALA456132312311293−95−150ANATOM587CAVALA456−1.26117.96023.8351.0010.58ACANISOU587CAVALA456134713401331−21−8−11ACATOM589CBVALA456−2.03719.19924.3001.009.96ACANISOU589CBVALA456131712851181−26−1−13ACATOM591CG1VALA456−3.00419.64123.1921.0011.36ACANISOU591CG1VALA45614481516135042−66−1ACATOM595CG2VALA456−2.80418.87925.5811.0011.32ACANISOU595CG2VALA456143815901271−62183ACATOM599CVALA456−0.52118.26222.5531.0011.04ACANISOU599CVALA456148313371373−99420ACATOM600OVALA4560.32619.14422.5171.0011.55AOANISOU600OVALA456150313751511−17361−40AOATOM601NLYSA457−0.82817.50521.5011.0010.92ANANISOU601NLYSA457146013521337−155−12−36ANATOM603CALYSA457−0.18917.66820.2051.0012.29ACANISOU603CALYSA457157815641526−8613−46ACATOM605CBLYSA457−0.16516.34319.4471.0012.94ACANISOU605CBLYSA457164616171650−7816−121ACATOM608CGLYSA4570.44615.20520.2331.0017.77ACANISOU608CGLYSA45722832217225151−2173ACATOM611CDLYSA4570.97914.10119.3121.0022.35ACANISOU611CDLYSA45729622729280010829−131ACATOM614CELYSA457−0.00712.97919.1231.0025.98ACANISOU614CELYSA457328432933291−7812ACATOM617NZLYSA4570.63411.89318.3271.0028.65ANANISOU617NZLYSA45736753488372012312−70ANATOM621CLYSA457−0.95918.66419.3871.0011.53ACANISOU621CLYSA457153814801363−10217−71ACATOM622OLYSA457−2.18618.62119.3331.0011.18AOANISOU622OLYSA457160214721174−173−41−49AOATOM623NTHRA458−0.22819.57918.7631.0011.68ANANISOU623NTHRA458154415141379−11259−67ANATOM625CATHRA458−0.80920.52917.8441.0011.93ACANISOU625CATHRA458156215491422−5513−86ACATOM627CBTHRA458−0.72521.96618.3831.0012.32ACANISOU627CBTHRA458160215751502−4527−84ACATOM629OG1THRA4580.64722.38118.4781.0011.89AOANISOU629OG1THRA458157717681173−132119−164AOATOM631CG2THRA458−1.28122.01719.7991.0010.96ACANISOU631CG2THRA458150612561402−84−12−48ACATOM635CTHRA458−0.11420.44616.5051.0013.06ACANISOU635CTHRA458168417201558−5023−88ACATOM636OTHRA4580.94219.83216.3861.0012.37AOANISOU636OTHRA458167918061213−53111−209AOATOM637NCYSA459−0.72121.08815.5211.0014.61ANANISOU637NCYSA459196418451742−440−64ANATOM639CACYSA459−0.18821.07714.1651.0015.99ACANISOU639CACYSA459210320691903−10010−46ACATOM641CBCYSA459−1.26420.72413.1381.0017.53ACANISOU641CBCYSA459222724232008−37−47−39ACATOM644SGCYSA459−1.59418.92913.0331.0022.86ASANISOU644SGCYSA459295232552478−791−155−532ASATOM645CCYSA4590.42922.42113.8711.0015.76ACANISOU645CCYSA459206720291890−33−49−29ACATOM646OCYSA459−0.17123.46314.1361.0014.36AOANISOU646OCYSA459197318901590−69−114−87AOATOM647NLYSA4601.64522.36513.3491.0015.95ANANISOU647NLYSA460211320561890−9−41−59ANATOM649CALYSA4602.36123.53612.9111.0017.02ACANISOU649CALYSA460219821572112−48−11−38ACATOM651CBLYSA4603.76523.18112.4241.0017.45ACANISOU651CBLYSA460223722132179−2777ACATOM654CGLYSA4603.83822.24211.2321.0020.13ACANISOU654CGLYSA460264525382462−36−7−72ACATOM657CDLYSA4605.30121.91510.9101.0023.80ACANISOU657CDLYSA4602908310230312648−61ACATOM660CELYSA4605.85720.84311.8291.0025.78ACANISOU660CELYSA4603269329132344−318ACATOM663NZLYSA4607.30320.53811.5611.0027.95ANANISOU663NZLYSA460340936213590523−7ANATOM667CLYSA4601.57424.26511.8471.0016.99ACANISOU667CLYSA460216221602132−34−19−27ACATOM668OLYSA4600.72123.67011.1571.0017.16AOANISOU668OLYSA460214922812089−98−50−66AOATOM669NLYSA4611.83725.56111.7191.0017.39ANANISOU669NLYSA461222522042175−47−19−52ANATOM671CALYSA4611.04726.39010.8331.0017.93ACANISOU671CALYSA461228122582273−28−23−8ACATOM673CBLYSA4611.41427.86710.9851.0018.42ACANISOU673CBLYSA4612355235022920−8−15ACATOM676CGLYSA4612.71728.20010.4421.0018.49ACANISOU676CGLYSA461234023282358−46−457ACATOM679CDLYSA4613.00029.68710.6081.0017.75ACANISOU679CDLYSA461224722592239−72−28ACATOM682CELYSA4614.32729.96410.0211.0017.68ACANISOU682CELYSA4612220231621823412−2ACATOM685NZLYSA4614.59531.3789.9661.0015.93ANANISOU685NZLYSA461195421701928−11995−100ANATOM689CLYSA4611.17525.9039.3921.0018.50ACANISOU689CLYSA461236223522315−261116ACATOM690OLYSA4610.23526.0368.6181.0018.56AOANISOU690OLYSA461235023952305−37−118AOATOM691NASPA4622.30925.2859.0601.0019.44ANANISOU691NASPA462245924692457−3405ANATOM693CAASPA4622.52124.7057.7371.0020.50ACANISOU693CAASPA462261525832591−22−2−34ACATOM695CBASPA4624.01124.7477.3401.0021.57ACANISOU695CBASPA462269727442751−62−44ACATOM698CGASPA4624.23424.6065.8381.0024.85ACANISOU698CGASPA462319932013038−1717−52ACATOM699OD1ASPA4623.54825.2885.0601.0028.28AOANISOU699OD1ASPA46236903668338685−5139AOATOM700OD2ASPA4625.08723.8405.3401.0028.72AOANISOU700OD2ASPA46235223761362710677−169AOATOM701CASPA4621.98423.2677.7461.0020.27ACANISOU701CASPA4622566257325610−42−48ACATOM702OASPA4622.74522.3067.8941.0022.31AOANISOU702OASPA46228142842281933−30−149AOATOM703NCMEA4630.70923.1487.4021.0019.42ANANISOU703NCMEA463245624682452−17−24−70ANATOM706CACMEA4630.07121.8607.4751.0018.40ACANISOU706CACMEA463233423922264−16−29−36ACATOM708CBCMEA463−0.25421.4858.9391.0019.10ACANISOU708CBCMEA463239525032359−7−38−59ACATOM711SGCMEA463−0.97719.8969.1681.0023.43ASANISOU711SGCMEA463319930692632−199−114−144ASATOM712S2CMEA4630.49718.5449.0741.0028.04ASANISOU712S2CMEA463375031333767−94−119−278ASATOM713C2CMEA4632.01719.0548.3641.0030.33ACANISOU713C2CMEA463392737903807−4862−51ACATOM716C1CMEA4633.16618.8389.3101.0033.78ACANISOU716C1CMEA46342774290426822−49−13ACATOM718O1CMEA4634.14519.5789.2061.0036.82AOANISOU718O1CMEA463454147094738−6814−4AOATOM719CCMEA463−1.28021.9726.9241.0016.38ACANISOU719CCMEA463212220972002−230−43ACATOM720OCMEA463−2.08622.8027.1491.0014.95AOANISOU720OCMEA463200019691709−105−36−112AOATOM722NTHRA464−1.28721.3295.7641.0014.94ANANISOU722NTHRA464185719861830−7−27−64ANATOM724CATHRA464−2.33921.5224.7981.0014.07ACANISOU724CATHRA464178418921669−25−5−99ACATOM726CBTHRA464−1.90721.0163.4301.0014.07ACANISOU726CBTHRA464176319821601−92−27−89ACATOM728OG1THRA464−1.50419.6493.5481.0013.52AOANISOU728OG1THRA464165321361348−200−63−217AOATOM730CG2THRA464−0.68221.7632.9141.0015.07ACANISOU730CG2THRA464188021341712−8340−130ACATOM734CTHRA464−3.50120.7135.2631.0013.24ACANISOU734CTHRA464169718071525131−117ACATOM735OTHRA464−3.35519.7826.0371.0012.68AOANISOU735OTHRA464161717601440−16−50−274AOATOM736NLEUA465−4.67321.0664.7671.0012.73ANANISOU736NLEUA46516061808142115−33−154ANATOM738CALEUA465−5.85320.2785.0631.0012.88ACANISOU738CALEUA465166317281500−32−6−57ACATOM740CBLEUA465−7.06720.9314.4301.0012.55ACANISOU740CBLEUA465162516831458−25−12ACATOM743CGLEUA465−7.49022.2595.0461.0012.91ACANISOU743CGLEUA465166916641571−8656−30ACATOM745CD1LEUA465−8.57622.8854.2101.0015.25ACANISOU745CD1LEUA4651932203318287218−84ACATOM749CD2LEUA465−7.94022.0716.4861.0014.13ACANISOU749CD2LEUA465183219161621−784−88ACATOM753CLEUA465−5.71318.8514.5551.0013.30ACANISOU753CLEUA465169617841572−58−52−54ACATOM754OLEUA465−6.23317.9195.1371.0013.10AOANISOU754OLEUA465175717721448−150−106−125AOATOM755NASPA466−5.00118.6883.4471.0014.29ANANISOU755NASPA466173219561740−59−15−103ANATOM757CAASPA466−4.64917.3652.9331.0015.75ACANISOU757CAASPA466196420211998−31−13−52ACATOM759CBASPA466−3.76817.5951.6941.0016.19ACANISOU759CBASPA46620132092204617−64ACATOM762CGASPA466−3.40016.3340.9571.0018.38ACANISOU762CGASPA4662366228323354538−63ACATOM763OD1ASPA466−3.56615.2201.4821.0018.27AOANISOU763OD1ASPA46622822225243213740−28AOATOM764OD2ASPA466−2.89116.411−0.1901.0021.14AOANISOU764OD2ASPA46627042875245017857−3AOATOM765CASPA466−3.95716.5364.0271.0016.82ACANISOU765CASPA466210121402146156−71ACATOM766OASPA466−4.44415.4914.4381.0016.81AOANISOU766OASPA466193422932159021−96AOATOM767NASNA467−2.83217.0264.5341.0018.07ANANISOU767NASNA467221423412311−35−11−57ANATOM769CAASNA467−2.12116.3135.5821.0019.78ACANISOU769CAASNA4672477249825385−28−32ACATOM771CBASNA467−0.73716.9285.7941.0020.56ACANISOU771CBASNA467253726252648−32−31−20ACATOM774CGASNA4670.22916.5744.6721.0022.62ACANISOU774CGASNA4672775288929293768−61ACATOM775OD1ASNA4670.85917.4524.0571.0023.81AOANISOU775OD1ASNA46727982995325276149−58AOATOM776ND2ASNA4670.33115.2784.3811.0024.98ANANISOU776ND2ASNA4673031304134166839−58ANATOM779CASNA467−2.89916.2376.8921.0020.16ACANISOU779CASNA467252025602578−21−41−14ACATOM780OASNA467−2.80815.2417.6141.0020.23AOANISOU780OASNA467256225392583−41−18−24AOATOM781NLYSA468−3.68117.2667.2011.0020.54ANANISOU781NLYSA468260525642635−26−40−31ANATOM783CALYSA468−4.47717.2598.4221.0021.30ACANISOU783CALYSA468271526842695−42−4−4ACATOM785CBLYSA468−5.20718.5918.6331.0021.59ACANISOU785CBLYSA4682728272227526532ACATOM788CGLYSA468−4.37719.6329.3511.0024.20ACANISOU788CGLYSA468302631033062−27−13−39ACATOM791CDLYSA468−5.12820.9269.5661.0025.91ACANISOU791CDLYSA4683276325333134820−28ACATOM794CELYSA468−4.18222.0449.9941.0027.19ACANISOU794CELYSA468340434373490−513−23ACATOM797NZLYSA468−4.90023.29910.3541.0028.40ANANISOU797NZLYSA4683622363935294141−9ANATOM801CLYSA468−5.49516.1168.4271.0021.72ACANISOU801CLYSA468278527192748−68722ACATOM802OLYSA468−5.72915.5269.4761.0022.45AOANISOU802OLYSA468291427672846−79−380AOATOM803NGLUA469−6.07815.7987.2691.0021.72ANANISOU803NGLUA469277527232754−37−2654ANATOM805CAGLUA469−7.03814.6877.1631.0022.61ACANISOU805CAGLUA469287528442869−47−916ACATOM807CBGLUA469−7.64914.6135.7591.0023.02ACANISOU807CBGLUA469288929322924−20−16−5ACATOM810CGGLUA469−8.74913.5625.6241.0024.14ACANISOU810CGGLUA469304230753054−76−3651ACATOM813CDGLUA469−8.31512.2464.9881.0027.42ACANISOU813CDGLUA469349534093512420−28ACATOM814OE1GLUA469−7.17612.1254.4921.0029.73AOANISOU814OE1GLUA469367338933729−417719AOATOM815OE2GLUA469−9.13111.2924.9891.0029.95AOANISOU815OE2GLUA469364038103927−122−5−21AOATOM816CGLUA469−6.36713.3467.4981.0023.42ACANISOU816CGLUA469299029252984−23−155ACATOM817OGLUA469−6.94712.4958.1841.0023.03AOANISOU817OGLUA469297328522922−19−174AOATOM818NLYSA470−5.15213.1637.0021.0024.57ANANISOU818NLYSA470308930973150−20−4−14ANATOM820CALYSA470−4.38011.9537.2731.0025.96ACANISOU820CALYSA470329032393333−4−102ACATOM822CBLYSA470−3.02612.0086.5591.0026.85ACANISOU822CBLYSA470337433643463−2210ACATOM825CGLYSA470−3.07412.0315.0461.0028.91ACANISOU825CGLYSA470368036663637−10−9−25ACATOM828CDLYSA470−1.66912.2554.4711.0030.89ACANISOU828CDLYSA470382639543958−53517ACATOM831CELYSA470−1.67512.4002.9541.0032.45ACANISOU831CELYSA470411541584055−20173ACATOM834NZLYSA470−1.31013.7822.4731.0033.67ANANISOU834NZLYSA470428342414268−30−1917ANATOM838CLYSA470−4.15211.7898.7741.0026.18ACANISOU838CLYSA470330232893355−77−5ACATOM839OLYSA470−4.40410.7319.3391.0027.01AOANISOU839OLYSA47034253344349332735AOATOM840NPHEA471−3.69512.8539.4211.0025.95ANANISOU840NPHEA471326132553343−102−8ANATOM842CAPHEA471−3.36212.81710.8451.0025.82ACANISOU842CAPHEA471325732513302−17−122ACATOM844CBPHEA471−2.69414.12211.2771.0026.48ACANISOU844CBPHEA471337533163369−26−171ACATOM847CGPHEA471−1.43014.43310.5391.0029.15ACANISOU847CGPHEA471361237873677−33721ACATOM848CD1PHEA471−0.74513.4539.8161.0031.05ACANISOU848CD1PHEA4713928392139454532−44ACATOM850CE1PHEA4710.41813.7679.1341.0032.18ACANISOU850CE1PHEA471402240664138−2351−12ACATOM852CZPHEA4710.91315.0599.1741.0032.01ACANISOU852CZPHEA47140554034407362224ACATOM854CE2PHEA4710.23416.0319.8821.0031.70ACANISOU854CE2PHEA471401240533979−582914ACATOM856CD2PHEA471−0.93015.72210.5541.0030.89ACANISOU856CD2PHEA471389239283915−276−36ACATOM858CPHEA471−4.56112.60411.7361.0025.07ACANISOU858CPHEA471315631583210−6−216ACATOM859OPHEA471−4.45911.95712.7731.0024.28AOANISOU859OPHEA471300430063214−103−4440AOATOM860NMETA472−5.68913.18211.3511.0024.49ANANISOU860NMETA472309630843123−25−1723ANATOM862CAMETA472−6.89113.09112.1551.0024.34ACANISOU862CAMETA472308930663094−10316ACATOM864CBMETA472−7.92714.11811.7101.0024.75ACANISOU864CBMETA47231633134310615−824ACATOM867CGMETA472−7.46815.52811.9411.0027.04ACANISOU867CGMETA472350534083362−20−50−18ACATOM870SDMETA472−7.23015.80913.6731.0030.11ASANISOU870SDMETA472413738713430−73−8228ASATOM871CEMETA472−8.90216.26014.1431.0030.30ACANISOU871CEMETA472396437853761−30−40−16ACATOM875CMETA472−7.43411.68312.0431.0023.47ACANISOU875CMETA472294829483018−5−2−10ACATOM876OMETA472−7.83511.10513.0461.0022.54AOANISOU876OMETA472278226923087−2821−16AOATOM877NSERA473−7.39711.13410.8351.0023.29ANANISOU877NSERA47329102915302210510ANATOM879CASERA473−7.7789.74110.5951.0023.99ACANISOU879CASERA473305029953069−3415−23ACATOM881CBSERA473−7.5309.3659.1311.0024.56ACANISOU881CBSERA473315430793098−304−34ACATOM884OGSERA473−8.33510.1398.2761.0027.20AOANISOU884OGSERA473351233463477371−39AOATOM886CSERA473−7.0108.78811.4881.0023.83ACANISOU886CSERA473303729693047−4238−29ACATOM887OSERA473−7.5887.88312.0861.0023.99AOANISOU887OSERA473318628403086−112117−86AOATOM888NGLUA474−5.7028.99011.5731.0023.71ANANISOU888NGLUA474302329353047−33−2−6ANATOM890CAGLUA474−4.8298.15012.3821.0023.37ACANISOU890CAGLUA474293129353012−36157ACATOM892CBGLUA474−3.3608.46612.0591.0024.34ACANISOU892CBGLUA474298930613198−30−14ACATOM895CGGLUA474−2.9418.03710.6511.0027.51ACANISOU895CGGLUA47435503482342012−3−55ACATOM898CDGLUA474−1.7838.85310.0901.0032.17ACANISOU898CDGLUA474396841184136−738027ACATOM899OE1GLUA474−1.1009.55310.8711.0034.14AOANISOU899OE1GLUA474430243344336−34−37−99AOATOM900OE2GLUA474−1.5478.7948.8591.0035.20AOANISOU900OE2GLUA474451645984258027−19AOATOM901CGLUA474−5.1088.34113.8611.0021.79ACANISOU901CGLUA474271026822887−223−5ACATOM902OGLUA474−5.0807.38214.6331.0020.36AOANISOU902OGLUA474236325562814−1377275AOATOM903NALAA475−5.3949.56814.2671.0020.31ANANISOU903NALAA475249125002723−734122ANATOM905CAALAA475−5.7059.83415.6611.0019.50ACANISOU905CAALAA475247923482581−50−14−20ACATOM907CBALAA475−5.82611.34815.8931.0019.18ACANISOU907CBALAA475245422922539−14−30−4ACATOM911CALAA475−6.9869.11316.1311.0019.35ACANISOU911CALAA475249223282531−47−3−25ACATOM912OALAA475−7.0468.63417.2561.0018.32AOANISOU912OALAA475247019742514−193−54−98AOATOM913NVALA476−7.9999.05415.2711.0019.06ANANISOU913NVALA476244223132486−6149−62ANATOM915CAVALA476−9.2578.35815.5871.0019.09ACANISOU915CAVALA476243723312484−3628−40ACATOM917CBVALA476−10.3498.64514.5141.0019.07ACANISOU917CBVALA476241923372487−1625−39ACATOM919CG1VALA476−11.5927.79714.7311.0020.08ACANISOU919CG1VALA476246225612607−326−64ACATOM923CG2VALA476−10.72010.13714.5281.0019.60ACANISOU923CG2VALA476245324322561−142−40ACATOM927CVALA476−8.9856.86515.7521.0018.83ACANISOU927CVALA476240723082439−4654−57ACATOM928OVALA476−9.5686.23116.6131.0018.22AOANISOU928OVALA476231521882420−172161−183AOATOM929NILEA477−8.0576.31114.9751.0018.97ANANISOU929NILEA477239423592454−5189−45ANATOM931CAILEA477−7.6864.90615.1671.0018.91ACANISOU931CAILEA477237323232488−4676−38ACATOM933CBILEA477−6.7414.39714.0621.0019.56ACANISOU933CBILEA477248024282522−3285−17ACATOM935CG1ILEA477−7.4674.33312.7261.0020.91ACANISOU935CG1ILEA477258526312728−1817−29ACATOM938CD1ILEA477−6.5374.15911.5301.0022.97ACANISOU938CD1ILEA477295228992875−2497−40ACATOM942CG2ILEA477−6.1783.02214.4391.0020.66ACANISOU942CG2ILEA477259025962661−191026ACATOM946CILEA477−7.0424.72916.5381.0018.42ACANISOU946CILEA477233922262431−1263−80ACATOM947OILEA477−7.3903.84217.3101.0017.83AOANISOU947OILEA477227321192382−161157−199AOATOM948NMETA478−6.1175.61716.8661.0018.34ANANISOU948NMETA478229221952482−71412ANATOM950CAMETA478−5.4465.55718.1431.0019.38ACANISOU950CAMETA478249223442527−62−2−24ACATOM952CBMETA478−4.3236.61618.2311.0020.22ACANISOU952CBMETA478256324372681−72−34−7ACATOM955CGMETA478−3.1096.35317.3411.0022.57ACANISOU955CGMETA478291727952863−8675−23ACATOM958SDMETA478−2.2324.75617.6131.0024.48ASANISOU958SDMETA478318328813237−1766031ASATOM959CEMETA478−1.8644.80619.3051.0023.71ACANISOU959CEMETA478306628603080−32045ACATOM963CMETA478−6.4135.69919.3011.0018.90ACANISOU963CMETA478243422672479−110−45−50ACATOM964OMETA478−6.2395.04320.3091.0018.91AOANISOU964OMETA478251321532518−197−100−77AOATOM965NLYSA479−7.4216.56219.1591.0018.61ANANISOU965NLYSA479240522462419−113−51−27ANATOM967CALYSA479−8.4636.73520.1691.0019.16ACANISOU967CALYSA479249823862393−81−7−48ACATOM969CBLYSA479−9.5077.77019.7171.0020.24ACANISOU969CBLYSA479267025002517−54−20−21ACATOM972CGLYSA479−10.6278.02320.7461.0022.66ACANISOU972CGLYSA479288728942826−5368−67ACATOM975CDLYSA479−11.4779.23220.4131.0026.49ACANISOU975CDLYSA4793344335533658308ACATOM978CELYSA479−12.8259.20921.1571.0028.20ACANISOU978CELYSA479353036393546−21782ACATOM981NZLYSA479−13.9538.78220.2891.0030.33ANANISOU981NZLYSA479379139473784−59−22−26ANATOM985CLYSA479−9.1595.40720.5291.0018.39ACANISOU985CLYSA479242623112249−994−23ACATOM986OLYSA479−9.5465.17221.6851.0018.52AOANISOU986OLYSA479249123512192−180−49−146AOATOM987NASNA480−9.3564.56419.5231.0016.96ANANISOU987NASNA480223720992106−3418−14ANATOM989CAASNA480−10.0263.28619.7031.0016.98ACANISOU989CAASNA480216021452147−13−7−11ACATOM991CBASNA480−10.6982.85818.4011.0016.39ACANISOU991CBASNA480207620602090−374−52ACATOM994CGASNA480−11.9343.63918.1121.0015.29ACANISOU994CGASNA480189720261885−1290−70ACATOM995OD1ASNA480−11.9424.55717.2801.0018.43AOANISOU995OD1ASNA480244623312223−208−9646AOATOM996ND2ASNA480−13.0113.30318.8161.0013.78ANANISOU996ND2ASNA480158218921762−370−146−128ANATOM999CASNA480−9.1292.15920.2041.0017.53ACANISOU999CASNA48022232210222619−158ACATOM1000OASNA480−9.6221.11120.6411.0018.79AOANISOU1000OASNA480224523682526−450−13AOATOM1001NLEUA481−7.8202.34320.1271.0018.67ANANISOU1001NLEUA481233923792372−11−1836ANATOM1003CALEUA481−6.9061.36120.7031.0019.92ACANISOU1003CALEUA4812491249025889421ACATOM1005CBLEUA481−5.5141.47220.0951.0019.88ACANISOU1005CBLEUA481246224792611−37731ACATOM1008CGLEUA481−5.3370.95918.6821.0019.33ACANISOU1008CGLEUA481239524222526−44221ACATOM1010CD1LEUA481−3.9601.33718.1871.0019.58ACANISOU1010CD1LEUA481235524962587−4442−36ACATOM1014CD2LEUA481−5.512−0.54118.5591.0018.61ACANISOU1014CD2LEUA481220123422528−48−8−53ACATOM1018CLEUA481−6.8261.55622.2071.0020.75ACANISOU1018CLEUA481260726052671−7−3119ACATOM1019OLEUA481−6.3512.57922.6981.0023.44AOANISOU1019OLEUA481313028172960−75−8530AOATOM1020NASPA482−7.2520.54422.9361.0019.94ANANISOU1020NASPA482235425472673−12443ANATOM1022CAASPA482−7.2590.56724.3851.0020.20ACANISOU1022CAASPA482242325932658−6−14−1ACATOM1024CBASPA482−8.6990.58524.9281.0021.21ACANISOU1024CBASPA482249227372829−72836ACATOM1027CGASPA482−8.7951.08626.3671.0024.55ACANISOU1027CGASPA482302632443055−429−54ACATOM1028OD1ASPA482−7.7761.15327.0901.0026.94AOANISOU1028OD1ASPA4823169358934776842−84AOATOM1029OD2ASPA482−9.8941.43226.8841.0029.24AOANISOU1029OD2ASPA482337639293802104152−37AOATOM1030CASPA482−6.532−0.69824.7881.0019.47ACANISOU1030CASPA482236624582573−81−5137ACATOM1031OASPA482−7.070−1.79524.7221.0021.32AOANISOU1031OASPA482265225922854−109−14265AOATOM1032NHISA483−5.265−0.53325.1361.0016.58ANANISOU1032NHISA483201120992188−22−11−23ANATOM1034CAHISA483−4.430−1.61325.5691.0015.45ACANISOU1034CAHISA483197719441946−4810ACATOM1036CBHISA483−3.614−2.17624.3931.0015.27ACANISOU1036CBHISA483187319811945−279−68ACATOM1039CGHISA483−2.972−3.47824.7051.0015.11ACANISOU1039CGHISA483209119551696−45−4−1ACATOM1040ND1HISA483−1.888−3.58725.5411.0014.86ANANISOU1040ND1HISA483192218621862−4320−94ANATOM1042CE1HISA483−1.587−4.86025.7071.0016.29ACANISOU1042CE1HISA48322041904208011612−177ACATOM1044NE2HISA483−2.413−5.58424.9751.0016.13ANANISOU1044NE2HISA483225220541821−78−4489ANATOM1046CD2HISA483−3.281−4.74424.3231.0016.71ACANISOU1046CD2HISA48322001975217440−78−81ACATOM1048CHISA483−3.501−1.06126.6471.0014.08ACANISOU1048CHISA483173117751845023−4ACATOM1049OHISA483−3.0310.07526.5171.0013.86AOANISOU1049OHISA483153818151913−9136−45AOATOM1050NPROA484−3.250−1.82227.7171.0013.40ANANISOU1050NPROA484167616081806−656−36ANATOM1051CAPROA484−2.360−1.33128.7651.0013.42ACANISOU1051CAPROA48416851656175768410ACATOM1053CBPROA484−2.332−2.48329.7881.0014.58ACANISOU1053CBPROA484189917921849−117730ACATOM1056CGPROA484−3.446−3.34529.4521.0015.97ACANISOU1056CGPROA484202619622077−23−864ACATOM1059CDPROA484−3.849−3.12728.0691.0013.57ACANISOU1059CDPROA484172116671766−2184−36ACATOM1062CPROA484−0.961−0.97228.2811.0012.89ACANISOU1062CPROA48416781551166815211ACATOM1063OPROA484−0.298−0.24028.9871.0012.93AOANISOU1063OPROA48416881539168429−31−89AOATOM1064NHISA485−0.504−1.48627.1351.0012.02ANANISOU1064NHISA485153614441587142516ANATOM1066CAHISA4850.846−1.19426.6671.0011.59ACANISOU1066CAHISA48514551436151368766ACATOM1068CBHISA4851.704−2.44526.7861.0012.42ACANISOU1068CBHISA4851506159516183640−21ACATOM1071CGHISA4851.737−2.95328.1961.0016.90ACANISOU1071CGHISA485217522941952290168192ACATOM1072ND1HISA4852.884−3.18528.8961.0024.89ANANISOU1072ND1HISA485303036982726−296−189291ANATOM1074CE1HISA4852.579−3.59630.1181.0023.33ACANISOU1074CE1HISA485302833482487−307120ACATOM1076NE2HISA4851.285−3.60930.2421.0020.63ANANISOU1076NE2HISA48528102815221135−75218ANATOM1078CD2HISA4850.730−3.15329.0761.0023.26ACANISOU1078CD2HISA485291333352589−22419322ACATOM1080CHISA4850.856−0.58325.2811.0010.76ACANISOU1080CHISA48513571307142342−20−15ACATOM1081OHISA4851.791−0.77124.5111.0010.12AOANISOU1081OHISA48512391166143970−24−33AOATOM1082NILEA486−0.1980.17624.9931.009.75ANANISOU1082NILEA48612251255122410132−30ANATOM1084CAILEA486−0.2321.09723.8431.0010.19ACANISOU1084CAILEA48613871160132241−28−33ACATOM1086CBILEA486−1.2680.65522.7821.009.74ACANISOU1086CBILEA48613051111128474−35−40ACATOM1088CG1ILEA486−0.894−0.73522.2301.0011.70ACANISOU1088CG1ILEA48615561206168062−406ACATOM1091CD1ILEA486−1.888−1.27721.2301.0012.79ACANISOU1091CD1ILEA486157615421738−5−71−11ACATOM1095CG2ILEA486−1.3561.69521.6771.0011.01ACANISOU1095CG2ILEA48613731557125335440ACATOM1099CILEA486−0.5752.50324.3461.009.96ACANISOU1099CILEA48612901200129172−2−51ACATOM1100OILEA486−1.4342.67325.2231.0010.61AOANISOU1100OILEA48613941177146113768−112AOATOM1101NVALA4870.1233.49623.8281.0010.88ANANISOU1101NVALA48714331284141568−32−33ANATOM1103CAVALA487−0.1194.87024.2671.0011.41ACANISOU1103CAVALA4871449135615273922−31ACATOM1105CBVALA4870.7295.88623.4641.0011.90ACANISOU1105CBVALA4871523134916474023−31ACATOM1107CG1VALA4872.2035.66923.7751.0010.94ACANISOU1107CG1VALA487152713381290−756−92ACATOM1111CG2VALA4870.4315.80521.9811.0014.05ACANISOU1111CG2VALA487187516171845824035ACATOM1115CVALA487−1.6135.21524.1771.0012.14ACANISOU1115CVALA4871487148716372513−34ACATOM1116OVALA487−2.3204.79323.2531.0012.52AOANISOU1116OVALA487145215841720174−17−47AOATOM1117NLYSA488−2.0725.94325.1851.0012.49ANANISOU1117NLYSA488158214181746−2665−46ANATOM1119CALYSA488−3.4786.26925.3221.0013.72ACANISOU1119CALYSA48817321573190979−441ACATOM1121CBLYSA488−3.8806.17126.7851.0015.01ACANISOU1121CBLYSA488193917681996752433ACATOM1124CGLYSA488−5.3406.58127.0221.0018.79ACANISOU1124CGLYSA4882195234725971144−67ACATOM1127CDLYSA488−5.9266.04028.3011.0023.36ACANISOU1127CDLYSA488299629772899215652ACATOM1130CELYSA488−7.4555.89328.1651.0025.89ACANISOU1130CELYSA488314433443348−9−3728ACATOM1133NZLYSA488−8.2115.80829.4641.0028.78ANANISOU1133NZLYSA488371036603562−172836ANATOM1137CLYSA488−3.7917.67324.8171.0013.81ACANISOU1137CLYSA4881813150319307−914ACATOM1138OLYSA488−3.2348.66925.3271.0013.74AOANISOU1138OLYSA488178913332096139−14239AOATOM1139NLEUA489−4.6707.72323.8261.0014.99ANANISOU1139NLEUA48919971595210430−5615ANATOM1141CALEUA489−5.2188.97923.2961.0016.61ACANISOU1141CALEUA48921611908224128−6442ACATOM1143CBLEUA489−5.4458.88921.7831.0017.93ACANISOU1143CBLEUA48923812080235127−590ACATOM1146CGLEUA489−5.75910.21121.0781.0020.73ACANISOU1146CGLEUA489279823842693−42−2337ACATOM1148CD1LEUA489−5.31210.13019.6181.0022.63ACANISOU1148CD1LEUA489305427302815−2−4533ACATOM1152CD2LEUA489−7.20410.54321.2121.0022.83ACANISOU1152CD2LEUA48929602703300926−126−37ACATOM1156CLEUA489−6.4939.23424.0391.0017.27ACANISOU1156CLEUA4892161201223860−5653ACATOM1157OLEUA489−7.4428.43923.9531.0019.13AOANISOU1157OLEUA489229720412930−29−5268AOATOM1158NILEA490−6.53110.33924.7811.0016.86ANANISOU1158NILEA490207120692263272426ANATOM1160CAILEA490−7.65310.64525.6651.0017.31ACANISOU1160CAILEA490213421342309453179ACATOM1162CBILEA490−7.15311.48126.8301.0017.50ACANISOU1162CBILEA490219122092249423061ACATOM1164CG1ILEA490−6.19110.66227.6931.0018.79ACANISOU1164CG1ILEA4902337236524346750ACATOM1167CD1ILEA490−5.43211.48428.6871.0019.29ACANISOU1167CD1ILEA49024452407247517−16−56ACATOM1171CG2ILEA490−8.33012.03127.6541.0018.76ACANISOU1171CG2ILEA490234523902393608570ACATOM1175CILEA490−8.77611.37224.9401.0017.33ACANISOU1175CILEA49021022220226031397ACATOM1176OILEA490−9.95111.08925.1591.0018.68AOANISOU1176OILEA490211023612626−4−61139AOATOM1177NGLYA491−8.42712.32424.0911.0016.24ANANISOU1177NGLYA49119282002223821−388ANATOM1179CAGLYA491−9.45313.01723.3371.0016.22ACANISOU1179CAGLYA49119912001217119−2725ACATOM1182CGLYA491−8.93113.87222.2201.0015.56ACANISOU1182CGLYA491188819332092−8−2820ACATOM1183OGLYA491−7.74014.04122.0461.0014.32AOANISOU1183OGLYA491163915602241−21−8810AOATOM1184NILEA492−9.85514.38121.4191.0016.14ANANISOU1184NILEA49219261975222919−4839ANATOM1186CAILEA492−9.53215.19520.2601.0017.06ACANISOU1186CAILEA4922088213722553−2521ACATOM1188CBILEA492−9.74214.39718.9501.0017.37ACANISOU1188CBILEA4922124221022646−3012ACATOM1190CG1ILEA492−8.85213.15018.9021.0018.95ACANISOU1190CG1ILEA492244323362420574−46ACATOM1193CD1ILEA492−9.24412.16917.7971.0020.06ACANISOU1193CD1ILEA492262325032495−61−656ACATOM1197CG2ILEA492−9.46915.27417.7491.0019.11ACANISOU1197CG2ILEA492248323782399−31−2442ACATOM1201CILEA492−10.46316.41520.3101.0017.29ACANISOU1201CILEA49220542160235626−2552ACATOM1202OILEA492−11.68616.28020.4281.0017.49AOANISOU1202OILEA492203021262486−106−25125AOATOM1203NILEA493−9.88217.60720.2681.0016.77ANANISOU1203NILEA49320172032232289−2263ANATOM1205CAILEA493−10.65518.82720.0461.0017.71ACANISOU1205CAILEA49322162141237080−4347ACATOM1207CBILEA493−10.19319.94020.9581.0017.74ACANISOU1207CBILEA493220321982339118−2546ACATOM1209CG1ILEA493−10.30619.49522.4151.0019.40ACANISOU1209CG1ILEA49324492457246475−1152ACATOM1212CD1ILEA493−9.70320.45623.3441.0021.40ACANISOU1212CD1ILEA493267727262726−3−36−32ACATOM1216CG2ILEA493−11.02221.22220.6901.0017.23ACANISOU1216CG2ILEA49322062039230095−563ACATOM1220CILEA493−10.39519.16318.6031.0018.30ACANISOU1220CILEA49323362214240280−2731ACATOM1221OILEA493−9.30819.59218.2381.0017.19AOANISOU1221OILEA493224619792305160−1593AOATOM1222NGLUA494−11.41818.98517.7791.0020.26ANANISOU1222NGLUA49425662512261910−82−4ANATOM1224CAGLUA494−11.26219.08916.3301.0022.00ACANISOU1224CAGLUA49427982788277023−2120ACATOM1226CBGLUA494−12.44318.39515.6351.0022.98ACANISOU1226CBGLUA494289329402896−10−54−33ACATOM1229CGGLUA494−12.64116.92716.0061.0025.89ACANISOU1229CGGLUA49433523198328414−562ACATOM1232CDGLUA494−13.94716.34115.4721.0030.25ACANISOU1232CDGLUA494376838343891−107−67−25ACATOM1233OE1GLUA494−14.32315.22115.9031.0032.64AOANISOU1233OE1GLUA494425639534191−107−1433AOATOM1234OE2GLUA494−14.60816.99714.6281.0032.77AOANISOU1234OE2GLUA494413741804133−15−11061AOATOM1235CGLUA494−11.16520.55015.8751.0022.26ACANISOU1235CGLUA4942829282228045−1712ACATOM1236OGLUA494−10.40820.88114.9551.0022.49AOANISOU1236OGLUA494288128922771−2−3446AOATOM1237NGLUA495−11.89221.42116.5661.0022.55ANANISOU1237NGLUA49528592872283432−4820ANATOM1239CAGLUA495−12.02822.82116.1641.0023.10ACANISOU1239CAGLUA4952913291029538−26−1ACATOM1241CBGLUA495−13.04723.51317.0701.0023.74ACANISOU1241CBGLUA49530472983299141−17−6ACATOM1244CGGLUA495−14.48723.07716.8181.0025.77ACANISOU1244CGGLUA495319933113280−10−24−23ACATOM1247CDGLUA495−14.98421.93517.7061.0028.15ACANISOU1247CDGLUA495359835303567−3887ACATOM1248OE1GLUA495−14.17821.25018.3721.0028.67AOANISOU1248OE1GLUA49535613664366686−242AOATOM1249OE2GLUA495−16.21621.71617.7461.0030.21AOANISOU1249OE2GLUA495374238403896−40−3522AOATOM1250CGLUA495−10.68823.54916.2061.0022.54ACANISOU1250CGLUA49528522842286926−20−60ACATOM1251OGLUA495−9.76823.12616.9331.0021.30AOANISOU1251OGLUA495274625632784−7−3827AOATOM1252NGLUA496−10.99825.19716.1150.0027.68ANANISOU1252NGLUA496350635063506000ANATOM1254CAGLUA496−9.60927.02716.9471.0019.02ACANISOU1254CAGLUA496241824262383−10−841ACATOM1256CBGLUA496−10.92426.54217.5421.0020.20ACANISOU1256CBGLUA496258925572526−73058ACATOM1259CGGLUA496−11.15428.03317.5520.0024.82ACANISOU1259CGGLUA496314331433143000ACATOM1262CDGLUA496−11.16828.88018.8140.0024.31ACANISOU1262CDGLUA496307930793079000ACATOM1263OE1GLUA496−10.14629.54319.1010.0024.05AOANISOU1263OE1GLUA496304630463046000AOATOM1264OE2GLUA496−12.20328.88919.5130.0024.05AOANISOU1264OE2GLUA496304630463046000AOATOM1265CGLUA496−8.66725.89516.6231.0018.59ACANISOU1265CGLUA496238523592317−46−1265ACATOM1266OGLUA496−8.35924.64415.3240.0025.40AOANISOU1266OGLUA496321732173217000AOATOM1267NPROA497−7.49325.95017.2451.0017.85ANANISOU1267NPROA497229722522230−141439ANATOM1268CAPROA497−6.40025.04716.9011.0017.30ACANISOU1268CAPROA497227021492152−10−139ACATOM1270CBPROA497−5.21125.61717.6741.0017.74ACANISOU1270CBPROA497227222412225−16−122ACATOM1273CGPROA497−5.80526.40618.7851.0018.13ACANISOU1273CGPROA497235523092225−8528ACATOM1276CDPROA497−7.13126.87518.3311.0017.50ACANISOU1276CDPROA4972265217422093288ACATOM1279CPROA497−6.71823.63417.3641.0016.79ACANISOU1279CPROA497221920662094011−7ACATOM1280OPROA497−7.10523.42418.5021.0015.67AOANISOU1280OPROA497213918561957−7−751AOATOM1281NTHRA498−6.57422.68916.4541.0016.24ANANISOU1281NTHRA498219319951979−10−1210ANATOM1283CATHRA498−6.82621.29816.7431.0016.32ACANISOU1283CATHRA49821502031201815−10−22ACATOM1285CBTHRA498−6.64520.52815.4611.0017.01ACANISOU1285CBTHRA49822492118209511−7−62ACATOM1287OG1THRA498−7.58521.01714.5041.0019.42AOANISOU1287OG1THRA498255626252195−5−72−128AOATOM1289CG2THRA498−6.98719.07015.6481.0018.09ACANISOU1289CG2THRA498240922072254−39−6030ACATOM1293CTHRA498−5.87320.79617.8051.0014.82ACANISOU1293CTHRA498195518281845−1512−22ACATOM1294OTHRA498−4.67921.06517.7281.0014.45AOANISOU1294OTHRA498199716501840925−11AOATOM1295NTRPA499−6.41320.09518.8081.0013.64ANANISOU1295NTRPA49917661645177029−5220ANATOM1297CATRPA499−5.61119.46619.8521.0012.85ACANISOU1297CATRPA499169815301654−31−4549ACATOM1299CBTRPA499−5.99919.99821.2271.0011.89ACANISOU1299CBTRPA49915511359160546−2774ACATOM1302CGTRPA499−5.59421.41121.5431.0010.80ACANISOU1302CGTRPA499144813611293−34−3559ACATOM1303CD1TRPA499−4.95222.30120.7251.0011.96ACANISOU1303CD1TRPA499169714281417−12610−19ACATOM1305NE1TRPA499−4.75823.48621.3861.0010.80ANANISOU1305NE1TRPA49916271194128116−665ANATOM1307CE2TRPA499−5.27023.38922.6471.0011.62ACANISOU1307CE2TRPA49914821456147651−468ACATOM1308CD2TRPA499−5.81222.09822.7781.009.92ACANISOU1308CD2TRPA49912721276121843818ACATOM1309CE3TRPA499−6.39821.73924.0061.0011.26ACANISOU1309CE3TRPA49913731445145908191ACATOM1311CZ3TRPA499−6.42522.66625.0221.0012.18ACANISOU1311CZ3TRPA4991618169113162725183ACATOM1313CH2TRPA499−5.90223.95824.8581.0013.93ACANISOU1313CH2TRPA499177318781639−846520ACATOM1315CZ2TRPA499−5.31724.34123.6771.0012.47ACANISOU1315CZ2TRPA499164716801409−67−2532ACATOM1317CTRPA499−5.85417.96619.8701.0012.90ACANISOU1317CTRPA4991673152717001−222ACATOM1318OTRPA499−7.01517.53619.9031.0014.17AOANISOU1318OTRPA499188115041997−34−7472AOATOM1319NILEA500−4.76817.19419.8861.0011.88ANANISOU1319NILEA500158713901535−1−3746ANATOM1321CAILEA500−4.82415.76920.1791.0012.14ACANISOU1321CAILEA500157314511589−38−4021ACATOM1323CBILEA500−4.03014.96519.1331.0013.42ACANISOU1323CBILEA500174416241731−13021ACATOM1325CG1ILEA500−4.53615.25317.7131.0016.00ACANISOU1325CG1ILEA5002127197719737−5680ACATOM1328CD1ILEA500−6.01215.21217.5311.0018.88ACANISOU1328CD1ILEA500234324572372151610ACATOM1332CG2ILEA500−4.09413.47219.4191.0014.86ACANISOU1332CG2ILEA500200316941946−68−63−14ACATOM1336CILEA500−4.27315.58721.5821.0011.17ACANISOU1336CILEA500141713101515−44−421ACATOM1337OILEA500−3.11215.86821.8671.0011.84AOANISOU1337OILEA500145213471699−110−6543AOATOM1338NILEA501−5.12915.14222.4761.0010.69ANANISOU1338NILEA501140212151443−11−4716ANATOM1340CAILEA501−4.80415.06523.8831.0010.07ACANISOU1340CAILEA501128911671371−33−41−1ACATOM1342CBILEA501−6.00215.54824.7571.0010.35ACANISOU1342CBILEA501128912321409−19−2210ACATOM1344CG1ILEA501−6.45316.95624.3361.0011.96ACANISOU1344CG1ILEA501157013931580−13−5922ACATOM1347CD1ILEA501−7.84717.19224.6171.0013.84ACANISOU1347CD1ILEA50117511603190463−396ACATOM1351CG2ILEA501−5.65715.56426.2161.009.55ACANISOU1351CG2ILEA5011196103313979936−76ACATOM1355CILEA501−4.42613.62424.1871.0010.31ACANISOU1355CILEA501132011581437−38−4116ACATOM1356OILEA501−5.25512.71924.0591.0010.06AOANISOU1356OILEA501133110221467−981516AOATOM1357NMETA502−3.16713.43524.5681.0010.54ANANISOU1357NMETA502133112011471−4−232ANATOM1359CAMETA502−2.62112.13424.9641.0011.99ACANISOU1359CAMETA50215901341162221−10−7ACATOM1361CBMETA502−1.30311.88824.2421.0013.19ACANISOU1361CBMETA502172115401750374138ACATOM1364CGMETA502−1.34611.99822.7221.0017.72ACANISOU1364CGMETA50223432292209842−4050ACATOM1367SDMETA502−2.38810.75421.9721.0020.40ASANISOU1367SDMETA50228932505235365−156−87ASATOM1368CEMETA502−1.4849.26922.2601.0021.03ACANISOU1368CEMETA50226772560275024−24−11ACATOM1372CMETA502−2.32412.07926.4471.0011.47ACANISOU1372CMETA502144813181590597−13ACATOM1373OMETA502−2.05213.08627.0781.0010.71AOANISOU1373OMETA5021324127614674046−165AOATOM1374NGLUA503−2.32510.88427.0071.0011.37ANANISOU1374NGLUA5031479126215783821−36ANATOM1376CAGLUA503−1.69310.66128.3041.0013.03ACANISOU1376CAGLUA50316421622168459−6−29ACATOM1378CBGLUA503−1.8099.17528.6581.0014.57ACANISOU1378CBGLUA503182217421972−3−12−11ACATOM1381CGGLUA503−1.5148.79030.0991.0019.60ACANISOU1381CGGLUA5032498257023772−7056ACATOM1384CDGLUA503−1.9307.35030.4081.0023.91ACANISOU1384CDGLUA503315027933142−3−2683ACATOM1385OE1GLUA503−1.6916.44729.5801.0027.71AOANISOU1385OE1GLUA503378532873455−78−100−74AOATOM1386OE2GLUA503−2.4917.10931.4851.0028.61AOANISOU1386OE2GLUA503368436053578−1312758AOATOM1387CGLUA503−0.22011.11528.2731.0013.12ACANISOU1387CGLUA50316371676167061−22−28ACATOM1388OGLUA5030.48010.90227.2771.0014.04AOANISOU1388OGLUA503167218321830179−63−63AOATOM1389NLEUA5040.22511.79329.3381.0012.78ANANISOU1389NLEUA504156016171679107−26−59ANATOM1391CALEUA5041.62112.22029.4701.0013.70ACANISOU1391CALEUA50417291724175155−170ACATOM1393CBLEUA5041.72313.41130.4331.0013.89ACANISOU1393CBLEUA504175317201804101−35−24ACATOM1396CGLEUA5043.13313.97830.6291.0015.44ACANISOU1396CGLEUA50419381908202014−12−49ACATOM1398CD1LEUA5043.58914.61529.3251.0017.03ACANISOU1398CD1LEUA504214922272094−112524ACATOM1402CD2LEUA5043.17714.99131.7991.0016.68ACANISOU1402CD2LEUA504218919962152−521−80ACATOM1406CLEUA5042.44711.06130.0181.0014.74ACANISOU1406CLEUA50418041920187453−5056ACATOM1407OLEUA5042.06810.43831.0031.0015.36AOANISOU1407OLEUA5041757208619921896211AOATOM1408NTYRA5053.56610.79329.3631.0015.03ANANISOU1408NTYRA505187419451889159−4644ANATOM1410CATYRA5054.5429.78229.7801.0016.40ACANISOU1410CATYRA505208020632087135−3545ACATOM1412CBTYRA5054.7128.77528.6421.0016.92ACANISOU1412CBTYRA505216421162148181−2214ACATOM1415CGTYRA5053.3878.09328.3461.0018.81ACANISOU1415CGTYRA505230424282414158−32−7ACATOM1416CD1TYRA5052.7217.36429.3261.0020.24ACANISOU1416CD1TYRA50525092451272897−78115ACATOM1418CE1TYRA5051.4846.77629.0751.0021.60ACANISOU1418CE1TYRA5052771265027846−14453ACATOM1420CZTYRA5050.8936.93827.8241.0019.04ACANISOU1420CZTYRA505256321022568192−66−18ACATOM1421OHTYRA505−0.3376.36627.5851.0020.41AOANISOU1421OHTYRA505287619752900241−198−48AOATOM1423CE2TYRA5051.5287.67026.8561.0019.06ACANISOU1423CE2TYRA505240523822454196−26−86ACATOM1425CD2TYRA5052.7468.26427.1211.0019.86ACANISOU1425CD2TYRA5052525262423961521−144ACATOM1427CTYRA5055.81210.53530.1491.0016.38ACANISOU1427CTYRA505209720532074197−4417ACATOM1428OTYRA5056.64110.85529.3161.0016.56AOANISOU1428OTYRA505215019862155248−5199AOATOM1429NPROA5065.92410.89931.4201.0017.54ANANISOU1429NPROA506217923052178148−2635ANATOM1430CAPROA5066.93611.86531.8441.0017.08ACANISOU1430CAPROA50621932166213111810−15ACATOM1432CBPROA5066.57412.13633.3061.0017.97ACANISOU1432CBPROA506233023272169913220ACATOM1435CGPROA5065.82410.92533.7381.0017.80ACANISOU1435CGPROA506227522592227443−115ACATOM1438CDPROA5065.11010.38132.5341.0017.74ACANISOU1438CDPROA506223023212187100−5630ACATOM1441CPROA5068.38411.34631.7341.0016.27ACANISOU1441CPROA5062071199921115415−32ACATOM1442OPROA5069.31612.13131.6561.0016.69AOANISOU1442OPROA50622531902218547−19−77AOATOM1443NTYRA5078.56710.03131.7211.0014.24ANANISOU1443NTYRA50717981774183846−25−65ANATOM1445CATYRA5079.9049.47731.5871.0012.77ACANISOU1445CATYRA50715911593166810−11−38ACATOM1447CBTYRA5079.9648.07432.1661.0012.48ACANISOU1447CBTYRA5071465159016872525−63ACATOM1450CGTYRA5079.7368.01833.6541.0012.63ACANISOU1450CGTYRA50716121485170017−501ACATOM1451CD1TYRA50710.7868.20234.5421.0013.86ACANISOU1451CD1TYRA50716561856175442−26−110ACATOM1453CE1TYRA50710.5898.15135.9161.0015.19ACANISOU1453CE1TYRA50719102047181228−16−35ACATOM1455CZTYRA5079.3397.89236.4151.0016.05ACANISOU1455CZTYRA507193822361923−43−3−81ACATOM1456OHTYRA5079.1737.85237.7751.0019.87AOANISOU1456OHTYRA507268826912169−70−3−15AOATOM1458CE2TYRA5078.2667.70735.5541.0014.97ACANISOU1458CE2TYRA507191519551818−37−546ACATOM1460CD2TYRA5078.4807.75434.1751.0012.99ACANISOU1460CD2TYRA5071623158217316024−80ACATOM1462CTYRA50710.3959.48130.1481.0011.87ACANISOU1462CTYRA50714971402160922−49−37ACATOM1463OTYRA50711.5709.21129.9001.0012.76AOANISOU1463OTYRA507154314921813100−1−13AOATOM1464NGLYA5089.5179.77629.1871.0011.45ANANISOU1464NGLYA50814551342155390−23−75ANATOM1466CAGLYA5089.9269.88727.8111.0011.62ACANISOU1466CAGLYA50815011371154235−41−35ACATOM1469CGLYA50810.1738.59427.0501.0011.14ACANISOU1469CGLYA5081422132514845252−20ACATOM1470OGLYA5089.6617.54127.3961.0010.63AOANISOU1470OGLYA50813611324135148121−26AOATOM1471NGLUA50910.9398.72125.9671.0010.48ANANISOU1471NGLUA5091444120013385261−37ANATOM1473CAGLUA50911.2407.58525.1031.0011.08ACANISOU1473CAGLUA50914571332142044−9−59ACATOM1475CBGLUA50911.9998.04023.8751.0011.95ACANISOU1475CBGLUA5091574142915362227−6ACATOM1478CGGLUA50911.1768.93422.9521.0013.26ACANISOU1478CGGLUA509170515991731104−1734ACATOM1481CDGLUA50911.9699.49721.7811.0016.05ACANISOU1481CDGLUA509208020801937215945ACATOM1482OE1GLUA50913.1429.11221.5721.0016.36AOANISOU1482OE1GLUA509220518502158631899AOATOM1483OE2GLUA50911.39710.35621.0731.0020.02AOANISOU1483OE2GLUA50927792307252016427169AOATOM1484CGLUA50912.0606.53125.8061.0010.19ACANISOU1484CGLUA509131212491308−7−26−37ACATOM1485OGLUA50912.9726.85026.5521.0011.22AOANISOU1485OGLUA509143814601365163−105−66AOATOM1486NLEUA51011.7815.27325.4941.0010.30ANANISOU1486NLEUA51013561268128857−39−60ANATOM1488CALEUA51012.4864.17626.0981.0010.07ACANISOU1488CALEUA5101303128812351114−18ACATOM1490CBLEUA51011.8392.83625.7221.0010.20ACANISOU1490CBLEUA510137412511249−1172−9ACATOM1493CGLEUA51012.4361.56626.3081.009.60ACANISOU1493CGLEUA5101103134711943867−38ACATOM1495CD1LEUA51012.4591.65927.8411.009.22ACANISOU1495CD1LEUA5101211111411758855−61ACATOM1499CD2LEUA51011.6820.37025.8211.0010.25ACANISOU1499CD2LEUA51013251204136390110−80ACATOM1503CLEUA51013.9684.16325.7651.009.99ACANISOU1503CLEUA5101312124912352249−29ACATOM1504OLEUA51014.7603.82326.6321.009.82AOANISOU1504OLEUA5101364117411931180−97AOATOM1505NGLYA51114.3574.50224.5321.0010.34ANANISOU1505NGLYA511126713231335−440−52ANATOM1507CAGLYA51115.7734.43224.1911.0010.19ACANISOU1507CAGLYA511124012691359−54−1−36ACATOM1510CGLYA51116.5985.31125.1211.0010.62ACANISOU1510CGLYA511130213451387−21−8−10ACATOM1511OGLYA51117.5704.85325.7441.0010.45AOANISOU1511OGLYA511116013481460−17−4−14AOATOM1512NHISA51216.1946.56325.2381.0010.65ANANISOU1512NHISA512131614181312−22−1−29ANATOM1514CAHISA51216.9157.49926.0761.0011.18ACANISOU1514CAHISA512137614301442−50−39−60ACATOM1516CBHISA51216.4228.92525.8351.0012.25ACANISOU1516CBHISA512152714681657−15−28−80ACATOM1519CGHISA51216.6389.39124.4281.0017.53ACANISOU1519CGHISA512242121482089−185−8−1ACATOM1520ND1HISA51216.12910.57023.9381.0024.90ANANISOU1520ND1HISA51234332964306318239146ANATOM1522CE1HISA51216.47110.70922.6681.0024.85ACANISOU1522CE1HISA512332031043017911746ACATOM1524NE2HISA51217.1549.64422.3031.0024.72ANANISOU1524NE2HISA512342728843081−99130124ANATOM1526CD2HISA51217.2668.80023.3841.0023.85ACANISOU1526CD2HISA512324129582863175153−11ACATOM1528CHISA51216.8307.10627.5551.0010.37ACANISOU1528CHISA512127113171350−5329−64ACATOM1529OHISA51217.8117.23828.2881.0010.94AOANISOU1529OHISA512140412521500−170−185AOATOM1530NTYRA51315.6836.58127.9781.009.37ANANISOU1530NTYRA5131234108312403736−82ANATOM1532CATYRA51315.5216.09529.3351.009.93ACANISOU1532CATYRA5131269129712063230−86ACATOM1534CBTYRA51314.0945.61229.5321.009.27ACANISOU1534CBTYRA5131215122110844363−47ACATOM1537CGTYRA51313.7665.04630.8871.008.67ACANISOU1537CGTYRA51311831067104465117−28ACATOM1538CD1TYRA51313.2055.85631.8811.009.29ACANISOU1538CD1TYRA513123511041191−5812−129ACATOM1540CE1TYRA51312.8825.33633.1101.0010.43ACANISOU1540CE1TYRA513134413431275−3−28−115ACATOM1542CZTYRA51313.0644.00233.3621.0010.54ACANISOU1542CZTYRA513112714261449−422866ACATOM1543OHTYRA51312.7213.52134.5901.0011.85AOANISOU1543OHTYRA513145816881356−15115−81AOATOM1545CE2TYRA51313.6163.16732.4091.0010.42ACANISOU1545CE2TYRA513132312211415−1246161ACATOM1547CD2TYRA51313.9463.69031.1581.0011.11ACANISOU1547CD2TYRA51315151370133413711153ACATOM1549CTYRA51316.5184.97029.6341.009.64ACANISOU1549CTYRA51312851214116256−8−54ACATOM1550OTYRA51317.1734.98530.6731.009.60AOANISOU1550OTYRA5131340127910286969−97AOATOM1551NLEUA51416.6754.01028.7171.009.19ANANISOU1551NLEUA5141287125495127−69−75ANATOM1553CALEUA51417.6372.92528.9061.009.98ACANISOU1553CALEUA5141279131711951843−75ACATOM1555CBLEUA51417.5241.88727.7791.0010.88ACANISOU1555CBLEUA5141389132514177437−134ACATOM1558CGLEUA51416.1891.15027.7151.0011.46ACANISOU1558CGLEUA5141449142914765637−113ACATOM1560CD1LEUA51416.1010.40026.4031.0013.32ACANISOU1560CD1LEUA51416851796157934−17−191ACATOM1564CD2LEUA51416.0020.21128.8661.0013.98ACANISOU1564CD2LEUA514180216621848−10−5233ACATOM1568CLEUA51419.0683.44029.0011.0010.78ACANISOU1568CLEUA5141372137313504417−91ACATOM1569OLEUA51419.8542.96229.8071.0010.98AOANISOU1569OLEUA5141302154513233833−120AOATOM1570NGLUA51519.3934.40528.1621.0011.53ANANISOU1570NGLUA5151466150414091852−33ANATOM1572CAGLUA51520.7225.00028.1581.0013.11ACANISOU1572CAGLUA515160517041672−13−9−45ACATOM1574CBGLUA51520.8106.05927.0651.0014.02ACANISOU1574CBGLUA515165218371837−261632ACATOM1577CGGLUA51520.8455.57225.6301.0017.06ACANISOU1577CGGLUA515208322452154−727−89ACATOM1580CDGLUA51520.5926.70924.6291.0021.59ACANISOU1580CDGLUA515289026572654−41−32123ACATOM1581OE1GLUA51520.6087.89525.0421.0027.20AOANISOU1581OE1GLUA5153781322933256929−96AOATOM1582OE2GLUA51520.3846.44423.4181.0024.09AOANISOU1582OE2GLUA51532163100283412−27−6AOATOM1583CGLUA51521.0375.63729.5211.0013.80ACANISOU1583CGLUA515173217751734−43−47−10ACATOM1584OGLUA51522.1005.36630.0961.0015.50AOANISOU1584OGLUA515183720771972−22−48−3AOATOM1585NARGA51620.1066.45230.0271.0013.54ANANISOU1585NARGA516170517821656−18−88−56ANATOM1587CAARGA51620.2507.17931.3111.0014.19ACANISOU1587CAARGA516179518631730−5−61−64ACATOM1589CBARGA51618.9727.99131.6401.0015.29ACANISOU1589CBARGA51620171903188937−24−67ACATOM1592CGARGA51618.7629.18130.8261.0017.75ACANISOU1592CGARGA51622752241222844−4712ACATOM1595CDARGA51617.87710.19531.4611.0017.62ACANISOU1595CDARGA516224921852259−581−18ACATOM1598NEARGA51616.5079.74731.7331.0015.87ANANISOU1598NEARGA5162097189020401334−130ANATOM1600CZARGA51615.5519.61630.8341.0015.53ACANISOU1600CZARGA516198818462064223836ACATOM1601NH1ARGA51615.7899.85829.5451.0015.41ANANISOU1601NH1ARGA516181920162019−581−112ANATOM1604NH2ARGA51614.3359.23431.2231.0015.36ANANISOU1604NH2ARGA516198917372107843140ANATOM1607CARGA51620.4206.25232.4871.0013.71ACANISOU1607CARGA516173217701707−29−61−67ACATOM1608OARGA51621.1456.58033.4411.0013.82AOANISOU1608OARGA516179918881562−5−153−70AOATOM1609NASNA51719.6845.14032.4571.0013.59ANANISOU1609NASNA517166217971703−32−74−45ANATOM1611CAASNA51719.4504.31833.6361.0013.42ACANISOU1611CAASNA517164517431709−62−51−50ACATOM1613CBASNA51717.9444.13733.8431.0013.51ACANISOU1613CBASNA517166917661697−8−46−16ACATOM1616CGASNA51717.2285.46434.0781.0013.53ACANISOU1616CGASNA5171649172217687−13−95ACATOM1617OD1ASNA51716.2665.81533.3951.0014.70AOANISOU1617OD1ASNA517184820651669−3926−57AOATOM1618ND2ASNA51717.7016.20735.0481.0015.63ANANISOU1618ND2ASNA51719282162184776−91−248ANATOM1621CASNA51720.1342.96933.5591.0013.65ACANISOU1621CASNA517164117811764−65−49−25ACATOM1622OASNA51719.9292.12034.4251.0013.34AOANISOU1622OASNA517158018561631−126−109−60AOATOM1623NLYSA51820.9852.79032.5471.0013.68ANANISOU1623NLYSA518173518161644−95−36−67ANATOM1625CALYSA51821.6581.52132.3001.0015.53ACANISOU1625CALYSA5181950200719420−615ACATOM1627CBLYSA51822.7071.69431.1841.0016.30ACANISOU1627CBLYSA518206721152008−32489ACATOM1630CGLYSA51823.6660.52631.0251.0018.24ACANISOU1630CGLYSA51822922325231153−29−6ACATOM1633CDLYSA51824.7040.80629.9281.0021.68ACANISOU1633CDLYSA518271328612660−517036ACATOM1636CELYSA51825.507−0.44629.6071.0024.34ACANISOU1636CELYSA518309230363117711−38ACATOM1639NZLYSA51826.330−0.84730.7731.0026.68ANANISOU1639NZLYSA5183409338533412−8644ANATOM1643CLYSA51822.3080.90833.5261.0015.71ACANISOU1643CLYSA51819352014201721−98ACATOM1644OLYSA51822.219−0.29133.7451.0016.81AOANISOU1644OLYSA51821362100214926−234AOATOM1645NASNA51922.9571.72734.3271.0015.57ANANISOU1645NASNA519197119851957373011ANATOM1647CAASNA51923.7001.19335.4641.0016.90ACANISOU1647CAASNA5192124215821370−2617ACATOM1649CBASNA51924.6952.23435.9571.0016.82ACANISOU1649CBASNA51921322154210536−89−12ACATOM1652CGASNA51925.7882.49934.9361.0019.91ACANISOU1652CGASNA519245526322477−3884ACATOM1653OD1ASNA51926.2031.59834.1931.0024.12AOANISOU1653OD1ASNA5193019307830685074−56AOATOM1654ND2ASNA51926.2593.73434.8861.0024.29ANANISOU1654ND2ASNA519309728913238−7815569ANATOM1657CASNA51922.8300.63836.5871.0017.17ACANISOU1657CASNA51921892211212422−1323ACATOM1658OASNA51923.342−0.09137.4361.0018.51AOANISOU1658OASNA51923732416224316−31109AOATOM1659NSERA52021.5370.96136.5961.0017.98ANANISOU1659NSERA520228323632183−37−5129ANATOM1661CASERA52020.6210.46737.6291.0018.20ACANISOU1661CASERA520230323732238−521−13ACATOM1663CBSERA52019.9591.65238.3211.0018.86ACANISOU1663CBSERA520237024262366−3650−19ACATOM1666OGSERA52020.9642.51038.8401.0020.63AOANISOU1666OGSERA520261227162511−8443−79AOATOM1668CSERA52019.556−0.51037.1301.0018.21ACANISOU1668CSERA520233723712209−6934−4ACATOM1669OSERA52018.767−1.04637.9041.0019.67AOANISOU1669OSERA520260326332238−13411816AOATOM1670NLEUA52119.538−0.76635.8401.0016.22ANANISOU1670NLEUA521204221501970−36725ANATOM1672CALEUA52118.520−1.63435.2761.0015.83ACANISOU1672CALEUA521198920551969−15289ACATOM1674CBLEUA52118.287−1.26233.8131.0015.16ACANISOU1674CBLEUA521192419691865−43−38−18ACATOM1677CGLEUA52117.445−0.00333.6261.0015.36ACANISOU1677CGLEUA521199419961846−32143ACATOM1679CD1LEUA52117.6060.58132.2201.0014.43ACANISOU1679CD1LEUA521179719901692−96−36−12ACATOM1683CD2LEUA52116.004−0.32333.8781.0017.25ACANISOU1683CD2LEUA521211822412194−221963ACATOM1687CLEUA52118.896−3.09935.3871.0015.45ACANISOU1687CLEUA521192320111935−1010−3ACATOM1688OLEUA52120.030−3.47835.0841.0017.68AOANISOU1688OLEUA5212097227523459814645AOATOM1689NLYSA52217.956−3.91335.8481.0014.61ANANISOU1689NLYSA522185119341765−414−53ANATOM1691CALYSA52218.112−5.37135.8971.0014.30ACANISOU1691CALYSA522178818471797−21−6−12ACATOM1693CBLYSA52217.216−5.97336.9871.0014.87ACANISOU1693CBLYSA52219211886184011210ACATOM1696CGLYSA52217.466−5.49838.3951.0017.87ACANISOU1696CGLYSA52223252328213757−25−72ACATOM1699CDLYSA52216.531−6.21439.3771.0021.73ACANISOU1699CDLYSA522277727672710−864950ACATOM1702CELYSA52215.213−5.47939.5651.0024.11ACANISOU1702CELYSA5223008306530882675ACATOM1705NZLYSA52214.798−5.47041.0041.0026.70ANANISOU1705NZLYSA522350033903253−35499ANATOM1709CLYSA52217.675−6.00634.5681.0013.14ACANISOU1709CLYSA522163816921662−191117ACATOM1710OLYSA52216.778−5.50333.9021.0012.43AOANISOU1710OLYSA522163215461543−1201554AOATOM1711NVALA52318.255−7.15534.2301.0012.02ANANISOU1711NVALA523154215421479−43−2−9ANATOM1713CAVALA52317.857−7.88233.0251.0012.05ACANISOU1713CAVALA523155715791441−36−1133ACATOM1715CBVALA52318.715−9.14532.8001.0012.93ACANISOU1715CBVALA523162516761609−816−1ACATOM1717CG1VALA52318.210−9.94831.6261.0013.27ACANISOU1717CG1VALA523166016751706−116717ACATOM1721GG2VALA52320.188−8.78632.5881.0014.25ACANISOU1721CG2VALA523180019441669−684812ACATOM1725CVALA52316.373−8.27233.1171.0011.75ACANISOU1725CVALA523149915611404−28−3233ACATOM1726OVALA52315.664−8.24732.1431.0010.50AOANISOU1726OVALA523136213861239−81−108202AOATOM1727NLEUA52415.911−8.62434.3061.0012.33ANANISOU1727NLEUA524156516121509−56−4293ANATOM1729CALEUA52414.514−8.91434.5601.0013.41ACANISOU1729CALEUA524165217981645−2−1469ACATOM1731CBLEUA52414.344−8.98636.0941.0015.16ACANISOU1731CBLEUA52418902012185547−50179ACATOM1734CGLEUA52413.061−9.36336.7631.0020.08ACANISOU1734CGLEUA524245026842495−804548ACATOM1736CD1LEUA52412.446−10.52236.0371.0021.92ACANISOU1736CD1LEUA524285927182749−31−32−41ACATOM1740CD2LEUA52413.434−9.74138.2041.0021.61ACANISOU1740CD2LEUA524292926842597−69058ACATOM1744CLEUA52413.587−7.84033.9951.0012.32ACANISOU1744CLEUA524151316581510−52−3749ACATOM1745OLEUA52412.552−8.13133.3841.0011.88AOANISOU1745OLEUA524141516371463−181−42103AOATOM1746NTHRA52513.959−6.59034.2181.0011.05ANANISOU1746NTHRA525133616131247−93−2059ANATOM1748CATHRA52513.190−5.44733.7891.0010.85ACANISOU1748CATHRA525132814971296−65770ACATOM1750CBTHRA52513.745−4.21534.4691.0011.61ACANISOU1750CBTHRA525139317071312−9941−17ACATOM1752OG1THRA52513.715−4.41435.9001.0012.91AOANISOU1752OG1THRA525154821041250−7420−137AOATOM1754CG2THRA52512.913−2.99034.1891.0012.19ACANISOU1754CG2THRA525150717181407−6633−104ACATOM1758CTHRA52513.205−5.25732.2731.0010.45ACANISOU1758CTHRA525124214381289−72623ACATOM1759OTHRA52512.219−4.87031.6801.0010.57AOANISOU1759OTHRA525116713881460−115−2434AOATOM1760NLEUA52614.334−5.54931.6571.009.36ANANISOU1760NLEUA526117412591122−35−7−12ACATOM1762CALEUA52614.460−5.43830.2151.009.41ACANISOU1762CALEUA526122512221128−39−243ACATOM1764CBLEUA52615.918−5.62329.8311.009.14ACANISOU1764CBLEUA526118912381044−583617ACATOM1767CGLEUA52616.904−4.61830.4041.009.74ACANISOU1767CGLEUA52612621281115510−89−20ACATOM1769CD1LEUA52618.322−4.91629.9521.0010.71ACANISOU1769CD1LEUA526138013621325−10318−71ACATOM1773CD2LEUA52616.492−3.18230.0951.0010.98ACANISOU1773CD2LEUA526154313041324−108−23−22ACATOM1777CLEUA52613.582−6.49129.5361.009.09ACANISOU1777CLEUA526124211851026−1615−1ACATOM1778OLEUA52612.988−6.23328.4931.008.30AOANISOU1778OLEUA52612178781055412090AOATOM1779NVALA52713.504−7.67630.1451.008.84ANANISOU1779NVALA52712471178932−52−38−14ANATOM1781CAVALA52712.645−8.74329.6611.009.54ACANISOU1781CAVALA527124311661215−611234ACATOM1783CBVALA52712.969−10.09230.3051.009.86ACANISOU1783CBVALA52712691253122413−1610ACATOM1785CG1VALA52711.984−11.13529.8571.0011.97ACANISOU1785CG1VALA527143914791628−887109ACATOM1789CG2VALA52714.369−10.51429.9311.009.87ACANISOU1789CG2VALA527123910581451−492−76ACATOM1793CVALA52711.175−8.34329.8591.009.36ACANISOU1793CVALA527120911521193−27−10−29ACATOM1794OVALA52710.343−8.56628.9831.009.72AOANISOU1794OVALA527123912781175O−62−37AOATOM1795NLEUA52810.860−7.72530.9941.0010.29ANANISOU1795NLEUA528126712991344−4229−48ANATOM1797CALEUA5289.489−7.28031.2611.0010.35ACANISOU1797CALEUA528130613311293−41035ACATOM1799CBLEUA5289.389−6.61432.6321.0010.74ACANISOU1799CBLEUA528145912441375−78010ACATOM1802CGLEUA5288.064−5.93732.9261.0012.29ACANISOU1802CGLEUA528153315391595−63−1320ACATOM1804CD1LEUA5286.941−6.97533.0171.0013.69ACANISOU1804CD1LEUA528157417701857−1176020ACATOM1808CD2LEUA5288.153−5.12634.1811.0013.38ACANISOU1808CD2LEUA5281639173417092452−63ACATOM1812CLEUA5289.034−6.30030.1811.009.90ACANISOU1812CLEUA528124411621354−47−2341ACATOM1813OLEUA5287.924−6.41329.6481.0010.14AOANISOU1813OLEUA528130212821268−70−810AOATOM1814NTYRA5299.889−5.31729.8641.009.63ANANISOU1814NTYRA529107312831301−114−2947ANATOM1816CATYRA5299.529−4.35128.8431.009.14ACANISOU1816CATYRA529109411431236−17−8−11ACATOM1818CBTYRA52910.588−3.25828.6721.009.37ACANISOU1818CBTYRA529115311521252−53−1828ACATOM1821CGTYRA52910.825−2.38829.8931.0010.76ACANISOU1821CGTYRA529140813701309−333−15ACATOM1822CD1TYRA5299.882−2.24430.9121.0011.31ACANISOU1822CD1TYRA529149113761427−1842−128ACATOM1824CE1TYRA52910.146−1.43832.0061.0011.43ACANISOU1824CE1TYRA529158214611297−7831−171ACATOM1826CZTYRA52911.352−0.75932.0721.0012.02ACANISOU1826CZTYRA529160614111550−45101−145ACATOM1827OHTYRA52911.6600.05533.1541.0014.10AOANISOU1827OHTYRA529193818201597−468−324AOATOM1829CE2TYRA52912.282−0.88031.0841.0012.26ACANISOU1829CE2TYRA529166614901502−1144716ACATOM1831CD2TYRA52912.018−1.67630.0061.0012.33ACANISOU1831CD2TYRA529159515671523−11867−77ACATOM1833CTYRA5299.269−5.03027.5081.008.97ACANISOU1833CTYRA529110610941206−32−18−16ACATOM1834OTYRA5298.302−4.69526.8091.009.43AOANISOU1834OTYRA529107212101300−4041−33AOATOM1835NSERA53010.114−5.99227.1541.008.94ANANISOU1835NSERA530103611321229−61−24−9ANATOM1837CASERA5309.947−6.73925.9041.008.84ACANISOU1837CASERA530108311161159−302937ACATOM1839CBSERA53011.079−7.74225.7141.009.23ACANISOU1839CBSERA530107511151316−531414ACATOM1842OGSERA53012.340−7.13225.6271.0010.06AOANISOU1842OGSERA530112111541545−6330189AOATOM1844CSERA5308.612−7.47325.8881.008.46ACANISOU1844CSERA53010261096109217162ACATOM1845OSERA5307.913−7.48724.8891.008.24AOANISOU1845OSERA53096310781089132683AOATOM1846NLEUA5318.269−8.10927.0001.009.01ANANISOU1846NLEUA531111711391165−15−4774ANATOM1848CALEUA5317.001−8.82727.1331.008.68ACANISOU1848CALEUA531111610551124−3427−56ACATOM1850CBLEUA5316.971−9.55928.4641.009.19ACANISOU1850CBLEUA531116310881240−14−28−50ACATOM1853CGLEUA5315.685−10.27228.8601.008.73ACANISOU1853CGLEUA5311172105210914339−44ACATOM1855CD1LEUA5315.290−11.36627.8601.009.70ACANISOU1855CD1LEUA531134510591281−6217−25ACATOM1859CD2LEUA5315.954−10.87930.2551.0010.76ACANISOU1859CD2LEUA531130115461241−162132118ACATOM1863CLEUA5315.796−7.90027.0051.009.13ACANISOU1863CLEUA531114611271193−21−18−57ACATOM1864OLEUA5314.810−8.22426.3481.008.80AOANISOU1864OLEUA531102110701251−551−6AOATOM1865NGLNA5325.867−6.73227.6361.009.21ANANISOU1865NGLNA532113610831278−66−44−34ANATOM1867CAGLNA5324.768−5.76927.5931.009.35ACANISOU1867CAGLNA532118111481223−29−33−46ACATOM1869CBGLNA5325.110−4.58328.4741.009.02ACANISOU1869CBGLNA5321057111312559921−149ACATOM1872CGGLNA5325.060−4.94829.9541.009.32ACANISOU1872CGGLNA5321099113613056−15−33ACATOM1875CDGLNA5325.341−3.77430.8821.009.94ACANISOU1875CDGLNA532119212981287−43−4915ACATOM1876OE1GLNA5325.859−2.74330.4461.0010.56AOANISOU1876OE1GLNA532158413431084−169155−60AOATOM1877NE2GLNA5324.988−3.93032.1631.0010.28ANANISOU1877NE2GLNA532127714971130136−26−131ANATOM1880CGLNA5324.512−5.31926.1661.008.73ACANISOU1880CGLNA532108910531175−120−32ACATOM1881OGLNA5323.382−5.30225.7271.009.39AOANISOU1881OGLNA53211181217123135−32−81AOATOM1882NILEA5335.572−4.98525.4351.008.53ANANISOU1882NILEA533105810561127−3−11−22ANATOM1884CAILEA5335.432−4.58724.0311.008.51ACANISOU1884CAILEA533107310791081643−22ACATOM1886CBILEA5336.751−4.01723.4911.009.50ACANISOU1886CBILEA533118711291292−25−7−5ACATOM1888CG1ILEA5337.157−2.77224.3011.009.86ACANISOU1888CG1ILEA533119911471398−8620−48ACATOM1891CD1ILEA5336.245−1.61924.1641.0012.76ACANISOU1891CD1ILEA533161614631769−39−6767ACATOM1895CG2ILEA5336.651−3.76521.9941.0010.62ACANISOU1895CG2ILEA533142012561357−75−7923ACATOM1899CILEA5334.908−5.76123.1971.008.60ACANISOU1899CILEA533112510611079−43−1570ACATOM1900OILEA5334.069−5.56322.3071.008.84AOANISOU1900OILEA53311341016120855−227−5AOATOM1901NCYSA5345.366−6.97123.4811.008.34ANANISOU1901NCYSA534110411169466−90−22ANATOM1903CACYSA5344.882−8.15222.7771.008.69ACANISOU1903CACYSA53410931101110525−27−26ACATOM1905CBCYSA5345.637−9.37723.2591.008.61ACANISOU1905CBCYSA53411869721113−64742ACATOM1908SGCYSA5345.538−10.75922.0921.009.98ASANISOU1908SGCYSA53414311011135032−138−122ASATOM1909CCYSA5343.375−8.34522.9571.008.38ACANISOU1909CCYSA534105910831039−15−58−4ACATOM1910OCYSA5342.684−8.72722.0231.008.76AOANISOU1910OCYSA53411801296851−32−39−122AOATOM1911NLYSA5352.862−8.09324.1631.009.20ANANISOU1911NLYSA535108512641144−23−30−78ANATOM1913CALYSA5351.428−8.20324.4281.009.52ACANISOU1913CALYSA535111812921205321−52ACATOM1915CBLYSA5351.142−8.05925.9241.009.70ACANISOU1915CBLYSA535107413401270−3921−38ACATOM1918CGLYSA5351.581−9.27626.7161.0012.27ACANISOU1918CGLYSA53514201659158244285ACATOM1921CDLYSA5351.302−9.08328.1891.0015.41ACANISOU1921CDLYSA535186021451849622−50ACATOM1924CELYSA5351.591−10.34128.9711.0017.41ACANISOU1924CELYSA535217322862154−184828ACATOM1927NZLYSA5351.182−10.13630.3861.0020.70ANANISOU1927NZLYSA535273729012225−816651ANATOM1931CLYSA5350.640−7.18123.6061.008.70ACANISOU1931CLYSA535104911811076−24371ACATOM1932OLYSA535−0.421−7.48923.0461.009.75AOANISOU1932OLYSA5351211126112324−35−141AOATOM1933NALAA5361.147−5.95723.5041.009.18ANANISOU1933NALAA53611961172111861−42−76ANATOM1935CAALAA5360.544−4.97422.6011.008.93ACANISOU1935CAALAA53610791204111010023−34ACATOM1937CBALAA5361.287−3.67522.6581.009.97ACANISOU1937CBALAA53612881240125811222−85ACATOM1941CALAA5360.475−5.49721.1741.008.90ACANISOU1941CALAA53610511234109362−53−63ACATOM1942OALAA536−0.541−5.34820.4861.009.18AOANISOU1942OALAA53697713491159187936AOATOM1943NMETA5371.576−6.07820.7031.008.38ANANISOU1943NMETA5379691184102969−70−27ANATOM1945CAMETA5371.656−6.59819.3451.009.14ACANISOU1945CAMETA53710751257113752−34−32ACATOM1947CBMETA5373.106−6.89518.9601.009.20ACANISOU1947CBMETA53711481184116113712−128ACATOM1950CGMETA5373.944−5.63018.7971.0011.09ACANISOU1950CGMETA537122315821409−1394−197ACATOM1953SDMETA5373.206−4.38217.6841.0013.43ASANISOU1953SDMETA53718441254200362403−32ASATOM1954CEMETA5372.792−5.41616.2351.0014.20ACANISOU1954CEMETA537192216531819134102123ACATOM1958CMETA5370.755−7.79119.1321.008.69ACANISOU1958CMETA537106711751057694−23ACATOM1959OMETA5370.191−7.93818.0451.009.24AOANISOU1959OMETA53797514851050118−55−9AOATOM1960NALAA5380.561−8.63520.1471.009.38ANANISOU1960NALAA538121312681083−14−772ANATOM1962CAALAA538−0.374−9.74120.0111.008.94ACANISOU1962CAALAA5381177118210385−33−35ACATOM1964CBALAA538−0.346−10.62621.2311.009.08ACANISOU1964CBALAA538114110741233141153ACATOM1968CALAA538−1.774−9.18019.7821.009.51ACANISOU1968CALAA538121612761121−11−1−55ACATOM1969OALAA538−2.557−9.73518.9951.009.57AOANISOU1969OALAA538104614231164−75−73−128AOATOM1970NTYRA539−2.114−8.09220.4571.009.75ANANISOU1970NTYRA539117913141212217−38ANATOM1972CATYRA539−3.407−7.48420.1971.0010.52ACANISOU1972CATYRA5391245138413675317−64ACATOM1974CBTYRA539−3.710−6.38321.2151.0011.10ACANISOU1974CBTYRA539143614021380−269−83ACATOM1977CGTYRA539−4.991−5.66520.9061.0012.72ACANISOU1977CGTYRA53916271769143615688−137ACATOM1978CD1TYRA539−6.187−6.36020.8021.0015.35ACANISOU1978CD1TYRA5391903197919495681−13ACATOM1980CE1TYRA539−7.383−5.73420.4781.0017.27ACANISOU1980CE1TYRA539208422232252468578ACATOM1982CZTYRA539−7.407−4.39220.2791.0017.42ACANISOU1982CZTYRA539215822102248154128−16ACATOM1983OHTYRA539−8.635−3.81719.9721.0020.79AOANISOU1983OHTYRA539248327582656265−154102AOATOM1985CE2TYRA539−6.236−3.65020.3871.0018.14ACANISOU1985CE2TYRA539226522312395131−31−7ACATOM1987CD2TYRA539−5.011−4.30520.6871.0016.60ACANISOU1987CD2TYRA5392066206921701417455ACATOM1989CTYRA539−3.509−6.96718.7691.009.93ACANISOU1989CTYRA539108913541330−215−61ACATOM1990OTYRA539−4.509−7.19018.0671.0010.52AOANISOU1990OTYRA539989164713581732−85AOATOM1991NLEUA540−2.499−6.22318.3101.009.16ANANISOU1991NLEUA54099412701216241323ANATOM1993CALEUA540−2.551−5.75316.9471.009.93ACANISOU1993CALEUA54011481347127711−278ACATOM1995CBLEUA540−1.383−4.79316.6761.0010.30ACANISOU1995CBLEUA540122613421344−274327ACATOM1998CGLEUA540−1.357−3.50317.5271.0011.55ACANISOU1998CGLEUA540144814871453242710ACATOM2000CD1LEUA540−0.182−2.58717.1701.0013.03ACANISOU2000CD1LEUA5401510162318181259−30ACATOM2004CD2LEUA540−2.683−2.76917.4441.0010.93ACANISOU2004CD2LEUA54015501247135792−1−6ACATOM2008CLEUA540−2.607−6.91415.9411.009.95ACANISOU2008CLEUA54011551333129137177ACATOM2009OLEUA540−3.339−6.84714.9571.0010.84AOANISOU2009OLEUA540115715741385137−103−57AOATOM2010NGLUA541−1.883−7.99416.1831.0010.20ANANISOU2010NGLUA54112221390126321−12720ANATOM2012CAGLUA541−1.942−9.17715.3181.0010.92ACANISOU2012CAGLUA5411338141113977713−17ACATOM2014CBGLUA541−1.027−10.25615.8981.0011.79ACANISOU2014CBGLUA54114021554152395−62−29ACATOM2017CGGLUA541−1.082−11.61615.2271.0011.44ACANISOU2017CGGLUA541124815181580−19−7421ACATOM2020CDGLUA541−0.083−12.57015.8661.0012.04ACANISOU2020CDGLUA541146314211690−44−11832ACATOM2021OE1GLUA541−0.394−13.13216.9371.0013.20AOANISOU2021OE1GLUA54114181892170430−170155AOATOM2022OE2GLUA5411.026−12.69015.3311.0012.85AOANISOU2022OE2GLUA54117001601157952−9824AOATOM2023CGLUA541−3.384−9.71715.1981.0011.01ACANISOU2023CGLUA54114171423134315−37−51ACATOM2024OGLUA541−3.814−10.15514.1291.0011.07AOANISOU2024OGLUA541132914721405115−37−127AOATOM2025NSERA542−4.131−9.66616.3051.0011.07ANANISOU2025NSERA542133314561416−425−35ANATOM2027CASERA542−5.476−10.21016.3541.0011.62ACANISOU2027CASERA542139615491468−28−12−29ACATOM2029CBSERA542−6.005−10.23717.7951.0011.54ACANISOU2029CBSERA542134415741466−76−6−61ACATOM2032OGSERA542−6.484−8.97118.1961.0012.72AOANISOU2032OGSERA542133017551747504971AOATOM2034CSERA542−6.447−9.46315.4541.0012.29ACANISOU2034CSERA542142916421599−30−14−12ACATOM2035OSERA542−7.479−10.03815.0851.0013.05AOANISOU2035OSERA542141618831658−148−85−25AOATOM2036NILEA543−6.139−8.20315.1251.0012.06ANANISOU2036NILEA5431377160915950−50−3ANATOM2038CAILEA543−6.927−7.42714.1671.0012.89ACANISOU2038CAILEA543150717531636−22−1233ACATOM2040CBILEA543−7.411−6.10114.7861.0012.91ACANISOU2040CBILEA543145617951651−11−5938ACATOM2042CG1ILEA543−6.272−5.28015.4081.0012.95ACANISOU2042CG1ILEA543162316871610−26−51−33ACATOM2045CD1ILEA543−6.660−3.82615.6441.0014.46ACANISOU2045CD1ILEA543177917551957−27−716ACATOM2049CG2ILEA543−8.465−6.37615.8261.0013.78ACANISOU2049CG2ILEA543163418761723−82856ACATOM2053CILEA543−6.184−7.19212.8481.0013.59ACANISOU2053CILEA54317271794163965−1129ACATOM2054OILEA543−6.597−6.36112.0341.0014.94AOANISOU2054OILEA54318341982185819228151AOATOM2055NASNA544−5.142−7.97912.5941.0014.05ANANISOU2055NASNA54416571897178179−7520ANATOM2057CAASNA544−4.333−7.83811.3881.0015.80ACANISOU2057CAASNA54419912045196565−3667ACATOM2059CBASNA544−5.136−8.34010.1641.0017.02ACANISOU2059CBASNA54421792222206422413ACATOM2062CGASNA544−5.600−9.78010.3071.0021.95ACANISOU2062CGASNA544285526602822−52−2311ACATOM2063OD1ASNA544−4.820−10.65810.6871.0026.38AOANISOU2063OD1ASNA544344831863389242−102106AOATOM2064ND2ASNA544−6.864−10.0459.9501.0025.54ANANISOU2064ND2ASNA544300233893311−28−9−30ANATOM2067CASNA544−3.839−6.38611.1451.0015.07ACANISOU2067CASNA54418941964186691−6−2ACATOM2068OASNA544−3.784−5.9149.9821.0016.47AOANISOU2068OASNA544218021491928174010AOATOM2069NCASA545−3.491−5.67712.2241.0014.03ANANISOU2069NCASA54516351857183769−4025ANATOM2072CACASA545−2.959−4.33312.1451.0014.24ACANISOU2072CACASA54517451849181534−1735ACATOM2074CBCASA545−3.448−3.55413.3461.0015.02ACANISOU2074CBCASA5451838187819881264543ACATOM2077SGCASA545−2.801−1.90313.4611.0019.61ASANISOU2077SGCASA54527772151252218647−59ASATOM2078ASCASA545−3.902−0.99511.7800.5018.37AASANISOU2078ASCASA545248716662824158−10326AASATOM2079CE2CASA545−2.576−0.64710.3360.5020.07ACANISOU2079CE2CASA54525712431262230−7210ACATOM2083CE1CASA545−5.0560.53412.2780.5019.01ACANISOU2083CE1CASA54524292292250111341−93ACATOM2087CCASA545−1.460−4.41312.1551.0013.38ACANISOU2087CCASA545163718151631441077ACATOM2088OCASA545−0.842−4.85113.1121.0013.52AOANISOU2088OCASA5451605198215485761268AOATOM2090NVALA546−0.859−3.93311.0771.0012.64ANANISOU2090NVALA546160416351564307533ANATOM2092CAVALA5460.573−3.93510.8991.0012.23ACANISOU2092CAVALA54615381611149523−2930ACATOM2094CBVALA5460.954−4.2459.4521.0013.05ACANISOU2094CBVALA546161317131629−1408ACATOM2096CG1VALA5462.485−4.2779.3021.0013.38ACANISOU2096CG1VALA546166018321590−6688116ACATOM2100CG2VALA5460.343−5.5679.0291.0013.89ACANISOU2100CG2VALA5461761184716661636−13ACATOM2104CVALA5461.094−2.57411.3151.0011.11ACANISOU2104CVALA5461416145613451009915ACATOM2105OVALA5460.762−1.55210.7311.0013.61AOANISOU2105OVALA54616811729175913913126AOATOM2106NHISA5471.967−2.57212.3111.0010.67ANANISOU2106NHISA5471441129013221052621ANATOM2108CAHISA5472.375−1.35212.9781.0010.61ACANISOU2108CAHISA54713721346131160−25−23ACATOM2110CBHISA5472.737−1.68914.4031.0011.17ACANISOU2110CBHISA547146614081369−514−20ACATOM2113CGHISA5472.988−0.50015.2571.0010.55ACANISOU2113CGHISA547132612121467214−5350ACATOM2114ND1HISA5474.2220.09115.3471.0012.47ANANISOU2114ND1HISA547164716801409−129−13010ANATOM2116CE1HISA5474.1681.09216.2081.0012.36ACANISOU2116CE1HISA5471532143017339625−63ACATOM2118NE2HISA5472.9211.21516.6231.0013.17ANANISOU2118NE2HISA547145916931850−47−90ANATOM2120CD2HISA5472.1650.22816.0421.0011.72ACANISOU2120CD2HISA54713791402167215389−94ACATOM2122CHISA5473.515−0.60412.2971.0011.31ACANISOU2122CHISA54715131402137942−12−8ACATOM2123OHISA5473.4430.60812.1121.0012.83AOANISOU2123OHISA54716721536166578−21−30AOATOM2124NARGA5484.564−1.34211.9381.0011.57ANANISOU2124NARGA54814491460148761−1293ANATOM2126CAARGA5485.723−0.83911.2081.0011.95ACANISOU2126CAARGA548141115581568502442ACATOM2128CBARGA5485.324−0.1069.9191.0012.37ACANISOU2128CBARGA548140716901600234263ACATOM2131CGARGA5484.400−0.8609.0001.0012.27ACANISOU2131CGARGA54814191656158458731ACATOM2134CDARGA5484.245−0.1267.6861.0014.56ACANISOU2134CDARGA548189518651769492331ACATOM2137NEARGA5483.276−0.7026.7681.0014.69ANANISOU2137NEARGA54819631899172078−18120ANATOM2139CZARGA5483.282−0.4445.4641.0015.09ACANISOU2139CZARGA548200919661758−4523−4ACATOM2140NH1ARGA5484.1740.3914.9741.0014.76ANANISOU2140NH1ARGA548201320731519−4762−21ANATOM2143NH2ARGA5482.390−0.9924.6561.0016.02ANANISOU2143NH2ARGA548197121241989−6116−2ANATOM2146CARGA5486.6930.07211.9551.0011.43ACANISOU2146CARGA548138514191538463592ACATOM2147OARGA5487.6580.53111.3491.0013.42AOANISOU2147OARGA5481435179318683656223AOATOM2148NASPA5496.4480.38313.2221.0012.01ANANISOU2148NASPA549146214901609383430ANATOM2150CAASPA5497.3411.27213.9751.0012.94ACANISOU2150CAASPA54915951591172997−48−30ACATOM2152CBASPA5496.8782.73113.9311.0014.09ACANISOU2152CBASPA549178516681897107−31−8ACATOM2155CGASPA5497.9863.71214.3151.0017.92ACANISOU2155CGASPA549222721122468−45−18−21ACATOM2156OD1ASPA5499.1713.29114.4791.0021.77AOANISOU2156OD1ASPA5492568269330086−101112AOATOM2157OD2ASPA5497.7424.93714.4801.0020.33AOANISOU2157OD2ASPA549278020822862−14825−17AOATOM2158CASPA5497.5510.81615.3921.0012.24ACANISOU2158CASPA549146615281654510−32ACATOM2159OASPA5497.3161.55016.3671.0013.22AOANISOU2159OASPA549169116211707143−155−110AOATOM2160NILEA5508.025−0.41915.4991.0011.46ANANISOU2160NILEA55014251417151257−51−47ANATOM2162CAILEA5508.294−1.04716.7781.0010.66ACANISOU2162CAILEA55012681415136433−30−53ACATOM2164CBILEA5507.904−2.52816.7451.0010.39ACANISOU2164CBILEA5501208135113886031−26ACATOM2166CG1ILEA5506.497−2.71216.1831.0011.03ACANISOU2166CG1ILEA550128513711532−38−61−29ACATOM2169CD1ILEA5506.253−4.07115.6151.0013.07ACANISOU2169CD1ILEA550155516251784−1356−101ACATOM2173CG2ILEA5507.997−3.10618.1421.0012.08ACANISOU2173CG2ILEA550145515981536164−662ACATOM2177CILEA5509.791−0.90017.0511.0010.76ACANISOU2177CILEA55012531424141079−60−75ACATOM2178OILEA55010.636−1.63516.5271.0011.52AOANISOU2178OILEA550134714151612152−124−125AOATOM2179NALAA55110.1090.13117.8201.0010.63ANANISOU2179NALAA55112511325146183−64−113ANATOM2181CAALAA55111.4840.55018.0711.0010.00ACANISOU2181CAALAA551123112501316−1−104ACATOM2183CBALAA55111.9961.38516.9091.009.71ACANISOU2183CBALAA5511162119913283197−38ACATOM2187CALAA55111.5031.36519.3391.009.46ACANISOU2187CALAA551116612221206−133933ACATOM2188OALAA55110.5111.99019.6831.0011.05AOANISOU2188OALAA5511324140814646−4122AOATOM2189NVALA55212.6351.37620.0411.009.14ANANISOU2189NVALA55211021081129047512ANATOM2191CAVALA55212.6762.00021.3651.009.60ACANISOU2191CAVALA552121112091227−10−234ACATOM2193CBVALA55213.9701.68422.1611.009.79ACANISOU2193CBVALA5521144121913545924−80ACATOM2195CG1VALA55214.0400.20922.4821.0010.22ACANISOU2195CG1VALA552120512691408750124ACATOM2199CG2VALA55215.2092.19621.4831.009.58ACANISOU2199CG2VALA552111912591260−6−30−85ACATOM2203CVALA55212.4503.50621.3501.0010.58ACANISOU2203CVALA552132112731426−355−57ACATOM2204OVALA55211.9574.07422.3431.0011.27AOANISOU2204OVALA552155314291301−2−9−61AOATOM2205NARGA55312.7804.15020.2341.0011.21ANANISOU2205NARGA5531477138214001422−86ANATOM2207CAARGA55312.4975.57220.0611.0012.16ACANISOU2207CAARGA5531563143216242722−24ACATOM2209CBARGA55313.1436.07818.7621.0013.88ACANISOU2209CBARGA553176217011810−267347ACATOM2212CGARGA55312.9987.55118.4531.0018.30ACANISOU2212CGARGA55323972089246710826−58ACATOM2215CDARGA55313.7317.93817.1601.0023.71ACANISOU2215CDARGA553300330862919212387ACATOM2218NEARGA55313.7559.36616.8541.0028.74ANANISOU2218NEARGA553375834443716391110ANATOM2220CZARGA55314.2899.86715.7391.0031.75ACANISOU2220CZARGA553409040013971−147159ACATOM2221NH1ARGA55314.8469.06314.8321.0033.43ANANISOU2221NH1ARGA5534320421041695686−3ANATOM2224NH2ARGA55314.26511.17215.5191.0032.88ANANISOU2224NH2ARGA553428140274185−144826ANATOM2227CARGA55310.9735.83320.0531.0011.70ACANISOU2227CARGA5531522138315384810−29ACATOM2228OARGA55310.5336.95520.3011.0013.49AOANISOU2228OARGA5531766142519322937−158AOATOM2229NASNA55410.1974.80119.7541.0011.17ANANISOU2229NASNA5541357133415502165−9ANATOM2231CAASNA5548.7384.88419.6351.0010.72ACANISOU2231CAASNA554133013191424−1317−55ACATOM2233CBASNA5548.2494.43218.2491.0010.62ACANISOU2233CBASNA554136413521318−1246ACATOM2236CGASNA5546.8074.87117.9591.0012.01ACANISOU2236CGASNA5541478158814962919−117ACATOM2237OD1ASNA5546.4035.97318.3581.0015.71AOANISOU2237OD1ASNA55418861664241617272−49AOATOM2238ND2ASNA5546.0324.01817.2851.0012.82ANANISOU2238ND2ASNA554167415851609−3135−79ANATOM2241CASNA5548.0074.09620.7081.0010.60ACANISOU2241CASNA554128513991341−259−65ACATOM2242OASNA5546.8893.65120.5061.0011.82AOANISOU2242OASNA554133416681489−3793−58AOATOM2243NILEA5558.6603.89721.8401.0010.92ANANISOU2243NILEA555127915241344−1029422ANATOM2245CAILEA5558.0533.32923.0361.0010.52ACANISOU2245CAILEA555129114271278−4391−30ACATOM2247CBILEA5558.7262.02423.4121.0010.98ACANISOU2247CBILEA555139915141258−86805ACATOM2249CG1ILEA5558.4820.98622.3021.0012.83ACANISOU2249CG1ILEA555172716301516−14167−14ACATOM2252CD1ILEA5559.354−0.14822.3901.0013.57ACANISOU2252CD1ILEA5551552185717450106−62ACATOM2256CG2ILEA5558.2101.54924.7881.0011.79ACANISOU2256CG2ILEA555143316561389−1919459ACATOM2260CILEA5558.2064.36924.1271.0010.30ACANISOU2260CILEA555124113761295−5713−9ACATOM2261OILEA5559.2614.97824.2711.0010.45AOANISOU2261OILEA555133612951337−131107−9AOATOM2262NLEUA5567.1254.59824.8581.0010.78ANANISOU2262NLEUA556128814421364−3739−96ANATOM2264CALEUA5567.1095.58925.9241.0011.49ACANISOU2264CALEUA556144714381479−1537−69ACATOM2266CBLEUA5565.9226.56025.7551.0012.91ACANISOU2266CBLEUA5561553160317487634−120ACATOM2269CGLEUA5565.9737.47324.5211.0016.23ACANISOU2269CGLEUA556198820842094485426ACATOM2271CD1LEUA5564.8068.42024.4781.0020.11ACANISOU2271CD1LEUA556242925902621132−8524ACATOM2275CD2LEUA5567.2328.28124.3911.0018.33ACANISOU2275CD2LEUA556231321572494−49−7137ACATOM2279CLEUA5567.0994.92427.2641.0011.18ACANISOU2279CLEUA556141113501486−85−68ACATOM2280OLEUA5566.4973.87527.4431.0010.88AOANISOU2280OLEUA556143513211375−47107−217AOATOM2281NVALA5577.7985.53128.2161.0010.68ANANISOU2281NVALA557140712951354−6415−94ANATOM2283CAVALA5577.9174.96729.5581.0010.69ACANISOU2283CAVALA55713641324137310−2−46ACATOM2285CBVALA5579.3345.10230.1171.0010.98ACANISOU2285CBVALA557138213551434−6139−51ACATOM2287CG1VALA5579.4154.49531.5021.0010.58ACANISOU2287CG1VALA5571261124115167332−44ACATOM2291CG2VALA55710.3504.47429.1491.0011.50ACANISOU2291CG2VALA557141113441611−210−106ACATOM2295CVALA5576.9165.69030.4811.0011.26ACANISOU2295CVALA557137614431460126−82ACATOM2296OVALA5577.0566.88730.7941.0011.64AOANISOU2296OVALA55712821456168473−4−146AOATOM2297NALAA5585.8724.97430.8601.0012.16ANANISOU2297NALAA558154915601509−76−6−103ANATOM2299CAALAA5584.8795.49831.7931.0012.50ACANISOU2299CAALAA5581508164915922824−50ACATOM2301CBALAA5583.5984.67231.7041.0012.80ACANISOU2301CBALAA558163416551573−496−47ACATOM2305CALAA5585.3905.48533.2381.0012.51ACANISOU2305CALAA55815351663155247−31−122ACATOM2306OALAA5585.1046.38034.0661.0014.27AOANISOU2306OALAA558170318751841126−98−181AOATOM2307NSERA5596.0964.42133.5741.0012.55ANANISOU2307NSERA5591564162415805−8−68ANATOM2309CASERA5596.7224.28434.8831.0012.69ACANISOU2309CASERA559160316181599−246−60ACATOM2311CBSERA5595.6953.79335.9011.0012.95ACANISOU2311CBSERA5591673163416139341ACATOM2314OGSERA5595.3912.42835.6871.0014.31AOANISOU2314OGSERA5591859173318430192−165AOATOM2316CSERA5597.8283.26434.7471.0012.56ACANISOU2316CSERA559154316391587−2251−34ACATOM2317OSERA5597.8852.58033.7191.0012.75AOANISOU2317OSERA559159016931560−11169−101AOATOM2318NPROA5608.6963.11335.7421.0012.53ANANISOU2318NPROA560157716001582−1921−83ANATOM2319CAPROA5609.6842.01935.6881.0013.14ACANISOU2319CAPROA5601654170416332325−36ACATOM2321CBPROA56010.4232.14637.0111.0013.21ACANISOU2321CBPROA560159317211705460−50ACATOM2324CGPROA56010.2893.59537.3391.0013.53ACANISOU2324CGPROA560163217331775−64−20−70ACATOM2327CDPROA5608.8923.96636.9291.0013.11ACANISOU2327CDPROA56016881704158663−3−27ACATOM2330CPROA5609.0640.61935.5071.0013.46ACANISOU2330CPROA5601734170616742526−53ACATOM2331OPROA5609.781−0.32535.0911.0014.90AOANISOU2331OPROA560200119251736102149−117AOATOM2332NGLUA5617.7640.49935.7841.0014.34ANANISOU2332NGLUA561183918771732−827−80ANATOM2334CAGLUA5617.047−0.77135.7181.0014.84ACANISOU2334CAGLUA561192919001809−2714−57ACATOM2336CBGLUA5616.041−0.89036.8831.0016.70ACANISOU2336CBGLUA561211221092124−10961−10ACATOM2339CGGLUA5616.678−0.97238.2511.0020.63ACANISOU2339CGGLUA561266126892487−4−5525ACATOM2342CDGLUA5617.1880.36738.7481.0025.39ACANISOU2342CDGLUA561327530153357−100−42−45ACATOM2343OE1GLUA5616.4841.40538.5831.0027.09AOANISOU2343OE1GLUA56132893365363965−2469AOATOM2344OE2GLUA5618.3080.37339.3091.0029.08AOANISOU2344OE2GLUA561348037213845−62−15652AOATOM2345CGLUA5616.245−0.95334.4401.0013.68ACANISOU2345CGLUA561174917621684−2139−34ACATOM2346OGLUA5615.624−1.98834.2751.0013.37AOANISOU2346OGLUA561185917161503−4273−194AOATOM2347NCYSA5626.2160.04033.5651.0012.49ANANISOU2347NCYSA562159416731479−6824−56ANATOM2349CACYSA5625.275−0.00132.4551.0013.84ACANISOU2349CACYSA562172618631668−17340ACATOM2351CBCYSA5623.9020.49532.9251.0014.48ACANISOU2351CBCYSA562181018871802−654−57ACATOM2354SGCYSA5622.6610.44931.6311.0017.07ASANISOU2354SGCYSA56216612589223489144−150ASATOM2355CCYSA5625.7030.83131.2531.0012.03ACANISOU2355CCYSA562150515921471−2253−32ACATOM2356OCYSA5625.8782.04831.3451.0011.76AOANISOU2356OCYSA562156017281180−40142−131AOATOM2357NVALA5635.8290.15830.1111.0011.30ANANISOU2357NVALA5631394152213744842−32ANATOM2359CAVALA5636.0710.83828.8571.0010.98ACANISOU2359CAVALA5631335142614083054−24ACATOM2361CBVALA5637.3610.34128.1611.0010.70ACANISOU2361CBVALA563129913951372296819ACATOM2363CG1VALA5638.5740.60429.0511.0011.76ACANISOU2363CG1VALA56314011449161631−270ACATOM2367CG2VALA5637.275−1.14327.7741.0011.15ACANISOU2367CG2VALA563131314181504−637219ACATOM2371CVALA5634.8630.72227.9121.0010.38ACANISOU2371CVALA5631292134813034289−65ACATOM2372OVALA5634.009−0.14628.0641.0011.15AOANISOU2372OVALA563140813981430−8137−177AOATOM2373NLYSA5644.8281.58426.9131.0010.63ANANISOU2373NLYSA5641296135813849576−23ANATOM2375CALYSA5643.6961.69226.0001.0011.44ACANISOU2375CALYSA56414851469139136−19−51ACATOM2377CBLYSA5642.7662.82826.4101.0013.11ACANISOU2377CBLYSA5641649179015401375626ACATOM2380CGLYSA5642.2152.62427.8251.0015.67ACANISOU2380CGLYSA564215222181583118−24−25ACATOM2383CDLYSA5640.8463.06628.0381.0017.90ACANISOU2383CDLYSA564230321922305824−23ACATOM2386CELYSA5640.5853.11329.5311.0018.28ACANISOU2386CELYSA56423602253233115881−141ACATOM2389NZLYSA564−0.7812.65929.8521.0022.77ANANISOU2389NZLYSA564279230392819−210121−24ANATOM2393CLYSA5644.1721.93824.5911.0010.77ACANISOU2393CLYSA5641309137514085522−16ACATOM2394OLYSA5644.9412.86424.3281.0010.74AOANISOU2394OLYSA56412391341150012052−122AOATOM2395NLEUA5653.7301.07923.6891.0010.25ANANISOU2395NLEUA5651254125213895328−25ANATOM2397CALEUA5654.0351.22722.2851.0010.59ACANISOU2397CALEUA56513641334132236−4411ACATOM2399CBLEUA5653.543−0.00321.5331.0011.06ACANISOU2399CBLEUA56514951274143023−7587ACATOM2402CGLEUA5653.798−0.07120.0381.0012.33ACANISOU2402CGLEUA565164915581476100−72−66ACATOM2404CD1LEUA5655.275−0.05619.7621.0013.31ACANISOU2404CD1LEUA56518111742150110388−47ACATOM2408CD2LEUA5653.139−1.29319.4701.0013.66ACANISOU2408CD2LEUA56519471735150956−14158ACATOM2412CLEUA5653.3782.47521.7181.0011.22ACANISOU2412CLEUA5651427136614685620−44ACATOM2413OLEUA5652.1912.72121.9371.0011.52AOANISOU2413OLEUA565137214021603214113−16AOATOM2414NGLYA5664.1403.23220.9421.0012.46ANANISOU2414NGLYA56615791574157846−6−14ANATOM2416CAGLYA5663.6284.44120.3151.0013.36ACANISOU2416CAGLYA566174415751756504514ACATOM2419CGLYA5662.8304.24119.0381.0015.83ACANISOU2419CGLYA566198820122015365−17ACATOM2420OGLYA5662.4603.13618.6711.0015.30AOANISOU2420OGLYA566181819892003230−524AOATOM2421NASPA5672.6105.36618.3581.0018.88ANANISOU2421NASPA567248522992388120−1726ANATOM2423CAASPA5671.8215.45417.1231.0022.18ACANISOU2423CAASPA56728202815279034−7710ACATOM2425CBASPA5671.7436.90916.6521.0023.80ACANISOU2425CBASPA56730633001297885−8546ACATOM2428CGASPA5671.1237.81017.6471.0027.77ACANISOU2428CGASPA56735963515343694−1−93ACATOM2429OD1ASPA5670.3517.32418.5021.0031.50AOANISOU2429OD1ASPA567384941263993−10311959AOATOM2430OD2ASPA5671.3709.03117.6471.0032.32AOANISOU2430OD2ASPA567422737354317−132−178AOATOM2431CASPA5672.4074.71715.9541.0023.94ACANISOU2431CASPA567305630193019491521ACATOM2432OASPA5673.5704.37515.9261.0020.99AOANISOU2432OASPA56727192583267142−104189AOATOM2433NPHEA5681.5814.57214.9341.0027.78ANANISOU2433NPHEA56834373614350258−1070ANATOM2435CAPHEA5681.9403.85213.7181.0031.07ACANISOU2435CAPHEA56839393981388345−33−57ACATOM2437CBPHEA5680.6903.61512.8901.0031.44ACANISOU2437CBPHEA56840144000393235−50−2ACATOM2440CGPHEA568−0.3102.81313.6021.0032.10ACANISOU2440CGPHEA568404941124033−498−29ACATOM2441CD1PHEA568−0.0901.46813.7901.0033.05ACANISOU2441CD1PHEA5684152422241817886ACATOM2443CE1PHEA568−0.9920.69914.4891.0033.55ACANISOU2443CE1PHEA5684179425043194−2653ACATOM2445CZPHEA568−2.1181.29015.0381.0033.51ACANISOU2445CZPHEA5684275421142436341ACATOM2447CE2PHEA568−2.3352.65014.8661.0033.37ACANISOU2447CE2PHEA56841944249423466−25ACATOM2449CD2PHEA568−1.4313.40314.1671.0032.67ACANISOU2449CD2PHEA568416540774172311−30ACATOM2451CPHEA5682.9524.57212.8911.0034.06ACANISOU2451CPHEA568433643394266−22−4124ACATOM2452OPHEA5683.1005.78712.9981.0034.68AOANISOU2452OPHEA56845254338431159−28−26AOATOM2453NGLYA5693.6533.80012.0611.0037.04ANANISOU2453NGLYA56946974714466148−34−63ANATOM2455CAGLYA5694.6774.32511.1801.0039.68ACANISOU2455CAGLYA569500550455025−14290ACATOM2458CGLYA5694.1994.6809.7811.0042.00ACANISOU2458CGLYA56953435348526512−89ACATOM2459OGLYA5695.0175.0598.9331.0042.55AOANISOU2459OGLYA569537553965396−265423AOATOM2460NLEUA5702.8904.5819.5331.0044.32ANANISOU2460NLEUA570555756385644−82−7ANATOM2462CALEUA5702.3464.7648.1721.0046.07ACANISOU2462CALEUA5705828586458102−100ACATOM2464CBLEUA5700.8924.2508.0421.0046.30ACANISOU2464CBLEUA5705844587758710−200ACATOM2467CGLEUA570−0.0344.0529.2551.0046.98ACANISOU2467CGLEUA570593959645945142ACATOM2469CD1LEUA570−0.7655.3439.5941.0047.51ACANISOU2469CD1LEUA570601260006039105−15ACATOM2473CD2LEUA570−1.0322.9249.0071.0047.32ACANISOU2473CD2LEUA570597759706030−76−8ACATOM2477CLEUA5702.4706.2107.6551.0047.30ACANISOU2477CLEUA570599959696004−50−1ACATOM2478OLEUA5702.0247.1588.3001.0047.60AOANISOU2478OLEUA57060366001604961−27AOATOM2479NSERA5713.0646.3436.4671.0048.73ANANISOU2479NSERA571617561896151−1496ANATOM2481CASERA5713.4777.6335.8931.0049.54ACANISOU2481CASERA571628562626275−9314ACATOM2483CBSERA5714.1727.4124.5351.0049.55ACANISOU2483CBSERA5716270628162763418ACATOM2486OGSERA5715.5777.5604.6431.0049.55AOANISOU2486OGSERA571626762786279−13835AOATOM2488CSERA5712.3428.6375.7071.0050.18ACANISOU2488CSERA5716344636163601260ACATOM2489OSERA5711.1648.2825.7711.0050.60AOANISOU2489OSERA571640064056419−1615−8AOATOM2490NARGA5722.7279.8875.4521.0050.82ANANISOU2490NARGA572644064206447−560ANATOM2492CAARGA5721.78310.9905.2351.0051.28ACANISOU2492CAARGA572649264946497511ACATOM2494CBARGA5721.83011.9716.4191.0051.64ACANISOU2494CBARGA57265476531654267−11ACATOM2497CGARGA5723.20512.6066.6911.0052.82ACANISOU2497CGARGA572665767146695−19−6−9ACATOM2500CDARGA5723.28514.1166.4261.0054.29ACANISOU2500CDARGA5726915682368865510ACATOM2503NEARGA5724.59314.6686.7931.0055.46ANANISOU2503NEARGA572698870377045−22−19−6ANATOM2505CZARGA5724.88815.9686.8451.0056.06ACANISOU2505CZARGA572710970647125−8−25ACATOM2506NH1ARGA5723.97716.8896.5501.0056.24ANANISOU2506NH1ARGA5727113711771366−214ANATOM2509NH2ARGA5726.11216.3517.1951.0056.51ANANISOU2509NH2ARGA572713671467188−5−10−12ANATOM2512CARGA5722.05511.7233.9121.0051.09ACANISOU2512CARGA57264766470646663−5ACATOM2513OARGA5721.92112.9503.8291.0051.39AOANISOU2513OARGA572650465106509102−17AOATOM2514NTYRA5732.41910.9602.8791.0050.77ANANISOU2514NTYRA5736439643164181−13ANATOM2516CATYRA5732.76011.5141.5631.0050.38ACANISOU2516CATYRA573639163806369−2−8−5ACATOM2518CBTYRA5734.28311.4621.3521.0050.71ACANISOU2518CBTYRA5736417643064201−3−3ACATOM2521CGTYRA5734.83012.5540.4491.0051.77ACANISOU2521CGTYRA573657065476551−15522ACATOM2522CD1TYRA5735.53012.242−0.7211.0052.38ACANISOU2522CD1TYRA5736632664866225250ACATOM2524CE1TYRA5736.02813.246−1.5521.0052.54ACANISOU2524GE1TYRA573664566496668−111510ACATOM2526CZTYRA5735.83014.577−1.2141.0052.84ACANISOU2526CZTYRA573669266876695−515−8ACATOM2527OHTYRA5736.31615.580−2.0261.0052.93AOANISOU2527OHTYRA573670366946713−15153AOATOM2529CE2TYRA5735.14114.909−0.0591.0052.70ACANISOU2529CE2TYRA573667566686679−18124ACATOM2531CD2TYRA5734.64913.9000.7651.0052.48ACANISOU2531CD2TYRA57366676613665862−12ACATOM2533CTYRA5732.03410.7610.4331.0049.50ACANISOU2533CTYRA5736292626162530−218ACATOM2534OTYRA5731.7409.5660.5621.0049.79AOANISOU2534OTYRA573633362846301−18−1−4AOATOM2535NILEA5741.75111.472−0.6651.0048.15ANANISOU2535NILEA574610160976096−7−17−21ANATOM2537CAILEA5741.03210.906−1.8201.0046.82ACANISOU2537CAILEA5745931591159461211−6ACATOM2539CBILEA5740.82411.987−2.9661.0047.04ACANISOU2539CBILEA574595859535959−32−3ACATOM2541CG1ILEA5740.11511.378−4.1881.0047.21ACANISOU2541CG1ILEA5745979597759804−9−6ACATOM2544CD1ILEA574−0.11312.358−5.3281.0047.28ACANISOU2544CD1ILEA57459825982600115210ACATOM2548CG2ILEA5742.14412.663−3.4001.0047.22ACANISOU2548CG2ILEA574596759855987−411−8ACATOM2552CILEA5741.6599.607−2.3671.0045.25ACANISOU2552CILEA574569257565745−17244ACATOM2553OILEA5741.0958.513−2.1901.0045.46AOANISOU2553OILEA574574357535777−15143AOATOM2554NGLUA5752.8329.717−2.9891.0042.99ANANISOU2554NGLUA57554685415544865−23ANATOM2556CAGLUA5753.4258.595−3.7221.0040.89ACANISOU2556CAGLUA5755189516351840−526ACATOM2558CBGLUA5754.6849.041−4.4891.0041.19ACANISOU2558CBGLUA5755209521052304124ACATOM2561CGGLUA5754.4169.455−5.9311.0042.08ACANISOU2561CGGLUA5755364530853156−125ACATOM2564CDGLUA5755.6749.887−6.6681.0043.35ACANISOU2564CDGLUA575547054945507−63513ACATOM2565OE1GLUA5756.7469.274−6.4481.0043.91AOANISOU2565OE1GLUA57555515535559635−2840AOATOM2566OE2GLUA5755.59010.844−7.4761.0044.09AOANISOU2566OE2GLUA57556335563555311−140AOATOM2567CGLUA5753.7377.367−2.8531.0038.22ACANISOU2567CGLUA575484948684803−3−7−34ACATOM2568OGLUA5753.8336.259−3.3971.0038.54AOANISOU2568OGLUA57548624870490911−1−16AOATOM2569NASPA5763.8947.574−1.5341.0034.64ANANISOU2569NASPA576437843424440161534ANATOM2571CAASPA5764.1236.525−0.5201.0031.46ACANISOU2571CAASPA5763940397540384917−35ACATOM2573CBASPA5762.7985.899−0.0681.0031.90ACANISOU2573CBASPA576403939824099112118ACATOM2576CGASPA5762.9624.9131.0941.0032.79ACANISOU2576CGASPA57641724136415146910ACATOM2577OD1ASPA5763.0733.7050.8281.0030.61AOANISOU2577OD1ASPA5763905392537982440−7AOATOM2578OD2ASPA5762.9435.2322.3061.0036.41AOANISOU2578OD2ASPA57646944671446627−10−129AOATOM2579CASPA5765.1355.445−0.9211.0027.81ACANISOU2579CASPA576352735153523−2−3626ACATOM2580OASPA5765.1024.917−2.0261.0026.13AOANISOU2580OASPA57632823194345136−2840AOATOM2581NGLUA5776.0305.1270.0061.0024.06ANANISOU2581NGLUA5773046300330902447−22ANATOM2583CAGLUA5777.1834.284−0.2941.0021.31ACANISOU2583CAGLUA577274926412704−29−113ACATOM2585CBGLUA5778.2904.4920.7431.0021.05ACANISOU2585CBGLUA57727162636264583015ACATOM2588CGGLUA5778.9365.8670.6521.0022.39ACANISOU2588CGGLUA577288927632855−53−6−43ACATOM2591CDGLUA57710.3235.9321.2671.0023.68ACANISOU2591CDGLUA57729913002300431−2542ACATOM2592OE1GLUA57711.1755.0950.9331.0022.74AOANISOU2592OE1GLUA577282329402876−982785AOATOM2593OE2GLUA57710.5576.8392.0881.0026.39AOANISOU2593OE2GLUA577344131693418−40−106−30AOATOM2594CGLUA5776.8442.799−0.4301.0019.18ACANISOU2594CGLUA577243824482401−10339ACATOM2595OGLUA5777.7432.010−0.6661.0018.10AOANISOU2595OGLUA577240721582312−54−1467AOATOM2596NASPA5785.5642.425−0.3241.0017.39ANANISOU2596NASPA57822402225214021−1516ANATOM2598CAASPA5785.1421.064−0.6711.0016.41ACANISOU2598CAASPA57820822110204010022ACATOM2600CBASPA5783.7470.728−0.1081.0016.70ACANISOU2600CBASPA57821022185205623−225ACATOM2603CGASPA5783.7210.5751.3961.0017.80ACANISOU2603CGASPA578226922832210−25473ACATOM2604OD1ASPA5784.7440.8362.0801.0018.44AOANISOU2604OD1ASPA57824602283226033−3446AOATOM2605OD2ASPA5782.6730.1681.9581.0019.32AOANISOU2605OD2ASPA57825562804198025129191AOATOM2606CASPA5785.1010.850−2.1941.0015.80ACANISOU2606CASPA57820211999198325121ACATOM2607OASPA5784.982−0.283−2.6611.0015.16AOANISOU2607OASPA5781934201818066629−29AOATOM2608NTYRA5795.1541.942−2.9471.0015.54ANANISOU2608NTYRA579197819891934−25220ANATOM2610CATYRA5794.9491.919−4.3961.0015.86ACANISOU2610CATYRA57920102019199416−1420ACATOM2612CBTYRA5793.8782.949−4.7511.0015.76ACANISOU2612CBTYRA5792011198219926345ACATOM2615CGTYRA5792.5272.607−4.2271.0016.35ACANISOU2615CGTYRA57920242045214167117ACATOM2616CD1TYRA5791.6191.912−5.0101.0017.24ACANISOU2616CD1TYRA57922032167217947−51−9ACATOM2618CE1TYRA5790.3671.573−4.5261.0018.73ACANISOU2618CE1TYRA579235323642399−10−1423ACATOM2620CZTYRA579−0.0021.946−3.2591.0019.96ACANISOU2620CZTYRA5792495249025964550−42ACATOM2621OHTYRA579−1.2571.594−2.8061.0023.30AOANISOU2621OHTYRA579263830083204−9164−76AOATOM2623CE2TYRA5790.8762.636−2.4531.0019.53ACANISOU2623CE2TYRA5792459249124694295−66ACATOM2625CD2TYRA5792.1492.962−2.9361.0018.93ACANISOU2625CD2TYRA579244824112333−312−65ACATOM2627CTYRA5796.2142.199−5.2061.0016.65ACANISOU2627CTYRA5792123210920913082ACATOM2628OTYRA5796.2401.995−6.4191.0017.08AOANISOU2628OTYRA5792170217121484712AOATOM2629NTYRA5807.2572.676−4.5381.0017.48ANANISOU2629NTYRA5802180220822541213−20ANATOM2631CATYRA5808.5123.024−5.1971.0017.86ACANISOU2631CATYRA580224222562285−137−5ACATOM2633CBTYRA5808.4514.465−5.7661.0018.09ACANISOU2633CBTYRA580227422962302−82235ACATOM2636CGTYRA5808.4815.556−4.7091.0018.48ACANISOU2636CGTYRA580232623012392−21150ACATOM2637CD1TYRA5809.6896.102−4.2681.0017.63ACANISOU2637CD1TYRA580223222142252183399ACATOM2639CE1TYRA5809.7297.072−3.3001.0018.28ACANISOU2639CE1TYRA580234321482453−454777ACATOM2641CZTYRA5808.5497.547−2.7451.0019.74ACANISOU2641CZTYRA580244025142544−112051ACATOM2642OHTYRA5808.5948.526−1.7761.0021.33AOANISOU2642OHTYRA580275024152937−1285068AOATOM2644CE2TYRA5807.3267.024−3.1581.0020.10ACANISOU2644CE2TYRA580249025052639−2138−24ACATOM2646CD2TYRA5807.3006.041−4.1431.0018.84ACANISOU2646CD2TYRA580233423792446−161940ACATOM2648CTYRA5809.7132.848−4.2711.0017.89ACANISOU2648CTYRA580226922742253−3232−16ACATOM2649OTYRA5809.6002.942−3.0301.0017.99AOANISOU2649OTYRA580229222552288−541055AOATOM2650NLYSA58110.8632.584−4.8931.0018.02ANANISOU2650NLYSA581225522572333410ANATOM2652CALYSA58112.1362.505−4.2011.0017.79ACANISOU2652CALYSA581223822252297−1913−19ACATOM2654CBLYSA58113.0321.431−4.8201.0018.41ACANISOU2654CBLYSA581229022982406136−25ACATOM2657CGLYSA58112.5160.033−4.6401.0019.43ACANISOU2657CGLYSA581245323762553−127−17ACATOM2660CDLYSA58112.368−0.307−3.1771.0020.34ACANISOU2660CDLYSA58125632558260514−291ACATOM2663CELYSA58112.436−1.810−2.9311.0020.07ACANISOU2663CELYSA581252124842619−214−8ACATOM2666NZLYSA58113.759−2.435−3.2991.0021.13ANANISOU2666NZLYSA581247427292823−1242−38ANATOM2670CLYSA58112.8183.853−4.3161.0016.99ACANISOU2670CLYSA581214121422172−83630ACATOM2671OLYSA58113.2454.263−5.4131.0018.03AOANISOU2671OLYSA581230822342309258438AOATOM2672NALAA58212.9024.536−3.1831.0015.82ANANISOU2672NALAA582195519932060−334546ANATOM2674CAALAA58213.5865.810−3.0821.0015.68ACANISOU2674CAALAA58219781922205802338ACATOM2676CBALAA58213.3216.444−1.7381.0015.15ACANISOU2676CBALAA582191219101931−78103ACATOM2680CALAA58215.0835.632−3.2841.0016.35ACANISOU2680CALAA58220121998220182250ACATOM2681OALAA58215.6234.587−2.9841.0016.94AOANISOU2681OALAA5822032191224911150104AOATOM2682NSERA58315.7536.661−3.7961.0016.37ANANISOU2682NSERA58320602003215703973ANATOM2684CASERA58317.2176.677−3.7781.0016.93ACANISOU2684CASERA58321042085224023434ACATOM2686CBSERA58317.7757.902−4.5021.0016.51ACANISOU2686CBSERA583201920862168−2444ACATOM2689OGSERA58317.5667.822−5.8971.0014.11AOANISOU2689OGSERA58316051680207652−26−26AOATOM2691CSERA58317.7356.681−2.3461.0017.70ACANISOU2691CSERA583224321932287101067ACATOM2692OSERA58318.6975.982−2.0321.0018.66AOANISOU2692OSERA58322792288252370−14112AOATOM2693NVALA58417.1207.501−1.4981.0018.19ANANISOU2693NVALA584228722612361−52956ANATOM2695CAVALA58417.4137.556−0.0721.0019.05ACANISOU2695CAVALA584240924082420−252940ACATOM2697CBVALA58418.0968.8710.3571.0019.66ACANISOU2697CBVALA584251124732485−4−410ACATOM2699CG1VALA58418.3418.8901.8671.0020.62ACANISOU2699CG1VALA584266526342532−7−23−5ACATOM2703CG2VALA58419.3819.060−0.3791.0020.53ACANISOU2703CG2VALA584262126092567−473111ACATOM2707CVALA58416.0787.4490.6481.0018.95ACANISOU2707CVALA584238123982418−235951ACATOM2708OVALA58415.2918.3910.6721.0017.84AOANISOU2708OVALA584226222712245−157161219AOATOM2709NTHRA58515.8186.2831.2161.0019.63ANANISOU2709NTHRA58524832451252303458ANATOM2711CATHRA58514.5606.0521.9001.0020.45ACANISOU2711CATHRA585257426052590−102471ACATOM2713CBTHRA58514.2874.5492.0071.0021.03ACANISOU2713CBTHRA5852630266426960−2412ACATOM2715OG1THRA58512.9644.3212.5251.0021.93AOANISOU2715OG1THRA585284828842600−100150177AOATOM2717CG2THRA58515.2093.8973.0261.0021.35ACANISOU2717CG2THRA5852765266826767−4096ACATOM2721CTHRA58514.5126.7093.2811.0020.98ACANISOU2721CTHRA585267126242676−261766ACATOM2722OTHRA58515.5316.9213.9281.0021.27AOANISOU2722OTHRA585273825582785−15335137AOATOM2723NARGA58613.2896.9833.7321.0021.82ANANISOU2723NARGA586278227612745314743ANATOM2725CAARGA58613.0317.5495.0521.0021.86ACANISOU2725CAARGA586285227192735−105863ACATOM2727CBARGA58611.8138.4734.9791.0023.02ACANISOU2727CBARGA5862935292728834385ACATOM2730CGARGA58611.8819.5693.9121.0026.16ACANISOU2730CGARGA586329533423302−315126ACATOM2733CDARGA58611.67610.9884.4641.0030.42ACANISOU2733CDARGA58639123704393910−21−49ACATOM2736NEARGA58610.80411.0175.6451.0033.93ANANISOU2736NEARGA58642864331427468035ANATOM2738CZARGA58610.84811.9356.6131.0036.28ACANISOU2738CZARGA5864628459345625−4−70ACATOM2739NH1ARGA58611.70112.9536.5631.0037.52ANANISOU2739NH1ARGA586474447184792−258−2ANATOM2742NH2ARGA58610.01011.8457.6391.0037.48ANANISOU2742NH2ARGA586474348404655−18322ANATOM2745CARGA58612.7436.4056.0401.0020.86ACANISOU2745CARGA586270425852636−114141ACATOM2746OARGA58612.6676.6117.2551.0021.59AOANISOU2746OARGA5862933253827321111256AOATOM2747NLEUA58712.5815.2155.4831.0018.66ANANISOU2747NLEUA587239023102388881121ANATOM2749CALEUA58712.1614.0316.2321.0017.34ACANISOU2749CALEUA587217621862226−540118ACATOM2751CBLEUA58711.7542.9295.2691.0017.67ACANISOU2751CBLEUA587223322832195357582ACATOM2754CGLEUA58710.5433.2004.3821.0019.24ACANISOU2754CGLEUA587241424722422−25−27102ACATOM2756CD1LEUA58710.4192.1313.3171.0021.02ACANISOU2756CD1LEUA58727262638262161−2559ACATOM2760CD2LEUA5879.2933.2655.2471.0021.78ACANISOU2760CD2LEUA5872677287527212634−31ACATOM2764CLEUA58713.2793.5227.1361.0015.98ACANISOU2764CLEUA587198119852104853106ACATOM2765OLEUA58714.4743.7476.8601.0015.60AOANISOU2765OLEUA5871918186021482418215AOATOM2766NPROA58812.8962.8528.2241.0014.09ANANISOU2766NPROA58816901800186422−23133ANATOM2767CAPROA58813.8612.3139.1941.0013.50ACANISOU2767CAPROA58816991649178124−5041ACATOM2769CBPROA58813.0082.10310.4391.0013.35ACANISOU2769CBPROA58817641590171676−62−6ACATOM2772CGPROA58811.6731.8099.9281.0013.43ACANISOU2772CGPROA588166717611672−405068ACATOM2775CDPROA58811.5042.6288.6621.0013.91ACANISOU2775CDPROA5881743170018391629104ACATOM2778CPROA58814.5381.0178.7411.0011.57ACANISOU2778CPROA58814221491148321−495ACATOM2779OPROA58814.303−0.0659.2681.0011.14AOANISOU2779OPROA58812941574136181−8896AOATOM2780NILEA58915.3871.1467.7381.0010.87ANANISOU2780NILEA589141313431373−5−8438ANATOM2782CAILEA58915.9410.0007.0511.0010.49ACANISOU2782CAILEA58912911358133716−9013ACATOM2784CBILEA58916.9560.4925.9831.0011.11ACANISOU2784CBILEA589143714031379−34−5712ACATOM2786CG1ILEA58916.2481.2484.8511.0012.77ACANISOU2786CG1ILEA58916311555166479−4370ACATOM2789CD1ILEA58915.2670.3884.0441.0013.65ACANISOU2789CD1ILEA589190515971681−16−4094ACATOM2793CG2ILEA58917.767−0.6435.4361.0010.86ACANISOU2793CG2ILEA589144714211254−715−27ACATOM2797CILEA58916.622−0.9578.0301.0010.24ACANISOU2797CILEA589137112591262−26−3349ACATOM2798OILEA58916.470−2.1637.9111.009.58AOANISOU2798OILEA58912921125122267−14357AOATOM2799NLYSA59017.377−0.4158.9871.0010.07ANANISOU2799NLYSA590128512531286−3−2082ANATOM2801CALYSA59018.118−1.2419.9581.0010.34ACANISOU2801CALYSA59013341280131233−5718ACATOM2803CBLYSA59019.118−0.36710.7161.009.88ACANISOU2803CBLYSA59013341175124426−69104ACATOM2806CGLYSA59020.2620.0739.8341.0010.30ACANISOU2806CGLYSA59014151305119336039ACATOM2809CDLYSA59021.1271.14410.4941.0011.73ACANISOU2809CDLYSA590155513581542−46−207182ACATOM2812CELYSA59022.2931.5039.6231.0012.78ACANISOU2812CELYSA590171315581583−12−11848ACATOM2815NZLYSA59023.2162.54510.1731.0014.55ANANISOU2815NZLYSA590195016541923−89−189−17ANATOM2819CLYSA59017.232−2.05910.9231.009.74ACANISOU2819CLYSA59012951165124141−5924ACATOM2820OLYSA59017.722−2.92911.6571.009.82AOANISOU2820OLYSA59012071237128792−113118AOATOM2821NTRPA59115.938−1.74010.9601.009.17ANANISOU2821NTRPA591122411561104741734ANATOM2823CATRPA59114.938−2.43211.7541.009.07ACANISOU2823CATRPA591118811951061101020ACATOM2825CBTRPA59114.051−1.40412.4421.0010.28ACANISOU2825CBTRPA59113221298128349−32−57ACATOM2828CGTRPA59114.679−0.62313.5371.0010.96ACANISOU2828CGTRPA59114781422126366−57−46ACATOM2829CD1TRPA59114.475−0.79514.8831.0012.24ACANISOU2829CD1TRPA591162815611461164−9−71ACATOM2831NE1TRPA59115.1620.16415.5821.0013.31ANANISOU2831NE1TRPA591174115471768249−62−150ANATOM2833CE2TRPA59115.8410.97714.7191.0012.60ACANISOU2833CE2TRPA591167815501558214−99−57ACATOM2834CD2TRPA59115.5250.53813.4081.0010.95ACANISOU2834CD2TRPA591134813951416212−69−162ACATOM2835CE3TRPA59116.0751.22812.3281.0013.22ACANISOU2835CE3TRPA59116561554181037−3114ACATOM2837CZ3TRPA59116.8972.34212.5671.0014.15ACANISOU2837CZ3TRPA59118591677183789−153−55ACATOM2839CH2TRPA59117.1772.75513.8791.0014.22ACANISOU2839CH2TRPA591186716691866134−135−110ACATOM2841CZ2TRPA59116.6592.09014.9621.0013.23ACANISOU2841CZ2TRPA591167516691681211−83−98ACATOM2843CTRPA59114.015−3.34910.9401.009.10ACANISOU2843CTRPA591112012201117−8010627ACATOM2844OTRPA59113.203−4.07811.5091.009.60AOANISOU2844OTRPA591127212851088−186226128AOATOM2845NMETA59214.123−3.2869.6151.008.97ANANISOU2845NMETA592106813021038−6334−14ANATOM2847CAMETA59213.138−3.8728.6971.008.99ACANISOU2847CAMETA592106512261124−39−1428ACATOM2849CBMETA59212.955−2.9497.4751.009.42ACANISOU2849CBMETA592108012941203−522662ACATOM2852CGMETA59212.048−1.8077.7671.0011.87ACANISOU2852CGMETA59213701533160531−255ACATOM2855SDMETA59212.167−0.4656.5881.0013.21ASANISOU2855SDMETA592167315731773144−20179ASATOM2856CEMETA59211.778−1.2355.0421.0012.86ACANISOU2856CEMETA592148217411663−52−90106ACATOM2860CMETA59213.463−5.2818.2061.009.02ACANISOU2860CMETA592105612251146−35−139ACATOM2861OMETA59214.625−5.6528.0291.0010.06AOANISOU2861OMETA59213211196130411913−5AOATOM2862NSERA59312.406−6.0587.9681.009.29ANANISOU2862NSERA593105912951173−41−2240ANATOM2864CASERA59312.542−7.3957.4281.009.43ACANISOU2864CASERA593113212841164−23−2−1ACATOM2866CBSERA59311.223−8.1587.4051.0010.04ACANISOU2866CBSERA593121013601243−1518−13ACATOM2869OGSERA59310.389−7.7276.3551.0011.29AOANISOU2869OGSERA593128416371367−38190AOATOM2871CSERA59313.100−7.3456.0171.009.22ACANISOU2871CSERA593110512511146−454185ACATOM2872OSERA59312.950−6.3225.3241.009.98AOANISOU2872OSERA593135314171019103573AOATOM2873NPROA59413.718−8.4365.5761.008.91ANANISOU2873NPROA594109712091077−507165ANATOM2874CAPROA59414.227−8.4634.1881.009.59ACANISOU2874CAPROA594119712621185−475519ACATOM2876CBPROA59414.833−9.8534.0451.0010.47ACANISOU2876CBPROA594127113431360−207348ACATOM2879CGPROA59415.100−10.2935.4421.0011.63ACANISOU2879CGPROA59415091514139313312ACATOM2882CDPROA59414.062−9.6666.3211.0010.26ACANISOU2882CDPROA594121112941390−948−6ACATOM2885CPROA59413.157−8.2103.1601.009.30ACANISOU2885CPROA594118012391112−3674−34ACATOM2886OPROA59413.400−7.5012.2101.0010.37AOANISOU2886OPROA59412491378131218−47150AOATOM2887NGLUA59511.976−8.7633.3471.0010.12ANANISOU2887NGLUA595129713851163−32−1127ANATOM2889CAGLUA59510.911−8.5792.3751.0010.05ACANISOU2889CAGLUA595122213021292−13−47OACATOM2891CBGLUA5959.809−9.6102.5841.0010.60ACANISOU2891CBGLUA595131514111298−52−742ACATOM2894CGGLUA5958.953−9.4713.8271.0011.26ACANISOU2894CGGLUA595133614981442−1305−6ACATOM2897CDGLUA5959.485−10.1785.0541.0011.56ACANISOU2897CDGLUA595139415801418282835ACATOM2898OE1GLUA59510.685−10.5775.0911.0011.13AOANISOU2898OE1GLUA595143415171277−697378AOATOM2899OE2GLUA5958.670−10.3216.0191.0011.62AOANISOU2899OE2GLUA59514841457147242121−5AOATOM2900CGLUA59510.383−7.1442.3711.009.21ACANISOU2900CGLUA59511361262110037308ACATOM2901OGLUA5959.883−6.6561.3471.009.76AOANISOU2901OGLUA595109714421167−2−68−41AOATOM2902NSERA59610.500−6.4523.5011.009.67ANANISOU2902NSERA596123512361203−7−3828ANATOM2904CASERA59610.129−5.0523.5581.009.89ACANISOU2904CASERA596119612601299−21−2825ACATOM2906CBSERA59610.008−4.5945.0081.0010.23ACANISOU2906CBSERA596128713291268−7510598ACATOM2909OGSERA5969.052−5.3765.7641.0010.32AOANISOU2909OGSERA596121314031302−145245197AOATOM2911CSERA59611.171−4.2002.8271.009.96ACANISOU2911CSERA596124812781255−10−2246ACATOM2912OSERA59610.830−3.2442.1331.009.77AOANISOU2912OSERA596124011891281−62−6833AOATOM2913NILEA59712.441−4.5572.9701.0010.01ANANISOU2913NILEA597125512661280−33−3689ANATOM2915CAILEA59713.514−3.8362.2861.009.56ACANISOU2915CAILEA597121012831136−35100ACATOM2917CBILEA59714.901−4.2522.8341.009.88ACANISOU2917CBILEA597128413401130−70−4260ACATOM2919CG1ILEA59715.037−3.8164.3041.009.44ACANISOU2919CG1ILEA597117512121197276−30ACATOM2922CD1ILEA59716.240−4.3564.9941.0010.48ACANISOU2922CD1ILEA59714241480107741−61−30ACATOM2926CG2ILEA59716.019−3.6271.9701.0010.27ACANISOU2926CG2ILEA597124814261228−93−4258ACATOM2930CILEA59713.438−4.0700.7781.009.98ACANISOU2930CILEA597132013451126−41769ACATOM2931OILEA59713.494−3.129−0.0301.0010.68AOANISOU2931OILEA597142212781357−44−20162AOATOM2932NASNA59813.296−5.3200.4051.0010.21ANANISOU2932NASNA598138013601138−503530ANATOM2934CAASNA59813.343−5.707−1.0241.0010.75ACANISOU2934CAASNA598142514581199−28811ACATOM2936CBASNA59813.584−7.212−1.1531.0010.68ACANISOU2936CBASNA598140214311225−2549−13ACATOM2939CGASNA59815.020−7.605−0.9031.0012.94ACANISOU2939CGASNA598164917481519−65−17739ACATOM2940OD1ASNA59815.945−6.851−1.2041.0014.53AOANISOU2940OD1ASNA598154421901787−1789−14AOATOM2941ND2ASNA59815.217−8.832−0.3971.0014.73ANANISOU2941ND2ASNA598201117991785−55−24629ANATOM2944CASNA59812.079−5.365−1.8071.0011.61ACANISOU2944CASNA598147016061334−172358ACATOM2945OASNA59812.150−4.927−2.9541.0011.95AOANISOU2945OASNA598159817381203−744874AOATOM2946NPHEA59910.915−5.571−1.1921.0011.13ANANISOU2946NPHEA599137116141244−82−1943ANATOM2948CAPHEA5999.643−5.530−1.9251.0011.86ACANISOU2948CAPHEA599145916061441−1−5439ACATOM2950CBPHEA5999.109−6.949−2.1121.0012.27ACANISOU2950CBPHEA599151116671480−4−80−27ACATOM2953CGPHEA59910.116−7.904−2.6881.0013.95ACANISOU2953CGPHEA5991691182617810−47−36ACATOM2954CD1PHEA59910.758−7.627−3.8901.0014.56ACANISOU2954CD1PHEA599177418991856347−17ACATOM2956CE1PHEA59911.700−8.503−4.4011.0016.51ACANISOU2956CE1PHEA5992048200022232441−25ACATOM2958CZPHEA59911.999−9.653−3.7171.0015.93ACANISOU2958CZPHEA59919182030210510141−31ACATOM2960CE2PHEA59911.372−9.948−2.5491.0016.28ACANISOU2960CE2PHEA5991991202521661−15−19ACATOM2962CD2PHEA59910.447−9.066−2.0131.0014.63ACANISOU2962CD2PHEA599183117971928−415−23ACATOM2964CPHEA5998.584−4.682−1.2471.0011.77ACANISOU2964CPHEA599146316081400−24−3933ACATOM2965OPHEA5997.439−4.693−1.6601.0012.18AOANISOU2965OPHEA599146816611496−153−12452AOATOM2966NARGA6008.969−3.947−0.2041.0011.50ANANISOU2966NARGA60014591527138218−42−6ANATOM2968CAARGA6008.033−3.1730.6041.0011.53ACANISOU2968CAARGA60014631514140122−2424ACATOM2970CBARGA6007.636−1.887−0.1431.0011.85ACANISOU2970CBARGA600155614791467−233748ACATOM2973CGARGA6008.808−0.969−0.4301.0011.41ACANISOU2973CGARGA60014581483139342−1784ACATOM2976CDARGA6009.327−0.2720.8031.0013.18ACANISOU2976CDARGA60016331644173022−38−12ACATOM2979NEARGA60010.3950.6430.4281.0014.17ANANISOU2979NEARGA60018371614192910−3133ANATOM2981CZARGA60011.6950.3790.4891.0015.98ACANISOU2981CZARGA60018941988218925−314ACATOM2982NH1ARGA60012.141−0.7790.9591.0015.36ANANISOU2982NH1ARGA600183219452057−104−33126ANATOM2985NH2ARGA60012.5611.2940.0741.0017.80ANANISOU2985NH2ARGA600229321772291−95195ANATOM2988CARGA6006.813−3.9970.9911.0012.03ACANISOU2988CARGA60015251555148842166ACATOM2989OARGA6005.667−3.5400.8991.0012.71AOANISOU2989OARGA6001640164915388968216AOATOM2990NARGA6017.089−5.2181.4521.0011.58ANANISOU2990NARGA6011417156314197−4958ANATOM2992CAARGA6016.078−6.1281.9651.0011.44ACANISOU2992CAARGA601142415511369−12−3753ACATOM2994CBARGA6016.463−7.5631.6371.0012.67ACANISOU2994CBARGA601158816631561−10−91−57ACATOM2997CGARGA6015.472−8.6122.0691.0014.91ACANISOU2997CGARGA601185119951818−34−1461ACATOM3000CDARGA6015.697−9.9521.3821.0017.74ACANISOU3000CDARGA60122582106237447−3ACATOM3003NEARGA6015.514−9.784−0.0571.0019.66ANANISOU3003NEARGA60126172382246887−41−10ANATOM3005CZARGA6016.285−10.267−1.0291.0021.00ACANISOU3005CZARGA601256127532663−118653ACATOM3006NH1ARGA6017.357−11.018−0.7841.0022.47ANANISOU3006NH1ARGA60128092782294679−1100ANATOM3009NH2ARGA6015.983−9.979−2.2801.0019.82ANANISOU3009NH2ARGA60122982580265295−5778ANATOM3012CARGA6016.063−5.9633.4701.0011.15ACANISOU3012CARGA601140315001332−36−1853ACATOM3013OARGA6017.066−6.2124.1261.0011.96AOANISOU3013OARGA601156716541321437360AOATOM3014NPHEA6024.931−5.5183.9911.0010.72ANANISOU3014NPHEA602137814941199362177ANATOM3016CAPHEA6024.763−5.3085.4121.0010.99ACANISOU3016CAPHEA602130515481321−152361ACATOM3018CBPHEA6024.545−3.8515.7131.0011.03ACANISOU3018CBPHEA602131515091364−72236ACATOM3021CGPHEA6025.689−2.9515.3311.0011.43ACANISOU3021CGPHEA60213861493146105274ACATOM3022CD1PHEA6026.668−2.6106.2731.0013.11ACANISOU3022CD1PHEA602152917571691−1−61185ACATOM3024CE1PHEA6027.746−1.7715.9221.0013.50ACANISOU3024CE1PHEA6021500189217362145−12ACATOM3026CZPHEA6027.788−1.2394.6451.0014.36ACANISOU3026CZPHEA602173118581865512494ACATOM3028CE2PHEA6026.813−1.5583.7121.0013.34ACANISOU3028CE2PHEA60216811625176252114−48ACATOM3030CD2PHEA6025.775−2.4184.0521.0014.19ACANISOU3030CD2PHEA602172419641702−103688ACATOM3032CPHEA6023.551−6.0875.9051.0010.54ACANISOU3032CPHEA602114814691386−13−1116ACATOM3033OPHEA6022.407−5.8425.4881.0012.65AOANISOU3033OPHEA602136518891551108−29211AOATOM3034NTHRA6033.811−7.0236.7961.0011.08ANANISOU3034NTHRA603122215821405−244106ANATOM3036CATHRA6032.816−7.9387.3191.0011.28ACANISOU3036CATHRA603132815231433−28−7066ACATOM3038CBTHRA6032.983−9.3126.6701.0012.02ACANISOU3038CBTHRA603139516631507−131−12ACATOM3040OG1THRA6034.240−9.9007.0831.0013.58AOANISOU3040OG1THRA603179918821478121−9964AOATOM3042CG2THRA6032.992−9.2335.1091.0013.80ACANISOU3042CG2THRA603165519151669−17−577ACATOM3046CTHRA6033.050−8.0968.8121.0010.70ACANISOU3046CTHRA603130613921365−8−3268ACATOM3047OTHRA6033.999−7.5649.3681.0010.54AOANISOU3047OTHRA603128213521369−525−23AOATOM3048NTHRA6042.189−8.8489.4781.0010.68ANANISOU3048NTHRA604121815081329−172381ANATOM3050CATHRA6042.465−9.15710.8741.0010.95ACANISOU3050CATHRA604132714741358−151341ACATOM3052CBTHRA6041.306−9.95911.4741.0012.36ACANISOU3052CBTHRA6041400176415332154140ACATOM3054OG1THRA6040.140−9.11311.5381.0015.22AOANISOU3054OG1THRA60417202173188721880−10AOATOM3056CG2THRA6041.597−10.33512.9151.0014.21ACANISOU3056CG2THRA604176318891746−33255ACATOM3060CTHRA6043.814−9.87711.0351.0010.39ACANISOU3060CTHRA604130113841260−573432ACATOM3061OTHRA6044.513−9.63412.0091.0010.09AOANISOU3061OTHRA604129114351106−3361−16AOATOM3062NALAA6054.208−10.71010.0621.009.88ANANISOU3062NALAA605124412841226−46−322ANATOM3064CAALAA6055.500−11.36110.0951.009.56ACANISOU3064CAALAA605121911681244−454614ACATOM3066CBALAA6055.625−12.4149.0191.009.71ACANISOU3066CBALAA605109412421353−735−81ACATOM3070CALAA6056.675−10.3859.9981.009.33ACANISOU3070CALAA605112412311190−37−11−7ACATOM3071OALAA6057.711−10.60810.6371.008.88AOANISOU3071OALAA60511401174105941−4660AOATOM3072NSERA6066.512−9.3079.2411.008.76ANANISOU3072NSERA606115411241049−2911−27ANATOM3074CASERA6067.539−8.2789.2191.008.84ACANISOU3074CASERA606110012101046−25−932ACATOM3076CBSERA6067.487−7.3637.9911.009.46ACANISOU3076CBSERA606130811221160−617361ACATOM3079OGSERA6066.365−6.5197.9701.0012.44AOANISOU3079OGSERA6061548145317267055153AOATOM3081CSERA6067.590−7.50310.5391.008.37ACANISOU3081CSERA606107810811020−8−524ACATOM3082OSERA6068.670−7.10710.9811.009.31AOANISOU3082OSERA606111413061116−30−37167AOATOM3083NASPA6076.433−7.31711.1741.008.77ANANISOU3083NASPA607102712171086−30847ANATOM3085CAASPA6076.384−6.74512.5231.008.49ACANISOU3085CAASPA607105311091061−605041ACATOM3087CBASPA6074.954−6.51613.0021.008.95ACANISOU3087CBASPA60711001190110830−32−3ACATOM3090CGASPA6074.360−5.20912.5931.0010.83ACANISOU3090CGASPA607132113301461261207ACATOM3091OD1ASPA6075.011−4.30511.9941.0013.04AOANISOU3091OD1ASPA60716721415186589−7276AOATOM3092OD2ASPA6073.139−5.05412.8561.0013.25AOANISOU3092OD2ASPA607135117731908156134269AOATOM3093CASPA6077.111−7.65013.5461.008.81ACANISOU3093CASPA607110611061136−29421ACATOM3094OASPA6077.754−7.14314.4581.008.69AOANISOU3094OASPA6071188931118333−7788AOATOM3095NVALA6087.008−8.96913.3951.008.75ANANISOU3095NVALA60810301131116311−2172ANATOM3097CAVALA6087.718−9.89414.2821.008.19ACANISOU3097CAVALA60887310511188766039ACATOM3099CBVALA6087.320−11.35314.0191.008.71ACANISOU3099CBVALA60890711441256−423919ACATOM3101CG1VALA6088.255−12.34014.6951.008.72ACANISOU3101CG1VALA60882211381350−60255ACATOM3105CG2VALA6085.884−11.61214.5191.009.27ACANISOU3105CG2VALA608101711141389−43452ACATOM3109CVALA6089.237−9.70114.1581.008.48ACANISOU3109CVALA60899411661060−44533ACATOM3110OVALA6089.932−9.62515.1661.008.08AOANISOU3110OVALA60888910621118701148AOATOM3111NTRPA6099.729−9.60612.9141.008.33ANANISOU3111NTRPA60910071249908−412637ANATOM3113CATRPA60911.142−9.32012.6811.008.34ACANISOU3113CATRPA60910591133977221721ACATOM3115CBTRPA60911.385−9.18011.1781.007.90ACANISOU3115CBTRPA60910661075858−4894−113ACATOM3118CGTRPA60912.771−8.76810.8421.007.50ACANISOU3118CGTRPA609971909969−3317−5ACATOM3119CD1TRPA60913.368−7.53911.1121.008.81ACANISOU3119CD1TRPA609118810851072381−215ACATOM3121NE1TRPA60914.670−7.55010.6721.009.39ANANISOU3121NE1TRPA609113612031229−3941−112ANATOM3123CE2TRPA60914.948−8.77910.1241.008.49ACANISOU3123CE2TRPA609107810341111−54−43−58ACATOM3124CD2TRPA60913.778−9.57310.2151.008.13ACANISOU3124CD2TRPA609100510751008−513941ACATOM3125CE3TRPA60913.805−10.8809.6921.009.35ACANISOU3125CE3TRPA609112213391091−34−66−2ACATOM3127CZ3TRPA60914.975−11.3529.1241.009.86ACANISOU3127CZ3TRPA6091363116812141839−41ACATOM3129CH2TRPA60916.119−10.5429.0731.0010.57ACANISOU3129CH2TRPA609133213731311−133138ACATOM3131CZ2TRPA60916.118−9.2519.5551.009.41ACANISOU3131CZ2TRPA6091017141111447−6718ACATOM3133CTRPA60911.524−8.02513.4191.008.26ACANISOU3133CTRPA609100610631067−284858ACATOM3134OTRPA60912.522−7.95514.1431.008.86AOANISOU3134OTRPA609111311691082−1−540AOATOM3135NMETA61010.728−6.98013.2171.008.69ANANISOU3135NMETA61010291163110605635ANATOM3137CAMETA61011.045−5.67313.7571.008.50ACANISOU3137CAMETA61010511120105812239ACATOM3139CBMETA61010.134−4.62313.1501.009.27ACANISOU3139CBMETA6101139128011016034−12ACATOM3142CGMETA61010.465−3.18413.5541.0010.66ACANISOU3142CGMETA6101372130413747519122ACATOM3145SDMETA6109.370−1.99312.8131.0011.18ASANISOU3145SDMETA610146112561529218165197ASATOM3146CEMETA61010.494−0.55512.7501.0013.95ACANISOU3146CEMETA61016931720188812180244ACATOM3150CMETA61010.990−5.68615.2771.007.98ACANISOU3150CMETA6109641022104527893ACATOM3151OMETA61011.813−5.08515.9421.008.54AOANISOU3151OMETA610107810871077−42−480AOATOM3152NPHEA61110.020−6.40315.8201.007.88ANANISOU3152NPHEA6119719661056−61451ANATOM3154CAPHEA6119.902−6.52617.2531.007.74ACANISOU3154CAPHEA6119549641021335360ACATOM3156CBPHEA6118.656−7.32017.6321.008.72ACANISOU3156CBPHEA6111082105711735010824ACATOM3159CGPHEA6118.637−7.70819.0691.008.66ACANISOU3159CGPHEA61110361145110762−101−66ACATOM3160CD1PHEA6118.388−6.76320.0651.009.74ACANISOU3160CD1PHEA6111260129511442569−16ACATOM3162CE1PHEA6118.405−7.12621.3931.009.58ACANISOU3162CE1PHEA611134012761022171112−179ACATOM3164CZPHEA6118.663−8.42821.7531.009.63ACANISOU3164CZPHEA611110513201231−647118ACATOM3166CE2PHEA6118.879−9.37820.7841.0010.44ACANISOU3166CE2PHEA61113871241133913−95120ACATOM3168CD2PHEA6118.872−9.02219.4321.009.85ACANISOU3168CD2PHEA611128512231233107123ACATOM3170CPHEA61111.153−7.14517.8701.007.02ACANISOU3170CPHEA6119049218403111022ACATOM3171OPHEA61111.620−6.71018.9331.008.57AOANISOU3171OPHEA61199611081152113351AOATOM3172NALAA61211.722−8.14417.1991.007.13ANANISOU3172NALAA612100984785165206ANATOM3174CAALAA61212.970−8.72117.6941.007.74ACANISOU3174CAALAA6129901002947241128ACATOM3176CBALAA61213.295−10.00017.0231.008.53ACANISOU3176CBALAA612113599311132251103ACATOM3180CALAA61214.125−7.73317.6281.007.90ACANISOU3180CALAA612100494010569526−10ACATOM3181OALAA61215.001−7.75818.4931.008.27AOANISOU3181OALAA612108510121044−552168AOATOM3182NVALA61314.148−6.86216.6151.007.47ANANISOU3182NVALA613887102392554341ANATOM3184CAVALA61315.130−5.77116.5981.007.74ACANISOU3184CAVALA61391610329902925−11ACATOM3186CBVALA61315.124−4.95415.2941.008.08ACANISOU3186CBVALA61397910661025−3161−16ACATOM3188CG1VALA61316.212−3.90315.3261.008.94ACANISOU3188CG1VALA613112511471125−762641ACATOM3192CG2VALA61315.295−5.87114.1041.007.92ACANISOU3192CG2VALA613974918111456−2654ACATOM3196CVALA61314.924−4.85017.8111.007.57ACANISOU3196CVALA6139131072891−49417ACATOM3197OVALA61315.867−4.47718.4691.008.37AOANISOU3197OVALA61396012071013−104−3318AOATOM3198NCYSA61413.677−4.52218.1031.008.43ANANISOU3198NCYSA61410521065108516−28−41ANATOM3200CACYSA61413.374−3.71819.2641.008.40ACANISOU3200CACYSA6141021111210563658−15ACATOM3202CBCYSA61411.865−3.46419.2901.009.06ACANISOU3202CBCYSA614108911651187646130ACATOM3205SGCYSA61411.324−2.36620.6211.0011.65ASANISOU3205SGCYSA614138115411503381−28−304ASATOM3206CCYSA61413.867−4.39720.5641.008.29ACANISOU3206CCYSA614102310021125−2530−23ACATOM3207OCYSA61414.461−3.74421.4291.009.16AOANISOU3207OCYSA61410321308113827−9−4AOATOM3208NMETA61513.654−5.70820.6881.008.27ANANISOU3208NMETA6159949851163−60392ANATOM3210CAMETA61514.185−6.41621.8521.008.60ACANISOU3210CAMETA615111710961054244818ACATOM3212CBMETA61513.794−7.89221.8411.009.35ACANISOU3212CBMETA615119511501207−33−60ACATOM3215CGMETA61512.336−8.16522.0311.0010.66ACANISOU3215CGMETA615130413371409067118ACATOM3218SDMETA61511.989−9.90422.5261.0013.11ASANISOU3218SDMETA615149614772007−15983378ASATOM3219CEMETA61512.205−10.77020.9491.0014.46ACANISOU3219CEMETA615177315822138−8715576ACATOM3223CMETA61515.691−6.32321.9061.008.07ACANISOU3223CMETA61510799561029552341ACATOM3224OMETA61516.261−6.13422.9771.008.96AOANISOU3224OMETA6151292110010121218313AOATOM3225NTRPA61616.349−6.42820.7481.008.09ANANISOU3225NTRPA61611121019939114−4927ANATOM3227CATRPA61617.802−6.26420.6921.008.17ACANISOU3227CATRPA6161131100496675−26−3ACATOM3229CBTRPA61618.327−6.54019.2761.008.03ACANISOU3229CBTRPA6161125939985852019ACATOM3232CGTRPA61619.790−6.44919.1511.007.37ACANISOU3232CGTRPA616101790987322−84−42ACATOM3233CD1TRPA61620.648−7.48219.1931.008.05ACANISOU3233CD1TRPA616111910618771297068ACATOM3235NE1TRPA61621.940−7.04419.0441.008.55ANANISOU3235NE1TRPA616107411281046632422ANATOM3237CE2TRPA61621.946−5.68618.8951.008.19ACANISOU3237CE2TRPA616110510169889−273ACATOM3238CD2TRPA61620.592−5.26818.9381.008.11ACANISOU3238CD2TRPA61610339931056274315ACATOM3239CE3TRPA61620.306−3.89618.7991.007.66ACANISOU3239CE3TRPA616968106188010317−50ACATOM3241CZ3TRPA61621.347−3.00418.6241.009.44ACANISOU3241CZ3TRPA616135611581072−3444−11ACATOM3243CH2TRPA61622.699−3.45518.5611.009.10ACANISOU3243CH2TRPA616117310931191−10011841ACATOM3245CZ2TRPA61623.013−4.79218.6881.007.47ACANISOU3245CZ2TRPA6167961171872140−57103ACATOM3247CTRPA61618.191−4.86821.2021.008.49ACANISOU3247CTRPA616112110941010270−16ACATOM3248OTRPA61619.128−4.74022.0011.008.40AOANISOU3248OTRPA6161102109799248−62−44AOATOM3249NGLUA61717.446−3.84620.8081.008.56ANANISOU3249NGLUA617110411769722655−50ANATOM3251CAGLUA61717.707−2.48021.2911.008.72ACANISOU3251CAGLUA617113811221049−1934−30ACATOM3253CBGLUA61716.741−1.47420.6831.0010.12ACANISOU3253CBGLUA6171364119412863713−31ACATOM3256CGGLUA61716.935−1.14919.2261.0010.89ACANISOU3256CGGLUA617136314131358415−6ACATOM3259CDGLUA61715.885−0.16018.7521.0010.67ACANISOU3259CDGLUA617144413091300−64−98−28ACATOM3260OE1GLUA61714.700−0.46718.8851.0012.97AOANISOU3260OE1GLUA617151516671743560−36AOATOM3261OE2GLUA61716.2350.92918.2731.0013.44AOANISOU3261OE2GLUA61721111387160714394261AOATOM3262CGLUA61717.546−2.38922.8041.008.46ACANISOU3262CGLUA617103211751004−3347−43ACATOM3263OGLUA61718.366−1.77323.4981.008.69AOANISOU3263OGLUA61710891238973−6519−75AOATOM3264NILEA61816.478−2.99123.3161.007.97ANANISOU3264NILEA6181115965946−3438−41ANATOM3266CAILEA61816.230−2.95024.7661.007.93ACANISOU3266CAILEA61810511005955762730ACATOM3268CBILEA61814.879−3.60225.0831.008.25ACANISOU3268CBILEA6181131100299960260ACATOM3270CG1ILEA61813.748−2.75224.4641.008.51ACANISOU3270CG1ILEA61811171100101555897ACATOM3273CD1ILEA61812.366−3.34624.5951.009.45ACANISOU3273CD1ILEA6181179113412775314810ACATOM3277CG2ILEA61814.706−3.77726.6051.008.97ACANISOU3277CG2ILEA618115912111036904053ACATOM3281CILEA61817.389−3.59925.5421.008.12ACANISOU3281CILEA61899410541038−19−3−40ACATOM3282OILEA61817.924−3.02926.5071.008.54AOANISOU3282OILEA618112210771044−197−32AOATOM3283NLEUA61917.755−4.81525.1101.008.06ANANISOU3283NLEUA6191022104299756−644ANATOM3285CALEUA61918.817−5.57025.8031.009.30ACANISOU3285CALEUA61911501164121724−2118ACATOM3287CBLEUA61918.771−7.04225.3661.009.66ACANISOU3287CBLEUA61912501206121438−46−39ACATOM3290CGLEUA61917.852−7.98526.1561.0010.45ACANISOU3290CGLEUA6191313124414112523−73ACATOM3292CD1LEUA61918.316−8.19327.5991.0011.33ACANISOU3292CD1LEUA619159912081496985523ACATOM3296CD2LEUA61916.378−7.52326.1331.0010.51ACANISOU3296CD2LEUA61913281153150953−2719ACATOM3300CLEUA61920.193−4.96525.5751.008.94ACANISOU3300CLEUA61911361142111863−19−31ACATOM3301OLEUA61921.121−5.29726.2901.0010.08AOANISOU3301OLEUA61913811287116256−119−2AOATOM3302NSERA62020.296−4.03324.6311.008.88ANANISOU3302NSERA620110311511117−3−5013ANATOM3304CASERA62021.505−3.26124.3731.009.66ACANISOU3304CASERA62012021184128253810ACATOM3306CBSERA62021.728−3.18322.8691.009.29ACANISOU3306CBSERA62012001104122449−5−98ACATOM3309OGSERA62021.807−4.47022.2921.0010.72AOANISOU3309OGSERA62013871338134665−36−323AOATOM3311CSERA62021.456−1.83224.9371.009.21ACANISOU3311CSERA620117411961129−5035−27ACATOM3312OSERA62022.307−1.00824.6081.0011.06AOANISOU3312OSERA620147413821344−13985−4AOATOM3313NPHEA62120.462−1.52925.7711.008.95ANANISOU3313NPHEA621111411321155−2327−28ANATOM3315CAPHEA62120.337−0.21826.3871.009.65ACANISOU3315CAPHEA6211236128211454620−98ACATOM3317CBPHEA62121.4680.01127.4141.0010.29ACANISOU3317CBPHEA62112881375124503−64ACATOM3320CGPHEA62121.477−1.00328.5161.009.62ACANISOU3320CGPHEA621133711741142−58−37−88ACATOM3321CD1PHEA62120.646−0.86629.5981.0011.01ACANISOU3321CD1PHEA621145614031323125−48ACATOM3323CE1PHEA62120.632−1.81530.6281.0011.66ACANISOU3323CE1PHEA6211557148313881146ACATOM3325CZPHEA62121.478−2.87630.5761.0012.92ACANISOU3325CZPHEA62117571692145811312156ACATOM3327CE2PHEA62122.325−3.02529.4771.0014.15ACANISOU3327CE2PHEA62119031798167212616630ACATOM3329CD2PHEA62122.320−2.08628.4781.0011.25ACANISOU3329CD2PHEA6211501154712239892−83ACATOM3331CPHEA62120.2410.92125.3731.0010.39ACANISOU3331CPHEA62113601302128622−4−79ACATOM3332OPHEA62120.7862.01125.5691.0011.34AOANISOU3332OPHEA62116211375131132−13−117AOATOM3333NGLYA62219.5220.65124.2851.0011.10ANANISOU3333NGLYA62215121375132842−63−81ANATOM3335CAGLYA62219.1931.66223.3031.0011.22ACANISOU3335CAGLYA622146814171376664−22ACATOM3338CGLYA62220.1241.86122.1261.0012.73ACANISOU3338CGLYA6221686159715511820−39ACATOM3339OGLYA62219.9202.77621.3381.0014.16AOANISOU3339OGLYA622192719121540219−37−18AOATOM3340NLYSA62321.1531.03021.9981.0012.99ANANISOU3340NLYSA62316811643161069−29−17ANATOM3342CALYSA62322.0311.13520.8301.0014.46ACANISOU3342CALYSA6231800189917950−6−28ACATOM3344CBLYSA62323.1710.13320.8971.0016.42ACANISOU3344CBLYSA6232096209320507625ACATOM3347CGLYSA62324.1680.38722.0511.0019.39ACANISOU3347CGLYSA62323462627239531−71−13ACATOM3350CDLYSA62324.3491.87622.4321.0023.86ACANISOU3350CDLYSA623311129532998−20−35−29ACATOM3353CELYSA62325.5672.11823.3181.0025.46ACANISOU3353CELYSA6233218327831778−7133ACATOM3356NZLYSA62325.7483.57123.6281.0027.42ANANISOU3356NZLYSA623362434173377−57−46−49ANATOM3360CLYSA62321.2550.91719.5341.0013.13ACANISOU3360CLYSA6231680166616434926−50ACATOM3361OLYSA62320.2550.22319.5131.0012.72AOANISOU3361OLYSA62315671670159415118−135AOATOM3362NGLNA62421.7221.54918.4731.0012.29ANANISOU3362NGLNA624157914481640921−24ANATOM3364CAGLNA62421.1021.44017.1761.0012.12ACANISOU3364CAGLNA6241546148715732019−7ACATOM3366CBGLNA62421.5412.58616.2431.0013.32ACANISOU3366CBGLNA624171915391803316615ACATOM3369CGGLNA62420.9092.48214.8401.0018.07ACANISOU3369CGGLNA62423572269224073−72−62ACATOM3372CDGLNA62421.5093.37713.7431.0022.31ACANISOU3372CDGLNA624287827622837−406388ACATOM3373OE1GLNA62422.5883.09513.1961.0024.31AOANISOU3373OE1GLNA624296030513224929132AOATOM3374NE2GLNA62420.7524.39813.3481.0026.33ANANISOU3374NE2GLNA624346530533484164−382ANATOM3377CGLNA62421.4890.12316.5421.0010.73ACANISOU3377CGLNA624133913251410−9−741ACATOM3378OGLNA62422.681−0.20616.4881.0010.29AOANISOU3378OGLNA624122411671518−9143−37AOATOM3379NPROA62520.516−0.60316.0001.009.27ANANISOU3379NPROA625119311261200−1920−26ANATOM3380CAPROA62520.831−1.84715.2931.009.00ACANISOU3380CAPROA625109910951224575015ACATOM3382CBPROA62519.456−2.40214.9171.008.99ACANISOU3382CBPROA625118610821145352446ACATOM3385CGPROA62518.570−1.21014.8671.009.14ACANISOU3385CGPROA6251226106611808612246ACATOM3388CDPROA62519.069−0.31715.9691.009.56ACANISOU3388CDPROA6251275116911873453105ACATOM3391CPROA62521.685−1.54214.0671.008.92ACANISOU3391CPROA625117310161200254854ACATOM3392OPROA62521.435−0.56813.3581.009.28AOANISOU3392OPROA6251224108712157194122AOATOM3393NPHEA62622.701−2.37013.8151.007.60ANANISOU3393NPHEA626936903104819−5011ANATOM3395CAPHEA62623.534−2.22512.6291.007.73ACANISOU3395CAPHEA626107687798212−4821ACATOM3397CBPHEA62622.737−2.56611.3561.007.40ACANISOU3397CBPHEA6261034884894−35−12ACATOM3400CGPHEA62622.329−4.02111.2551.008.09ACANISOU3400CGPHEA626104110241008−86−2−46ACATOM3401CD1PHEA62623.294−5.02411.2151.007.67ACANISOU3401CD1PHEA6261036890988−162−23927ACATOM3403CE1PHEA62622.924−6.36211.1591.008.27ACANISOU3403CE1PHEA6261141784121693−7−18ACATOM3405CZPHEA62621.587−6.70911.1061.008.76ACANISOU3405CZPHEA62612559691101−52−21−137ACATOM3407CE2PHEA62620.608−5.72611.1461.007.41ACANISOU3407CE2PHEA6269841007823−114460ACATOM3409CD2PHEA62620.983−4.37811.2191.008.31ACANISOU3409CD2PHEA626105510511049−57428ACATOM3411CPHEA62624.146−0.82712.5471.008.26ACANISOU3411CPHEA6261166926104337−4914ACATOM3412OPHEA62624.344−0.27911.4771.008.99AOANISOU3412OPHEA6261258970118851−9−20AOATOM3413NPHEA62724.528−0.29213.6991.008.24ANANISOU3413NPHEA6271259876995−4−7426ANATOM3415CAPHEA62725.1741.02413.7071.009.11ACANISOU3415CAPHEA627124010601159−58−25−17ACATOM3417CBPHEA62725.4241.51115.1401.009.32ACANISOU3417CBPHEA627129311461103−79−39−37ACATOM3420CGPHEA62726.3690.64515.9441.009.19ACANISOU3420CGPHEA627122310951172−86−26−71ACATOM3421CD1PHEA62727.7350.78715.8341.0010.25ACANISOU3421CD1PHEA627124112271427−6−56−130ACATOM3423CE1PHEA62728.598−0.00816.5691.009.28ACANISOU3423CE1PHEA627112512701131−139−83−7ACATOM3425CZPHEA62728.106−0.93717.4301.0010.17ACANISOU3425CZPHEA62713541332117851−9164ACATOM3427CE2PHEA62726.740−1.08017.5531.0010.61ACANISOU3427CE2PHEA627144414011183−72−11−72ACATOM3429CD2PHEA62725.893−0.29916.8331.008.87ACANISOU3429CD2PHEA627130510181045−1009−208ACATOM3431CPHEA62726.4561.07712.8921.0010.08ACANISOU3431CPHEA627134612011281−68023ACATOM3432OPHEA62726.8872.17712.5101.0011.98AOANISOU3432OPHEA627168312841583−1513795AOATOM3433NTRPA62827.053−0.09312.6491.0010.14ANANISOU3433NTRPA628122813101315−37−3−3ANATOM3435CATRPA62828.347−0.24411.9831.0011.50ACANISOU3435CATRPA628141815021446−38198ACATOM3437CBTRPA62829.083−1.49512.5121.0011.81ACANISOU3437CBTRPA62814731562145221−8−3ACATOM3440CGTRPA62828.265−2.82012.4671.0011.23ACANISOU3440CGTRPA62814051410145193−65−64ACATOM3441CD1TRPA62828.293−3.79311.4761.0011.11ACANISOU3441CD1TRPA628133914771406170−262−42ACATOM3443NE1TRPA62827.423−4.80911.7891.0012.58ANANISOU3443NE2TRPA628174114221616220−272−9ANATOM3445CE2TRPA62826.795−4.53112.9661.0011.44ACANISOU3445CE2TRPA628144513261572113−268136ACATOM3446CD2TRPA62827.306−3.27713.4271.0010.60ACANISOU3446CD2TRPA6281462124813150−26172ACATOM3447CE3TRPA62826.816−2.77014.6241.0010.04ACANISOU3447CE3TRPA628121812871308100−20958ACATOM3449CZ3TRPA62825.850−3.49915.3291.0011.14ACANISOU3449CZ3TRPA628151213901329−80−227−54ACATOM3451CH2TRPA62825.372−4.72714.8461.0012.39ACANISOU3451CH2TRPA628166313701675−8−202−3ACATOM3453CZ2TRPA62825.848−5.26013.6801.0010.83ACANISOU3453CZ2TRPA62814061287141960−24550ACATOM3455CTRPA62828.219−0.32310.4601.0012.25ACANISOU3455CTRPA628148216741495−251922ACATOM3456OTRPA62829.234−0.3959.7571.0014.02AOANISOU3456OTRPA62816422078160676311AOATOM3457NLEUA62926.980−0.3029.9641.0012.51ANANISOU3457NLEUA629153517051512−32−1729ANATOM3459CALEUA62926.669−0.3808.5361.0012.79ACANISOU3459CALEUA629161717001542−32117ACATOM3461CBLEUA62925.702−1.5418.2891.0012.60ACANISOU3461CBLEUA629161016471529−14−9−14ACATOM3464CGLEUA62926.137−2.9458.6781.0012.33ACANISOU3464CGLEUA62916461651138614−97−1ACATOM3466CD1LEUA62925.054−3.9138.3011.0013.38ACANISOU3466CD1LEUA629175217161614−33−693ACATOM3470CD2LEUA62927.422−3.3238.0091.0013.37ACANISOU3470CD2LEUA62917131765159956−770ACATOM3474CLEUA62925.9780.8818.0341.0013.68ACANISOU3474CLEUA6291762176116735725ACATOM3475OLEUA62925.3491.6098.8061.0014.67AOANISOU3475OLEUA6292007191516525617146AOATOM3476NGLUA63026.0471.1006.7231.0015.20ANANISOU3476NGLUA630193319721868−431953ANATOM3478CAGLUA63025.1952.0786.0501.0015.90ACANISOU3478CAGLUA630204720131981−18−3234ACATOM3480CBGLUA63025.8872.6444.8051.0016.75ACANISOU3480CBGLUA630215821292076−241448ACATOM3483CGGLUA63027.0813.5405.0681.0019.59ACANISOU3483CGGLUA630247624492518−38−51−29ACATOM3486CDGLUA63027.6354.1273.7781.0023.92ACANISOU3486CDGLUA630311230472928−455079ACATOM3487OE1GLUA63028.3963.4323.0731.0025.66AOANISOU3487OE1GLUA6303327330231195118061AOATOM3488OE2GLUA63027.2785.2753.4541.0027.92AOANISOU3488OE2GLUA63037803258357171−6456AOATOM3489CGLUA63023.9161.3645.6311.0015.32ACANISOU3489CGLUA6301983196018750−5756ACATOM3490OGLUA63023.9470.1555.4091.0014.36AOANISOU3490OGLUA630185518571744−22−23928AOATOM3491NASNA63122.8022.0955.5101.0015.10ANANISOU3491NASNA631201418321889−11−3632ANATOM3493CAASNA63121.5271.4895.1441.0015.38ACANISOU3493CAASNA6312016191619099−2457ACATOM3495CBASNA63120.4522.5544.8511.0015.89ACANISOU3495CBASNA63120192001201442−8939ACATOM3498CGASNA63119.7463.0676.0941.0016.81ACANISOU3498CGASNA63122692093202368−8565ACATOM3499OD1ASNA63119.9852.5937.2161.0016.14AOANISOU3499OD1ASNA63122431942194523−77176AOATOM3500ND2ASNA63118.8304.0505.9001.0018.61ANANISOU3500ND2ASNA631240223042362141−75−12ANATOM3503CASNA63121.6530.5743.9411.0015.25ACANISOU3503CASNA6311952192119199−1443ACATOM3504OASNA63121.066−0.4963.9111.0014.96AOANISOU3504OASNA631210417811796−12−2763AOATOM3505NLYSA63222.3931.0182.9311.0015.71ANANISOU3505NLYSA632204619771945−22−2379ANATOM3507CALYSA63222.5110.2791.6741.0016.46ACANISOU3507CALYSA632212320822048−14−515ACATOM3509CBLYSA63223.2351.1340.6051.0017.14ACANISOU3509CBLYSA632227521402096−11−1460ACATOM3512CGLYSA63224.7201.3470.8451.0019.38ACANISOU3512CGLYSA632240824562498−32−1348ACATOM3515CDLYSA63225.4581.946−0.3711.0022.31ACANISOU3515CDLYSA632292328012751−206244ACATOM3518CELYSA63226.9632.027−0.0951.0024.58ACANISOU3518CELYSA632308231223135−35−2327ACATOM3521NZLYSA63227.7052.894−1.0611.0026.47ANANISOU3521NZLYSA632338733523317−175730ANATOM3525CLYSA63223.194−1.0741.8331.0015.77ACANISOU3525CLYSA632201620311942−32−1324ACATOM3526OLYSA63223.051−1.9530.9961.0016.37AOANISOU3526OLYSA632219921701850−15−307AOATOM3527NASPA63323.937−1.2532.9191.0015.01ANANISOU3527NASPA633192119441836−26−3−10ANATOM3529CAASPA63324.661−2.4933.1391.0015.01ACANISOU3529CAASPA633189519141893−2208ACATOM3531CBASPA63325.958−2.1903.8821.0016.28ACANISOU3531CBASPA63320512039209519−82−21ACATOM3534CGASPA63327.019−1.5612.9661.0019.59ACANISOU3534CGASPA633249024242529−409835ACATOM3535OD1ASPA63326.772−1.3741.7601.0024.84AOANISOU3535OD1ASPA633323531233080−1−125185AOATOM3536OD2ASPA63328.154−1.2663.3501.0024.27AOANISOU3536OD2ASPA633301130683140−140−93−75AOATOM3537CASPA63323.869−3.5553.8961.0013.27ACANISOU3537CASPA63316601734164714−30−24ACATOM3538OASPA63324.270−4.7113.9361.0013.66AOANISOU3538OASPA63317121795168027−23AOATOM3539NVALA63422.737−3.1574.4791.0011.49ANANISOU3539NVALA634142314911453−26−285ANATOM3541CAVALA63422.008−4.0165.3861.0011.05ACANISOU3541CAVALA634140514541337−5−3515ACATOM3543CBVALA63420.863−3.2566.0561.0010.53ACANISOU3543CBVALA634135113651282−33−3964ACATOM3545CG1VALA63419.950−4.2176.8521.0011.29ACANISOU3545CG1VALA634136315821344−27121−4ACATOM3549CG2VALA63421.388−2.1746.9411.0011.26ACANISOU3549CG2VALA634139814281451−1539681ACATOM3553CVALA63421.481−5.2644.6851.0011.12ACANISOU3553CVALA634140414531366−12035ACATOM3554OVALA63421.681−6.3715.1741.0010.89AOANISOU3554OVALA63412961492134910572−22AOATOM3555NILEA63520.816−5.0993.5421.0011.18ANANISOU3555NILEA635138714351424−49364ANATOM3557CAILEA63520.221−6.2522.8911.0011.30ACANISOU3557CAILEA635139314861414−12−4117ACATOM3559CBILEA63519.316−5.8471.7191.0011.18ACANISOU3559CBILEA63513291472144422−10−5ACATOM3561CG1ILEA63518.478−7.0531.2701.0011.96ACANISOU3561CG1ILEA635155615071479−27−47−50ACATOM3564CD1ILEA63517.492−7.5552.2791.0012.52ACANISOU3564CD1ILEA6351484157816946094ACATOM3568CG2ILEA63520.115−5.3050.5631.0011.86ACANISOU3568CG2ILEA635148416081413−28−6847ACATOM3572CILEA63521.259−7.2872.4981.0011.28ACANISOU3572CILEA635140914641412−25−3424ACATOM3573OILEA63521.030−8.4812.6601.0011.42AOANISOU3573OILEA635140014401496−7−159−55AOATOM3574NGLYA63622.426−6.8442.0461.0011.85ANANISOU3574NGLYA636145814841560−12−2523ANATOM3576CAGLYA63623.473−7.7901.7121.0012.18ACANISOU3576CAGLYA636150715631556−13478ACATOM3579CGLYA63623.909−8.6412.8911.0012.11ACANISOU3579CGLYA636150915311561−1380ACATOM3580OGLYA63624.137−9.8422.7621.0012.65AOANISOU3580OGLYA6361609153516613339−14AOATOM3581NVALA63724.021−8.0134.0541.0011.63ANANISOU3581NVALA637140014581560399−25ANATOM3583CAVALA63724.420−8.6985.2731.0011.85ACANISOU3583CAVALA6371469153914942059−35ACATOM3585CBVALA63724.685−7.6426.3911.0012.84ACANISOU3585CBVALA63715811614168210−46−47ACATOM3587CG1VALA63724.600−8.2117.7501.0015.93ACANISOU3587CG1VALA637210720361909−28−36−64ACATOM3591CG2VALA63726.022−6.9636.1521.0014.08ACANISOU3591CG2VALA637182517191805−8021−75ACATOM3595CVALA63723.338−9.7235.6621.0010.63ACANISOU3595CVALA637133713661333200−35ACATOM3596OVALA63723.611−10.8625.9761.0011.17AOANISOU3596OVALA63712761517145110018−115AOATOM3597NLEUA63822.079−9.3255.6191.0010.88ANANISOU3597NLEUA6381352135014313524−43ANATOM3599CALEUA63821.002−10.2445.9921.0011.05ACANISOU3599CALEUA638146113751361−1540−26ACATOM3601CBLEUA63819.658−9.5216.0271.0010.68ACANISOU3601CBLEUA638142913091320−335−22ACATOM3604CGLEUA63819.547−8.3447.0111.0010.27ACANISOU3604CGLEUA638134412821277−76−1−7ACATOM3606CD1LEUA63818.238−7.6306.7941.009.53ACANISOU3606CD1LEUA638142011971003−2787−76ACATOM3610CD2LEUA63819.732−8.7928.4401.0010.25ACANISOU3610CD2LEUA638130413651226−26−11−46ACATOM3614CLEUA63820.915−11.4135.0131.0011.41ACANISOU3614CLEUA6381477137914781057−50ACATOM3615OLEUA63820.712−12.5375.4231.0010.84AOANISOU3615OLEUA638142013331364−17123−103AOATOM3616NGLUA63921.083−11.1323.7271.0012.44ANANISOU3616NGLUA639165615251545−4227−63ANATOM3618CAGLUA63921.074−12.1902.7051.0013.00ACANISOU3618CAGLUA639169016321615−1432−62ACATOM3620CBGLUA63921.095−11.6051.2731.0014.26ACANISOU3620CBGLUA639195717621696−3634−66ACATOM3623CGGLUA63919.797−10.9340.8391.0017.67ACANISOU3623CGGLUA63922682152229124−11−51ACATOM3626CDGLUA63919.890−10.273−0.5421.0022.72ACANISOU3626CDGLUA63931002823270821024ACATOM3627OE1GLUA63921.009−10.130−1.0811.0026.70AOANISOU3627OE1GLUA639348434233237−8111545AOATOM3628OE2GLUA63918.840−9.871−1.0791.0026.87AOANISOU3628OE2GLUA63934803331339842−197−6AOATOM3629CGLUA63922.216−13.1852.9171.0013.08ACANISOU3629CGLUA639174116341594−12−4−48ACATOM3630OGLUA63922.049−14.3442.6451.0013.54AOANISOU3630OGLUA6391800163317121−38−82AOATOM3631NLYSA64023.359−12.7423.4421.0012.74ANANISOU3631NLYSA640163316251583116−74ANATOM3633CALYSA64024.478−13.6403.7351.0013.77ACANISOU3633CALYSA6401810169817241529−57ACATOM3635CBLYSA64025.762−12.8413.9371.0014.76ACANISOU3635CBLYSA64018141870192279−19−39ACATOM3638CGLYSA64026.269−12.1502.7051.0018.43ACANISOU3638CGLYSA640237323392290302447ACATOM3641CDLYSA64027.669−11.5572.9211.0022.16ACANISOU3641CDLYSA640265228382927−72−2225ACATOM3644CELYSA64027.703−10.4103.9231.0024.61ACANISOU3644CELYSA640312330823146−3−31−54ACATOM3647NZLYSA64027.280−9.0913.3421.0026.76ANANISOU3647NZLYSA64034153270348122−9042ANATOM3651CLYSA64024.222−14.4954.9691.0013.21ACANISOU3651CLYSA64017501627164255−17−59ACATOM3652OLYSA64025.003−15.3795.2841.0014.21AOANISOU3652OLYSA64018491720183011374−123AOATOM3653NGLYA64123.165−14.1745.7101.0012.64ANANISOU3653NGLYA6411659151216316125−4ANATOM3655CAGLYA64122.779−14.9256.8911.0012.25ACANISOU3655CAGLYA6411573150115817862−74ACATOM3658CGLYA64123.279−14.3178.1791.0012.26ACANISOU3658CGLYA6411571152515606952−26ACATOM3659OGLYA64123.066−14.8939.2461.0013.24AOANISOU3659OGLYA64118261595161010587−74AOATOM3660NASPA64223.948−13.1708.0851.0011.89ANANISOU3660NASPA6421482154314927761−95ANATOM3662CAASPA64224.444−12.4729.2641.0011.79ACANISOU3662CAASPA6421506148214905716−51ACATOM3664CBASPA64225.450−11.3848.8621.0013.17ACANISOU3664CBASPA6421673165216775−3−34ACATOM3667CGASPA64226.755−11.9228.3401.0016.93ACANISOU3667CGASPA6422055222121535020−29ACATOM3668OD1ASPA64227.067−13.1138.5501.0019.65AOANISOU3668OD1ASPA64224182245280210913−157AOATOM3669OD2ASPA64227.559−11.1747.7341.0021.95AOANISOU3669OD2ASPA642264128832816−14815728AOATOM3670CASPA64223.254−11.8119.9971.0010.88ACANISOU3670CASPA64213791386136836−19−54ACATOM3671OASPA64222.269−11.3849.3841.009.89AOANISOU3671OASPA6421325118712454891−99AOATOM3672NARGA64323.394−11.70511.3091.0010.17ANANISOU3672NARGA643129913121253404932ANATOM3674CAARGA64322.358−11.14512.1701.0010.74ACANISOU3674CAARGA6431403132013583912−7ACATOM3676CBARGA64321.507−12.25712.8041.0011.04ACANISOU3676CBARGA643139214331367321719ACATOM3679CGARGA64320.724−13.12211.8141.0011.65ACANISOU3679CGARGA6431613133814752466−11ACATOM3682CDARGA64319.638−12.35911.0871.0011.09ACANISOU3682CDARGA643136715461298−3575−80ACATOM3685NEARGA64318.829−13.19610.2041.0012.34ANANISOU3685NEARGA643145515201714−10355−32ANATOM3687CZARGA64319.073−13.4418.9181.0012.04ACANISOU3687CZARGA643147714581639−51785ACATOM3688NH1ARGA64320.134−12.9278.3061.008.18ANANISOU3688NH1ARGA643116310269171072−183ANATOM3691NH2ARGA64318.234−14.2128.2251.0012.82ANANISOU3691NH2ARGA6431696160015725958−141ANATOM3694CARGA64322.990−10.27713.2481.0010.07ACANISOU3694CARGA643130412571264113223ACATOM3695OARGA64324.202−10.31213.4801.0011.11AOANISOU3695OARGA64314091440137050−37−52AOATOM3696NLEUA64422.171−9.45213.8811.009.23ANANISOU3696NLEUA64410881167125011012ANATOM3698CALEUA64422.605−8.72015.0571.008.97ACANISOU3698CALEUA644112011101178−264130ACATOM3700CBLEUA64421.442−7.94115.6591.008.90ACANISOU3700CBLEUA64411341133111116−35−40ACATOM3703CGLEUA64420.872−6.81214.7921.008.68ACANISOU3703CGLEUA64411609671168−50245ACATOM3705CD1LEUA64419.472−6.41015.2781.009.88ACANISOU3705CD1LEUA644128711621305−33−264ACATOM3709CD2LEUA64421.782−5.60514.7601.009.21ACANISOU3709CD2LEUA644113512111152−138−3880ACATOM3713CLEUA64423.176−9.70116.0801.008.86ACANISOU3713CLEUA644109110911183−283236ACATOM3714OLEUA64422.570−10.75416.3371.009.64AOANISOU3714OLEUA644121610331413−109433AOATOM3715NPROA64524.316−9.38016.6851.009.03ANANISOU3715NPROA645114511081174−662619ANATOM3716CAPROA64524.919−10.29417.6651.008.83ACANISOU3716CAPROA645109210901172−92−12ACATOM3718CBPROA64526.331−9.72917.8321.0010.39ACANISOU3718CBPROA645121413451387−91−1734ACATOM3721CGPROA64526.141−8.25217.6751.0011.21ACANISOU3721CGPROA645137513991483−173−5023ACATOM3724CDPROA64525.104−8.13316.5391.0010.07ACANISOU3724CDPROA645127312881263−8814133ACATOM3727CPROA64524.188−10.27618.9931.008.79ACANISOU3727CPROA645111710661155102933ACATOM3728OPROA64523.520−9.31319.3221.009.49AOANISOU3728OPROA64513301031124213170130AOATOM3729NLYSA64624.381−11.29519.8031.008.65ANANISOU3729NLYSA646117210191096144825ANATOM3731CALYSA64623.756−11.32321.1111.009.22ACANISOU3731CALYSA646121710961189−54915ACATOM3733CBLYSA64624.026−12.66621.8011.0010.45ACANISOU3733CBLYSA646147512151280−32−2427ACATOM3736CGLYSA64623.202−12.74523.0761.0012.24ACANISOU3736CGLYSA646163115861431−9789−12ACATOM3739CDLYSA64623.314−14.08023.8051.0015.66ACANISOU3739CDLYSA646215818471945−24−772ACATOM3742CELYSA64624.596−14.15924.6121.0016.74ACANISOU3742CELYSA646214520272189−7−3575ACATOM3745NZLYSA64624.740−13.08725.6721.0016.74ANANISOU3745NZLYSA64621222081215813−5729ANATOM3749CLYSA64624.268−10.17421.9751.008.79ACANISOU3749CLYSA646111711471072−376517ACATOM3750OLYSA64625.483−10.05622.1901.009.36AOANISOU3750OLYSA646111612741166−9916−103AOATOM3751NPROA64723.380−9.32522.4951.009.12ANANISOU3751NPROA647113411371192−24524ANATOM3752CAPROA64723.816−8.33523.4921.009.77ACANISOU3752CAPROA647125512021252−27459ACATOM3754CBPROA64722.517−7.59323.8381.009.88ACANISOU3754CBPROA647124712421264−325817ACATOM3757CGPROA64721.672−7.76022.6481.0010.13ACANISOU3757CGPROA6471322133011951292−62ACATOM3760CDPROA64721.944−9.15922.1591.009.19ACANISOU3760CDPROA647110211821208−6662−25ACATOM3763CPROA64724.421−9.02324.7131.009.70ACANISOU3763CPROA647126412001221−1857−31ACATOM3764OPROA64723.980−10.12925.0691.009.56AOANISOU3764OPROA6471272123211266147137AOATOM3765NASPA64825.412−8.39525.3311.0010.93ANANISOU3765NASPA648140913741367−15−4730ANATOM3767CAASPA64826.106−9.00426.4651.0012.88ACANISOU3767CAASPA648161616571621−20−2055ACATOM3769CBASPA64827.097−8.01527.0641.0014.05ACANISOU3769CBASPA648181517861737−47−2751ACATOM3772CGASPA64828.032−8.67428.0391.0016.34ACANISOU3772CGASPA648194721732089−3−79120ACATOM3773OD1ASPA64828.724−9.64927.6671.0018.87AOANISOU3773OD1ASPA64823172422242923−4085AOATOM3774OD2ASPA64828.101−8.28229.2031.0022.16AOANISOU3774OD2ASPA648286830642484−75−60−50AOATOM3775CASPA64825.171−9.56027.5531.0013.03ACANISOU3775CASPA648170516341611−6−850ACATOM3776OASPA64825.364−10.69328.0181.0013.83AOANISOU3776OASPA6481774175817215−70164AOATOM3777NLEUA64924.149−8.78627.9151.0012.78ANANISOU3777NLEUA649164616491561−391253ANATOM3779CALEUA64923.264−9.14029.0211.0013.30ACANISOU3779CALEUA649168817181644−233130ACATOM3781CBLEUA64922.863−7.89229.8021.0014.42ACANISOU3781CBLEUA649191818121746−279148ACATOM3784CGLEUA64924.018−7.25130.5781.0017.26ACANISOU3784CGLEUA649213921652252−76−1536ACATOM3786CD1LEUA64923.487−6.17231.4771.0018.90ACANISOU3786CD1LEUA649245724122310−1064−22ACATOM3790CD2LEUA64924.837−8.23931.4001.0018.74ACANISOU3790CD2LEUA649243423402344−27−4729ACATOM3794CLEUA64922.023−9.89828.5821.0012.89ACANISOU3794CLEUA649167416741549−405311ACATOM3795OLEUA64921.196−10.26329.4101.0014.26AOANISOU3795OLEUA649182718671723−137203−12AOATOM3796NCYSA65021.901−10.17827.2931.0011.79ANANISOU3796NCYSA650153715371405−367238ANATOM3798CACYSA65020.795−10.96726.8061.0011.54ACANISOU3798CACYSA650145614871441453220ACATOM3800CBCYSA65020.692−10.79025.2891.0011.36ACANISOU3800CBCYSA65014501460140568180ACATOM3803SGCYSA65019.303−11.66024.5411.0011.66ASANISOU3803SGCYSA650126714591704−1863226ASATOM3804CCYSA65020.955−12.45527.1541.0012.36ACANISOU3804CCYSA650159215861518622757ACATOM3805OCYSA65021.955−13.05826.7821.0012.76AOANISOU3805OCYSA650165315861608936078AOATOM3806NPROA65119.971−13.03727.8541.0012.87ANANISOU3806NPROA651168415371669121382ANATOM3807CAPROA65119.951−14.47928.1131.0013.18ACANISOU3807CAPROA651168116111713−19−2710ACATOM3809CBPROA65118.565−14.68128.7471.0013.38ACANISOU3809CBPROA651180016401643−866025ACATOM3812CGPROA65118.243−13.41829.3811.0014.43ACANISOU3812CGPROA651181717811884−212180ACATOM3815CDPROA65118.812−12.37028.4761.0013.39ACANISOU3815CDPROA651173417391611−463890ACATOM3818CPROA65120.038−15.27326.7971.0012.61ACANISOU3818CPROA651161015211657−26−5021ACATOM3819OPROA65119.355−14.91825.8531.0011.79AOANISOU3819OPROA651153212821664−5−135223AOATOM3820NPROA65220.867−16.30326.7031.0013.43ANANISOU3820NPROA65216651683175346−12469ANATOM3821CAPROA65220.896−17.14225.5031.0013.03ACANISOU3821CAPROA65216481583171824−7979ACATOM3823CBPROA65221.794−18.31725.9171.0014.64ACANISOU3823CBPROA65218831729195048−7645ACATOM3826CGPROA65222.676−17.72626.9351.0013.89ACANISOU3826CGPROA65216591752186684−100111ACATOM3829CDPROA65221.904−16.68227.6801.0014.14ACANISOU3829CDPROA65217101804185615−16352ACATOM3832CPROA65219.513−17.59424.9871.0012.68ACANISOU3832CPROA65216191532166726−452ACATOM3833OPROA65219.282−17.55223.7881.0011.79AOANISOU3833OPROA65215361290165246−71124AOATOM3834NVALA65318.613−17.98325.8781.0012.27ANANISOU3834NVALA6531597142016449−1462ANATOM3836CAVALA65317.281−18.41625.4811.0012.50ACANISOU3836CAVALA65316051486165526−534ACATOM3838CBVALA65316.469−18.93626.7081.0013.38ACANISOU3838CBVALA653176416511667291669ACATOM3840CG1VALA65316.253−17.88227.7781.0015.20ACANISOU3840CG1VALA653203318711871−10−22−18ACATOM3844CG2VALA65315.128−19.48426.3051.0014.80ACANISOU3844CG2VALA653187717581985−6−46−2ACATOM3848CVALA65316.529−17.29324.7641.0011.55ACANISOU3848CVALA653152213701497−61235ACATOM3849OVALA65315.803−17.53323.7841.0011.72AOANISOU3849OVALA653148713341631253728AOATOM3850NLEUA65416.725−16.06125.2341.0010.59ANANISOU3850NLEUA6541369124014143−791ANATOM3852CALEUA65416.111−14.92624.5531.0010.31ACANISOU3852CALEUA65412791271136629−5880ACATOM3854CBLEUA65416.141−13.70425.4611.0010.74ACANISOU3854CBLEUA654141112931375613761ACATOM3857CGLEUA65415.488−12.43424.8971.0010.90ACANISOU3857CGLEUA654136513521424802854ACATOM3859CD1LEUA65414.034−12.66124.5261.0012.25ACANISOU3859CD1LEUA654154915131593−636249ACATOM3863CD2LEUA65415.658−11.28325.8701.0013.59ACANISOU3863CD2LEUA654182916681667−2574−61ACATOM3867CLEUA65416.748−14.62623.1941.009.80ACANISOU3867CLEUA65412171122138338−4018ACATOM3868OLEUA65416.050−14.30422.2341.0010.34AOANISOU3868OLEUA65412641232143220−5453AOATOM3869NTYRA65518.064−14.74523.0861.009.87ANANISOU3869NTYRA6551236116313511818117ANATOM3871CATYRA65518.691−14.60521.7801.009.35ACANISOU3871CATYRA655119511441210120−29ACATOM3873CBTYRA65520.203−14.62821.8961.008.79ACANISOU3873CBTYRA65511471073111830044ACATOM3876CGTYRA65520.876−14.25720.6151.009.30ACANISOU3876CGTYRA655105711981277−1760125ACATOM3877CD1TYRA65520.735−12.98920.0951.009.13ACANISOU3877CD1TYRA6559971062140951−3365ACATOM3879CE1TYRA65521.335−12.63418.8911.009.04ACANISOU3879CE1TYRA655111010231301−81−9−42ACATOM3881CZTYRA65522.097−13.55818.2031.0010.17ACANISOU3881CZTYRA655122812691366−328521ACATOM3882OHTYRA65522.675−13.20917.0201.0012.04AOANISOU3882OHTYRA655146015981517−29248−27AOATOM3884CE2TYRA65522.238−14.84518.6951.0010.02ACANISOU3884CE2TYRA65513121224127195102−12ACATOM3886CD2TYRA65521.635−15.18619.9021.009.51ACANISOU3886CD2TYRA6551169112813169536173ACATOM3888CTYRA65518.194−15.67020.7891.009.65ACANISOU3888CTYRA655121611371313370−15ACATOM3889OTYRA65517.978−15.37519.6431.0010.05AOANISOU3889OTYRA6551207119514153058−67AOATOM3890NTHRA65617.986−16.89621.2451.0010.25ANANISOU3890NTHRA65613281203136011−7−43ANATOM3892CATHRA65617.441−17.91120.3381.0011.61ACANISOU3892CATHRA656154813451516−3−48−8ACATOM3894CBTHRA65617.341−19.22321.1041.0012.32ACANISOU3894CBTHRA656161414691597−40−4339ACATOM3896OG1THRA65618.672−19.66621.4271.0014.62AOANISOU3896OG1THRA656192515402089151−18779AOATOM3898CG2THRA65616.743−20.32120.2461.0013.85ACANISOU3898CG2THRA6561924148518521713−75ACATOM3902CTHRA65616.068−17.47019.8081.0011.48ACANISOU3902CTHRA656150013661493−781363ACATOM3903OTHRA65615.760−17.62518.6251.0012.21AOANISOU3903OTHRA656161014451582−17−8064AOATOM3904NLEUA65715.256−16.90420.6781.0011.37ANANISOU3904NLEUA657145613591504−48−7171ANATOM3906CALEUA65713.967−16.38820.2701.0011.26ACANISOU3906CALEUA657137014021504−10−4746ACATOM3908CBLEUA65713.194−15.88321.4901.0012.25ACANISOU3908CBLEUA65715371510160636−40−46ACATOM3911CGLEUA65711.691−15.72121.3181.0015.01ACANISOU3911CGLEUA657180719331962−501468ACATOM3913CD1LEUA65711.055−17.06321.0011.0016.78ACANISOU3913CD1LEUA657212420402210−13861−141ACATOM3917CD2LEUA65711.099−15.14422.5921.0016.43ACANISOU3917CD2LEUA6572124194921674852−153ACATOM3921CLEUA65714.107−15.29119.2281.0010.50ACANISOU3921CLEUA657123713281424−25−599ACATOM3922OLEUA65713.389−15.29018.2211.0011.31AOANISOU3922OLEUA657132313971575140−16313AOATOM3923NMETA65815.016−14.34819.4661.009.64ANANISOU3923NMETA65811611248125216−7037ANATOM3925CAMETA65815.275−13.30118.4931.009.56ACANISOU3925CAMETA65811591209126451−4067ACATOM3927CBMETA65816.419−12.41518.9421.009.94ACANISOU3927CBMETA65812471282124821−2947ACATOM3930CGMETA65816.115−11.49520.0921.0011.63ACANISOU3930CGMETA65814001521149782−67−126ACATOM3933SDMETA65817.671−10.65820.6351.0015.26ASANISOU3933SDMETA658177816842337162−495−211ASATOM3934CEMETA65817.105−9.73822.0881.0015.81ACANISOU3934CEMETA658184120622103−233140ACATOM3938CMETA65815.638−13.89417.1361.009.77ACANISOU3938CMETA6581215123412613−3851ACATOM3939OMETA65815.151−13.44016.1061.0010.18AOANISOU3939OMETA658130811711389−26−10254AOATOM3940NTHRA65916.505−14.90817.1311.0010.09ANANISOU3940NTHRA6591266121313513−8269ANATOM3942CATHRA65917.000−15.49415.8811.0011.51ACANISOU3942CATHRA65914191436151637133ACATOM3944CBTHRA65918.166−16.47616.0891.0013.24ACANISOU3944CBTHRA65915131728178980−183ACATOM3946OG1THRA65917.735−17.58116.8561.0017.70AOANISOU3946OG1THRA65922692217223711038191AOATOM3948CG2THRA65919.279−15.88316.8981.0012.51ACANISOU3948CG2THRA65915701593158914810−58ACATOM3952CTHRA65915.882−16.13715.0811.0010.45ACANISOU3952CTHRA6591414120913473816−37ACATOM3953OTHRA65915.909−16.09413.8581.0010.83AOANISOU3953OTHRA65913851405132280−13AOATOM3954NARGA66014.900−16.72115.7771.0010.63ANANISOU3954NARGA6601337134913515720−64ANATOM3956CAARGA66013.700−17.27615.1451.0011.35ACANISOU3956CAARGA660141414221475−1011−18ACATOM3958CBARGA66012.851−18.04216.1611.0012.55ACANISOU3958CBARGA660151816531596−43−372ACATOM3961CGARGA66013.473−19.35316.5551.0015.60ACANISOU3961CGARGA660196218652097−18−8244ACATOM3964CDARGA66012.801−19.99717.7281.0019.96ACANISOU3964CDARGA660256025902432175855ACATOM3967NEARGA66011.470−20.42917.3371.0022.64ANANISOU3967NEARGA660274228852975−1341188ANATOM3969CZARGA66010.390−20.45018.1291.0024.17ACANISOU3969CZARGA660297931533050871−6ACATOM3970NH1ARGA66010.448−20.10619.4231.0023.56ANANISOU3970NH1ARGA660285329853111−3523−91ANATOM3973NH2ARGA6609.240−20.86617.6081.0025.14ANANISOU3973NH2ARGA660306632913193−70−15−17ANATOM3976CARGA66012.861−16.18714.4791.0010.39ACANISOU3976CARGA660130612551386−386−32ACATOM3977OARGA66012.333−16.37313.3871.0011.12AOANISOU3977OARGA660138612951540−513−122AOATOM3978NCYSA66112.743−15.04015.1451.009.59ANANISOU3978NCYSA661124111451255−5245−22ANATOM3980CACYSA66112.046−13.90214.5641.009.30ACANISOU3980CACYSA661106312281241−462334ACATOM3982CBCYSA66111.912−12.78515.5871.009.52ACANISOU3982CBCYSA661111311601343−110−3336ACATOM3985SGCYSA66110.905−13.17317.0351.0010.38ASANISOU3985SGCYSA661117412731497−2340ASATOM3986CCYSA66112.762−13.33713.3501.009.87ACANISOU3986CCYSA661122012841246−12−1513ACATOM3987OCYSA66112.141−12.64812.5511.0010.25AOANISOU3987OCYSA6619891459144780−1374AOATOM3988NTRPA66214.069−13.60713.2541.009.56ANANISOU3988NTRPA662111912411270424449ANATOM3990CATRPA66214.878−13.18612.1011.008.71ACANISOU3990CATRPA66211431052111428−16−23ACATOM3992CBTRPA66216.211−12.59512.5361.008.84ACANISOU3992CBTRPA662114410661147−386810ACATOM3995CGTRPA66216.102−11.40413.4351.009.51ACANISOU3995CGTRPA66211681100134620−13−20ACATOM3996CD1TRPA66215.154−10.42013.4191.009.22ACANISOU3996CD1TRPA662106711751259−603636ACATOM3998NE1TRPA66215.420−9.49514.3991.009.46ANANISOU3998NE1TRPA66210681133139211520−55ANATOM4000CE2TRPA66216.518−9.90415.1051.008.11ACANISOU4000CE2TRPA66210128811187122837ACATOM4001CD2TRPA66216.975−11.09114.5161.007.35ACANISOU4001CD2TRPA6621014780995−11814824ACATOM4002CE3TRPA66218.111−11.69715.0511.008.68ACANISOU4002CE3TRPA66211999261172−9839132ACATOM4004CZ3TRPA66218.733−11.11916.1231.009.60ACANISOU4004CZ3TRPA662143410451168−565188ACATOM4006CH2TRPA66218.273−9.92716.6591.009.22ACANISOU4006CH2TRPA6621177116111647−14−46ACATOM4008CZ2TRPA66217.169−9.31716.1741.007.78ACANISOU4008CZ2TRPA66211697091076−7294138ACATOM4010CTRPA66215.091−14.29311.0551.009.58ACANISOU4010CTRPA6621267120811611719−24ACATOM4011OTRPA66216.022−14.23810.2631.0011.04AOANISOU4011OTRPA662130715051380−17−57−62AOATOM4012NASPA66314.165−15.24311.0051.0010.56ANANISOU4012NASPA66313771332130132−22−57ANATOM4014CAASPA66314.176−16.1939.9101.0011.21ACANISOU4014CAASPA6631435138514386073−84ACATOM4016CBASPA66313.095−17.24210.0801.0011.68ACANISOU4016CBASPA663155913791497629−34ACATOM4019CGASPA66313.384−18.4719.2711.0015.73ACANISOU4019CGASPA6632147177720522792−166ACATOM4020OD1ASPA66313.415−18.3748.0271.0019.86AOANISOU4020OD1ASPA663265124272466−5398162AOATOM4021OD2ASPA66313.604−19.5799.7971.0020.97AOANISOU4021OD2ASPA663286723822717156−18183AOATOM4022CASPA66313.942−15.4148.6151.0011.04ACANISOU4022CASPA6631362140514251864−36ACATOM4023OASPA66313.080−14.5358.5511.0010.98AOANISOU4023OASPA663136814061396145173−154AOATOM4024NTYRA66414.746−15.6687.5951.0010.94ANANISOU4024NTYRA6641408138613597294−108ANATOM4026CATYRA66414.585−14.9386.3471.0010.95ACANISOU4026CATYRA6641347143613784595−37ACATOM4028CBTYRA66415.646−15.3605.2971.0011.18ACANISOU4028CBTYRA66413251543138013995−100ACATOM4031CGTYRA66415.836−14.3254.2161.0011.90ACANISOU4031CGTYRA664133415981588161177−86ACATOM4032CD1TYRA66416.755−13.2834.3761.0014.52ACANISOU4032CD1TYRA664179118761851−1415937ACATOM4034CE1TYRA66416.919−12.3123.3871.0015.63ACANISOU4034CE1TYRA6641931203919664615057ACATOM4036CZTYRA66416.155−12.3652.2541.0016.72ACANISOU4036CZTYRA664210122272025631305ACATOM4037OHTYRA66416.340−11.3931.2801.0021.10AOANISOU4037OHTYRA66428902467265997209250AOATOM4039CE2TYRA66415.244−13.3792.0671.0016.91ACANISOU4039CE2TYRA664215122262049944434ACATOM4041CD2TYRA66415.081−14.3553.0461.0015.74ACANISOU4041CD2TYRA66419032090198587100−38ACATOM4043CTYRA66413.184−15.1265.7641.0011.55ACANISOU4043CTYRA6641432150314524572−31ACATOM4044OTYRA66412.633−14.1985.2001.0011.95AOANISOU4044OTYRA6641366163115435876−43AOATOM4045NASPA66512.641−16.3355.8841.0012.57ANANISOU4045NASPA665154816281600−2520−86ANATOM4047CAASPA66511.298−16.6415.3841.0013.87ACANISOU4047CAASPA665172017571792−2516−53ACATOM4049CBASPA66511.180−18.1495.1201.0015.39ACANISOU4049CBASPA665198918562003−5924−51ACATOM4052CGASPA6659.937−18.5094.3151.0018.03ACANISOU4052CGASPA665224522382366−93−84−45ACATOM4053OD1ASPA6658.939−17.7434.3261.0019.13AOANISOU4053OD1ASPA665239924382429−6691−259AOATOM4054OD2ASPA6659.884−19.5443.6041.0021.95AOANISOU4054OD2ASPA665293825742828−76117−313AOATOM4055CASPA66510.245−16.2086.3981.0013.43ACANISOU4055CASPA665164717161739−63−3−50ACATOM4056OASPA66510.177−16.7997.4661.0013.05AOANISOU4056OASPA665162316331700−89135−165AOATOM4057NPROA6669.415−15.2206.0651.0013.58ANANISOU4057NPROA666166117261773−702−67ANATOM4058CAPROA6668.384−14.7497.0021.0014.08ACANISOU4058CAPROA666178518001765−587−86ACATOM4060CBPROA6667.630−13.6746.2061.0014.61ACANISOU4060CBPROA666181318861849−2340−36ACATOM4063CGPROA6668.031−13.8214.8071.0014.68ACANISOU4063CGPROA66619601798181869−59ACATOM4066CDPROA6669.358−14.4934.7841.0013.93ACANISOU4066CDPROA666162218711800−9529−41ACATOM4069CPROA6667.444−15.8417.4771.0014.93ACANISOU4069CPROA666184319561872−8764−64ACATOM4070OPROA6666.998−15.8348.6151.0013.71AOANISOU4070OPROA666176517331708−155120−111AOATOM4071NSERA6677.168−16.8086.6111.0015.82ANANISOU4071NSERA667205520311924−10969−104ANATOM4073CASERA6676.258−17.9026.9621.0017.09ACANISOU4073CASERA667215721392197−6967−29ACATOM4075CBSERA6675.990−18.8075.7451.0017.46ACANISOU4075CBSERA667218422592190−132−2−12ACATOM4078OGSERA6675.326−18.0814.7311.0021.69AOANISOU4078OGSERA667267127692801−64−20101AOATOM4080CSERA6676.758−18.7488.1161.0016.80ACANISOU4080CSERA667211820782185−3657−37ACATOM4081OSERA6675.958−19.4388.7421.0018.68AOANISOU4081OSERA667228423272485−104145−21AOATOM4082NASPA6688.066−18.6978.4051.0016.50ANANISOU4082NASPA668211020012156−2290−75ANATOM4084CAASPA6688.689−19.4979.4421.0016.07ACANISOU4084CAASPA668204919852071−1571−56ACATOM4086CBASPA66810.047−20.0268.9631.0017.36ACANISOU4086CBASPA668217121702254−5107−18ACATOM4089CGASPA6689.928−20.9867.7861.0020.84ACANISOU4089CGASPA668267226152630−1127−166ACATOM4090OD1ASPA6688.843−21.5467.5491.0023.33AOANISOU4090OD1ASPA668294428433076−5943−184AOATOM4091OD2ASPA66810.891−21.2227.0431.0023.92AOANISOU4091OD2ASPA66830313104295355199−250AOATOM4092CASPA6688.917−18.75810.7491.0014.67ACANISOU4092CASPA668186417921914−26795ACATOM4093OASPA6689.392−19.32511.7281.0015.36AOANISOU4093OASPA6682059163621405612555AOATOM4094NARGA6698.601−17.47710.7711.0012.20ANANISOU4094NARGA669157215201541−8130−27ANATOM4096CAARGA6698.714−16.72412.0171.0011.14ACANISOU4096CAARGA669136014251445−2665−12ACATOM4098CBARGA6698.675−15.23211.7091.0010.46ACANISOU4098CBARGA669121913531401−24104−3ACATOM4101CGARGA6699.864−14.75110.9041.009.70ACANISOU4101CGARGA669112312161346−4182−16ACATOM4104CDARGA6699.824−13.31010.5351.009.29ACANISOU4104CDARGA669116011871180841−16ACATOM4107NEARGA66910.704−13.1419.3821.009.73ANANISOU4107NEARGA6691108130412824712117ANATOM4109CZARGA66910.517−12.2838.3911.008.76ACANISOU4109CZARGA66997611361215−2955−8ACATOM4110NH1ARGA6699.545−11.3748.4571.009.89ANANISOU4110NH1ARGA6691257106914291073179ANATOM4113NH2ARGA66911.321−12.3187.3311.009.41ANANISOU4113NH2ARGA6699581356125967−2514ANATOM4116CARGA6697.560−17.05712.9661.0011.24ACANISOU4116CARGA669138113821505−244046ACATOM4117OARGA6696.462−17.36212.5041.0012.43AOANISOU4117OARGA669142916781616−7−736AOATOM4118NPROA6707.777−16.93214.2781.0010.78ANANISOU4118NPROA670135813041433−164424ANATOM4119CAPROA6706.693−17.12115.2581.0011.05ACANISOU4119CAPROA670138213061508947411ACATOM4121CBPROA6707.395−16.95416.6031.0012.51ACANISOU4121CBPROA67015741557162293110106ACATOM4124CGPROA6708.848−17.06516.3081.0014.02ACANISOU4124CGPROA670166719001757322937ACATOM4127CDPROA6709.038−16.56614.9411.0011.84ACANISOU4127CDPROA6701398149216095857−14ACATOM4130CPROA6705.563−16.08515.1241.0010.64ACANISOU4130CPROA670139012621391771061ACATOM4131OPROA6705.789−14.99114.6231.0010.77AOANISOU4131OPROA67013721213150526100103AOATOM4132NARGA6714.386−16.45915.6101.009.98ANANISOU4132NARGA671139711181277424316ANATOM4134CAARGA6713.287−15.54915.8451.009.83ACANISOU4134CAARGA671123912731221171541ACATOM4136CBARGA6712.003−16.32716.0991.0011.36ACANISOU4136CBARGA671142414361456−2658−32ACATOM4139CGARGA6711.492−17.20914.9901.0011.68ACANISOU4139CGARGA671148714421507−7−2−62ACATOM4142CDARGA6710.265−17.96115.4561.0013.47ACANISOU4142CDARGA671154518471724−108−54−90ACATOM4145NEARGA671−0.454−18.70114.4181.0015.63ANANISOU4145NEARGA671217820051754−61−88−169ANATOM4147CZARGA671−0.352−20.00414.1981.0016.74ACANISOU4147CZARGA67121882083209038−77−75ACATOM4148NH1ARGA6710.472−20.77214.9001.0016.43ANANISOU4148NH1ARGA671237820551808−56−63−72ANATOM4151NH2ARGA671−1.099−20.54113.2441.0019.05ANANISOU4151NH2ARGA671253024372270−95−158−187ANATOM4154CARGA6713.548−14.72817.0941.009.52ACANISOU4154CARGA671125511561204−234255ACATOM4155OARGA6714.253−15.17117.9871.009.26AOANISOU4155OARGA671126510531199−191881AOATOM4156NPHEA6722.968−13.54517.1751.008.86ANANISOU4156NPHEA672118712019794726108ANATOM4158CAPHEA6723.056−12.78118.4111.009.06ACANISOU4158CAPHEA6721203115010881−355ACATOM4160CBPHEA6722.491−11.37118.2981.008.73ACANISOU4160CBPHEA672113411621019−20−2315ACATOM4163CGPHEA6723.413−10.39117.6171.008.48ACANISOU4163CGPHEA6721018117610281864−38ACATOM4164CD1PHEA6724.590−9.99418.2431.007.89ACANISOU4164CD1PHEA6729301064100143−52175ACATOM4166CE1PHEA6725.453−9.07117.6471.008.09ACANISOU4166CE1PHEA67285111311090225183ACATOM4168CZPHEA6725.128−8.53716.4401.008.28ACANISOU4168CZPHEA6729871081107848124−9ACATOM4170CE2PHEA6723.961−8.91215.8111.007.94ACANISOU4170CE2PHEA67210071214794712665ACATOM4172CD2PHEA6723.093−9.83916.4051.008.53ACANISOU4172CD2PHEA672900110112401557267ACATOM4174CPHEA6722.434−13.50319.6081.009.51ACANISOU4174CPHEA672126011871165−75−1025ACATOM4175OPHEA6722.931−13.34420.7121.009.70AOANISOU4175OPHEA672139112341058222464AOATOM4176NTHRA6731.365−14.27919.4151.0010.26ANANISOU4176NTHRA673133813851174−24−7913ANATOM4178CATHRA6730.796−15.01720.5381.0011.04ACANISOU4178CATHRA673143514161341−90−18−35ACATOM4180CBTHRA673−0.429−15.81820.1131.0011.04ACANISOU4180CBTHRA673146214181314−12447−10ACATOM4182OG1THRA673−0.113−16.57218.9291.0012.62AOANISOU4182OG1THRA673174917031342−91−1−63AOATOM4184CG2THRA673−1.572−14.92719.7941.0014.01ACANISOU4184CG2THRA673179419121616−96−81−17ACATOM4188CTHRA6731.832−15.98221.1061.0010.65ACANISOU4188CTHRA673142213771247−87−39−32ACATOM4189OTHRA6731.945−16.16522.3311.0011.28AOANISOU4189OTHRA673172014701095−84−114−35AOATOM4190NGLUA6742.581−16.61020.2151.0010.28ANANISOU4190NGLUA674131814151170−66−60−48ANATOM4192CAGLUA6743.604−17.55820.6011.009.55ACANISOU4192CAGLUA674128611711169−95−1749ACATOM4194CBGLUA6744.089−18.33719.3791.009.92ACANISOU4194CBGLUA67412611287121811−3476ACATOM4197CGGLUA6742.987−19.16318.7661.0010.67ACANISOU4197CGGLUA674152912861240−121−5977ACATOM4200CDGLUA6743.274−19.71517.3771.0013.11ACANISOU4200CDGLUA674166417341583−10161−153ACATOM4201OE1GLUA6744.217−19.26616.6901.0013.40AOANISOU4201OE1GLUA674208414321573−102184−21AOATOM4202OE2GLUA6742.507−20.63216.9781.0013.86AOANISOU4202OE2GLUA674202517101529−255−34−61AOATOM4203CGLUA6744.764−16.84921.3131.0010.35ACANISOU4203CGLUA674143912121280−51−10636ACATOM4204OGLUA6745.255−17.33622.3381.0010.34AOANISOU4204OGLUA674152311951208−118−224−58AOATOM4205NLEUA6755.140−15.67120.8201.009.65ANANISOU4205NLEUA675131612401110−87−6454ANATOM4207CALEUA6756.188−14.88221.4551.009.88ACANISOU4207CALEUA675127812131262−26016ACATOM4209CBLEUA6756.548−13.67220.6081.009.99ACANISOU4209CBLEUA675121911931381−28−25109ACATOM4212CGLEUA6757.239−13.97519.3151.0011.68ACANISOU4212CGLEUA6751357147416051−7−59ACATOM4214CD1LEUA6757.406−12.70818.4801.0011.63ACANISOU4214CD1LEUA6751336160914713049−12ACATOM4218CD2LEUA6758.602−14.67719.5581.0013.00ACANISOU4218CD2LEUA67516211429188919211139ACATOM4222CLEUA6755.784−14.40922.8371.009.06ACANISOU4222CLEUA675122010111211−29−10−29ACATOM4223OLEUA6756.635−14.39123.7291.009.64AOANISOU4223OLEUA67512649991400−121−95−31AOATOM4224NVALA6764.515−14.06523.0361.008.74ANANISOU4224NVALA676118310151122−11−8612ANATOM4226CAVALA6764.054−13.68424.3781.009.18ACANISOU4226CAVALA6761202111511701407ACATOM4228CBVALA6762.565−13.31824.4241.009.40ACANISOU4228CBVALA676120611251241−70−154ACATOM4230CG1VALA6762.078−13.21925.8741.009.87ACANISOU4230CG1VALA676129710541396−3027−38ACATOM4234CG2VALA6762.296−12.00823.7071.0010.69ACANISOU4234CG2VALA676138112611419602719ACATOM4238CVALA6764.329−14.85425.3311.009.61ACANISOU4238CVALA676130911581182−11−20−41ACATOM4239OVALA6764.869−14.66526.4071.0010.06AOANISOU4239OVALA67614301231115925−91−130AOATOM4240NCYSA6773.982−16.07224.9341.009.35ANANISOU4240NCYSA677125211251172117−97ANATOM4242CACYSA6774.188−17.21825.8041.0010.25ACANISOU4242CACYSA677135212961245−50−30−78ACATOM4244CBCYSA6773.609−18.44725.1851.0010.64ACANISOU4244CBCYSA677139814081236−58−63−72ACATOM4247SGACYSA6771.829−18.46425.1150.5013.52ASANISOU4247SGACYSA6771551172918570−17−204ASATOM4248SGBCYSA6773.228−19.74126.3640.5010.56ASANISOU4248SGBCYSA677139013991222−109107−235ASATOM4249CCYSA6775.666−17.47326.0611.009.43ACANISOU4249CCYSA67712851179111712−21−31ACATOM4250OCYSA6776.058−17.70727.2011.0010.05AOANISOU4250OCYSA677141411941210−153−252−36AOATOM4251NSERA6786.486−17.38325.0081.008.36ANANISOU4251NSERA67811521066955−35−7527ANATOM4253CASERA6787.915−17.60025.1381.009.06ACANISOU4253CASERA678120411131124−61−69−12ACATOM4255CBSERA6788.584−17.54323.7931.009.26ACANISOU4255CBSERA678127510861157−61−66−68ACATOM4258OGSERA6788.180−18.65323.0021.0012.08AOANISOU4258OGSERA678164715131429−130−64−419AOATOM4260CSERA6788.534−16.55226.0541.009.50ACANISOU4260CSERA678125212051150−13−138−17ACATOM4261OSERA6789.335−16.88426.9331.009.54AOANISOU4261OSERA67812261317108129−33833AOATOM4262NLEUA6798.178−15.29825.8631.009.02ANANISOU4262NLEUA679118411581083−49−186−6ANATOM4264CALEUA6798.752−14.22926.6791.009.18ACANISOU4264CALEUA679126811211097−22−76−27ACATOM4266CBLEUA6798.417−12.86026.1141.009.07ACANISOU4266CBLEUA679115011161178−20−80−62ACATOM4269CGLEUA6799.285−12.45524.9421.0011.44ACANISOU4269CGLEUA679149514151435−16−1462ACATOM4271CD1LEUA6798.711−11.20824.2801.0010.61ACANISOU4271CD1LEUA67913161465125045−25105ACATOM4275CD2LEUA67910.694−12.24225.4081.0014.76ACANISOU4275CD2LEUA679171018991997−16−45124ACATOM4279CLEUA6798.261−14.34128.1101.009.19ACANISOU4279CLEUA679119911641128−49−33−33ACATOM4280OLEUA6799.007−14.02429.0211.009.17AOANISOU4280OLEUA679135010971034−88−148−73AOATOM4281NSERA6807.040−14.83128.3181.009.53ANANISOU4281NSERA680126412601096−104−32−73ANATOM4283CASERA6806.542−15.06929.6621.009.87ACANISOU4283CASERA680130712301212−48−174ACATOM4285CBSERA6805.084−15.51929.6071.0010.57ACANISOU4285CBSERA680132313831309−43−9−25ACATOM4288OGSERA6804.254−14.44329.1941.0012.61AOANISOU4288OGSERA680150316451642−1549112AOATOM4290CSERA6807.411−16.12030.3701.009.74ACANISOU4290CSERA680125312591187−47−65−27ACATOM4291OSERA6807.721−15.99531.5521.009.65AOANISOU4291OSERA680126012591145−176−15911AOATOM4292NASPA6817.832−17.12829.6221.0010.22ANANISOU4292NASPA681131113101260−95−74−21ANATOM4294CAASPA6818.692−18.14330.1601.0010.85ACANISOU4294CAASPA681141313761330−5815−23ACATOM4296CBASPA6818.727−19.32229.2061.0011.85ACANISOU4296CBASPA681150215061493−82−23−74ACATOM4299CGASPA6819.338−20.51829.7991.0016.25ACANISOU4299CGASPA681217218712130−27−5015ACATOM4300OD1ASPA6819.067−20.84830.9851.0019.17AOANISOU4300OD1ASPA681282520562401−983795AOATOM4301OD2ASPA68110.135−21.19729.1371.0022.71AOANISOU4301OD2ASPA681286028962873100287−125AOATOM4302CASPA68110.093−17.58230.4201.009.83ACANISOU4302CASPA681129112291214−33−93ACATOM4303OASPA68110.697−17.87031.4531.009.52AOANISOU4303OASPA681146511091043−208−94−14AOATOM4304NVALA68210.618−16.75529.5241.009.45ANANISOU4304NVALA682130212481041−17−59−27ANATOM4306CAVALA68211.932−16.18229.7631.009.70ACANISOU4306CAVALA682123712721178−10−22ACATOM4308CBVALA68212.437−15.38228.5421.0010.01ACANISOU4308CBVALA682126912531281−24−83ACATOM4310CG1VALA68213.696−14.60428.8731.0011.04ACANISOU4310CG1VALA682134414801370−33−12−103ACATOM4314CG2VALA68212.695−16.30927.3441.0011.13ACANISOU4314CG2VALA682148314821263−9−18−15ACATOM4318CVALA68211.887−15.28931.0131.008.96ACANISOU4318CVALA682116611751062−9−4522ACATOM4319OVALA68212.817−15.28731.8211.009.28AOANISOU4319OVALA682119011981138−105−2112AOATOM4320NTYRA68310.816−14.51531.1491.007.42ANANISOU4320NTYRA6831047942829−59−20−35ANATOM4322CATYRA68310.624−13.63132.2881.007.98ACANISOU4322CATYRA68310741004953−554−19ACATOM4324CBTYRA6839.360−12.79532.0771.008.15ACANISOU4324CBTYRA68310279981070−7462−36ACATOM4327CGTYRA6839.083−11.76333.1551.008.77ACANISOU4327CGTYRA683116310961073−18−41−62ACATOM4328CD1TYRA68310.043−10.83833.5341.0010.84ACANISOU4328CD1TYRA683129714451375−800−85ACATOM4330CE1TYRA6839.781−9.88434.4991.0011.06ACANISOU4330CE1TYRA683149511231581−123−24ACATOM4332CZTYRA6838.562−9.83835.0891.0012.24ACANISOU4332CZTYRA683158213721696−5514−74ACATOM4333OHTYRA6838.330−8.89736.0571.0015.28AOANISOU4333OHTYRA6832259169718485692−190AOATOM4335CE2TYRA6837.570−10.74734.7211.0013.43ACANISOU4335CE2TYRA683160417271768−91−83−101ACATOM4337CD2TYRA6837.847−11.69333.7631.0011.54ACANISOU4337CD2TYRA683125214691663−93−2−18ACATOM4339CTYRA68310.565−14.43033.5861.008.07ACANISOU4339CTYRA68310511069946−108−28−44ACATOM4340OTYRA68311.231−14.06234.5621.007.95AOANISOU4340OTYRA68310171108894−139−233−87AOATOM4341NGLNA6849.791−15.52133.6151.008.72ANANISOU4341NGLNA684109511291086−82−767ANATOM4343CAGLNA6849.722−16.36334.8021.009.04ACANISOU4343CAGLNA684114511831106−53−16−3ACATOM4345CBGLNA6848.733−17.49534.5951.009.16ACANISOU4345CBGLNA684109111951194−26−74−3ACATOM4348CGGLNA6848.473−18.33535.8521.0010.73ACANISOU4348CGGLNA684138112851408−113−1138ACATOM4351CDGLNA6847.893−17.49636.9971.0012.42ACANISOU4351CDGLNA68416331631145428739ACATOM4352OE1GLNA6846.830−16.88436.8411.0016.82AOANISOU4352OE1GLNA68419742086232918724−137AOATOM4353NE2GLNA6848.589−17.45738.1331.0014.35ANANISOU4353NE2GLNA684176519831705−164−62−2ANATOM4356CGLNA68411.082−16.92935.1381.008.57ACANISOU4356CGLNA68411181150987−85−6923ACATOM4357OGLNA68411.467−16.96436.3121.008.94AOANISOU4357OGLNA68411831310901−105−14657AOATOM4358NMETA68511.819−17.38034.1311.0010.03ANANISOU4358NMETA685130913751126−90−2619ANATOM4360CAMETA68513.137−17.94834.3411.0011.25ACANISOU4360CAMETA68514651446136023−765ACATOM4362CBMETA68513.759−18.52733.0431.0013.40ACANISOU4362CBMETA6851718174416304131−37ACATOM4365CGMETA68513.060−19.71732.3721.0019.86ACANISOU4365CGMETA685239224052746−124−105−80ACATOM4368SDMETA68513.569−19.90130.5811.0029.53ASANISOU4368SDMETA685377438263618−102214−258ASATOM4369CEMETA68515.286−20.48430.7641.0030.13ACANISOU4369CEMETA685385638273763−20−5−3ACATOM4373CMETA68514.078−16.89834.9261.0011.10ACANISOU4373CMETA68514181473132737−2264ACATOM4374OMETA68514.843−17.20235.8351.0011.04AOANISOU4374OMETA68514101534124844−105128AOATOM4375NGLUA68614.019−15.65234.4541.0010.54ANANISOU4375NGLUA68613241377130267−6669ANATOM4377CAGLUA68614.902−14.60734.9941.0011.48ACANISOU4377CAGLUA68614941451141517−827ACATOM4379CBGLUA68614.850−13.33934.1341.0012.27ACANISOU4379CBGLUA68615901516155256−9523ACATOM4382CGGLUA68615.583−13.46432.8161.0015.45ACANISOU4382CGGLUA686197420121882−452878ACATOM4385CDGLUA68617.084−13.66532.9791.0017.34ACANISOU4385CDGLUA68621042299218523−36152ACATOM4386OE1GLUA68617.705−12.99033.8241.0020.51AOANISOU4386OE1GLUA686269626192476−1302365AOATOM4387OE2GLUA68617.639−14.50032.2451.0022.70AOANISOU4387OE2GLUA6862785309027486910219AOATOM4388CGLUA68614.527−14.26936.4331.0011.50ACANISOU4388CGLUA686146414911411−1−79−46ACATOM4389OGLUA68615.391−13.95237.2501.0012.04AOANISOU4389OGLUA686143316931447−23−188−23AOATOM4390NLYSA68713.243−14.31436.7561.0011.63ANANISOU4390NLYSA687143316041382−14−102−46ANATOM4392CALYSA68712.819−14.10838.1371.0012.65ACANISOU4392CALYSA687158816841532−16−11−87ACATOM4394CBLYSA68711.299−13.91338.2561.0013.23ACANISOU4394CBLYSA687164717531626−37−48−64ACATOM4397CGLYSA68710.854−12.55737.7481.0014.35ACANISOU4397CGLYSA687181218491788−32−36−65ACATOM4400CDLYSA6879.432−12.22538.0881.0016.85ACANISOU4400CDLYSA6872055217921667445−58ACATOM4403CELYSA6878.451−13.06837.3401.0018.34ACANISOU4403CELYSA687225723062402722−106ACATOM4406NZLYSA6877.056−12.57537.5901.0019.25ANANISOU4406NZLYSA68722342532254555−32−135ANATOM4410CLYSA68713.299−15.26839.0101.0012.83ACANISOU4410CLYSA687159617641513−21−27−23ACATOM4411OLYSA68713.721−15.04640.1501.0014.48AOANISOU4411OLYSA687183920491612−1−81−106AOATOM4412NASPA68813.308−16.48738.4691.0012.84ANANISOU4412NASPA688162717281522−18061ANATOM4414CAASPA68813.702−17.67239.2371.0014.56ACANISOU4414CAASPA68818611897177310−1753ACATOM4416CBASPA68813.302−18.96838.5211.0014.83ACANISOU4416CBASPA6881929190118034−2656ACATOM4419CGASPA68811.814−19.20638.5051.0016.42ACANISOU4419CGASPA688210321401993−52078ACATOM4420OD1ASPA68811.063−18.53839.2401.0017.23AOANISOU4420OD1ASPA688222322082113−6477112AOATOM4421OD2ASPA68811.307−20.06637.7501.0019.27AOANISOU4421OD2ASPA688254422822494−26658−12AOATOM4422CASPA68815.203−17.73939.5021.0015.66ACANISOU4422CASPA68819692053192568−7352ACATOM4423OASPA68815.593−18.39540.4631.0015.79AOANISOU4423OASPA68819972210179246−105206AOATOM4424NILEA68916.032−17.09338.6771.0018.10ANANISOU4424NILEA68923012353222112−2053ANATOM4426CAILEA68917.498−17.13638.8211.0020.93ACANISOU4426CAILEA68925812724264421−4111ACATOM4428CBILEA68918.220−17.29037.4531.0021.72ACANISOU4428CBILEA689267327842795−2318−28ACATOM4430CG1ILEA68918.089−16.03836.6141.0021.57ACANISOU4430CG1ILEA68926692823270017−34−36ACATOM4433CD1ILEA68919.026−15.99735.4541.0022.85ACANISOU4433CD1ILEA689282029722889−460−13ACATOM4437CG2ILEA68917.710−18.49036.6941.0022.88ACANISOU4437CG2ILEA689290829462839−118−91ACATOM4441CILEA68918.087−15.91339.5301.0023.30ACANISOU4441CILEA689291229572984−36−22−17ACATOM4442OILEA68919.277−15.92039.9021.0023.81AOANISOU4442OILEA689292730593058−22−2937AOATOM4443NALAA69017.262−14.88139.7101.0025.55ANANISOU4443NALAA69032073235326420−220ANATOM4445CAALAA69017.618−13.67940.4711.0027.12ACANISOU4445CAALAA690343534203448−18−3−27ACATOM4447CBALAA69016.581−12.59540.2431.0027.19ACANISOU4447CBALAA690344534743410136ACATOM4451CALAA69017.747−13.96341.9681.0028.89ACANISOU4451CALAA690368536553634−55−10ACATOM4452OALAA69016.742−14.02542.6941.0028.87AOANISOU4452OALAA690366636453656−33−33−25AOATOM4453NMETA69118.996−14.13542.4051.0030.85ANANISOU4453NMETA691387339333914−5−14−11ANATOM4455CAMETA69119.370−14.45743.7861.0032.32ACANISOU4455CAMETA6914087409840911−1927ACATOM4457CBMETA69118.774−13.49544.8261.0033.00ACANISOU4457CBMETA691415142224164−113−11ACATOM4460CGMETA69118.728−12.01644.4161.0035.89ACANISOU4460CGMETA691455044764609−31−3084ACATOM4463SDMETA69118.072−10.91945.7161.0040.73ASANISOU4463SDMETA6915194507552073882−71ASATOM4464CEMETA69117.146−9.76644.7171.0040.93ACANISOU4464CEMETA691518251495218111819ACATOM4468CMETA69118.924−15.88344.0291.0032.38ACANISOU4468CMETA691409340964113−9−342ACATOM4469OMETA69119.736−16.80244.1321.0033.00AOANISOU4469OMETA691419941064234−35828AOATOM4470OXTMETA69117.733−16.13044.0911.0032.92AOANISOU4470OXTMETA6914172414741893−4256AOATOM4471ASASC459−3.09518.70414.7310.5033.56CASATOM4472ASASC6771.446−19.60727.5730.5035.18CASATOM4473OHOHW119.479−9.52813.0631.0013.87WOATOM4476OHOHW216.961−5.51710.9921.0015.15WOATOM4479OHOHW36.300−4.3449.6241.0015.98WOATOM4482OHOHW424.481−5.00022.0891.0017.95WOATOM4485OHOHW514.7773.24018.0991.0015.35WOATOM4488OHOHW623.760−5.96826.8791.0016.90WOATOM4491OHOHW71.042−6.82913.3371.0018.66WOATOM4494OHOHW819.751−2.5782.6441.0020.13WOATOM4497OHOHW917.092−4.8138.5431.0015.12WOATOM4500OHOHW10−4.2212.34324.6891.0019.64WOATOM4503OHOHW1118.3052.55618.8771.0018.58WOATOM4506OHOHW12−7.953−9.64820.3921.0017.80WOATOM4509OHOHW1317.9942.4999.1231.0018.39WOATOM4512OHOHW1414.7906.89622.5651.0016.75WOATOM4515OHOHW1527.168−8.11121.3891.0017.65WOATOM4518OHOHW16−0.333−9.3327.9541.0021.84WOATOM4521OHOHW17−2.67718.484−2.1691.0021.93WOATOM4524OHOHW1815.551−2.80837.0191.0018.87WOATOM4527OHOHW194.454−2.679−1.3261.0019.19WOATOM4530OHOHW2010.008−5.3359.2471.0023.00WOATOM4533OHOHW2125.415−5.34324.5751.0021.32WOATOM4536OHOHW2213.4619.25027.8731.0018.51WOATOM4539OHOHW2326.898−11.62223.9111.0023.24WOATOM4542OHOHW2418.133−15.56412.2211.0021.74WOATOM4545OHOHW2512.105−12.2663.3481.0017.80WOATOM4548OHOHW26−0.257−15.87424.0481.0023.98WOATOM4551OHOHW2713.1960.89935.0371.0021.23WOATOM4554OHOHW280.840−21.86018.7641.0021.06WOATOM4557OHOHW2917.583−9.59636.6681.0019.88WOATOM4560OHOHW30−2.774−12.35818.1331.0019.66WOATOM4563OHOHW314.584−14.06912.2491.0021.22WOATOM4566OHOHW3223.562−4.4870.4771.0022.27WOATOM4569OHOHW3326.010−13.57118.9801.0022.84WOATOM4572OHOHW349.525−6.93937.3771.0027.84WOATOM4575OHOHW35−2.6812.63027.8041.0021.91WOATOM4578OHOHW364.34212.09226.7681.0024.91WOATOM4581OHOHW377.984−18.82520.2091.0025.15WOATOM4584OHOHW3818.4684.97722.2551.0022.38WOATOM4587OHOHW3914.159−19.65723.2151.0021.41WOATOM4590OHOHW400.586−0.6378.2691.0024.36WOATOM4593OHOHW412.29511.34425.2211.0027.87WOATOM4596OHOHW42−7.45121.44233.8211.0027.32WOATOM4599OHOHW43−3.03925.68720.4691.0024.75WOATOM4602OHOHW443.160−23.08616.1301.0027.74WOATOM4605OHOHW4517.028−17.4567.9451.0023.83WOATOM4608OHOHW46−4.63926.43528.0461.0031.05WOATOM4611OHOHW47−10.923−5.62720.1431.0022.57WOATOM4614OHOHW4819.351−18.60628.7041.0028.51WOATOM4617OHOHW4921.847−11.72031.6091.0026.04WOATOM4620OHOHW5010.662−4.033−5.2471.0031.05WOATOM4623OHOHW5120.457−8.19536.0641.0027.03WOATOM4626OHOHW52−3.37622.36415.8881.0025.70WOATOM4629OHOHW53−2.265−15.17515.9791.0029.94WOATOM4632OHOHW54−2.279−8.98024.2791.0026.59WOATOM4635OHOHW5511.1813.524−1.0571.0022.83WOATOM4638OHOHW5617.643−12.52036.3671.0027.57WOATOM4641OHOHW571.6231.37010.0791.0025.21WOATOM4644OHOHW5815.664−13.80445.2261.0034.15WOATOM4647OHOHW596.256−9.79737.6101.0034.43WOATOM4650OHOHW6025.815−12.30614.8311.0027.33WOATOM4653OHOHW615.824−14.78633.3561.0025.11WOATOM4656OHOHW6216.873−4.248−1.8451.0032.13WOATOM4659OHOHW635.848−20.10712.4411.0026.50WOATOM4662OHOHW6414.03224.39719.5681.0036.45WOATOM4665OHOHW6512.803−10.8370.7291.0028.65WOATOM4668OHOHW6613.1659.6720.0791.0033.59WOATOM4671OHOHW6716.453−17.50033.1291.0024.48WOATOM4674OHOHW682.43917.98417.8881.0022.03WOATOM4677OHOHW6911.257−4.97336.9311.0028.56WOATOM4680OHOHW7011.1194.90715.8421.0035.29WOATOM4683OHOHW716.008−10.5325.3411.0024.54WOATOM4686OHOHW72−2.02023.98411.5561.0028.27WOATOM4689OHOHW735.919−14.70135.8571.0034.04WOATOM4692OHOHW748.884−0.2028.9331.0024.05WOATOM4695OHOHW75−9.78422.89333.2581.0034.77WOATOM4698OHOHW766.0015.4852.9081.0034.66WOATOM4701OHOHW775.311−21.41510.1171.0027.03WOATOM4704OHOHW7823.0513.9012.6191.0027.45WOATOM4707OHOHW798.60025.38326.6031.0034.39WOATOM4710OHOHW803.627−20.34213.9451.0028.33WOATOM4713OHOHW81−6.693−5.1389.2941.0027.84WOATOM4716OHOHW8226.573−7.30810.3421.0030.01WOATOM4719OHOHW8318.225−7.928−2.3861.0029.57WOATOM4722OHOHW84−2.632−9.2179.1881.0035.57WOATOM4725OHOHW8524.3885.0118.9851.0038.75WOATOM4728OHOHW86−2.044−18.48818.5171.0025.55WOATOM4731OHOHW8720.358−12.72133.6801.0034.51WOATOM4734OHOHW8821.485−18.15422.0791.0032.93WOATOM4737OHOHW89−8.489−10.51312.2871.0052.27WOATOM4740OHOHW90−14.05825.19226.3021.0037.49WOATOM4743OHOHW91−8.604−12.36415.7091.0027.58WOATOM4746OHOHW921.743−13.65312.8921.0027.13WOATOM4749OHOHW93−14.3285.98516.0631.0035.97WOATOM4752OHOHW945.089−4.15835.9821.0032.25WOATOM4755OHOHW952.555−18.4276.3501.0046.30WOATOM4758OHOHW96−6.58324.08313.5711.0032.28WOATOM4761OHOHW973.120−6.28632.9221.0028.76WOATOM4764OHOHW9812.911−20.36420.8131.0032.18WOATOM4767OHOHW999.662−20.72323.9431.0028.10WOATOM4770OHOHW10029.8182.1718.0581.0038.15WOATOM4773OHOHW10122.9234.74634.6091.0028.23WOATOM4776OHOHW10218.5865.4763.1891.0032.67WOATOM4779OHOHW10323.3502.83626.1541.0029.63WOATOM4782OHOHW104−14.2925.54320.1321.0040.05WOATOM4785OHOHW10521.006−1.829−1.0221.0033.79WOATOM4788OHOHW10625.675−13.30012.4601.0031.34WOATOM4791OHOHW107−14.39018.99919.6881.0040.08WOATOM4794OHOHW10815.107−0.2830.1381.0024.96WOATOM4797OHOHW10921.2104.7579.0051.0047.23WOATOM4800OHOHW11018.42110.90328.2401.0037.02WOATOM4803OHOHW111−6.5645.27523.2801.0040.82WOATOM4806OHOHW112−11.9887.49239.7131.0032.17WOATOM4809OHOHW1130.944−3.4715.7211.0032.52WOATOM4812OHOHW1146.2272.8023.2171.0026.41WOATOM4815OHOHW1153.6190.85939.0591.0056.40WOATOM4818OHOHW11626.615−5.5752.7851.0034.50WOATOM4821OHOHW1175.3916.09114.3501.0028.96WOATOM4824OHOHW1188.36118.91731.8211.0054.83WOATOM4827OHOHW11927.592−5.87029.6871.0034.00WOATOM4830OHOHW12026.393−9.06612.0331.0034.61WOATOM4833OHOHW12124.0394.11128.4931.0049.57WOATOM4836OHOHW1220.38510.03833.0131.0043.66WOATOM4839OHOHW123−1.58128.01931.9641.0042.03WOATOM4842OHOHW124−0.40218.5931.1861.0033.08WOATOM4845OHOHW125−14.15322.52822.8651.0039.67WOATOM4848OHOHW1261.42219.7885.3611.0033.75WOATOM4851OHOHW1276.1592.3685.9981.0030.29WOATOM4854OHOHW12821.291−16.9349.9031.0045.24WOATOM4857OHOHW1290.770−6.15031.6631.0042.18WOATOM4860OHOHW130−4.043−12.32012.6171.0042.29WOATOM4863OHOHW13120.3839.72426.8841.0036.62WOATOM4866OHOHW132−2.16811.72135.5121.0040.29WOATOM4869OHOHW13315.0052.551−1.3471.0032.89WOATOM4872OHOHW1348.794−21.00938.1991.0046.17WOATOM4875OHOHW1352.518−13.12230.7331.0038.37WOATOM4878OHOHW1367.635−12.7061.4071.0029.71WOATOM4881OHOHW137−8.68524.81612.7601.0044.11WOATOM4884OHOHW138−2.636−3.2548.6771.0027.21WOATOM4887OHOHW13915.768−18.35812.1471.0040.67WOATOM4890OHOHW14010.81424.68322.4921.0032.90WOATOM4893OHOHW14128.656−9.70231.4051.0050.52WOATOM4896OHOHW142−6.161−0.73428.5661.0035.85WOATOM4899OHOHW14326.1074.68513.0781.0036.41WOATOM4902OHOHW144−14.32616.03230.2331.0040.43WOATOM4905OHOHW14525.066−1.52125.1071.0034.70WOATOM4908OHOHW14613.05111.02625.4531.0034.11WOATOM4911OHOHW1471.2069.60920.3001.0050.37WOATOM4914OHOHW148−8.3347.2055.9101.0050.55WOATOM4917OHOHW1492.9471.83836.5081.0046.93WOATOM4920OHOHW15021.572−18.16340.1271.0045.84WOATOM4923OHOHW1517.36517.38310.3151.0054.72WOATOM4926OHOHW1520.176−7.0174.0021.0044.22WOATOM4929OHOHW15319.0736.38037.2891.0031.56WOATOM4932OHOHW1545.20216.14534.7781.0054.68WOATOM4935OHOHW15523.7205.44113.4831.0032.64WOATOM4938OHOHW15616.4015.5557.2381.0036.23WOATOM4941OHOHW157−6.49814.76440.8451.0040.96WOATOM4944OHOHW15828.6000.254−2.1971.0053.63WOATOM4947OHOHW159−12.01832.21816.2851.0049.07WOATOM4950OHOHW1600.0865.37333.1011.0051.51WOATOM4953OHOHW1613.2748.58310.6491.0043.06WOATOM4956OHOHW16222.605−15.42314.5241.0041.77WOATOM4959OHOHW163−8.63018.1996.5401.0027.18WOATOM4962OHOHW164−8.686−8.5278.5371.0037.06WOATOM4965OHOHW16517.3565.561−7.2201.0041.21WOATOM4968OHOHW1663.07532.0087.8801.0040.35WOATOM4971OHOHW1671.1965.6174.1831.0045.38WOATOM4974OHOHW16817.656−7.86812.2091.0015.06WOATOM4977OHOHW1698.664−2.7709.6481.0017.79WOATOM4980OHOHW17016.8324.78718.6301.0023.56WOATOM4983OHOHW17125.819−2.20222.5511.0029.20WOATOM4986OHOHW17216.8376.48620.7981.0027.27WOATOM4989OHOHW17327.727−6.75723.6921.0026.70WOATOM4992OHOHW1742.13634.6848.3551.0027.14WOATOM4995OHOHW17514.492−0.33537.2621.0031.03WOATOM4998OHOHW176−3.745−17.15216.9431.0033.32WOATOM5001OHOHW177−1.756−18.15523.8131.0032.25WOATOM5004OHOHW17825.489−4.55428.6141.0023.71WOATOM5007OHOHW179−2.27420.476−0.3911.0028.26WOATOM5010OHOHW18015.514−22.08323.6131.0031.71WOATOM5013OHOHW181−1.046−11.41625.1401.0031.45WOATOM5016OHOHW182−2.63228.25321.0861.0032.74WOATOM5019OHOHW18311.904−19.34924.9061.0030.37WOATOM5022OHOHW18432.9982.7708.8181.0046.53WOATOM5025OHOHW18528.730−4.7304.5111.0041.03WOATOM5028OHOHW186−1.306−13.42123.4281.0030.60WOATOM5031OHOHW187−5.846−9.68522.2661.0042.87WOATOM5034OHOHW18818.729−2.1130.1351.0031.07WOATOM5037OHOHW18913.7624.26815.6011.0027.23WOATOM5040OHOHW19029.119−10.37225.1291.0031.33WOATOM5043OHOHW19118.260−17.08110.2901.0035.26WOATOM5046OHOHW192−1.716−21.18018.0161.0032.32WOATOM5049OHOHW19320.664−16.50713.2111.0032.95WOATOM5052OHOHW1947.9562.0157.8761.0033.80WOATOM5055OHOHW1954.01915.79917.1631.0033.98WOATOM5058OHOHW19610.942−21.6134.1101.0040.01WOATOM5061OHOHW19715.80824.51817.4421.0034.61WOATOM5064OHOHW198−15.81212.85634.5861.0057.34WOATOM5067OHOHW1994.936−12.5593.7261.0031.32WOATOM5070OHOHW20015.915−16.35031.1541.0040.13WOATOM5073OHOHW20110.572−13.6061.5691.0032.28WOATOM5076OHOHW20220.0857.99821.3831.0047.13WOATOM5079OHOHW203−1.727−3.5366.3111.0040.15WOATOM5082OHOHW20428.069−13.63922.4821.0038.00WOATOM5085OHOHW2052.4288.13033.4851.0056.76WOATOM5088OHOHW2064.1127.79619.6541.0043.60WOATOM5091OHOHW207−16.83218.51228.8671.0043.33WOATOM5094OHOHW2084.4386.67236.9921.0049.89WOATOM5097OHOHW20924.369−10.8920.0491.0036.67WOATOM5100OHOHW21020.567−12.27941.8401.0045.28WOATOM5103OHOHW21123.638−17.23822.6061.0038.24WOATOM5106OHOHW21222.5844.9866.3581.0040.70WOATOM5109OHOHW213−12.64913.31922.0681.0032.40WOATOM5112OHOHW2147.869−4.78037.5011.0043.91WOATOM5115OHOHW21522.264−16.12940.9971.0039.04WOATOM5118OHOHW2167.155−17.3362.3011.0039.75WOATOM5121OHOHW217−9.37410.6232.5811.0046.78WOATOM5124OHOHW218−9.8266.62411.4991.0034.26WOATOM5127OHOHW219−8.295−12.28720.2701.0039.42WOATOM5130OHOHW22022.830−14.12630.3721.0046.91WOATOM5133OHOHW221−3.84227.86625.6061.0034.41WOATOM5136OHOHW222−14.4737.00839.3651.0036.88WOATOM5139OHOHW223−13.75724.69633.1681.0042.28WOATOM5142OHOHW224−5.64416.69142.1051.0041.39WOATOM5145OHOHW22525.4975.41136.8981.0048.15WOATOM5148OHOHW22627.2835.5169.3171.0046.59WOATOM5151OHOHW22729.4984.4341.0201.0058.47WOATOM5154OHOHW2283.321−8.42531.4291.0043.70WOATOM5157OHOHW22924.117−15.19012.1991.0041.18WOATOM5160OHOHW23020.124−12.38937.7081.0036.53WOATOM5163OHOHW231−9.229−1.50121.2661.0028.25WOATOM5166OHOHW232−15.77925.29728.1691.0044.87WOATOM5169OHOHW233−0.796−15.49026.6711.0035.65WOATOM5172OHOHW234−7.53125.85228.1181.0039.03WOATOM5175OHOHW23521.3514.65237.1941.0034.74WOATOM5178OHOHW236−10.90811.8917.0211.0050.12WOATOM5181OHOHW23720.093−19.98539.6191.0041.48WOATOM5184OHOHW23816.9131.6360.1581.0057.66WOATOM5187OHOHW23924.550−11.78632.3611.0045.44WOATOM5190OHOHW2406.95112.06826.5951.0046.84WOATOM5193OHOHW241−2.37324.81615.7001.0032.54WOATOM5196OHOHW242−0.321−13.88529.0011.0046.53WOATOM5199OHOHW24311.563−21.03135.2831.0045.62WOATOM5202OHOHW24418.288−21.39623.7111.0035.24WOATOM5205OHOHW24522.670−5.732−1.7651.0040.51WOATOM5208OHOHW24612.161−20.48127.3781.0040.97WOATOM5211OHOHW24716.743−19.96416.8941.0046.39WOATOM5214OHOHW24819.872−15.77632.4531.0041.59WOATOM5217OHOHW249−14.12423.46620.5341.0045.11WOATOM5220OHOHW25029.5130.9525.8191.0051.70WOATOM5223OHOHW25118.691−2.03240.3761.0045.89WOATOM5226OHOHW25210.6871.887−7.8371.0042.18WOATOM5229OHOHW25312.119−2.579−7.0641.0040.90WOATOM5232OHOHW2545.11926.1622.7251.0046.48WOATOM5235OHOHW2551.48120.17333.8471.0038.28WOATOM5238OHOHW25610.5078.8620.0821.0042.31WOATOM5241OHOHW25725.7966.387−1.5771.0053.89WOATOM5244OHOHW25820.1851.064−1.8641.0046.15WOATOM5247OHOHW259−12.74225.52620.0101.0051.93WOATOM5250OHOHW26021.8878.25314.0361.0062.78WOATOM5253OHOHW261−10.68010.65533.0081.0044.00WOATOM5256OHOHW262−6.5748.50731.0161.0046.18WOATOM5259OHOHW2633.942−12.79533.0991.0040.21WOATOM5262OHOHW2641.01817.78733.4851.0038.43WOATOM5265OHOHW26526.8373.75328.5701.0046.62WOATOM5268OHOHW2667.159−23.0969.1131.0037.42WOATOM5271OHOHW26712.96013.4543.0681.0071.06WOATOM5274OHOHW26822.2829.25928.7121.0043.17WOATOM5277OHOHW2699.73817.17427.0401.0053.53WOATOM5280OHOHW27026.067−5.2310.1241.0040.20WOATOM5283OHOHW27118.92813.27529.7671.0052.97WOATOM5286OHOHW27210.32122.58614.8981.0067.97WOATOM5289OHOHW27316.890−16.44641.4441.0035.90WOATOM5292OHOHW2744.249−9.44533.7911.0035.65WOATOM5295OHOHW27515.8445.95214.4651.0036.89WOATOM5298OHOHW27613.813−22.67827.1501.0043.23WOATOM5301OHOHW27727.098−7.8311.7761.0040.66WOATOM5304OHOHW278−5.90622.74035.6971.0036.67WOATOM5307OHOHW279−5.273−16.48418.7831.0035.36WOATOM5310OHOHW280−11.5998.59610.8721.0040.55WOATOM5313OHOHW28117.2128.68919.4021.0043.11WOATOM5316OHOHW2824.80427.86029.1101.0043.16WOATOM5319OHOHW2835.08313.91018.4231.0042.13WOATOM5322OHOHW28411.63910.82918.6731.0047.09WOATOM5325OHOHW28510.9593.36012.8811.0043.06WOATOM5328OHOHW286−1.180−6.65829.9271.0052.21WOATOM5331OHOHW287−4.817−13.78518.3811.0038.59WOATOM5334OHOHW288−2.04610.93132.9231.0044.39WOATOM5337OHOHW28921.7429.75023.0571.0050.79WOATOM5340OHOHW29017.5956.00416.3131.0037.61WOATOM5343OHOHW29115.078−23.82521.6921.0053.24WOATOM5346OHOHW29210.040−2.67936.8591.0038.99WOATOM5349OHOHW29324.658−14.43928.4671.0042.29WOATOM5352OHOHW2942.4819.91923.0931.0052.30WOATOM5355OHOHW295−11.54410.1990.9511.0042.96WOATOM5358OHOHW2960.1084.6741.8851.0070.64WOATOM5361OHOHW297−4.402−12.59020.7521.0050.92WOATOM5364OHOHW29810.146−23.9736.6831.0053.06WOATOM5367OHOHW29919.627−20.26517.1381.0046.12WOATOM5370OHOHW3008.744−22.46011.9641.0054.32WOATOM5373OHOHW30119.047−5.541−3.2431.0045.72WOATOM5376OHOHW3023.891−3.64538.1061.0036.00WOATOM5379OHOHW303−2.492−8.22826.5531.0043.16WOATOM5382OHOHW304−1.716−13.27311.5771.0049.55WOATOM5385OHOHW30510.334−22.82832.2701.0049.07WOATOM5388OHOHW30614.64110.58319.9491.0045.35WOATOM5391OHOHW3078.0721.930−8.5361.0052.79WOATOM5394OHOHW308−9.0646.60024.2421.0040.71WOATOM5397OHOHW30911.964−1.09338.7271.0041.67WOATOM5400OHOHW31016.9964.8219.8881.0036.87WOATOM5403OHOHW31125.026−3.01531.5171.0057.41WOATOM5406OHOHW312−2.780−5.6827.2561.0046.09WOATOM5409OHOHW313−18.18511.92534.7591.0040.14WOATOM5412OHOHW31421.3255.331−1.2321.0052.23WOATOM5415OHOHW31513.2893.17513.7541.0036.05WOATOM5418OHOHW31620.567−14.51215.2991.0028.60WOATOM5421OHOHW3176.126−23.28115.3251.0031.62WOATOM5424OHOHW3187.810−24.32113.7081.0046.04WOATOM5427OHOHW31920.804−18.28318.3201.0047.41WOATOM5430OHOHW32022.8344.861−3.3741.0052.99WOATOM5433OHOHW321−2.96612.6130.2881.0049.85WOATOM5436OHOHW322−8.7361.59229.6741.0045.84WOATOM5439OHOHW32314.053−21.77535.8651.0041.60WOATOM5442OHOHW324−2.109−10.63611.8441.0034.80WOATOM5445OHOHW325−0.6386.88514.4051.0048.19WOATOM5448OHOHW32629.870−5.48924.3921.0050.31WOATOM5451OHOHW32726.074−16.48927.4231.0061.10WOATOM5454OHOHW328−11.6328.05124.0141.0056.95WOATOM5457OHOHW3297.912−20.60514.4621.0044.67WOATOM5460OHOHW33027.064−13.87127.1671.0047.91WOATOM5463OHOHW331−2.71411.537−2.2221.0050.23WOATOM5466OHOHW332−8.002−16.20918.0451.0034.96WOATOM5469OHOHW33333.966−9.39732.7781.0054.54WOATOM5472OHOHW3347.173−25.5047.2251.0053.06WOATOM5475OHOHW33515.475−20.06336.2781.0048.34WOATOM5478OHOHW3366.6196.42238.5251.0043.03WOATOM5481OHOHW337−1.9748.93715.6471.0063.54WOATOM5484OHOHW3384.7907.73512.5791.0038.37WOATOM5487OHOHW339−13.98917.11722.1151.0051.92WOATOM5490OHOHW340−10.02412.5539.2381.0042.11WOATOM5493OHOHW341−13.2597.92126.1391.0042.31WOATOM5496OHOHW342−8.537−13.41318.2171.0049.82WOATOM5499OHOHW343−12.27213.41115.5261.0051.61WOATOM5502OHOHW344−3.611−14.13022.7441.0045.31WOATOM5505OHOHW34516.070−1.755−1.6661.0035.48WOATOM5508OHOHW34611.46120.22327.2931.0052.83WOATOM5511OHOHW3476.322−4.05839.6201.0046.01WOATOM5514OHOHW34812.39519.99620.6661.0048.20WOATOM5517OHOHW34911.3596.167−7.5321.0048.83WOATOM5520OHOHW35022.7640.70840.8691.0054.11WOATOM5523OHOHW351−5.503−18.37915.4621.0040.42WOATOM5526OHOHW352−0.473−15.08512.9151.0068.33WOATOM5529OHOHW35320.340−10.91239.8031.0045.04WOATOM5532OHOHW3546.55016.36832.0411.0065.13WOATOM5535OHOHW355−1.548−11.77827.8061.0057.13WOEND









TABLE 2










REMARK Written by DEALPDB Version 1.13 (06/02)


REMARK Thu Jan 23 14:56:07 2003









HEADER
----
XX-XXX-XX  xxxx








COMPND
---









REMARK
3



REMARK
3
REFINEMENT.










REMARK
3
PROGRAM
: REFMAC 5.1.25


REMARK
3
AUTHORS
: MURSHUDOV, VAGIN, DODSON


REMARK
3









REMARK
3
REFINEMENT TARGET : MAXIMUM LIKELIHOOD


REMARK
3









REMARK
3
DATA USED IN REFINEMENT.













REMARK
3
RESOLUTION RANGE HIGH
(ANGSTROMS)
:
1.80



REMARK
3
RESOLUTION RANGE LOW
(ANGSTROMS)
:
81.65


REMARK
3
DATA CUTOFF
(SIGMA (F))
:
NONE


REMARK
3
COMPLETENESS FOR RANGE
(%)
:
99.77


REMARK
3
NUMBER OF REFLECTIONS

:
24820


REMARK
3









REMARK
3
FIT TO DATA USED IN REFINEMENT.












REMARK
3
CROSS-VALIDATION METHOD
:
THROUGHOUT



REMARK
3
FREE R VALUE TEST SET SELECTION
:
RANDOM













REMARK
3
R VALUE
(WORKING + TEST SET)
:
0.18829



REMARK
3
R VALUE
(WORKING SET)
:
0.18620












REMARK
3
FREE R VALUE
:
0.22809














REMARK
3
FREE R VALUE TEST SET SIZE
(%)
:
5.1













REMARK
3
FREE R VALUE TEST SET COUNT
:
1327



REMARK
3









REMARK
3
FIT IN THE HIGHEST RESOLUTION BIN.












REMARK
3
TOTAL NUMBER OF BINS USED
:
20



REMARK
3
BIN RESOLUTION RANGE HIGH
:
1.800


REMARK
3
BIN RESOLUTION RANGE LOW
:
1.847













REMARK
3
REFLECTION IN BIN
(WORKING SET)
:
1749



REMARK
3
BIN R VALUE
(WORKING SET)
:
0.242












REMARK
3
BIN FREE R VALUE SET COUNT
:
90



REMARK
3
BIN FREE R VALUE
:
0.288


REMARK
3









REMARK
3
NUMBER OF NON-HYDROGEN ATOMS USED IN REFINEMENT.












REMARK
3
ALL ATOMS
:
2507










REMARK
3



REMARK
3
B VALUES.











REMARK
3
FROM WILSON PLOT
(A**2):
NULL


REMARK
3
MEAN B VALUE
(OVERALL, A**2):
17.218









REMARK
3
OVERALL ANISOTROPIC B VALUE.











REMARK
3
B11 (A**2) :
−0.09



REMARK
3
B22 (A**2) :
0.14


REMARK
3
B33 (A**2) :
−0.04


REMARK
3
B12 (A**2) :
0.00


REMARK
3
B13 (A**2) :
−0.02


REMARK
3
B23 (A**2) :
0.00


REMARK
3









REMARK
3
ESTIMATED OVERALL COORDINATE ERROR.











REMARK
3
ESU BASED ON R VALUE
(A):
0.141


REMARK
3
ESU BASED ON FREE R VALUE
(A):
0.133


REMARK
3
ESU BASED ON MAXIMUM LIKELIHOOD
(A):
0.082










REMARK
3
ESU FOR B VALUES BASED ON MAXIMUM LIKELIHOOD (A**2):
2.620









REMARK
3












REMARK
3
CORRELATION COEFFICIENTS.




REMARK
3
CORRELATION COEFFICIENT FO-FC :
0.948


REMARK
3
CORRELATION COEFFICIENT FO-FC FREE :
0.929









REMARK
3













REMARK
3
RMS DEVIATIONS FROM IDEAL VALUES
COUNT
RMS
WEIGHT













REMARK
3
BOND LENGTHS REFINED ATOMS
(A) :
2310;
0.010;
0.022


REMARK
3
BOND LENGTHS OTHERS
(A) :
2097;
0.002;
0.020













REMARK
3
BOND ANGLES REFINED ATOMS
(DEGREES) :
3134;
1.372;
1.981


REMARK
3
BOND ANGLES OTHERS
(DEGREES) :
4890;
0.790;
3.000


REMARK
3
TORSION ANGLES, PERIOD 1
(DEGREES) :
 272;
5.281;
5.000













REMARK
3
CHIRAL-CENTER RESTRAINTS
(A**3) :
 344;
0.076;
0.200


REMARK
3
GENERAL PLANES REFINED ATOMS
(A) :
2489;
0.005;
0.020


REMARK
3
GENERAL PLANES OTHERS
(A) :
 465;
0.002;
0.020













REMARK
3
NON-BONDED CONTACTS REFINED
(A) :
 475;
0.205;
0.200




ATOMS


REMARK
3
NON-BONDED CONTACTS OTHERS
(A) :
2364;
0.223;
0.200


REMARK
3
NON-BONDED TORSION OTHERS
(A) :
1222;
0.081;
0.200


REMARK
3
H-BOND (X...Y) REFINED ATOMS
(A) :
 147;
0.162;
0.200


REMARK
3
SYMMETRY VDW REFINED ATOMS
(A) :
 21;
0.168;
0.200


REMARK
3
SYMMETRY VDW OTHERS
(A) :
 86;
0.250;
0.200


REMARK
3
SYMMETRY H-BOND REFINED ATOMS
(A) :
 14;
0.111;
0.200


REMARK
3












REMARK
3
ISOTROPIC THERMAL FACTOR RESTRAINTS.
COUNT
RMS
WEIGHT













REMARK
3
MAIN-CHAIN BOND REFINED
(A**2) :
1365;
0.818;
1.500




ATOMS


REMARK
3
MAIN-CHAIN ANGLE REFINED
(A**2) :
2224;
1.568;
2.000




ATOMS


REMARK
3
SIDE-CHAIN BOND REFINED
(A**2) :
 945;
2.206;
3.000




ATOMS


REMARK
3
SIDE-CHAIN ANGLE REFINED
(A**2) :
 910;
3.668;
4.500




ATOMS


REMARK
3









REMARK
3
NCS RESTRAINTS STATISTICS









REMARK
3
NUMBER OF NCS GROUPS: NULL


REMARK
3


REMARK
3









REMARK
3
TLS DETAILS


REMARK
3
NUMBER OF TLS GROUPS  :  1


REMARK
3


REMARK
3
TLS GROUP  :  1









REMARK
3
NUMBER OF COMPONENTS GROUP  :  1


REMARK
3
COMPONENTS  C SSSEQI  TO  C SSSEQI


REMARK
3
RESIDUE RANGE  :  A  419  A  691


REMARK
3
ORIGIN FOR THE GROUP (A):  6.9620  1.7680   19.1340


REMARK
3
T TENSOR













REMARK
3
T11:
0.0048
T22:
0.0352



REMARK
3
T33:
0.0580
T12:
−0.0119


REMARK
3
T13:
−0.0081
T23:
0.0084









REMARK
3
L TENSOR













REMARK
3
L11:
0.3962
L22:
0.3784



REMARK
3
L33:
0.2902
L12:
−0.1647


REMARK
3
L13:
0.0731
L23:
0.0592









REMARK
3
S TENSOR















REMARK
3
S11:
−0.0145
S12:
0.0246
S13:
0.0170



REMARK
3
S21:
0.0077
S22:
0.0410
S23:
0.0381


REMARK
3
S31:
−0.0159
S32:
0.0355
S33:
−0.0265


REMARK
3


REMARK
3









REMARK
3
BULK SOLVENT MODELLING.









REMARK
3
METHOD USED  :  BABINET MODEL WITH MASK


REMARK
3
PARAMETERS FOR MASK CALCULATION


REMARK
3
VDW PROBE RADIUS  :  1.40


REMARK
3
ION PROBE RADIUS   :  0.80


REMARK
3
SHRINKAGE RADIUS  :  0.80


REMARK
3









REMARK
3
OTHER REFINEMENT REMARKS:


REMARK
3
HYDROGENS HAVE BEEN ADDED IN THE RIDING POSITIONS


REMARK
3








CRYST1
37.316 46.978 81.109 90.00 92.83 90.00 P 1 21 1












SCALE1
0.026798
0.000000
0.001323
0.00000



SCALE2
0.000000
0.021287
0.000000
0.00000


SCALE3
0.000000
0.000000
0.012344
0.00000



















ATOM
1
N
MET
A
419
−17.724
15.274
26.545
1.00
41.92
A
N


ATOM
3
CA
MET
A
419
−16.798
15.014
25.404
1.00
41.87
A
C


ATOM
5
CB
MET
A
419
−17.513
15.303
24.075
1.00
42.37
A
C


ATOM
8
CG
MET
A
419
−18.905
14.692
23.955
1.00
44.21
A
C


ATOM
11
SD
MET
A
419
−18.872
12.884
23.783
1.00
48.64
A
S


ATOM
12
CE
MET
A
419
−19.036
12.354
25.521
1.00
47.82
A
C


ATOM
16
C
MET
A
419
−15.527
15.875
25.505
1.00
40.85
A
C


ATOM
17
O
MET
A
419
−14.857
16.115
24.495
1.00
41.39
A
O


ATOM
20
N
ILE
A
420
−15.200
16.322
26.719
1.00
39.21
A
N


ATOM
22
CA
ILE
A
420
−14.050
17.208
26.982
1.00
37.79
A
C


ATOM
24
CB
ILE
A
420
−12.697
16.519
26.689
1.00
37.82
A
C


ATOM
26
CG1
ILE
A
420
−12.557
15.240
27.512
1.00
38.41
A
C


ATOM
29
CD1
ILE
A
420
−11.209
14.556
27.348
1.00
38.81
A
C


ATOM
33
CG2
ILE
A
420
−11.539
17.494
26.996
1.00
37.64
A
C


ATOM
37
C
ILE
A
420
−14.081
18.526
26.218
1.00
36.12
A
C


ATOM
38
O
ILE
A
420
−13.850
18.561
25.013
1.00
36.25
A
O


ATOM
39
N
ALA
A
421
−14.316
19.613
26.935
1.00
34.13
A
N


ATOM
41
CA
ALA
A
421
−14.207
20.936
26.356
1.00
32.57
A
C


ATOM
43
CB
ALA
A
421
−15.126
21.909
27.076
1.00
32.58
A
C


ATOM
47
C
ALA
A
421
−12.762
21.394
26.457
1.00
31.11
A
C


ATOM
48
O
ALA
A
421
−12.009
20.935
27.315
1.00
30.48
A
O


ATOM
49
N
ARG
A
422
−12.385
22.305
25.572
1.00
29.35
A
N


ATOM
51
CA
ARG
A
422
−11.069
22.917
25.610
1.00
28.21
A
C


ATOM
53
CB
ARG
A
422
−10.957
23.974
24.506
1.00
28.08
A
C


ATOM
56
CG
ARG
A
422
−9.542
24.501
24.279
1.00
27.30
A
C


ATOM
59
CD
ARG
A
422
−9.471
25.640
23.289
1.00
25.94
A
C


ATOM
62
NE
ARG
A
422
−10.069
25.288
22.005
1.00
25.59
A
N


ATOM
64
CZ
ARG
A
422
−9.474
24.572
21.057
1.00
24.52
A
C


ATOM
65
NH1
ARG
A
422
−8.241
24.095
21.225
1.00
22.64
A
N


ATOM
68
NH2
ARG
A
422
−10.124
24.320
19.932
1.00
24.29
A
N


ATOM
71
C
ARG
A
422
−10.773
23.535
26.985
1.00
27.22
A
C


ATOM
72
O
ARG
A
422
−9.632
23.519
27.435
1.00
26.74
A
O


ATOM
73
N
GLU
A
423
−11.808
24.051
27.652
1.00
26.08
A
N


ATOM
75
CA
GLU
A
423
−11.674
24.666
28.979
1.00
25.78
A
C


ATOM
77
CB
GLU
A
423
−13.012
25.237
29.474
1.00
26.29
A
C


ATOM
80
CG
GLU
A
423
−13.662
26.233
28.552
1.00
28.01
A
C


ATOM
83
CD
GLU
A
423
−14.629
25.584
27.583
1.00
29.62
A
C


ATOM
84
OE1
GLU
A
423
−14.183
25.287
26.450
1.00
28.40
A
O


ATOM
85
OE2
GLU
A
423
−15.823
25.382
27.960
1.00
30.82
A
O


ATOM
86
C
GLU
A
423
−11.224
23.675
30.040
1.00
24.55
A
C


ATOM
87
O
GLU
A
423
−10.636
24.070
31.034
1.00
24.25
A
O


ATOM
88
N
ASP
A
424
−11.550
22.401
29.843
1.00
23.65
A
N


ATOM
90
CA
ASP
A
424
−11.151
21.351
30.778
1.00
23.18
A
C


ATOM
92
CB
ASP
A
424
−11.925
20.056
30.503
1.00
23.13
A
C


ATOM
95
CG
ASP
A
424
−13.436
20.219
30.670
1.00
25.17
A
C


ATOM
96
OD1
ASP
A
424
−13.848
21.127
31.427
1.00
26.20
A
O


ATOM
97
OD2
ASP
A
424
−14.276
19.481
30.095
1.00
26.16
A
O


ATOM
98
C
ASP
A
424
−9.639
21.067
30.742
1.00
22.42
A
C


ATOM
99
O
ASP
A
424
−9.148
20.360
31.606
1.00
21.99
A
O


ATOM
100
N
VAL
A
425
−8.920
21.606
29.752
1.00
21.44
A
N


ATOM
102
CA
VAL
A
425
−7.488
21.342
29.592
1.00
21.23
A
C


ATOM
104
CB
VAL
A
425
−7.184
20.639
28.249
1.00
21.09
A
C


ATOM
106
CG1
VAL
A
425
−5.678
20.393
28.092
1.00
21.37
A
C


ATOM
110
CG2
VAL
A
425
−7.963
19.337
28.133
1.00
20.93
A
C


ATOM
114
C
VAL
A
425
−6.715
22.641
29.649
1.00
21.24
A
C


ATOM
115
O
VAL
A
425
−6.957
23.541
28.836
1.00
21.03
A
O


ATOM
116
N
VAL
A
426
−5.824
22.742
30.631
1.00
20.75
A
N


ATOM
118
CA
VAL
A
426
−4.965
23.894
30.830
1.00
21.32
A
C


ATOM
120
CB
VAL
A
426
−4.992
24.367
32.300
1.00
21.30
A
C


ATOM
122
CG1
VAL
A
426
−4.044
25.545
32.514
1.00
22.52
A
C


ATOM
126
CG2
VAL
A
426
−6.415
24.743
32.718
1.00
21.78
A
C


ATOM
130
C
VAL
A
426
−3.522
23.530
30.466
1.00
21.27
A
C


ATOM
131
O
VAL
A
426
−2.931
22.621
31.046
1.00
20.65
A
O


ATOM
132
N
LEU
A
427
−2.960
24.253
29.509
1.00
21.37
A
N


ATOM
134
CA
LEU
A
427
−1.585
24.024
29.079
1.00
21.38
A
C


ATOM
136
CB
LEU
A
427
−1.413
24.387
27.593
1.00
21.39
A
C


ATOM
139
CG
LEU
A
427
−2.428
23.797
26.603
1.00
21.09
A
C


ATOM
141
CD1
LEU
A
427
−2.214
24.341
25.191
1.00
21.00
A
C


ATOM
145
CD2
LEU
A
427
−2.399
22.267
26.592
1.00
20.75
A
C


ATOM
149
C
LEU
A
427
−0.626
24.841
29.931
1.00
22.15
A
C


ATOM
150
O
LEU
A
427
−0.819
26.043
30.102
1.00
21.62
A
O


ATOM
151
N
ASN
A
428
0.413
24.189
30.448
1.00
22.43
A
N


ATOM
153
CA
ASN
A
428
1.416
24.834
31.311
1.00
23.45
A
C


ATOM
155
CB
ASN
A
428
1.710
23.923
32.508
1.00
23.76
A
C


ATOM
158
CG
ASN
A
428
0.458
23.579
33.293
1.00
26.13
A
C


ATOM
159
OD1
ASN
A
428
0.301
22.454
33.774
1.00
30.61
A
O


ATOM
160
ND2
ASN
A
428
−0.455
24.536
33.400
1.00
28.03
A
N


ATOM
163
C
ASN
A
428
2.728
25.192
30.611
1.00
23.29
A
C


ATOM
164
O
ASN
A
428
3.316
26.231
30.907
1.00
23.11
A
O


ATOM
165
N
ARG
A
429
3.217
24.316
29.732
1.00
23.23
A
N


ATOM
167
CA
ARG
A
429
4.438
24.593
28.965
1.00
23.80
A
C


ATOM
169
CB
ARG
A
429
5.678
24.419
29.846
1.00
24.47
A
C


ATOM
172
CG
ARG
A
429
5.945
22.999
30.298
1.00
26.49
A
C


ATOM
175
CD
ARG
A
429
7.254
22.845
31.078
1.00
30.54
A
C


ATOM
178
NE
ARG
A
429
7.866
21.544
30.824
1.00
34.08
A
N


ATOM
180
CZ
ARG
A
429
8.873
21.315
29.980
1.00
35.96
A
C


ATOM
181
NH1
ARG
A
429
9.438
22.308
29.290
1.00
36.94
A
N


ATOM
184
NH2
ARG
A
429
9.330
20.077
29.838
1.00
36.82
A
N


ATOM
187
C
ARG
A
429
4.596
23.731
27.715
1.00
23.63
A
C


ATOM
188
O
ARG
A
429
3.847
22.785
27.506
1.00
22.57
A
O


ATOM
189
N
ILE
A
430
5.592
24.053
26.895
1.00
23.59
A
N


ATOM
191
CA
ILE
A
430
5.901
23.258
25.711
1.00
24.18
A
C


ATOM
193
CB
ILE
A
430
6.382
24.161
24.535
1.00
24.28
A
C


ATOM
195
CG1
ILE
A
430
5.211
25.021
24.046
1.00
24.59
A
C


ATOM
198
CD1
ILE
A
430
5.513
25.900
22.844
1.00
23.92
A
C


ATOM
202
CG2
ILE
A
430
6.967
23.305
23.398
1.00
24.51
A
C


ATOM
206
C
ILE
A
430
6.914
22.169
26.036
1.00
25.15
A
C


ATOM
207
O
ILE
A
430
7.978
22.435
26.594
1.00
25.52
A
O


ATOM
208
N
LEU
A
431
6.555
20.940
25.683
1.00
26.06
A
N


ATOM
210
CA
LEU
A
431
7.351
19.745
25.935
1.00
27.29
A
C


ATOM
212
CB
LEU
A
431
6.411
18.533
25.929
1.00
27.83
A
C


ATOM
215
CG
LEU
A
431
6.627
17.314
26.814
1.00
29.05
A
C


ATOM
217
CD1
LEU
A
431
7.002
17.675
28.242
1.00
29.90
A
C


ATOM
221
CD2
LEU
A
431
5.346
16.505
26.789
1.00
29.38
A
C


ATOM
225
C
LEU
A
431
8.423
19.572
24.863
1.00
28.18
A
C


ATOM
226
O
LEU
A
431
9.582
19.243
25.149
1.00
28.38
A
O


ATOM
227
N
GLY
A
432
8.024
19.793
23.620
1.00
28.92
A
N


ATOM
229
CA
GLY
A
432
8.932
19.691
22.500
1.00
29.66
A
C


ATOM
232
C
GLY
A
432
8.267
19.963
21.166
1.00
30.32
A
C


ATOM
233
O
GLY
A
432
7.040
20.023
21.065
1.00
29.86
A
O


ATOM
234
N
GLU
A
433
9.096
20.144
20.144
1.00
31.32
A
N


ATOM
236
CA
GLU
A
433
8.636
20.260
18.767
1.00
32.42
A
C


ATOM
238
CB
GUU
A
433
9.600
21.120
17.946
1.00
33.03
A
C


ATOM
241
CG
GLU
A
433
9.426
21.056
16.433
1.00
35.97
A
C


ATOM
244
CD
GLU
A
433
8.136
21.696
15.966
1.00
39.52
A
C


ATOM
245
OE1
GLU
A
433
7.078
21.062
16.142
1.00
41.45
A
O


ATOM
246
OE2
GUU
A
433
8.178
22.828
15.417
1.00
43.45
A
O


ATOM
247
C
GLU
A
433
8.559
18.853
18.200
1.00
32.62
A
C


ATOM
248
O
GLU
A
433
9.584
18.218
17.959
1.00
33.07
A
O


ATOM
249
N
GLY
A
434
7.341
18.364
18.027
1.00
32.46
A
N


ATOM
251
CA
GLY
A
434
7.110
17.080
17.411
1.00
32.53
A
C


ATOM
254
C
GLY
A
434
6.926
17.141
15.904
1.00
32.66
A
C


ATOM
255
O
GLY
A
434
7.033
18.193
15.266
1.00
32.19
A
O


ATOM
256
N
PHE
A
435
6.619
15.974
15.353
1.00
32.83
A
N


ATOM
258
CA
PHE
A
435
6.413
15.765
13.926
1.00
32.68
A
C


ATOM
260
CB
PHE
A
435
6.032
14.294
13.703
1.00
33.30
A
C


ATOM
263
CG
PHE
A
435
6.016
13.890
12.267
1.00
35.29
A
C


ATOM
264
CD1
PHE
A
435
7.202
13.628
11.601
1.00
37.64
A
C


ATOM
266
CE1
PHE
A
435
7.197
13.260
10.263
1.00
38.62
A
C


ATOM
268
CZ
PHE
A
435
6.000
13.162
9.582
1.00
38.93
A
C


ATOM
270
CE2
PHE
A
435
4.807
13.434
10.236
1.00
38.98
A
C


ATOM
272
CD2
PHE
A
435
4.821
13.794
11.575
1.00
36.99
A
C


ATOM
274
C
PHE
A
435
5.330
16.662
13.319
1.00
31.77
A
C


ATOM
275
O
PHE
A
435
5.533
17.269
12.262
1.00
31.44
A
O


ATOM
276
N
PHE
A
436
4.178
16.734
13.982
1.00
30.64
A
N


ATOM
278
CA
PHE
A
436
3.030
17.476
13.465
1.00
29.83
A
C


ATOM
280
CB
PHE
A
436
1.716
16.792
13.880
1.00
30.65
A
C


ATOM
283
CG
PHE
A
436
1.425
15.511
13.114
1.00
33.59
A
C


ATOM
284
CD1
PHE
A
436
0.993
15.554
11.791
1.00
36.89
A
C


ATOM
286
CE1
PHE
A
436
0.731
14.368
11.076
1.00
38.35
A
C


ATOM
288
CZ
PHE
A
436
0.917
13.136
11.692
1.00
38.06
A
C


ATOM
290
CE2
PHE
A
436
1.354
13.086
13.006
1.00
37.74
A
C


ATOM
292
CD2
PHE
A
436
1.608
14.268
13.709
1.00
36.81
A
C


ATOM
294
C
PHE
A
436
3.036
18.949
13.904
1.00
27.92
A
C


ATOM
295
O
PHE
A
436
2.435
19.783
13.242
1.00
26.90
A
O


ATOM
296
N
GLY
A
437
3.713
19.242
15.021
1.00
25.85
A
N


ATOM
298
CA
GLY
A
437
3.773
20.582
15.598
1.00
24.35
A
C


ATOM
301
C
GLY
A
437
4.152
20.555
17.076
1.00
23.03
A
C


ATOM
302
O
GLY
A
437
4.635
19.549
17.596
1.00
22.52
A
O


ATOM
303
N
GLU
A
438
3.912
21.660
17.774
1.00
21.56
A
N


ATOM
305
CA
GLU
A
438
4.295
21.761
19.176
1.00
20.35
A
C


ATOM
307
CB
GLU
A
438
4.114
23.191
19.694
1.00
20.82
A
C


ATOM
310
CG
GLU
A
438
4.921
24.235
18.922
1.00
23.31
A
C


ATOM
313
CD
GLU
A
438
6.325
24.443
19.459
1.00
26.75
A
C


ATOM
314
OE1
GLU
A
438
6.960
23.454
19.896
1.00
24.49
A
O


ATOM
315
OE2
GLU
A
438
6.792
25.611
19.446
1.00
29.56
A
O


ATOM
316
C
GLU
A
438
3.473
20.781
20.016
1.00
18.49
A
C


ATOM
317
O
GLU
A
438
2.306
20.552
19.744
1.00
17.45
A
O


ATOM
318
N
VAL
A
439
4.124
20.199
21.017
1.00
17.29
A
N


ATOM
320
CA
VAL
A
439
3.498
19.315
21.986
1.00
16.28
A
C


ATOM
322
CB
VAL
A
439
4.183
17.933
22.024
1.00
16.57
A
C


ATOM
324
CG1
VAL
A
439
3.516
17.038
23.065
1.00
17.25
A
C


ATOM
328
CG2
VAL
A
439
4.141
17.301
20.643
1.00
16.55
A
C


ATOM
332
C
VAL
A
439
3.623
19.974
23.350
1.00
15.68
A
C


ATOM
333
O
VAL
A
439
4.705
20.380
23.732
1.00
14.39
A
O


ATOM
334
N
TYR
A
440
2.508
20.084
24.068
1.00
14.79
A
N


ATOM
336
CA
TYR
A
440
2.447
20.789
25.345
1.00
14.71
A
C


ATOM
338
CB
TYR
A
440
1.269
21.749
25.334
1.00
14.65
A
C


ATOM
341
CG
TYR
A
440
1.348
22.842
24.301
1.00
15.25
A
C


ATOM
342
CD1
TYR
A
440
1.809
24.110
24.639
1.00
16.36
A
C


ATOM
344
CE1
TYR
A
440
1.860
25.135
23.691
1.00
16.17
A
C


ATOM
346
CZ
TYR
A
440
1.436
24.895
22.395
1.00
18.28
A
C


ATOM
347
OH
TYR
A
440
1.490
25.905
21.453
1.00
20.25
A
O


ATOM
349
CE2
TYR
A
440
0.967
23.644
22.038
1.00
16.17
A
C


ATOM
351
CD2
TYR
A
440
0.916
22.630
22.994
1.00
14.61
A
C


ATOM
353
C
TYR
A
440
2.228
19.817
26.479
1.00
15.34
A
C


ATOM
354
O
TYR
A
440
1.608
18.765
26.270
1.00
15.00
A
O


ATOM
355
N
GLU
A
441
2.723
20.168
27.669
1.00
15.04
A
N


ATOM
357
CA
GLU
A
441
2.340
19.514
28.921
1.00
16.43
A
C


ATOM
359
CB
GLU
A
441
3.513
19.470
29.916
1.00
17.43
A
C


ATOM
362
CG
GLU
A
441
3.244
18.575
31.117
1.00
21.96
A
C


ATOM
365
CD
GLU
A
441
4.331
18.631
32.173
1.00
28.06
A
C


ATOM
366
OE1
GLU
A
441
5.533
18.478
31.828
1.00
31.85
A
O


ATOM
367
OE2
GLU
A
441
3.975
18.829
33.361
1.00
32.28
A
O


ATOM
368
C
GLU
A
441
1.196
20.317
29.514
1.00
15.91
A
C


ATOM
369
O
GLU
A
441
1.205
21.549
29.457
1.00
15.73
A
O


ATOM
370
N
GLY
A
442
0.214
19.627
30.074
1.00
15.38
A
N


ATOM
372
CA
GLY
A
442
−0.938
20.279
30.679
1.00
15.56
A
C


ATOM
375
C
GLY
A
442
−1.686
19.408
31.671
1.00
15.46
A
C


ATOM
376
O
GLY
A
442
−1.266
18.295
31.998
1.00
14.91
A
O


ATOM
377
N
VAL
A
443
−2.799
19.937
32.159
1.00
15.90
A
N


ATOM
379
CA
VAL
A
443
−3.655
19.250
33.120
1.00
15.95
A
C


ATOM
381
CB
VAL
A
443
−3.585
19.926
34.515
1.00
15.99
A
C


ATOM
383
CG1
VAL
A
443
−4.535
19.256
35.486
1.00
16.92
A
C


ATOM
387
CG2
VAL
A
443
−2.159
19.901
35.054
1.00
16.66
A
C


ATOM
391
C
VAL
A
443
−5.088
19.235
32.606
1.00
16.11
A
C


ATOM
392
O
VAL
A
443
−5.677
20.280
32.328
1.00
16.39
A
O


ATOM
393
N
TYR
A
444
−5.645
18.039
32.474
1.00
16.07
A
N


ATOM
395
CA
TYR
A
444
−7.053
17.833
32.189
1.00
16.30
A
C


ATOM
397
CB
TYR
A
444
−7.210
16.696
31.179
1.00
16.55
A
C


ATOM
400
CG
TYR
A
444
−8.608
16.106
31.085
1.00
16.49
A
C


ATOM
401
CD1
TYR
A
444
−9.735
16.925
30.992
1.00
17.40
A
C


ATOM
403
CE1
TYR
A
444
−11.002
16.376
30.907
1.00
18.98
A
C


ATOM
405
CZ
TYR
A
444
−11.159
15.013
30.900
1.00
19.67
A
C


ATOM
406
OH
TYR
A
444
−12.417
14.454
30.818
1.00
22.12
A
O


ATOM
408
CE2
TYR
A
444
−10.066
14.189
30.992
1.00
18.71
A
C


ATOM
410
CD2
TYR
A
444
−8.801
14.737
31.070
1.00
18.30
A
C


ATOM
412
C
TYR
A
444
−7.828
17.530
33.495
1.00
16.91
A
C


ATOM
413
O
TYR
A
444
−7.500
16.593
34.223
1.00
16.06
A
O


ATOM
414
N
THR
A
445
−8.845
18.338
33.779
1.00
17.53
A
N


ATOM
416
CA
THR
A
445
−9.703
18.146
34.944
1.00
18.31
A
C


ATOM
418
CB
THR
A
445
−9.911
19.475
35.684
1.00
18.17
A
C


ATOM
420
OG1
THR
A
445
−8.651
20.045
36.030
1.00
19.23
A
O


ATOM
422
CG2
THR
A
445
−10.578
19.262
37.044
1.00
18.29
A
C


ATOM
426
C
THR
A
445
−11.032
17.632
34.430
1.00
19.18
A
C


ATOM
427
O
THR
A
445
−11.702
18.345
33.694
1.00
19.17
A
O


ATOM
428
N
ASN
A
466
−11.402
16.403
34.791
1.00
19.93
A
N


ATOM
430
CA
ASN
A
466
−12.665
15.825
34.351
1.00
21.09
A
C


ATOM
432
CB
ASN
A
466
−12.617
14.266
34.318
1.00
21.05
A
C


ATOM
435
CG
ASN
A
466
−12.502
13.602
35.704
1.00
21.28
A
C


ATOM
436
OD1
ASN
A
466
−12.158
12.407
35.796
1.00
22.39
A
O


ATOM
437
ND2
ASN
A
466
−12.778
14.345
36.766
1.00
18.07
A
N


ATOM
440
C
ASN
A
466
−13.831
16.414
35.163
1.00
22.07
A
C


ATOM
441
O
ASN
A
466
−13.646
17.396
35.907
1.00
22.06
A
O


ATOM
442
N
HIS
A
447
−15.025
15.861
34.999
1.00
23.22
A
N


ATOM
444
CA
HIS
A
447
−16.215
16.466
35.621
1.00
24.56
A
C


ATOM
446
CB
HIS
A
447
−17.479
16.009
34.878
1.00
25.52
A
C


ATOM
449
CG
HIS
A
447
−17.560
16.535
33.474
1.00
28.90
A
C


ATOM
450
ND1
HIS
A
447
−17.485
17.879
33.177
1.00
32.01
A
N


ATOM
452
CE1
HIS
A
447
−17.581
18.047
31.869
1.00
32.90
A
C


ATOM
454
NE2
HIS
A
447
−17.712
16.859
31.306
1.00
33.63
A
N


ATOM
456
CD2
HIS
A
447
−17.703
15.896
32.289
1.00
32.36
A
C


ATOM
458
C
HIS
A
447
−16.323
16.121
37.113
1.00
24.17
A
C


ATOM
459
O
HIS
A
447
−17.141
16.715
37.819
1.00
24.60
A
O


ATOM
460
N
LYS
A
488
−15.513
15.168
37.575
1.00
23.56
A
N


ATOM
462
CA
LYS
A
488
−15.440
14.802
38.994
1.00
23.13
A
C


ATOM
464
CB
LYS
A
488
−15.188
13.302
39.137
1.00
23.02
A
C


ATOM
467
CG
LYS
A
488
−16.354
12.461
38.679
1.00
23.56
A
C


ATOM
470
CD
LYS
A
488
−15.916
11.043
38.364
1.00
24.68
A
C


ATOM
473
CE
LYS
A
488
−17.090
10.180
37.907
1.00
25.53
A
C


ATOM
476
NZ
LYS
A
488
−16.689
8.742
37.931
1.00
23.92
A
N


ATOM
480
C
LYS
A
488
−14.353
15.561
39.758
1.00
22.72
A
C


ATOM
481
O
LYS
A
488
−14.197
15.369
40.974
1.00
23.18
A
O


ATOM
482
N
GLY
A
449
−13.606
16.401
39.048
1.00
21.47
A
N


ATOM
484
CA
GLY
A
449
−12.580
17.234
39.648
1.00
21.53
A
C


ATOM
487
C
GLY
A
449
−11.237
16.542
39.729
1.00
21.19
A
C


ATOM
488
O
GLY
A
449
−10.319
17.047
40.366
1.00
20.74
A
O


ATOM
489
N
GLU
A
450
−11.127
15.386
39.080
1.00
20.98
A
N


ATOM
491
CA
GLU
A
450
−9.879
14.630
39.054
1.00
21.35
A
C


ATOM
493
CB
GLU
A
450
−10.150
13.172
38.691
1.00
21.63
A
C


ATOM
496
CG
GLU
A
450
−11.186
12.486
39.565
1.00
23.33
A
C


ATOM
499
CD
GLU
A
450
−11.347
11.024
39.214
1.00
26.08
A
C


ATOM
500
OE1
GLU
A
450
−10.821
10.178
39.963
1.00
26.94
A
O


ATOM
501
OE2
GLU
A
450
−12.024
10.726
38.201
1.00
28.51
A
O


ATOM
502
C
GLU
A
450
−8.955
15.232
38.019
1.00
21.24
A
C


ATOM
503
O
GLU
A
450
−9.376
15.478
36.902
1.00
20.28
A
O


ATOM
504
N
LYS
A
451
−7.691
15.436
38.388
1.00
21.76
A
N


ATOM
506
CA
LYS
A
451
−6.694
16.059
37.507
1.00
21.92
A
C


ATOM
508
CB
LYS
A
451
−5.963
17.166
38.254
1.00
22.51
A
C


ATOM
511
CG
LYS
A
451
−6.919
18.230
38.784
1.00
23.99
A
C


ATOM
514
CD
LYS
A
451
−6.239
19.546
39.068
1.00
26.30
A
C


ATOM
517
CE
LYS
A
451
−7.250
20.582
39.558
1.00
27.02
A
C


ATOM
520
NZ
LYS
A
451
−7.947
21.286
38.459
1.00
26.84
A
N


ATOM
524
C
LYS
A
451
−5.707
15.026
36.956
1.00
21.70
A
C


ATOM
525
O
LYS
A
451
−5.111
14.249
37.707
1.00
22.12
A
O


ATOM
526
N
ILE
A
452
−5.586
15.005
35.633
1.00
20.88
A
N


ATOM
528
CA
ILE
A
452
−4.729
14.074
34.923
1.00
20.89
A
C


ATOM
530
CB
ILE
A
452
−5.587
13.104
34.051
1.00
21.84
A
C


ATOM
532
CG1
ILE
A
452
−4.773
11.937
33.512
1.00
24.27
A
C


ATOM
535
CD1
ILE
A
452
−4.557
10.839
34.539
1.00
27.03
A
C


ATOM
539
CG2
ILE
A
452
−6.222
13.783
32.894
1.00
23.92
A
C


ATOM
543
C
ILE
A
452
−3.743
14.883
34.086
1.00
19.23
A
C


ATOM
544
O
ILE
A
452
−4.127
15.801
33.366
1.00
17.19
A
O


ATOM
545
N
ASN
A
453
−2.468
14.561
34.227
1.00
18.03
A
N


ATOM
547
CA
ASN
A
453
−1.427
15.173
33.421
1.00
16.96
A
C


ATOM
549
CB
ASN
A
453
−0.039
14.893
34.019
1.00
17.63
A
C


ATOM
552
CG
ASN
A
453
0.144
15.546
35.375
1.00
19.82
A
C


ATOM
553
OD1
ASN
A
453
−0.283
16.675
35.581
1.00
20.59
A
O


ATOM
554
ND2
ASN
A
453
0.782
14.835
36.307
1.00
22.47
A
N


ATOM
557
C
ASN
A
453
−1.537
14.640
32.002
1.00
15.39
A
C


ATOM
558
O
ASN
A
453
−1.741
13.432
31.792
1.00
13.98
A
O


ATOM
559
N
VAL
A
454
−1.442
15.553
31.040
1.00
13.24
A
N


ATOM
561
CA
VAL
A
454
−1.609
15.230
29.630
1.00
12.28
A
C


ATOM
563
CB
VAL
A
454
−3.001
15.671
29.107
1.00
11.15
A
C


ATOM
565
CG1
VAL
A
454
−4.107
14.882
29.798
1.00
11.44
A
C


ATOM
569
CG2
VAL
A
454
−3.210
17.193
29.273
1.00
10.74
A
C


ATOM
573
C
VAL
A
454
−0.515
15.843
28.752
1.00
12.12
A
C


ATOM
574
O
VAL
A
454
0.128
16.843
29.123
1.00
11.68
A
O


ATOM
575
N
ALA
A
455
−0.276
15.196
27.615
1.00
11.65
A
N


ATOM
577
CA
ALA
A
455
0.496
15.770
26.521
1.00
11.60
A
C


ATOM
579
CB
ALA
A
455
1.493
14.785
25.979
1.00
12.08
A
C


ATOM
583
C
ALA
A
455
−0.511
16.142
25.435
1.00
12.46
A
C


ATOM
584
O
ALA
A
455
−1.331
15.327
25.055
1.00
12.88
A
O


ATOM
585
N
VAL
A
456
−0.459
17.384
24.968
1.00
11.82
A
N


ATOM
587
CA
VAL
A
456
−1.368
17.858
23.960
1.00
12.46
A
C


ATOM
589
CB
VAL
A
456
−2.073
19.125
24.456
1.00
12.62
A
C


ATOM
591
CG1
VAL
A
456
−2.956
19.704
23.364
1.00
13.07
A
C


ATOM
595
CG2
VAL
A
456
−2.883
18.786
25.679
1.00
12.74
A
C


ATOM
599
C
VAL
A
456
−0.622
18.148
22.668
1.00
13.13
A
C


ATOM
600
O
VAL
A
456
0.252
19.006
22.631
1.00
12.69
A
O


ATOM
601
N
LYS
A
457
−0.958
17.415
21.616
1.00
13.43
A
N


ATOM
603
CA
LYS
A
457
−0.324
17.577
20.322
1.00
14.66
A
C


ATOM
605
CB
LYS
A
457
−0.214
16.220
19.615
1.00
15.55
A
C


ATOM
608
CG
LYS
A
457
0.694
15.217
20.350
1.00
18.42
A
C


ATOM
611
CD
LYS
A
457
0.840
13.874
19.626
1.00
22.96
A
C


ATOM
614
CE
LYS
A
457
1.221
14.008
18.151
1.00
26.16
A
C


ATOM
617
NZ
LYS
A
457
1.738
12.702
17.608
1.00
29.52
A
N


ATOM
621
C
LYS
A
457
−1.123
18.569
19.480
1.00
14.79
A
C


ATOM
622
O
LYS
A
457
−2.350
18.553
19.483
1.00
14.94
A
O


ATOM
623
N
THR
A
458
−0.421
19.452
18.787
1.00
16.01
A
N


ATOM
625
CA
THR
A
458
−1.056
20.426
17.902
1.00
17.14
A
C


ATOM
627
CB
THR
A
458
−0.974
21.856
18.470
1.00
17.23
A
C


ATOM
629
OG1
THR
A
458
0.390
22.295
18.492
1.00
16.75
A
O


ATOM
631
CG2
THR
A
458
−1.437
21.907
19.927
1.00
18.01
A
C


ATOM
635
C
THR
A
458
−0.380
20.398
16.541
1.00
18.40
A
C


ATOM
636
O
THR
A
458
0.705
19.846
16.397
1.00
18.01
A
O


ATOM
637
N
CYS
A
459
−1.032
21.017
15.561
1.00
20.44
A
N


ATOM
639
CA
CYS
A
459
−0.512
21.123
14.195
1.00
22.30
A
C


ATOM
641
CB
CYS
A
459
−1.643
20.944
13.189
1.00
22.75
A
C


ATOM
644
SG
CYS
A
459
−2.097
19.219
12.971
1.00
27.79
A
S


ATOM
645
C
CYS
A
459
0.174
22.470
13.959
1.00
22.93
A
C


ATOM
646
O
CYS
A
459
−0.344
23.509
14.347
1.00
22.16
A
O


ATOM
647
N
LYS
A
460
1.347
22.426
13.337
1.00
24.00
A
N


ATOM
649
CA
LYS
A
460
2.082
23.624
12.970
1.00
25.15
A
C


ATOM
651
CB
LYS
A
460
3.487
23.276
12.461
1.00
25.42
A
C


ATOM
654
CG
LYS
A
460
3.540
22.407
11.195
1.00
27.60
A
C


ATOM
657
CD
LYS
A
460
4.982
22.089
10.797
1.00
31.10
A
C


ATOM
660
CE
LYS
A
460
5.641
21.091
11.756
1.00
33.59
A
C


ATOM
663
NZ
LYS
A
460
6.879
20.456
11.191
1.00
35.01
A
N


ATOM
667
C
LYS
A
460
1.301
24.390
11.917
1.00
25.65
A
C


ATOM
668
O
LYS
A
460
0.444
23.818
11.226
1.00
25.83
A
O


ATOM
669
N
LYS
A
461
1.574
25.687
11.808
1.00
25.80
A
N


ATOM
671
CA
LYS
A
461
0.826
26.538
10.882
1.00
26.62
A
C


ATOM
673
CB
LYS
A
461
1.252
28.006
11.008
1.00
26.88
A
C


ATOM
676
CG
LYS
A
461
2.713
28.253
10.821
1.00
27.10
A
C


ATOM
679
CD
LYS
A
461
2.998
29.749
10.885
1.00
26.75
A
C


ATOM
682
CE
LYS
A
461
4.299
30.069
10.215
1.00
26.14
A
C


ATOM
685
NZ
LYS
A
461
4.520
31.513
10.213
1.00
24.09
A
N


ATOM
689
C
LYS
A
461
0.920
26.065
9.424
1.00
26.93
A
C


ATOM
690
O
LYS
A
461
−0.036
26.221
8.675
1.00
27.53
A
O


ATOM
691
N
ASP
A
462
2.046
25.462
9.044
1.00
27.62
A
N


ATOM
693
CA
ASP
A
462
2.260
24.961
7.678
1.00
28.08
A
C


ATOM
695
CB
ASP
A
462
3.747
25.062
7.309
1.00
28.77
A
C


ATOM
698
CG
ASP
A
462
4.025
24.701
5.853
1.00
30.67
A
C


ATOM
699
OD1
ASP
A
462
3.273
25.156
4.964
1.00
33.53
A
O


ATOM
700
OD2
ASP
A
462
4.973
23.959
5.506
1.00
34.82
A
O


ATOM
701
C
ASP
A
462
1.772
23.509
7.560
1.00
27.68
A
C


ATOM
702
O
ASP
A
462
2.542
22.601
7.211
1.00
28.33
A
O


ATOM
703
N
CYS
A
463
0.500
23.302
7.891
1.00
26.54
A
N


ATOM
705
CA
CYS
A
463
−0.123
21.991
7.824
1.00
25.64
A
C


ATOM
707
CB
CYS
A
463
−0.529
21.522
9.217
1.00
25.87
A
C


ATOM
710
SG
CYS
A
463
−1.141
19.833
9.252
1.00
28.94
A
S


ATOM
711
C
CYS
A
463
−1.350
22.104
6.918
1.00
23.92
A
C


ATOM
712
O
CYS
A
463
−2.319
22.772
7.251
1.00
23.05
A
O


ATOM
713
N
THR
A
464
−1.277
21.480
5.751
1.00
22.41
A
N


ATOM
715
CA
THR
A
464
−2.385
21.500
4.800
1.00
21.51
A
C


ATOM
717
CB
THR
A
464
−1.947
20.928
3.435
1.00
21.47
A
C


ATOM
719
OG1
THR
A
464
−1.405
19.607
3.600
1.00
19.22
A
O


ATOM
721
CG2
THR
A
464
−0.804
21.743
2.823
1.00
21.55
A
C


ATOM
725
C
THR
A
464
−3.571
20.689
5.316
1.00
21.41
A
C


ATOM
726
O
THR
A
464
−3.414
19.755
6.111
1.00
19.82
A
O


ATOM
727
N
LEU
A
465
−4.758
21.040
4.832
1.00
21.68
A
N


ATOM
729
CA
LEU
A
465
−5.969
20.261
5.090
1.00
22.10
A
C


ATOM
731
CB
LEU
A
465
−7.165
20.906
4.378
1.00
22.26
A
C


ATOM
734
CG
LEU
A
465
−7.631
22.229
4.986
1.00
22.45
A
C


ATOM
736
CD1
LEU
A
465
−8.763
22.808
4.170
1.00
24.00
A
C


ATOM
740
CD2
LEU
A
465
−8.079
22.028
6.446
1.00
23.54
A
C


ATOM
744
C
LEU
A
465
−5.798
18.821
4.624
1.00
22.80
A
C


ATOM
745
O
LEU
A
465
−6.322
17.892
5.234
1.00
22.69
A
O


ATOM
746
N
ASP
A
466
−5.073
18.665
3.524
1.00
23.58
A
N


ATOM
748
CA
ASP
A
466
−4.666
17.367
3.004
1.00
25.03
A
C


ATOM
750
CB
ASP
A
466
−3.709
17.593
1.820
1.00
25.18
A
C


ATOM
753
CG
ASP
A
466
−3.414
16.332
1.038
1.00
27.16
A
C


ATOM
754
OD1
ASP
A
466
−3.623
15.216
1.570
1.00
26.35
A
O


ATOM
755
OD2
ASP
A
466
−2.966
16.376
−0.139
1.00
29.99
A
O


ATOM
756
C
ASP
A
466
−3.993
16.539
4.101
1.00
25.88
A
C


ATOM
757
O
ASP
A
466
−4.460
15.448
4.445
1.00
25.28
A
O


ATOM
758
N
ASN
A
467
−2.900
17.063
4.656
1.00
27.10
A
N


ATOM
760
CA
ASN
A
467
−2.161
16.350
5.702
1.00
28.05
A
C


ATOM
762
CB
ASN
A
467
−0.772
16.985
5.916
1.00
28.48
A
C


ATOM
765
CG
ASN
A
467
0.134
16.866
4.684
1.00
29.52
A
C


ATOM
766
OD1
ASN
A
467
0.992
17.713
4.447
1.00
31.12
A
O


ATOM
767
ND2
ASN
A
467
−0.059
15.816
3.901
1.00
33.05
A
N


ATOM
770
C
ASN
A
467
−2.920
16.263
7.037
1.00
28.75
A
C


ATOM
771
O
ASN
A
467
−2.724
15.322
7.806
1.00
28.72
A
O


ATOM
772
N
LYS
A
468
−3.794
17.232
7.296
1.00
29.65
A
N


ATOM
774
CA
LYS
A
468
−4.560
17.300
8.544
1.00
30.66
A
C


ATOM
776
CB
LYS
A
468
−5.273
18.642
8.639
1.00
30.86
A
C


ATOM
779
CG
LYS
A
468
−5.702
19.038
10.031
1.00
32.87
A
C


ATOM
782
CD
LYS
A
468
−4.950
20.278
10.513
1.00
35.25
A
C


ATOM
785
CE
LYS
A
468
−5.304
21.521
9.671
1.00
36.51
A
C


ATOM
788
NZ
LYS
A
468
−4.860
22.805
10.300
1.00
37.11
A
N


ATOM
792
C
LYS
A
468
−5.604
16.186
8.644
1.00
31.56
A
C


ATOM
793
O
LYS
A
468
−5.905
15.716
9.740
1.00
31.30
A
O


ATOM
794
N
GLU
A
469
−6.159
15.779
7.504
1.00
32.55
A
N


ATOM
796
CA
GLU
A
469
−7.144
14.694
7.473
1.00
33.52
A
C


ATOM
798
CB
GLU
A
469
−7.866
14.646
6.117
1.00
33.78
A
C


ATOM
801
CG
GLU
A
469
−8.835
13.476
5.924
1.00
34.57
A
C


ATOM
804
CD
GLU
A
469
−9.939
13.398
6.975
1.00
36.41
A
C


ATOM
805
OE1
GLU
A
469
−10.241
14.421
7.638
1.00
36.96
A
O


ATOM
806
OE2
GLU
A
469
−10.527
12.301
7.131
1.00
38.63
A
O


ATOM
807
C
GLU
A
469
−6.471
13.355
7.789
1.00
34.36
A
C


ATOM
808
O
GLU
A
469
−7.067
12.508
8.436
1.00
33.99
A
O


ATOM
809
N
LYS
A
470
−5.226
13.185
7.344
1.00
35.36
A
N


ATOM
811
CA
LYS
A
470
−4.441
11.983
7.651
1.00
36.27
A
C


ATOM
813
CB
LYS
A
470
−3.087
12.022
6.942
1.00
36.53
A
C


ATOM
816
CG
LYS
A
470
−3.155
12.204
5.444
1.00
37.48
A
C


ATOM
819
CD
LYS
A
470
−1.766
12.076
4.833
1.00
38.99
A
C


ATOM
822
CE
LYS
A
470
−1.822
11.889
3.334
1.00
39.11
A
C


ATOM
825
NZ
LYS
A
470
−0.566
11.286
2.828
1.00
39.24
A
N


ATOM
829
C
LYS
A
470
−4.184
11.839
9.144
1.00
36.64
A
C


ATOM
830
O
LYS
A
470
−4.342
10.758
9.709
1.00
37.23
A
O


ATOM
831
N
PHE
A
471
−3.773
12.938
9.763
1.00
36.96
A
N


ATOM
833
CA
PHE
A
471
−3.512
13.023
11.201
1.00
37.25
A
C


ATOM
835
CB
PHE
A
471
−2.955
14.420
11.517
1.00
37.75
A
C


ATOM
838
CG
PHE
A
471
−2.489
14.615
12.947
1.00
40.27
A
C


ATOM
839
CD1
PHE
A
471
−1.834
13.605
13.650
1.00
42.26
A
C


ATOM
841
CE1
PHE
A
471
−1.407
13.815
14.958
1.00
43.12
A
C


ATOM
843
CZ
PHE
A
471
−1.611
15.056
15.572
1.00
43.43
A
C


ATOM
845
CE2
PHE
A
471
−2.243
16.066
14.883
1.00
42.92
A
C


ATOM
847
CD2
PHE
A
471
−2.680
15.847
13.578
1.00
42.50
A
C


ATOM
849
C
PHE
A
471
−4.770
12.764
12.031
1.00
36.80
A
C


ATOM
850
O
PHE
A
471
−4.725
12.035
13.017
1.00
36.85
A
O


ATOM
851
N
MET
A
472
−5.885
13.369
11.630
1.00
36.07
A
N


ATOM
853
CA
MET
A
472
−7.154
13.199
12.338
1.00
36.08
A
C


ATOM
855
CB
MET
A
472
−8.246
14.103
11.761
1.00
36.21
A
C


ATOM
858
CG
MET
A
472
−8.083
15.565
12.091
1.00
38.47
A
C


ATOM
861
SD
MET
A
472
−7.642
15.859
13.819
1.00
42.21
A
S


ATOM
862
CE
MET
A
472
−5.860
15.966
13.721
1.00
42.25
A
C


ATOM
866
C
MET
A
472
−7.626
11.758
12.262
1.00
35.10
A
C


ATOM
867
O
MET
A
472
−8.011
11.176
13.278
1.00
34.68
A
O


ATOM
868
N
SER
A
473
−7.599
11.200
11.056
1.00
34.38
A
N


ATOM
870
CA
SER
A
473
−8.067
9.836
10.838
1.00
34.10
A
C


ATOM
872
CB
SER
A
473
−8.111
9.481
9.341
1.00
34.17
A
C


ATOM
875
OG
SER
A
473
−6.876
9.725
8.700
1.00
35.90
A
O


ATOM
877
C
SER
A
473
−7.194
8.870
11.619
1.00
33.23
A
C


ATOM
878
O
SER
A
473
−7.681
7.877
12.146
1.00
33.23
A
O


ATOM
879
N
GLU
A
474
−5.909
9.196
11.728
1.00
32.29
A
N


ATOM
881
CA
GLU
A
474
−4.957
8.405
12.504
1.00
31.53
A
C


ATOM
883
CB
GLU
A
474
−3.532
8.889
12.235
1.00
32.06
A
C


ATOM
886
CG
GLU
A
474
−2.462
8.083
12.940
1.00
35.27
A
C


ATOM
889
CD
GLU
A
474
−1.059
8.482
12.520
1.00
38.82
A
C


ATOM
890
OE1
GLU
A
474
−0.125
7.684
12.765
1.00
41.03
A
O


ATOM
891
OE2
GLU
A
474
−0.896
9.590
11.945
1.00
41.72
A
O


ATOM
892
C
GLU
A
474
−5.252
8.474
13.999
1.00
29.52
A
C


ATOM
893
O
GLU
A
474
−5.194
7.463
14.689
1.00
28.59
A
O


ATOM
894
N
ALA
A
475
−5.583
9.664
14.486
1.00
27.61
A
N


ATOM
896
CA
ALA
A
475
−5.852
9.876
15.908
1.00
26.39
A
C


ATOM
898
CB
ALA
A
475
−5.991
11.361
16.196
1.00
26.28
A
C


ATOM
902
C
ALA
A
475
−7.117
9.144
16.379
1.00
25.41
A
C


ATOM
903
O
ALA
A
475
−7.186
8.717
17.521
1.00
24.68
A
O


ATOM
904
N
VAL
A
476
−8.111
9.024
15.501
1.00
24.57
A
N


ATOM
906
CA
VAL
A
476
−9.364
8.342
15.837
1.00
24.02
A
C


ATOM
908
CB
VAL
A
476
−10.457
8.593
14.764
1.00
24.14
A
C


ATOM
910
CG1
VAL
A
476
−11.668
7.695
14.975
1.00
24.34
A
C


ATOM
914
CG2
VAL
A
476
−10.910
10.051
14.786
1.00
24.76
A
C


ATOM
918
C
VAL
A
476
−9.096
6.840
16.010
1.00
23.50
A
C


ATOM
919
O
VAL
A
476
−9.673
6.207
16.889
1.00
22.85
A
O


ATOM
920
N
ILE
A
477
−8.191
6.283
15.197
1.00
23.32
A
N


ATOM
922
CA
ILE
A
477
−7.794
4.880
15.366
1.00
23.29
A
C


ATOM
924
CB
ILE
A
477
−6.857
4.392
14.232
1.00
23.54
A
C


ATOM
926
CG1
ILE
A
477
−7.579
4.420
12.883
1.00
25.55
A
C


ATOM
929
CD1
ILE
A
477
−6.693
4.070
11.676
1.00
26.07
A
C


ATOM
933
CG2
ILE
A
477
−6.357
2.978
14.550
1.00
24.90
A
C


ATOM
937
C
ILE
A
477
−7.126
4.693
16.729
1.00
22.19
A
C


ATOM
938
O
ILE
A
477
−7.505
3.833
17.502
1.00
20.75
A
O


ATOM
939
N
MET
A
478
−6.126
5.518
17.025
1.00
22.05
A
N


ATOM
941
CA
MET
A
478
−5.479
5.507
18.341
1.00
21.67
A
C


ATOM
943
CB
MET
A
478
−4.401
6.603
18.421
1.00
22.21
A
C


ATOM
946
CG
MET
A
478
−3.172
6.370
17.537
1.00
23.35
A
C


ATOM
949
SD
MET
A
478
−2.324
4.761
17.784
1.00
27.04
A
S


ATOM
950
CE
MET
A
478
−1.687
4.917
19.390
1.00
24.74
A
C


ATOM
954
C
MET
A
478
−6.463
5.660
19.508
1.00
21.22
A
C


ATOM
955
O
MET
A
478
−6.280
5.042
20.541
1.00
20.80
A
O


ATOM
956
N
LYS
A
479
−7.517
6.461
19.336
1.00
21.22
A
N


ATOM
958
CA
LYS
A
479
−8.521
6.681
20.381
1.00
21.07
A
C


ATOM
960
CB
LYS
A
479
−9.550
7.727
19.910
1.00
21.83
A
C


ATOM
963
CG
LYS
A
479
−10.728
7.940
20.864
1.00
25.29
A
C


ATOM
966
CD
LYS
A
479
−11.616
9.074
20.401
1.00
28.79
A
C


ATOM
969
CE
LYS
A
479
−12.585
9.512
21.494
1.00
30.50
A
C


ATOM
972
NZ
LYS
A
479
−13.545
8.454
21.868
1.00
31.90
A
N


ATOM
976
C
LYS
A
479
−9.251
5.394
20.752
1.00
20.32
A
C


ATOM
977
O
LYS
A
479
−9.653
5.195
21.906
1.00
20.37
A
O


ATOM
978
N
ASN
A
480
−9.447
4.529
19.761
1.00
18.51
A
N


ATOM
980
CA
ASN
A
480
−10.168
3.284
19.980
1.00
18.01
A
C


ATOM
982
CB
ASN
A
480
−10.851
2.841
18.692
1.00
17.94
A
C


ATOM
985
CG
ASN
A
480
−12.098
3.625
18.410
1.00
16.43
A
C


ATOM
986
OD1
ASN
A
480
−13.135
3.388
19.038
1.00
14.27
A
O


ATOM
987
ND2
ASN
A
480
−12.016
4.574
17.481
1.00
13.64
A
N


ATOM
990
C
ASN
A
480
−9.277
2.174
20.512
1.00
17.93
A
C


ATOM
991
O
ASN
A
480
−9.768
1.196
21.049
1.00
17.90
A
O


ATOM
992
N
LEU
A
481
−7.969
2.305
20.345
1.00
18.54
A
N


ATOM
994
CA
LEU
A
481
−7.052
1.344
20.933
1.00
19.58
A
C


ATOM
996
CB
LEU
A
481
−5.647
1.510
20.375
1.00
19.65
A
C


ATOM
999
CG
LEU
A
481
−5.418
0.995
18.958
1.00
19.49
A
C


ATOM
1001
CD1
LEU
A
481
−4.028
1.362
18.492
1.00
20.75
A
C


ATOM
1005
CD2
LEU
A
481
−5.645
−0.497
18.891
1.00
19.12
A
C


ATOM
1009
C
LEU
A
481
−7.028
1.560
22.430
1.00
20.27
A
C


ATOM
1010
O
LEU
A
481
−6.658
2.630
22.899
1.00
22.42
A
O


ATOM
1011
N
ASP
A
482
−7.411
0.543
23.177
1.00
20.28
A
N


ATOM
1013
CA
ASP
A
482
−7.360
0.583
24.626
1.00
20.20
A
C


ATOM
1015
CB
ASP
A
482
−8.781
0.626
25.196
1.00
21.36
A
C


ATOM
1018
CG
ASP
A
482
−8.815
0.831
26.702
1.00
24.17
A
C


ATOM
1019
OD1
ASP
A
482
−9.901
0.603
27.288
1.00
31.84
A
O


ATOM
1020
OD2
ASP
A
482
−7.843
1.228
27.382
1.00
28.34
A
O


ATOM
1021
C
ASP
A
482
−6.625
−0.664
25.080
1.00
19.09
A
C


ATOM
1022
O
ASP
A
482
−7.178
−1.765
25.073
1.00
19.88
A
O


ATOM
1023
N
HIS
A
483
−5.349
−0.490
25.413
1.00
16.36
A
N


ATOM
1025
CA
HIS
A
483
−4.508
−1.572
25.890
1.00
15.18
A
C


ATOM
1027
CB
HIS
A
483
−3.723
−2.178
24.727
1.00
14.01
A
C


ATOM
1030
CG
HIS
A
483
−3.068
−3.474
25.069
1.00
13.88
A
C


ATOM
1031
ND1
HIS
A
483
−1.872
−3.542
25.755
1.00
13.01
A
N


ATOM
1033
CE1
HIS
A
483
−1.569
−4.812
25.969
1.00
13.34
A
C


ATOM
1035
NE2
HIS
A
483
−2.515
−5.566
25.429
1.00
12.59
A
N


ATOM
1037
CD2
HIS
A
483
−3.465
−4.752
24.867
1.00
12.02
A
C


ATOM
1039
C
HIS
A
483
−3.553
−1.015
26.964
1.00
14.57
A
C


ATOM
1040
O
HIS
A
483
−3.092
0.118
26.840
1.00
14.09
A
O


ATOM
1041
N
PRO
A
484
−3.278
−1.775
28.023
1.00
14.32
A
N


ATOM
1042
CA
PRO
A
484
−2.360
−1.310
29.080
1.00
13.52
A
C


ATOM
1044
CB
PRO
A
484
−2.254
−2.519
30.037
1.00
14.18
A
C


ATOM
1047
CG
PRO
A
484
−3.355
−3.429
29.700
1.00
15.62
A
C


ATOM
1050
CD
PRO
A
484
−3.866
−3.091
28.339
1.00
14.94
A
C


ATOM
1053
C
PRO
A
484
−0.956
−0.924
28.610
1.00
12.37
A
C


ATOM
1054
O
PRO
A
484
−0.285
−0.173
29.308
1.00
12.09
A
O


ATOM
1055
N
HIS
A
485
−0.532
−1.423
27.448
1.00
11.71
A
N


ATOM
1057
CA
HIS
A
485
0.790
−1.148
26.915
1.00
10.90
A
C


ATOM
1059
CB
HIS
A
485
1.606
−2.438
26.948
1.00
11.48
A
C


ATOM
1062
CG
HIS
A
485
1.687
−2.999
28.326
1.00
11.67
A
C


ATOM
1063
ND1
HIS
A
485
2.263
−2.293
29.357
1.00
10.00
A
N


ATOM
1065
CE1
HIS
A
485
2.139
−2.984
30.478
1.00
13.83
A
C


ATOM
1067
NE2
HIS
A
485
1.496
−4.105
30.211
1.00
13.41
A
N


ATOM
1069
CD2
HIS
A
485
1.179
−4.129
28.873
1.00
13.59
A
C


ATOM
1071
C
HIS
A
485
0.786
−0.514
25.549
1.00
10.49
A
C


ATOM
1072
O
HIS
A
485
1.722
−0.706
24.795
1.00
9.78
A
O


ATOM
1073
N
ILE
A
486
−0.267
0.258
25.260
1.00
9.75
A
N


ATOM
1075
CA
ILE
A
486
−0.313
1.165
24.107
1.00
9.72
A
C


ATOM
1077
CB
ILE
A
486
−1.352
0.675
23.077
1.00
9.49
A
C


ATOM
1079
CG1
ILE
A
486
−0.941
−0.698
22.509
1.00
9.88
A
C


ATOM
1082
CD1
ILE
A
486
−1.944
−1.282
21.569
1.00
11.12
A
C


ATOM
1086
CG2
ILE
A
486
−1.516
1.670
21.927
1.00
10.54
A
C


ATOM
1090
C
ILE
A
486
−0.683
2.561
24.617
1.00
10.03
A
C


ATOM
1091
O
ILE
A
486
−1.500
2.684
25.533
1.00
9.12
A
O


ATOM
1092
N
VAL
A
487
−0.079
3.585
24.034
1.00
10.75
A
N


ATOM
1094
CA
VAL
A
487
−0.294
4.958
24.477
1.00
11.70
A
C


ATOM
1096
CB
VAL
A
487
0.535
6.007
23.674
1.00
11.46
A
C


ATOM
1098
CG1
VAL
A
487
2.006
5.849
23.946
1.00
11.31
A
C


ATOM
1102
CG2
VAL
A
487
0.242
5.925
22.175
1.00
12.24
A
C


ATOM
1106
C
VAL
A
487
−1.782
5.278
24.394
1.00
12.42
A
C


ATOM
1107
O
VAL
A
487
−2.479
4.824
23.481
1.00
10.87
A
O


ATOM
1108
N
LYS
A
488
−2.269
6.010
25.386
1.00
14.04
A
N


ATOM
1110
CA
LYS
A
488
−3.699
6.252
25.531
1.00
15.40
A
C


ATOM
1112
CB
LYS
A
488
−4.147
6.081
26.979
1.00
16.29
A
C


ATOM
1115
CG
LYS
A
488
−5.648
6.355
27.161
1.00
18.92
A
C


ATOM
1118
CD
LYS
A
488
−6.109
6.153
28.588
1.00
22.97
A
C


ATOM
1121
CE
LYS
A
488
−7.638
6.269
28.693
1.00
26.06
A
C


ATOM
1124
NZ
LYS
A
488
−8.179
5.734
29.994
1.00
28.52
A
N


ATOM
1128
C
LYS
A
488
−4.019
7.663
25.090
1.00
16.61
A
C


ATOM
1129
O
LYS
A
488
−3.470
8.625
25.650
1.00
15.54
A
O


ATOM
1130
N
LEU
A
489
−4.879
7.760
24.079
1.00
18.15
A
N


ATOM
1132
CA
LEU
A
489
−5.458
9.028
23.644
1.00
20.47
A
C


ATOM
1134
CB
LEU
A
489
−5.707
9.035
22.135
1.00
20.96
A
C


ATOM
1137
CG
LEU
A
489
−6.318
10.312
21.519
1.00
22.08
A
C


ATOM
1139
CD1
LEU
A
489
−6.157
10.316
20.034
1.00
23.52
A
C


ATOM
1143
CD2
LEU
A
489
−7.776
10.472
21.876
1.00
24.93
A
C


ATOM
1147
C
LEU
A
489
−6.734
9.229
24.426
1.00
22.11
A
C


ATOM
1148
O
LEU
A
489
−7.625
8.370
24.402
1.00
23.38
A
O


ATOM
1149
N
ILE
A
490
−6.813
10.361
25.125
1.00
22.70
A
N


ATOM
1151
CA
ILE
A
490
−7.920
10.685
26.016
1.00
23.88
A
C


ATOM
1153
CB
ILE
A
490
−7.400
11.539
27.185
1.00
24.15
A
C


ATOM
1155
CG1
ILE
A
490
−6.437
10.714
28.049
1.00
25.63
A
C


ATOM
1158
CD1
ILE
A
490
−5.849
11.484
29.192
1.00
25.52
A
C


ATOM
1162
CG2
ILE
A
490
−8.558
12.096
28.022
1.00
25.12
A
C


ATOM
1166
C
ILE
A
490
−9.047
11.420
25.274
1.00
23.99
A
C


ATOM
1167
O
ILE
A
490
−10.232
11.098
25.448
1.00
24.52
A
O


ATOM
1168
N
GLY
A
491
−8.685
12.413
24.468
1.00
23.22
A
N


ATOM
1170
CA
GLY
A
491
−9.677
13.139
23.681
1.00
23.44
A
C


ATOM
1173
C
GLY
A
491
−9.145
13.889
22.481
1.00
23.06
A
C


ATOM
1174
O
GLY
A
491
−7.944
14.066
22.320
1.00
21.24
A
O


ATOM
1175
N
ILE
A
492
−10.069
14.324
21.623
1.00
23.34
A
N


ATOM
1177
CA
ILE
A
492
−9.747
15.175
20.490
1.00
23.94
A
C


ATOM
1179
CB
ILE
A
492
−9.914
14.394
19.167
1.00
24.29
A
C


ATOM
1181
CG1
ILE
A
492
−9.044
13.128
19.175
1.00
24.89
A
C


ATOM
1184
CD1
ILE
A
492
−9.389
12.139
18.099
1.00
26.68
A
C


ATOM
1188
CG2
ILE
A
492
−9.539
15.252
17.986
1.00
24.59
A
C


ATOM
1192
C
ILE
A
492
−10.675
16.401
20.528
1.00
24.76
A
C


ATOM
1193
O
ILE
A
492
−11.891
16.254
20.639
1.00
23.89
A
O


ATOM
1194
N
ILE
A
493
−10.086
17.598
20.508
1.00
25.52
A
N


ATOM
1196
CA
ILE
A
493
−10.828
18.833
20.257
1.00
26.54
A
C


ATOM
1198
CB
ILE
A
493
−10.315
20.009
21.138
1.00
26.60
A
C


ATOM
1200
CG1
ILE
A
493
−10.215
19.614
22.613
1.00
26.82
A
C


ATOM
1203
CD1
ILE
A
493
−11.446
18.990
23.180
1.00
27.58
A
C


ATOM
1207
CG2
ILE
A
493
−11.217
21.249
20.961
1.00
26.95
A
C


ATOM
1211
C
ILE
A
493
−10.609
19.151
18.785
1.00
27.17
A
C


ATOM
1212
O
ILE
A
493
−9.531
19.576
18.404
1.00
26.34
A
O


ATOM
1213
N
GLU
A
494
−11.628
18.927
17.959
1.00
28.32
A
N


ATOM
1215
CA
GLU
A
494
−11.502
19.096
16.510
1.00
29.45
A
C


ATOM
1217
CB
GLU
A
494
−12.698
18.444
15.800
1.00
30.09
A
C


ATOM
1220
CG
GLU
A
494
−12.800
16.943
16.024
1.00
32.11
A
C


ATOM
1223
CD
GLU
A
494
−13.958
16.292
15.280
1.00
35.78
A
C


ATOM
1224
OE1
GLU
A
494
−14.108
16.531
14.058
1.00
38.41
A
O


ATOM
1225
OE2
GLU
A
494
−14.717
15.524
15.918
1.00
38.33
A
O


ATOM
1226
C
GLU
A
494
−11.390
20.567
16.098
1.00
29.72
A
C


ATOM
1227
O
GLU
A
494
−10.667
20.900
15.160
1.00
29.12
A
O


ATOM
1228
N
GLU
A
495
−12.073
21.432
16.846
1.00
30.47
A
N


ATOM
1230
CA
GLU
A
495
−12.259
22.853
16.505
1.00
31.12
A
C


ATOM
1232
CB
GLU
A
495
−13.324
23.465
17.435
1.00
31.66
A
C


ATOM
1235
CG
GLU
A
495
−14.759
23.024
17.203
1.00
34.10
A
C


ATOM
1238
CD
GLU
A
495
−14.995
21.541
17.444
1.00
36.85
A
C


ATOM
1239
OE1
GLU
A
495
−14.650
21.029
18.544
1.00
38.24
A
O


ATOM
1240
OE2
GLU
A
495
−15.521
20.885
16.517
1.00
39.02
A
O


ATOM
1241
C
GLU
A
495
−10.978
23.695
16.633
1.00
30.92
A
C


ATOM
1242
O
GLU
A
495
−9.950
23.203
17.113
1.00
30.08
A
O


ATOM
1243
N
GLU
A
496
−11.084
24.966
16.207
1.00
30.74
A
N


ATOM
1245
CA
GLU
A
496
−10.102
26.053
16.450
1.00
30.21
A
C


ATOM
1247
CB
GLU
A
496
−10.331
26.722
17.809
1.00
30.71
A
C


ATOM
1250
CG
GLU
A
496
−11.767
27.153
18.080
1.00
33.56
A
C


ATOM
1253
CD
GLU
A
496
−12.218
28.297
17.176
1.00
37.40
A
C


ATOM
1254
OE1
GLU
A
496
−11.734
29.442
17.368
1.00
39.71
A
O


ATOM
1255
OE2
GLU
A
496
−13.057
28.053
16.273
1.00
39.53
A
O


ATOM
1256
C
GLU
A
496
−8.688
25.536
16.214
1.00
28.69
A
C


ATOM
1257
O
GLU
A
496
−8.518
24.890
15.181
1.00
29.82
A
O


ATOM
1258
N
PRO
A
497
−7.673
25.765
17.068
1.00
26.40
A
N


ATOM
1259
CA
PRO
A
497
−6.463
24.955
16.914
1.00
24.97
A
C


ATOM
1261
CB
PRO
A
497
−5.435
25.650
17.812
1.00
25.01
A
C


ATOM
1264
CG
PRO
A
497
−6.217
26.352
18.819
1.00
25.48
A
C


ATOM
1267
CD
PRO
A
497
−7.508
26.726
18.176
1.00
26.20
A
C


ATOM
1270
C
PRO
A
497
−6.785
23.545
17.400
1.00
23.59
A
C


ATOM
1271
O
PRO
A
497
−7.238
23.365
18.525
1.00
21.60
A
O


ATOM
1272
N
THR
A
498
−6.593
22.562
16.533
1.00
22.37
A
N


ATOM
1274
CA
THR
A
498
−6.969
21.193
16.855
1.00
22.15
A
C


ATOM
1276
CB
THR
A
498
−6.918
20.363
15.580
1.00
22.32
A
C


ATOM
1278
OG1
THR
A
498
−7.958
20.826
14.700
1.00
25.57
A
O


ATOM
1280
CG2
THR
A
498
−7.252
18.924
15.840
1.00
22.92
A
C


ATOM
1284
C
THR
A
498
−6.022
20.654
17.922
1.00
20.09
A
C


ATOM
1285
O
THR
A
498
−4.835
20.874
17.821
1.00
19.92
A
O


ATOM
1286
N
TRP
A
499
−6.568
20.002
18.950
1.00
19.00
A
N


ATOM
1288
CA
TRP
A
499
−5.777
19.413
20.040
1.00
17.23
A
C


ATOM
1290
CB
TRP
A
499
−6.188
20.010
21.393
1.00
17.26
A
C


ATOM
1293
CG
TRP
A
499
−5.734
21.440
21.693
1.00
16.11
A
C


ATOM
1294
CD1
TRP
A
499
−5.098
22.301
20.851
1.00
16.58
A
C


ATOM
1296
NE1
TRP
A
499
−4.865
23.499
21.483
1.00
15.91
A
N


ATOM
1298
CE2
TRP
A
499
−5.342
23.431
22.760
1.00
13.91
A
C


ATOM
1299
CD2
TRP
A
499
−5.906
22.149
22.927
1.00
14.32
A
C


ATOM
1300
CE3
TRP
A
499
−6.474
21.825
24.167
1.00
14.41
A
C


ATOM
1302
CZ3
TRP
A
499
−6.466
22.789
25.187
1.00
15.48
A
C


ATOM
1304
CH2
TRP
A
499
−5.914
24.063
24.973
1.00
15.79
A
C


ATOM
1306
CZ2
TRP
A
499
−5.345
24.401
23.770
1.00
16.05
A
C


ATOM
1308
C
TRP
A
499
−6.011
17.891
20.113
1.00
16.56
A
C


ATOM
1309
O
TRP
A
499
−7.161
17.444
20.219
1.00
16.56
A
O


ATOM
1310
N
ILE
A
500
−4.933
17.111
20.082
1.00
15.45
A
N


ATOM
1312
CA
ILE
A
500
−4.987
15.696
20.427
1.00
15.58
A
C


ATOM
1314
CB
ILE
A
500
−4.126
14.870
19.461
1.00
16.46
A
C


ATOM
1316
CG1
ILE
A
500
−4.423
15.233
17.994
1.00
17.06
A
C


ATOM
1319
CD1
ILE
A
500
−5.887
15.183
17.626
1.00
18.75
A
C


ATOM
1323
CG2
ILE
A
500
−4.288
13.390
19.744
1.00
18.35
A
C


ATOM
1327
C
ILE
A
500
−4.467
15.555
21.863
1.00
14.87
A
C


ATOM
1328
O
ILE
A
500
−3.323
15.879
22.141
1.00
14.70
A
O


ATOM
1329
N
ILE
A
501
−5.318
15.096
22.765
1.00
13.73
A
N


ATOM
1331
CA
ILE
A
501
−4.998
14.985
24.178
1.00
13.36
A
C


ATOM
1333
CB
ILE
A
501
−6.190
15.451
25.034
1.00
12.71
A
C


ATOM
1335
CG1
ILE
A
501
−6.719
16.788
24.496
1.00
14.26
A
C


ATOM
1338
CD1
ILE
A
501
−7.978
17.256
25.129
1.00
15.07
A
C


ATOM
1342
CG2
ILE
A
501
−5.768
15.583
26.483
1.00
12.38
A
C


ATOM
1346
C
ILE
A
501
−4.629
13.546
24.539
1.00
13.36
A
C


ATOM
1347
O
ILE
A
501
−5.469
12.638
24.448
1.00
13.51
A
O


ATOM
1348
N
MET
A
502
−3.372
13.359
24.933
1.00
13.48
A
N


ATOM
1350
CA
MET
A
502
−2.836
12.061
25.353
1.00
13.96
A
C


ATOM
1352
CB
MET
A
502
−1.550
11.754
24.585
1.00
14.71
A
C


ATOM
1355
CG
MET
A
502
−1.634
11.957
23.074
1.00
18.44
A
C


ATOM
1358
SD
MET
A
502
−2.691
10.736
22.262
1.00
25.96
A
S


ATOM
1359
CE
MET
A
502
−1.705
9.251
22.464
1.00
24.95
A
C


ATOM
1363
C
MET
A
502
−2.498
12.057
26.845
1.00
13.14
A
C


ATOM
1364
O
MET
A
502
−2.200
13.092
27.436
1.00
11.75
A
O


ATOM
1365
N
GLU
A
503
−2.501
10.879
27.458
1.00
12.97
A
N


ATOM
1367
CA
GLU
A
503
−1.947
10.721
28.784
1.00
13.82
A
C


ATOM
1369
CB
GLU
A
503
−2.136
9.258
29.215
1.00
15.08
A
C


ATOM
1372
CG
GLU
A
503
−1.603
8.887
30.583
1.00
18.56
A
C


ATOM
1375
CD
GLU
A
503
−2.097
7.516
31.024
1.00
23.89
A
C


ATOM
1376
OE1
GLU
A
503
−2.315
6.636
30.153
1.00
26.84
A
O


ATOM
1377
OE2
GLU
A
503
−2.272
7.314
32.243
1.00
29.32
A
O


ATOM
1378
C
GLU
A
503
−0.457
11.112
28.747
1.00
13.19
A
C


ATOM
1379
O
GLU
A
503
0.230
10.778
27.787
1.00
13.15
A
O


ATOM
1380
N
LEU
A
504
0.020
11.836
29.760
1.00
12.59
A
N


ATOM
1382
CA
LEU
A
504
1.440
12.210
29.862
1.00
13.43
A
C


ATOM
1384
CB
LEU
A
504
1.635
13.449
30.746
1.00
13.57
A
C


ATOM
1387
CG
LEU
A
504
3.065
13.981
30.844
1.00
14.83
A
C


ATOM
1389
CD1
LEU
A
504
3.440
14.719
29.551
1.00
15.70
A
C


ATOM
1393
CD2
LEU
A
504
3.281
14.893
32.069
1.00
17.43
A
C


ATOM
1397
C
LEU
A
504
2.237
11.049
30.443
1.00
13.16
A
C


ATOM
1398
O
LEU
A
504
1.831
10.448
31.436
1.00
12.13
A
O


ATOM
1399
N
TYR
A
505
3.361
10.740
29.807
1.00
13.87
A
N


ATOM
1401
CA
TYR
A
505
4.261
9.682
30.247
1.00
14.37
A
C


ATOM
1403
CB
TYR
A
505
4.379
8.582
29.159
1.00
15.13
A
C


ATOM
1406
CG
TYR
A
505
3.034
7.948
28.815
1.00
14.57
A
C


ATOM
1407
CD1
TYR
A
505
2.254
7.352
29.802
1.00
16.24
A
C


ATOM
1409
CE1
TYR
A
505
0.996
6.804
29.506
1.00
15.83
A
C


ATOM
1411
CZ
TYR
A
505
0.517
6.853
28.221
1.00
13.11
A
C


ATOM
1412
OH
TYR
A
505
−0.713
6.332
27.933
1.00
15.41
A
O


ATOM
1414
CE2
TYR
A
505
1.255
7.455
27.229
1.00
13.32
A
C


ATOM
1416
CD2
TYR
A
505
2.506
8.017
27.532
1.00
14.19
A
C


ATOM
1418
C
TYR
A
505
5.566
10.408
30.557
1.00
14.61
A
C


ATOM
1419
O
TYR
A
505
6.379
10.672
29.675
1.00
13.90
A
O


ATOM
1420
N
PRO
A
506
5.707
10.836
31.812
1.00
15.51
A
N


ATOM
1421
CA
PRO
A
506
6.699
11.840
32.188
1.00
15.79
A
C


ATOM
1423
CB
PRO
A
506
6.291
12.186
33.616
1.00
16.40
A
C


ATOM
1426
CG
PRO
A
506
5.692
10.962
34.115
1.00
16.38
A
C


ATOM
1429
CD
PRO
A
506
4.903
10.414
32.974
1.00
16.03
A
C


ATOM
1432
C
PRO
A
506
8.168
11.364
32.119
1.00
15.41
A
C


ATOM
1433
O
PRO
A
506
9.055
12.186
32.029
1.00
15.80
A
O


ATOM
1434
N
TYR
A
507
8.406
10.062
32.106
1.00
14.60
A
N


ATOM
1436
CA
TYR
A
507
9.767
9.548
31.946
1.00
13.73
A
C


ATOM
1438
CB
TYR
A
507
9.872
8.143
32.516
1.00
13.74
A
C


ATOM
1441
CG
TYR
A
507
9.659
8.071
33.997
1.00
14.65
A
C


ATOM
1442
CD1
TYR
A
507
10.704
8.269
34.879
1.00
15.68
A
C


ATOM
1444
CE1
TYR
A
507
10.505
8.191
36.268
1.00
17.32
A
C


ATOM
1446
CZ
TYR
A
507
9.241
7.931
36.754
1.00
16.75
A
C


ATOM
1447
OH
TYR
A
507
9.002
7.873
38.099
1.00
19.60
A
O


ATOM
1449
CE2
TYR
A
507
8.198
7.737
35.895
1.00
15.81
A
C


ATOM
1451
CD2
TYR
A
507
8.408
7.807
34.521
1.00
14.55
A
C


ATOM
1453
C
TYR
A
507
10.276
9.550
30.491
1.00
13.31
A
C


ATOM
1454
O
TYR
A
507
11.451
9.268
30.268
1.00
13.27
A
O


ATOM
1455
N
GLY
A
508
9.411
9.838
29.516
1.00
12.24
A
N


ATOM
1457
CA
GLY
A
508
9.834
10.058
28.142
1.00
12.21
A
C


ATOM
1460
C
GLY
A
508
10.112
8.784
27.362
1.00
11.49
A
C


ATOM
1461
O
GLY
A
508
9.628
7.729
27.727
1.00
10.44
A
O


ATOM
1462
N
GLU
A
509
10.885
8.896
26.281
1.00
11.21
A
N


ATOM
1464
CA
GLU
A
509
11.183
7.744
25.416
1.00
11.54
A
C


ATOM
1466
CB
GLU
A
509
11.913
8.194
24.156
1.00
12.66
A
C


ATOM
1469
CG
GLU
A
509
11.143
9.164
23.279
1.00
15.29
A
C


ATOM
1472
CD
GLU
A
509
11.973
9.695
22.119
1.00
18.15
A
C


ATOM
1473
OE1
GLU
A
509
13.122
9.251
21.947
1.00
19.31
A
O


ATOM
1474
OE2
GLU
A
509
11.472
10.588
21.393
1.00
21.32
A
O


ATOM
1475
C
GLU
A
509
12.038
6.666
26.095
1.00
10.37
A
C


ATOM
1476
O
GLU
A
509
12.953
6.974
26.847
1.00
10.56
A
O


ATOM
1477
N
LEU
A
510
11.742
5.399
25.791
1.00
9.52
A
N


ATOM
1479
CA
LEU
A
510
12.447
4.275
26.392
1.00
9.25
A
C


ATOM
1481
CB
LEU
A
510
11.768
2.956
25.990
1.00
9.16
A
C


ATOM
1484
CG
LEU
A
510
12.395
1.682
26.566
1.00
8.82
A
C


ATOM
1486
CD1
LEU
A
510
12.453
1.737
28.081
1.00
9.86
A
C


ATOM
1490
CD2
LEU
A
510
11.596
0.465
26.104
1.00
9.45
A
C


ATOM
1494
C
LEU
A
510
13.948
4.249
26.057
1.00
9.51
A
C


ATOM
1495
O
LEU
A
510
14.772
3.937
26.925
1.00
9.34
A
O


ATOM
1496
N
GLY
A
511
14.322
4.610
24.824
1.00
9.82
A
N


ATOM
1498
CA
GLY
A
511
15.729
4.549
24.433
1.00
10.57
A
C


ATOM
1501
C
GLY
A
511
16.585
5.425
25.340
1.00
10.99
A
C


ATOM
1502
O
GLY
A
511
17.566
4.964
25.934
1.00
11.11
A
O


ATOM
1503
N
HIS
A
512
16.178
6.672
25.492
1.00
11.55
A
N


ATOM
1505
CA
HIS
A
512
16.875
7.608
26.374
1.00
12.69
A
C


ATOM
1507
CB
HIS
A
512
16.319
9.011
26.174
1.00
13.88
A
C


ATOM
1510
CG
HIS
A
512
16.559
9.541
24.795
1.00
17.28
A
C


ATOM
1511
ND1
HIS
A
512
17.678
9.214
24.061
1.00
22.03
A
N


ATOM
1513
CE1
HIS
A
512
17.618
9.808
22.882
1.00
22.98
A
C


ATOM
1515
NE2
HIS
A
512
16.508
10.518
22.831
1.00
21.48
A
N


ATOM
1517
CD2
HIS
A
512
15.821
10.360
24.011
1.00
20.94
A
C


ATOM
1519
C
HIS
A
512
16.810
7.196
27.840
1.00
11.73
A
C


ATOM
1520
O
HIS
A
512
17.795
7.308
28.560
1.00
11.30
A
O


ATOM
1521
N
TYR
A
513
15.664
6.682
28.269
1.00
10.95
A
N


ATOM
1523
CA
TYR
A
513
15.472
6.184
29.630
1.00
10.24
A
C


ATOM
1525
CB
TYR
A
513
14.034
5.677
29.797
1.00
10.11
A
C


ATOM
1528
CG
TYR
A
513
13.693
5.094
31.169
1.00
9.46
A
C


ATOM
1529
CD1
TYR
A
513
13.157
5.901
32.160
1.00
9.43
A
C


ATOM
1531
CE1
TYR
A
513
12.800
5.391
33.393
1.00
9.59
A
C


ATOM
1533
CZ
TYR
A
513
12.988
4.068
33.671
1.00
9.14
A
C


ATOM
1534
OH
TYR
A
513
12.628
3.617
34.912
1.00
12.42
A
O


ATOM
1536
CE2
TYR
A
513
13.533
3.214
32.708
1.00
8.34
A
C


ATOM
1538
CD2
TYR
A
513
13.854
3.735
31.452
1.00
8.09
A
C


ATOM
1540
C
TYR
A
513
16.469
5.068
29.965
1.00
10.47
A
C


ATOM
1541
O
TYR
A
513
17.110
5.099
31.009
1.00
10.13
A
O


ATOM
1542
N
LEU
A
514
16.623
4.102
29.058
1.00
10.69
A
N


ATOM
1544
CA
LEU
A
514
17.596
3.021
29.239
1.00
11.38
A
C


ATOM
1546
CB
LEU
A
514
17.478
1.997
28.115
1.00
11.46
A
C


ATOM
1549
CG
LEU
A
514
16.163
1.198
28.035
1.00
12.98
A
C


ATOM
1551
CD1
LEU
A
514
16.082
0.442
26.729
1.00
14.53
A
C


ATOM
1555
CD2
LEU
A
514
16.010
0.260
29.218
1.00
12.92
A
C


ATOM
1559
C
LEU
A
514
19.027
3.556
29.300
1.00
12.00
A
C


ATOM
1560
O
LEU
A
514
19.839
3.080
30.090
1.00
12.23
A
O


ATOM
1561
N
GLU
A
515
19.330
4.518
28.450
1.00
12.66
A
N


ATOM
1563
CA
GLU
A
515
20.650
5.160
28.447
1.00
14.53
A
C


ATOM
1565
CB
GLU
A
515
20.742
6.212
27.346
1.00
15.14
A
C


ATOM
1568
CG
GLU
A
515
20.701
5.656
25.929
1.00
19.10
A
C


ATOM
1571
CD
GLU
A
515
20.531
6.744
24.868
1.00
24.40
A
C


ATOM
1572
OE1
GLU
A
515
20.496
7.948
25.236
1.00
29.66
A
O


ATOM
1573
OE2
GLU
A
515
20.433
6.395
23.665
1.00
28.24
A
O


ATOM
1574
C
GLU
A
515
20.954
5.812
29.795
1.00
15.17
A
C


ATOM
1575
O
GLU
A
515
22.046
5.601
30.347
1.00
15.52
A
O


ATOM
1576
N
ARG
A
516
19.987
6.576
30.317
1.00
15.35
A
N


ATOM
1578
CA
ARG
A
516
20.114
7.306
31.595
1.00
16.48
A
C


ATOM
1580
CB
ARG
A
516
18.842
8.134
31.882
1.00
17.00
A
C


ATOM
1583
CG
ARG
A
516
18.722
9.407
31.115
1.00
19.06
A
C


ATOM
1586
CD
ARG
A
516
17.815
10.406
31.760
1.00
18.75
A
C


ATOM
1589
NE
ARG
A
516
16.482
9.894
32.079
1.00
17.60
A
N


ATOM
1591
CZ
ARG
A
516
15.500
9.702
31.197
1.00
17.67
A
C


ATOM
1592
NH1
ARG
A
516
15.669
9.969
29.909
1.00
17.37
A
N


ATOM
1595
NH2
ARG
A
516
14.323
9.248
31.612
1.00
20.07
A
N


ATOM
1598
C
ARG
A
516
20.298
6.382
32.790
1.00
16.29
A
C


ATOM
1599
O
ARG
A
516
21.032
6.702
33.743
1.00
15.28
A
O


ATOM
1600
N
ASN
A
517
19.609
5.245
32.745
1.00
16.03
A
N


ATOM
1602
CA
ASN
A
517
19.387
4.432
33.927
1.00
15.86
A
C


ATOM
1604
CB
ASN
A
517
17.876
4.249
34.155
1.00
15.83
A
C


ATOM
1607
CG
ASN
A
517
17.161
5.562
34.430
1.00
16.01
A
C


ATOM
1608
OD1
ASN
A
517
16.182
5.918
33.758
1.00
16.60
A
O


ATOM
1609
ND2
ASN
A
517
17.671
6.316
35.390
1.00
15.03
A
N


ATOM
1612
C
ASN
A
517
20.108
3.092
33.863
1.00
16.06
A
C


ATOM
1613
O
ASN
A
517
19.900
2.238
34.715
1.00
15.77
A
O


ATOM
1614
N
LYS
A
518
20.980
2.928
32.870
1.00
16.16
A
N


ATOM
1616
CA
LYS
A
518
21.613
1.641
32.606
1.00
17.63
A
C


ATOM
1618
CB
LYS
A
518
22.643
1.784
31.474
1.00
17.77
A
C


ATOM
1621
CG
LYS
A
518
23.632
0.636
31.368
1.00
20.82
A
C


ATOM
1624
CD
LYS
A
518
24.421
0.686
30.063
1.00
24.15
A
C


ATOM
1627
CE
LYS
A
518
25.172
1.979
29.909
1.00
26.03
A
C


ATOM
1630
NZ
LYS
A
518
24.304
3.106
29.435
1.00
28.18
A
N


ATOM
1634
C
LYS
A
518
22.254
1.017
33.849
1.00
18.11
A
C


ATOM
1635
O
LYS
A
518
22.126
−0.189
34.086
1.00
18.39
A
O


ATOM
1636
N
ASN
A
519
22.938
1.825
34.652
1.00
18.49
A
N


ATOM
1638
CA
ASN
A
519
23.671
1.287
35.802
1.00
19.30
A
C


ATOM
1640
CB
ASN
A
519
24.611
2.346
36.375
1.00
19.86
A
C


ATOM
1643
CG
ASN
A
519
25.664
2.759
35.382
1.00
21.38
A
C


ATOM
1644
OD1
ASN
A
519
26.149
1.930
34.612
1.00
26.70
A
O


ATOM
1645
ND2
ASN
A
519
26.012
4.042
35.372
1.00
28.25
A
N


ATOM
1648
C
ASN
A
519
22.823
0.691
36.922
1.00
19.78
A
C


ATOM
1649
O
ASN
A
519
23.344
−0.079
37.710
1.00
19.38
A
O


ATOM
1650
N
SER
A
520
21.531
1.029
36.985
1.00
19.92
A
N


ATOM
1652
CA
SER
A
520
20.647
0.503
38.031
1.00
20.71
A
C


ATOM
1654
CB
SER
A
520
20.044
1.663
38.834
1.00
21.31
A
C


ATOM
1657
OG
SER
A
520
19.120
2.400
38.069
1.00
23.80
A
O


ATOM
1659
C
SER
A
520
19.536
−0.435
37.536
1.00
20.17
A
C


ATOM
1660
O
SER
A
520
18.775
−0.953
38.335
1.00
21.79
A
O


ATOM
1661
N
LEU
A
521
19.456
−0.678
36.234
1.00
18.62
A
N


ATOM
1663
CA
LEU
A
521
18.417
−1.545
35.676
1.00
17.54
A
C


ATOM
1665
CB
LEU
A
521
18.209
−1.218
34.192
1.00
17.30
A
C


ATOM
1668
CG
LEU
A
521
17.417
0.046
33.909
1.00
17.34
A
C


ATOM
1670
CD1
LEU
A
521
17.651
0.555
32.493
1.00
17.37
A
C


ATOM
1674
CD2
LEU
A
521
15.950
−0.230
34.136
1.00
19.13
A
C


ATOM
1678
C
LEU
A
521
18.794
−3.014
35.804
1.00
16.93
A
C


ATOM
1679
O
LEU
A
521
19.938
−3.378
35.566
1.00
17.89
A
O


ATOM
1680
N
LYS
A
522
17.841
−3.863
36.164
1.00
15.75
A
N


ATOM
1682
CA
LYS
A
522
18.070
−5.314
36.231
1.00
15.93
A
C


ATOM
1684
CB
LYS
A
522
17.277
−5.944
37.385
1.00
16.21
A
C


ATOM
1687
CG
LYS
A
522
17.444
−5.237
38.719
1.00
18.79
A
C


ATOM
1690
CD
LYS
A
522
16.528
−5.804
39.802
1.00
21.17
A
C


ATOM
1693
CE
LYS
A
522
15.090
−5.353
39.648
1.00
23.90
A
C


ATOM
1696
NZ
LYS
A
522
14.842
−3.888
39.964
1.00
25.89
A
N


ATOM
1700
C
LYS
A
522
17.623
−5.956
34.915
1.00
14.75
A
C


ATOM
1701
O
LYS
A
522
16.727
−5.432
34.257
1.00
14.52
A
O


ATOM
1702
N
VAL
A
523
18.223
−7.096
34.556
1.00
13.60
A
N


ATOM
1704
CA
VAL
A
523
17.821
−7.845
33.349
1.00
13.60
A
C


ATOM
1706
CB
VAL
A
523
18.666
−9.113
33.137
1.00
13.75
A
C


ATOM
1708
CG1
VAL
A
523
18.182
−9.891
31.939
1.00
13.84
A
C


ATOM
1712
CG2
VAL
A
523
20.157
−8.741
32.968
1.00
14.55
A
C


ATOM
1716
C
VAL
A
523
16.344
−8.238
33.420
1.00
13.39
A
C


ATOM
1717
O
VAL
A
523
15.631
−8.222
32.427
1.00
12.33
A
O


ATOM
1718
N
LEU
A
524
15.887
−8.535
34.626
1.00
13.26
A
N


ATOM
1720
CA
LEU
A
524
14.512
−8.886
34.875
1.00
14.13
A
C


ATOM
1722
CB
LEU
A
524
14.392
−9.107
36.382
1.00
15.52
A
C


ATOM
1725
CG
LEU
A
524
13.090
−9.468
37.032
1.00
20.72
A
C


ATOM
1727
CD1
LEU
A
524
12.523
−10.698
36.358
1.00
22.55
A
C


ATOM
1731
CD2
LEU
A
524
13.407
−9.706
38.518
1.00
22.42
A
C


ATOM
1735
C
LEU
A
524
13.556
−7.804
34.362
1.00
12.61
A
C


ATOM
1736
O
LEU
A
524
12.528
−8.109
33.738
1.00
11.66
A
O


ATOM
1737
N
THR
A
525
13.909
−6.544
34.590
1.00
11.21
A
N


ATOM
1739
CA
THR
A
525
13.113
−5.402
34.123
1.00
11.25
A
C


ATOM
1741
CB
THR
A
525
13.650
−4.120
34.788
1.00
11.51
A
C


ATOM
1743
OG1
THR
A
525
13.552
−4.260
36.215
1.00
13.76
A
O


ATOM
1745
CG2
THR
A
525
12.815
−2.922
34.467
1.00
11.96
A
C


ATOM
1749
C
THR
A
525
13.124
−5.235
32.600
1.00
10.93
A
C


ATOM
1750
O
THR
A
525
12.114
−4.850
32.001
1.00
10.34
A
O


ATOM
1751
N
LEU
A
526
14.275
−5.482
31.987
1.00
9.76
A
N


ATOM
1753
CA
LEU
A
526
14.412
−5.405
30.523
1.00
9.91
A
C


ATOM
1755
CB
LEU
A
526
15.877
−5.597
30.105
1.00
9.71
A
C


ATOM
1758
CG
LEU
A
526
16.878
−4.621
30.717
1.00
10.00
A
C


ATOM
1760
CD1
LEU
A
526
18.268
−4.904
30.219
1.00
10.63
A
C


ATOM
1764
CD2
LEU
A
526
16.484
−3.208
30.422
1.00
10.98
A
C


ATOM
1768
C
LEU
A
526
13.520
−6.455
29.836
1.00
9.82
A
C


ATOM
1769
O
LEU
A
526
12.876
−6.176
28.822
1.00
8.11
A
O


ATOM
1770
N
VAL
A
527
13.475
−7.660
30.411
1.00
9.84
A
N


ATOM
1772
CA
VAL
A
527
12.588
−8.709
29.924
1.00
10.01
A
C


ATOM
1774
CB
VAL
A
527
12.910
−10.075
30.588
1.00
10.28
A
C


ATOM
1776
CG1
VAL
A
527
11.950
−11.157
30.103
1.00
12.12
A
C


ATOM
1780
CG2
VAL
A
527
14.326
−10.464
30.275
1.00
11.61
A
C


ATOM
1784
C
VAL
A
527
11.111
−8.316
30.132
1.00
9.91
A
C


ATOM
1785
O
VAL
A
527
10.286
−8.533
29.247
1.00
9.20
A
O


ATOM
1786
N
LEU
A
528
10.783
−7.715
31.277
1.00
9.17
A
N


ATOM
1788
CA
LEU
A
528
9.419
−7.239
31.548
1.00
9.55
A
C


ATOM
1790
CB
LEU
A
528
9.308
−6.582
32.940
1.00
10.47
A
C


ATOM
1793
CG
LEU
A
528
7.962
−5.908
33.230
1.00
11.24
A
C


ATOM
1795
CD1
LEU
A
528
6.855
−6.956
33.158
1.00
11.66
A
C


ATOM
1799
CD2
LEU
A
528
7.961
−5.179
34.544
1.00
12.72
A
C


ATOM
1803
C
LEU
A
528
8.976
−6.263
30.464
1.00
9.67
A
C


ATOM
1804
O
LEU
A
528
7.878
−6.389
29.928
1.00
8.64
A
O


ATOM
1805
N
TYR
A
529
9.825
−5.290
30.120
1.00
9.08
A
N


ATOM
1807
CA
TYR
A
529
9.447
−4.301
29.091
1.00
8.78
A
C


ATOM
1809
CB
TYR
A
529
10.522
−3.215
28.939
1.00
8.57
A
C


ATOM
1812
CG
TYR
A
529
10.744
−2.321
30.143
1.00
10.12
A
C


ATOM
1813
CD1
TYR
A
529
9.833
−2.257
31.193
1.00
10.85
A
C


ATOM
1815
CE1
TYR
A
529
10.057
−1.438
32.298
1.00
12.11
A
C


ATOM
1817
CZ
TYR
A
529
11.211
−0.677
32.365
1.00
13.84
A
C


ATOM
1818
OH
TYR
A
529
11.441
0.140
33.449
1.00
16.48
A
O


ATOM
1820
CE2
TYR
A
529
12.137
−0.737
31.354
1.00
11.18
A
C


ATOM
1822
CD2
TYR
A
529
11.903
−1.565
30.248
1.00
11.83
A
C


ATOM
1824
C
TYR
A
529
9.202
−4.967
27.734
1.00
8.22
A
C


ATOM
1825
O
TYR
A
529
8.255
−4.615
27.028
1.00
9.04
A
O


ATOM
1826
N
SER
A
530
10.036
−5.937
27.390
1.00
8.24
A
N


ATOM
1828
CA
SER
A
530
9.889
−6.722
26.154
1.00
7.83
A
C


ATOM
1830
CB
SER
A
530
11.052
−7.730
26.015
1.00
7.54
A
C


ATOM
1833
OG
SER
A
530
12.310
−7.077
25.839
1.00
10.28
A
O


ATOM
1835
C
SER
A
530
8.543
−7.458
26.137
1.00
7.48
A
C


ATOM
1836
O
SER
A
530
7.820
−7.443
25.141
1.00
7.17
A
O


ATOM
1837
N
LEU
A
531
8.199
−8.074
27.258
1.00
6.73
A
N


ATOM
1839
CA
LEU
A
531
6.931
−8.800
27.389
1.00
7.75
A
C


ATOM
1841
CB
LEU
A
531
6.912
−9.561
28.728
1.00
7.60
A
C


ATOM
1844
CG
LEU
A
531
5.618
−10.232
29.178
1.00
8.41
A
C


ATOM
1846
CD1
LEU
A
531
5.201
−11.263
28.153
1.00
9.01
A
C


ATOM
1850
CD2
LEU
A
531
5.776
−10.881
30.561
1.00
11.57
A
C


ATOM
1854
C
LEU
A
531
5.731
−7.876
27.280
1.00
7.08
A
C


ATOM
1855
O
LEU
A
531
4.745
−8.201
26.644
1.00
6.97
A
O


ATOM
1856
N
GLN
A
532
5.797
−6.711
27.911
1.00
7.33
A
N


ATOM
1858
CA
GLN
A
532
4.706
−5.735
27.831
1.00
7.02
A
C


ATOM
1860
CB
GLN
A
532
5.050
−4.514
28.702
1.00
6.93
A
C


ATOM
1863
CG
GLN
A
532
4.930
−4.815
30.195
1.00
7.50
A
C


ATOM
1866
CD
GLN
A
532
5.235
−3.632
31.101
1.00
9.98
A
C


ATOM
1867
OE1
GLN
A
532
5.756
−2.626
30.657
1.00
9.61
A
O


ATOM
1868
NE2
GLN
A
532
4.903
−3.772
32.393
1.00
8.99
A
N


ATOM
1871
C
GLN
A
532
4.439
−5.290
26.388
1.00
7.09
A
C


ATOM
1872
O
GLN
A
532
3.281
−5.223
25.942
1.00
6.73
A
O


ATOM
1873
N
ILE
A
533
5.505
−4.991
25.645
1.00
7.80
A
N


ATOM
1875
CA
ILE
A
533
5.341
−4.572
24.264
1.00
8.29
A
C


ATOM
1877
CB
ILE
A
533
6.663
−4.028
23.692
1.00
8.97
A
C


ATOM
1879
CG1
ILE
A
533
7.124
−2.779
24.445
1.00
8.38
A
C


ATOM
1882
CD1
ILE
A
533
6.158
−1.630
24.424
1.00
9.69
A
C


ATOM
1886
CG2
ILE
A
533
6.527
−3.760
22.221
1.00
9.41
A
C


ATOM
1890
C
ILE
A
533
4.825
−5.736
23.419
1.00
8.33
A
C


ATOM
1891
O
ILE
A
533
4.010
−5.548
22.512
1.00
8.38
A
O


ATOM
1892
N
CYS
A
534
5.305
−6.938
23.717
1.00
7.80
A
N


ATOM
1894
CA
CYS
A
534
4.829
−8.141
23.044
1.00
8.73
A
C


ATOM
1896
CB
CYS
A
534
5.588
−9.373
23.521
1.00
9.35
A
C


ATOM
1899
SG
CYS
A
534
5.440
−10.785
22.388
1.00
10.44
A
S


ATOM
1900
C
CYS
A
534
3.332
−8.326
23.234
1.00
8.30
A
C


ATOM
1901
O
CYS
A
534
2.638
−8.690
22.279
1.00
7.97
A
O


ATOM
1902
N
LYS
A
535
2.821
−8.083
24.451
1.00
8.09
A
N


ATOM
1904
CA
LYS
A
535
1.381
−8.179
24.685
1.00
8.26
A
C


ATOM
1906
CB
LYS
A
535
1.055
−8.053
26.169
1.00
8.37
A
C


ATOM
1909
CG
LYS
A
535
1.491
−9.239
26.965
1.00
10.48
A
C


ATOM
1912
CD
LYS
A
535
1.166
−9.072
28.438
1.00
13.12
A
C


ATOM
1915
CE
LYS
A
535
1.380
−10.378
29.159
1.00
15.75
A
C


ATOM
1918
NZ
LYS
A
535
1.022
−10.255
30.588
1.00
19.99
A
N


ATOM
1922
C
LYS
A
535
0.569
−7.160
23.880
1.00
8.96
A
C


ATOM
1923
O
LYS
A
535
−0.525
−7.471
23.383
1.00
8.89
A
O


ATOM
1924
N
ALA
A
536
1.079
−5.946
23.758
1.00
8.31
A
N


ATOM
1926
CA
ALA
A
536
0.461
−4.964
22.870
1.00
8.35
A
C


ATOM
1928
CB
ALA
A
536
1.208
−3.652
22.932
1.00
8.92
A
C


ATOM
1932
C
ALA
A
536
0.418
−5.463
21.434
1.00
8.28
A
C


ATOM
1933
O
ALA
A
536
−0.595
−5.288
20.745
1.00
8.64
A
O


ATOM
1934
N
MET
A
537
1.505
−6.073
20.973
1.00
7.09
A
N


ATOM
1936
CA
MET
A
537
1.578
−6.552
19.596
1.00
7.42
A
C


ATOM
1938
CB
MET
A
537
3.020
−6.875
19.183
1.00
7.57
A
C


ATOM
1941
CG
MET
A
537
3.879
−5.632
19.008
1.00
7.90
A
C


ATOM
1944
SD
MET
A
537
3.169
−4.342
17.962
1.00
11.76
A
S


ATOM
1945
CE
MET
A
537
2.724
−5.210
16.517
1.00
14.61
A
C


ATOM
1949
C
MET
A
537
0.679
−7.755
19.365
1.00
7.65
A
C


ATOM
1950
O
MET
A
537
0.122
−7.907
18.271
1.00
8.38
A
O


ATOM
1951
N
ALA
A
538
0.479
−8.576
20.386
1.00
7.79
A
N


ATOM
1953
CA
ALA
A
538
−0.451
−9.717
20.244
1.00
8.20
A
C


ATOM
1955
CB
ALA
A
538
−0.415
−10.622
21.450
1.00
8.47
A
C


ATOM
1959
C
ALA
A
538
−1.876
−9.203
20.011
1.00
8.12
A
C


ATOM
1960
O
ALA
A
538
−2.643
−9.800
19.251
1.00
8.25
A
O


ATOM
1961
N
TYR
A
539
−2.230
−8.116
20.670
1.00
8.11
A
N


ATOM
1963
CA
TYR
A
539
−3.542
−7.483
20.457
1.00
9.32
A
C


ATOM
1965
CB
TYR
A
539
−3.774
−6.365
21.469
1.00
9.99
A
C


ATOM
1968
CG
TYR
A
539
−5.068
−5.630
21.207
1.00
11.93
A
C


ATOM
1969
CD1
TYR
A
539
−6.271
−6.313
21.198
1.00
15.15
A
C


ATOM
1971
CE1
TYR
A
539
−7.490
−5.653
20.916
1.00
19.59
A
C


ATOM
1973
CZ
TYR
A
539
−7.490
−4.300
20.654
1.00
21.53
A
C


ATOM
1974
OH
TYR
A
539
−8.702
−3.667
20.376
1.00
25.74
A
O


ATOM
1976
CE2
TYR
A
539
−6.300
−3.595
20.656
1.00
19.80
A
C


ATOM
1978
CD2
TYR
A
539
−5.082
−4.267
20.928
1.00
17.80
A
C


ATOM
1980
C
TYR
A
539
−3.671
−6.953
19.013
1.00
9.25
A
C


ATOM
1981
O
TYR
A
539
−4.671
−7.228
18.327
1.00
10.22
A
O


ATOM
1982
N
LEU
A
540
−2.662
−6.226
18.534
1.00
8.68
A
N


ATOM
1984
CA
LEU
A
540
−2.681
−5.747
17.162
1.00
9.52
A
C


ATOM
1986
CB
LEU
A
540
−1.497
−4.781
16.902
1.00
9.52
A
C


ATOM
1989
CG
LEU
A
540
−1.503
−3.503
17.757
1.00
9.17
A
C


ATOM
1991
CD1
LEU
A
540
−0.301
−2.603
17.427
1.00
12.37
A
C


ATOM
1995
CD2
LEU
A
540
−2.795
−2.746
17.652
1.00
11.42
A
C


ATOM
1999
C
LEU
A
540
−2.765
−6.896
16.132
1.00
10.02
A
C


ATOM
2000
O
LEU
A
540
−3.496
−6.801
15.139
1.00
10.77
A
O


ATOM
2001
N
GLU
A
541
−2.053
−7.983
16.386
1.00
9.88
A
N


ATOM
2003
CA
GLU
A
541
−2.071
−9.173
15.534
1.00
10.37
A
C


ATOM
2005
CB
GLU
A
541
−1.081
−10.216
16.087
1.00
10.24
A
C


ATOM
2008
CG
GLU
A
541
−1.140
−11.612
15.478
1.00
11.36
A
C


ATOM
2011
CD
GLU
A
541
−0.136
−12.569
16.101
1.00
10.66
A
C


ATOM
2012
OE1
GLU
A
541
−0.448
−13.191
17.153
1.00
11.76
A
O


ATOM
2013
OE2
GLU
A
541
0.968
−12.704
15.543
1.00
11.66
A
O


ATOM
2014
C
GLU
A
541
−3.491
−9.739
15.437
1.00
10.85
A
C


ATOM
2015
O
GLU
A
541
−3.907
−10.192
14.378
1.00
11.81
A
O


ATOM
2016
N
SER
A
542
−4.243
−9.677
16.531
1.00
11.36
A
N


ATOM
2018
CA
SER
A
542
−5.608
−10.206
16.550
1.00
11.65
A
C


ATOM
2020
CB
SER
A
542
−6.160
−10.250
17.976
1.00
12.06
A
C


ATOM
2023
OG
SER
A
542
−6.549
−8.983
18.468
1.00
11.97
A
O


ATOM
2025
C
SER
A
542
−6.576
−9.458
15.641
1.00
12.56
A
C


ATOM
2026
O
SER
A
542
−7.631
−10.010
15.277
1.00
11.49
A
O


ATOM
2027
N
ILE
A
543
−6.260
−8.210
15.323
1.00
12.89
A
N


ATOM
2029
CA
ILE
A
543
−7.050
−7.424
14.358
1.00
13.67
A
C


ATOM
2031
CB
ILE
A
543
−7.562
−6.115
14.994
1.00
14.02
A
C


ATOM
2033
CG1
ILE
A
543
−6.433
−5.283
15.598
1.00
14.22
A
C


ATOM
2036
CD1
ILE
A
543
−6.826
−3.900
15.926
1.00
15.54
A
C


ATOM
2040
CG2
ILE
A
543
−8.591
−6.404
16.074
1.00
13.84
A
C


ATOM
2044
C
ILE
A
543
−6.317
−7.159
13.042
1.00
14.47
A
C


ATOM
2045
O
ILE
A
543
−6.732
−6.316
12.252
1.00
14.15
A
O


ATOM
2046
N
ASN
A
544
−5.235
−7.885
12.809
1.00
15.25
A
N


ATOM
2048
CA
ASN
A
544
−4.457
−7.780
11.575
1.00
17.01
A
C


ATOM
2050
CB
ASN
A
544
−5.260
−8.311
10.368
1.00
18.38
A
C


ATOM
2053
CG
ASN
A
544
−5.668
−9.758
10.523
1.00
22.26
A
C


ATOM
2054
OD1
ASN
A
544
−4.821
−10.644
10.660
1.00
28.79
A
O


ATOM
2055
ND2
ASN
A
544
−6.970
−10.012
10.491
1.00
27.53
A
N


ATOM
2058
C
ASN
A
544
−3.995
−6.353
11.302
1.00
17.05
A
C


ATOM
2059
O
ASN
A
544
−4.019
−5.878
10.162
1.00
18.03
A
O


ATOM
2060
N
CYS
A
545
−3.591
−5.672
12.365
1.00
16.00
A
N


ATOM
2062
CA
CYS
A
545
−3.103
−4.305
12.291
1.00
16.72
A
C


ATOM
2064
CB
CYS
A
545
−3.628
−3.544
13.494
1.00
16.76
A
C


ATOM
2067
SG
CYS
A
545
−3.019
−1.887
13.701
1.00
24.49
A
S


ATOM
2068
C
CYS
A
545
−1.586
−4.358
12.295
1.00
15.33
A
C


ATOM
2069
O
CYS
A
545
−0.994
−4.800
13.278
1.00
15.78
A
O


ATOM
2070
N
VAL
A
546
−0.969
−3.933
11.194
1.00
14.28
A
N


ATOM
2072
CA
VAL
A
546
0.498
−3.913
11.064
1.00
13.55
A
C


ATOM
2074
CB
VAL
A
546
0.939
−4.206
9.610
1.00
14.14
A
C


ATOM
2076
CG1
VAL
A
546
2.466
−4.261
9.507
1.00
15.81
A
C


ATOM
2080
CG2
VAL
A
546
0.296
−5.520
9.111
1.00
15.91
A
C


ATOM
2084
C
VAL
A
546
0.998
−2.542
11.524
1.00
13.04
A
C


ATOM
2085
O
VAL
A
546
0.606
−1.505
10.980
1.00
12.91
A
O


ATOM
2086
N
HIS
A
547
1.871
−2.540
12.533
1.00
11.11
A
N


ATOM
2088
CA
HIS
A
547
2.287
−1.318
13.227
1.00
10.91
A
C


ATOM
2090
CB
HIS
A
547
2.643
−1.668
14.683
1.00
10.19
A
C


ATOM
2093
CG
HIS
A
547
2.902
−0.475
15.544
1.00
10.34
A
C


ATOM
2094
ND1
HIS
A
547
4.081
0.228
15.491
1.00
11.48
A
N


ATOM
2096
CE1
HIS
A
547
4.038
1.226
16.361
1.00
10.70
A
C


ATOM
2098
NE2
HIS
A
547
2.864
1.199
16.967
1.00
9.34
A
N


ATOM
2100
CD2
HIS
A
547
2.140
0.138
16.481
1.00
10.35
A
C


ATOM
2102
C
HIS
A
547
3.431
−0.584
12.527
1.00
10.89
A
C


ATOM
2103
O
HIS
A
547
3.342
0.628
12.322
1.00
11.28
A
O


ATOM
2104
N
ARG
A
548
4.479
−1.321
12.157
1.00
10.62
A
N


ATOM
2106
CA
ARG
A
548
5.652
−0.819
11.406
1.00
10.76
A
C


ATOM
2108
CB
ARG
A
548
5.248
−0.092
10.114
1.00
11.42
A
C


ATOM
2111
CG
ARG
A
548
4.346
−0.845
9.128
1.00
12.89
A
C


ATOM
2114
CD
ARG
A
548
4.246
−0.093
7.781
1.00
15.96
A
C


ATOM
2117
NE
ARG
A
548
3.297
−0.686
6.841
1.00
16.19
A
N


ATOM
2119
CZ
ARG
A
548
3.236
−0.367
5.543
1.00
18.71
A
C


ATOM
2120
NH1
ARG
A
548
4.045
0.549
5.039
1.00
17.01
A
N


ATOM
2123
NH2
ARG
A
548
2.350
−0.948
4.752
1.00
19.52
A
N


ATOM
2126
C
ARG
A
548
6.616
0.100
12.165
1.00
10.94
A
C


ATOM
2127
O
ARG
A
548
7.610
0.540
11.585
1.00
11.17
A
O


ATOM
2128
N
ASP
A
549
6.345
0.423
13.421
1.00
10.64
A
N


ATOM
2130
CA
ASP
A
549
7.255
1.294
14.181
1.00
11.41
A
C


ATOM
2132
CB
ASP
A
549
6.824
2.767
14.120
1.00
11.59
A
C


ATOM
2135
CG
ASP
A
549
7.947
3.735
14.497
1.00
16.46
A
C


ATOM
2136
OD1
ASP
A
549
9.129
3.319
14.543
1.00
19.23
A
O


ATOM
2137
OD2
ASP
A
549
7.726
4.944
14.778
1.00
18.02
A
O


ATOM
2138
C
ASP
A
549
7.456
0.836
15.616
1.00
10.41
A
C


ATOM
2139
O
ASP
A
549
7.269
1.597
16.576
1.00
10.29
A
O


ATOM
2140
N
ILE
A
550
7.926
−0.400
15.743
1.00
10.29
A
N


ATOM
2142
CA
ILE
A
550
8.229
−0.986
17.046
1.00
10.14
A
C


ATOM
2144
CB
ILE
A
550
7.858
−2.490
17.037
1.00
10.18
A
C


ATOM
2146
CG1
ILE
A
550
6.440
−2.685
16.476
1.00
9.59
A
C


ATOM
2149
CD1
ILE
A
550
6.199
−4.070
15.917
1.00
12.93
A
C


ATOM
2153
CG2
ILE
A
550
7.936
−3.059
18.435
1.00
10.80
A
C


ATOM
2157
C
ILE
A
550
9.709
−0.791
17.310
1.00
10.07
A
C


ATOM
2158
O
ILE
A
550
10.517
−1.517
16.793
1.00
10.23
A
O


ATOM
2159
N
ALA
A
551
10.032
0.227
18.094
1.00
10.23
A
N


ATOM
2161
CA
ALA
A
551
11.403
0.671
18.312
1.00
9.79
A
C


ATOM
2163
CB
ALA
A
551
11.883
1.526
17.130
1.00
9.99
A
C


ATOM
2167
C
ALA
A
551
11.404
1.495
19.593
1.00
9.51
A
C


ATOM
2168
O
ALA
A
551
10.399
2.111
19.911
1.00
8.53
A
O


ATOM
2169
N
VAL
A
552
12.536
1.529
20.304
1.00
8.79
A
N


ATOM
2171
CA
VAL
A
552
12.595
2.169
21.630
1.00
9.71
A
C


ATOM
2173
CB
VAL
A
552
13.917
1.852
22.434
1.00
9.32
A
C


ATOM
2175
CG1
VAL
A
552
13.981
0.377
22.814
1.00
11.97
A
C


ATOM
2179
CG2
VAL
A
552
15.175
2.296
21.700
1.00
10.51
A
C


ATOM
2183
C
VAL
A
552
12.373
3.671
21.605
1.00
9.86
A
C


ATOM
2184
O
VAL
A
552
11.910
4.231
22.605
1.00
9.34
A
O


ATOM
2185
N
ARG
A
553
12.672
4.305
20.462
1.00
9.93
A
N


ATOM
2187
CA
ARG
A
553
12.381
5.715
20.233
1.00
11.22
A
C


ATOM
2189
CB
ARG
A
553
12.914
6.152
18.849
1.00
12.32
A
C


ATOM
2192
CG
ARG
A
553
12.746
7.598
18.520
1.00
18.30
A
C


ATOM
2195
CD
ARG
A
553
13.541
8.051
17.284
1.00
25.13
A
C


ATOM
2198
NE
ARG
A
553
13.202
9.422
16.907
1.00
30.79
A
N


ATOM
2200
CZ
ARG
A
553
13.974
10.246
16.190
1.00
34.09
A
C


ATOM
2201
NH1
ARG
A
553
15.161
9.865
15.721
1.00
35.69
A
N


ATOM
2204
NH2
ARG
A
553
13.536
11.475
15.928
1.00
35.84
A
N


ATOM
2207
C
ARG
A
553
10.873
5.962
20.295
1.00
10.85
A
C


ATOM
2208
O
ARG
A
553
10.427
7.061
20.646
1.00
9.83
A
O


ATOM
2209
N
ASN
A
554
10.101
4.948
19.911
1.00
8.85
A
N


ATOM
2211
CA
ASN
A
554
8.650
5.050
19.820
1.00
9.54
A
C


ATOM
2213
CB
ASN
A
554
8.173
4.595
18.434
1.00
8.92
A
C


ATOM
2216
CG
ASN
A
554
6.729
4.998
18.148
1.00
10.60
A
C


ATOM
2217
OD1
ASN
A
554
6.321
6.131
18.457
1.00
11.60
A
O


ATOM
2218
ND2
ASN
A
554
5.959
4.101
17.560
1.00
11.34
A
N


ATOM
2221
C
ASN
A
554
7.907
4.279
20.910
1.00
9.30
A
C


ATOM
2222
O
ASN
A
554
6.788
3.841
20.707
1.00
10.60
A
O


ATOM
2223
N
ILE
A
555
8.544
4.108
22.062
1.00
10.21
A
N


ATOM
2225
CA
ILE
A
555
7.935
3.514
23.235
1.00
9.86
A
C


ATOM
2227
CB
ILE
A
555
8.595
2.177
23.597
1.00
9.61
A
C


ATOM
2229
CG1
ILE
A
555
8.358
1.140
22.488
1.00
10.41
A
C


ATOM
2232
CD1
ILE
A
555
9.318
0.017
22.555
1.00
11.60
A
C


ATOM
2236
CG2
ILE
A
555
8.103
1.672
24.948
1.00
9.20
A
C


ATOM
2240
C
ILE
A
555
8.114
4.536
24.350
1.00
10.75
A
C


ATOM
2241
O
ILE
A
555
9.208
5.071
24.541
1.00
10.55
A
O


ATOM
2242
N
LEU
A
556
7.044
4.807
25.088
1.00
10.73
A
N


ATOM
2244
CA
LEU
A
556
7.084
5.751
26.209
1.00
11.14
A
C


ATOM
2246
CB
LEU
A
556
5.932
6.765
26.100
1.00
11.83
A
C


ATOM
2249
CG
LEU
A
556
6.005
7.814
24.986
1.00
14.83
A
C


ATOM
2251
CD1
LEU
A
556
7.308
8.567
24.986
1.00
18.18
A
C


ATOM
2255
CD2
LEU
A
556
5.770
7.191
23.644
1.00
19.54
A
C


ATOM
2259
C
LEU
A
556
7.001
5.052
27.535
1.00
10.30
A
C


ATOM
2260
O
LEU
A
556
6.353
4.017
27.670
1.00
9.91
A
O


ATOM
2261
N
VAL
A
557
7.636
5.660
28.529
1.00
9.82
A
N


ATOM
2263
CA
VAL
A
557
7.790
5.088
29.856
1.00
10.20
A
C


ATOM
2265
CB
VAL
A
557
9.244
5.235
30.379
1.00
9.42
A
C


ATOM
2267
CG1
VAL
A
557
9.382
4.662
31.776
1.00
9.30
A
C


ATOM
2271
CG2
VAL
A
557
10.274
4.537
29.435
1.00
10.82
A
C


ATOM
2275
C
VAL
A
557
6.809
5.808
30.788
1.00
10.92
A
C


ATOM
2276
O
VAL
A
557
6.990
6.979
31.126
1.00
10.29
A
O


ATOM
2277
N
ALA
A
558
5.744
5.103
31.149
1.00
11.83
A
N


ATOM
2279
CA
ALA
A
558
4.753
5.595
32.116
1.00
12.73
A
C


ATOM
2281
CB
ALA
A
558
3.474
4.716
32.040
1.00
12.91
A
C


ATOM
2285
C
ALA
A
558
5.291
5.615
33.542
1.00
13.27
A
C


ATOM
2286
O
ALA
A
558
5.043
6.550
34.330
1.00
14.71
A
O


ATOM
2287
N
SER
A
559
6.010
4.559
33.884
1.00
13.11
A
N


ATOM
2289
CA
SER
A
559
6.639
4.396
35.186
1.00
13.68
A
C


ATOM
2291
CB
SER
A
559
5.618
3.934
36.220
1.00
13.21
A
C


ATOM
2294
OG
SER
A
559
5.230
2.589
36.006
1.00
13.73
A
O


ATOM
2296
C
SER
A
559
7.719
3.352
35.030
1.00
13.54
A
C


ATOM
2297
O
SER
A
559
7.737
2.663
34.025
1.00
12.55
A
O


ATOM
2298
N
PRO
A
560
8.593
3.177
36.018
1.00
14.61
A
N


ATOM
2299
CA
PRO
A
560
9.559
2.069
35.950
1.00
15.41
A
C


ATOM
2301
CB
PRO
A
560
10.361
2.217
37.251
1.00
15.46
A
C


ATOM
2304
CG
PRO
A
560
10.251
3.662
37.572
1.00
15.49
A
C


ATOM
2307
CD
PRO
A
560
8.794
3.996
37.233
1.00
15.51
A
C


ATOM
2310
C
PRO
A
560
8.919
0.678
35.800
1.00
15.83
A
C


ATOM
2311
O
PRO
A
560
9.589
−0.279
35.390
1.00
16.34
A
O


ATOM
2312
N
GLU
A
561
7.626
0.579
36.070
1.00
16.53
A
N


ATOM
2314
CA
GLU
A
561
6.918
−0.689
35.993
1.00
16.63
A
C


ATOM
2316
CB
GLU
A
561
6.035
−0.834
37.234
1.00
18.01
A
C


ATOM
2319
CG
GLU
A
561
6.833
−0.946
38.529
1.00
22.37
A
C


ATOM
2322
CD
GLU
A
561
6.517
0.168
39.506
1.00
28.24
A
C


ATOM
2323
OE1
GLU
A
561
6.453
1.357
39.072
1.00
32.07
A
O


ATOM
2324
OE2
GLU
A
561
6.315
−0.152
40.707
1.00
33.30
A
O


ATOM
2325
C
GLU
A
561
6.059
−0.871
34.733
1.00
14.93
A
C


ATOM
2326
O
GLU
A
561
5.445
−1.916
34.574
1.00
14.59
A
O


ATOM
2327
N
CYS
A
562
6.025
0.111
33.835
1.00
13.75
A
N


ATOM
2329
CA
CYS
A
562
5.074
0.089
32.711
1.00
14.08
A
C


ATOM
2331
CB
CYS
A
562
3.692
0.541
33.159
1.00
14.16
A
C


ATOM
2334
SG
CYS
A
562
2.464
0.485
31.846
1.00
17.94
A
S


ATOM
2335
C
CYS
A
562
5.534
0.942
31.520
1.00
12.60
A
C


ATOM
2336
O
CYS
A
562
5.747
2.155
31.640
1.00
12.45
A
O


ATOM
2337
N
VAL
A
563
5.709
0.282
30.377
1.00
11.25
A
N


ATOM
2339
CA
VAL
A
563
5.979
0.962
29.125
1.00
10.38
A
C


ATOM
2341
CB
VAL
A
563
7.259
0.421
28.421
1.00
10.60
A
C


ATOM
2343
CG1
VAL
A
563
8.477
0.548
29.329
1.00
10.27
A
C


ATOM
2347
CG2
VAL
A
563
7.102
−1.020
27.949
1.00
10.55
A
C


ATOM
2351
C
VAL
A
563
4.748
0.912
28.184
1.00
10.67
A
C


ATOM
2352
O
VAL
A
563
3.867
0.058
28.336
1.00
10.13
A
O


ATOM
2353
N
LYS
A
564
4.723
1.806
27.202
1.00
9.96
A
N


ATOM
2355
CA
LYS
A
564
3.586
1.997
26.285
1.00
10.71
A
C


ATOM
2357
CB
LYS
A
564
2.835
3.290
26.642
1.00
10.90
A
C


ATOM
2360
CG
LYS
A
564
2.453
3.420
28.104
1.00
13.45
A
C


ATOM
2363
CD
LYS
A
564
1.102
2.850
28.403
1.00
14.37
A
C


ATOM
2366
CE
LYS
A
564
0.676
3.158
29.838
1.00
16.32
A
C


ATOM
2369
NZ
LYS
A
564
−0.589
2.458
30.221
1.00
17.26
A
N


ATOM
2373
C
LYS
A
564
4.050
2.148
24.828
1.00
9.71
A
C


ATOM
2374
O
LYS
A
564
4.814
3.069
24.502
1.00
9.88
A
O


ATOM
2375
N
LEU
A
565
3.615
1.238
23.964
1.00
8.95
A
N


ATOM
2377
CA
LEU
A
565
3.909
1.334
22.533
1.00
9.28
A
C


ATOM
2379
CB
LEU
A
565
3.418
0.094
21.802
1.00
9.45
A
C


ATOM
2382
CG
LEU
A
565
3.702
0.004
20.289
1.00
9.53
A
C


ATOM
2384
CD1
LEU
A
565
5.202
0.062
20.003
1.00
10.72
A
C


ATOM
2388
CD2
LEU
A
565
3.070
−1.258
19.781
1.00
12.45
A
C


ATOM
2392
C
LEU
A
565
3.245
2.565
21.928
1.00
9.46
A
C


ATOM
2393
O
LEU
A
565
2.054
2.825
22.167
1.00
9.53
A
O


ATOM
2394
N
GLY
A
566
4.007
3.302
21.131
1.00
10.94
A
N


ATOM
2396
CA
GLY
A
566
3.540
4.539
20.511
1.00
12.38
A
C


ATOM
2399
C
GLY
A
566
2.748
4.337
19.222
1.00
14.40
A
C


ATOM
2400
O
GLY
A
566
2.312
3.235
18.882
1.00
12.68
A
O


ATOM
2401
N
ASP
A
567
2.524
5.424
18.494
1.00
17.06
A
N


ATOM
2403
CA
ASP
A
567
1.644
5.322
17.327
1.00
19.73
A
C


ATOM
2405
CB
ASP
A
567
0.986
6.649
16.942
1.00
21.13
A
C


ATOM
2408
CG
ASP
A
567
1.917
7.779
16.889
1.00
24.80
A
C


ATOM
2409
OD1
ASP
A
567
2.981
7.672
16.231
1.00
32.54
A
O


ATOM
2410
OD2
ASP
A
567
1.623
8.856
17.439
1.00
29.95
A
O


ATOM
2411
C
ASP
A
567
2.257
4.622
16.108
1.00
20.41
A
C


ATOM
2412
O
ASP
A
567
3.467
4.413
16.011
1.00
17.31
A
O


ATOM
2413
N
PHE
A
568
1.368
4.262
15.196
1.00
22.78
A
N


ATOM
2415
CA
PHE
A
568
1.698
3.525
13.979
1.00
25.32
A
C


ATOM
2417
CB
PHE
A
568
0.428
3.274
13.152
1.00
26.08
A
C


ATOM
2420
CG
PHE
A
568
−0.619
2.555
13.894
1.00
27.54
A
C


ATOM
2421
CD1
PHE
A
568
−1.780
3.199
14.285
1.00
29.54
A
C


ATOM
2423
CE1
PHE
A
568
−2.745
2.522
14.983
1.00
29.57
A
C


ATOM
2425
CZ
PHE
A
568
−2.560
1.197
15.312
1.00
30.42
A
C


ATOM
2427
CE2
PHE
A
568
−1.412
0.548
14.935
1.00
30.12
A
C


ATOM
2429
CD2
PHE
A
568
−0.443
1.228
14.228
1.00
29.43
A
C


ATOM
2431
C
PHE
A
568
2.666
4.282
13.116
1.00
27.26
A
C


ATOM
2432
O
PHE
A
568
2.610
5.502
13.050
1.00
27.24
A
O


ATOM
2433
N
GLY
A
569
3.536
3.545
12.433
1.00
29.69
A
N


ATOM
2435
CA
GLY
A
569
4.511
4.124
11.531
1.00
32.08
A
C


ATOM
2438
C
GLY
A
569
3.937
5.058
10.482
1.00
34.61
A
C


ATOM
2439
O
GLY
A
569
4.602
6.029
10.110
1.00
34.79
A
O


ATOM
2440
N
LEU
A
570
2.724
4.754
10.010
1.00
37.79
A
N


ATOM
2442
CA
LEU
A
570
1.999
5.549
8.993
1.00
40.50
A
C


ATOM
2444
CB
LEU
A
570
0.514
5.665
9.387
1.00
40.83
A
C


ATOM
2447
CG
LEU
A
570
−0.463
6.442
8.489
1.00
41.93
A
C


ATOM
2449
CD1
LEU
A
570
−0.487
5.925
7.051
1.00
42.79
A
C


ATOM
2453
CD2
LEU
A
570
−1.870
6.383
9.095
1.00
42.81
A
C


ATOM
2457
C
LEU
A
570
2.572
6.949
8.737
1.00
42.14
A
C


ATOM
2458
O
LEU
A
570
2.682
7.769
9.670
1.00
43.08
A
O


ATOM
2459
N
SER
A
571
2.929
7.207
7.475
1.00
43.89
A
N


ATOM
2461
CA
SER
A
571
3.588
8.455
7.062
1.00
45.06
A
C


ATOM
2463
CB
SER
A
571
4.686
8.163
6.017
1.00
45.02
A
C


ATOM
2466
OG
SER
A
571
5.526
7.091
6.423
1.00
45.78
A
O


ATOM
2468
C
SER
A
571
2.551
9.456
6.521
1.00
46.00
A
C


ATOM
2469
O
SER
A
571
1.345
9.295
6.762
1.00
46.79
A
O


ATOM
2470
N
ARG
A
572
3.012
10.481
5.800
1.00
46.90
A
N


ATOM
2472
CA
ARG
A
572
2.146
11.585
5.348
1.00
47.52
A
C


ATOM
2474
CB
ARG
A
572
2.414
12.856
6.181
1.00
47.67
A
C


ATOM
2477
CG
ARG
A
572
3.899
13.255
6.343
1.00
48.36
A
C


ATOM
2480
CD
ARG
A
572
4.392
14.299
5.342
1.00
48.94
A
C


ATOM
2483
NE
ARG
A
572
5.846
14.476
5.371
1.00
49.60
A
N


ATOM
2485
CZ
ARG
A
572
6.548
15.158
4.461
1.00
49.93
A
C


ATOM
2486
NH1
ARG
A
572
5.942
15.748
3.432
1.00
49.93
A
N


ATOM
2489
NH2
ARG
A
572
7.869
15.255
4.580
1.00
50.04
A
N


ATOM
2492
C
ARG
A
572
2.299
11.870
3.842
1.00
47.78
A
C


ATOM
2493
O
ARG
A
572
2.330
13.032
3.413
1.00
47.93
A
O


ATOM
2494
N
TYR
A
573
2.348
10.800
3.047
1.00
47.99
A
N


ATOM
2496
CA
TYR
A
573
2.606
10.890
1.604
1.00
48.13
A
C


ATOM
2498
CB
TYR
A
573
3.839
10.038
1.264
1.00
48.32
A
C


ATOM
2501
CG
TYR
A
573
5.090
10.843
0.971
1.00
49.01
A
C


ATOM
2502
CD1
TYR
A
573
5.840
11.408
2.003
1.00
49.66
A
C


ATOM
2504
CE1
TYR
A
573
6.988
12.154
1.736
1.00
50.12
A
C


ATOM
2506
CZ
TYR
A
573
7.396
12.335
0.421
1.00
50.65
A
C


ATOM
2507
OH
TYR
A
573
8.530
13.070
0.141
1.00
51.55
A
O


ATOM
2509
CE2
TYR
A
573
6.668
11.784
−0.618
1.00
50.16
A
C


ATOM
2511
CD2
TYR
A
573
5.522
11.041
−0.340
1.00
49.75
A
C


ATOM
2513
C
TYR
A
573
1.396
10.437
0.749
1.00
47.99
A
C


ATOM
2514
O
TYR
A
573
0.637
9.549
1.157
1.00
48.18
A
O


ATOM
2515
N
ILE
A
574
1.218
11.060
−0.423
1.00
47.68
A
N


ATOM
2517
CA
ILE
A
574
0.221
10.611
−1.414
1.00
47.28
A
C


ATOM
2519
CB
ILE
A
574
−0.335
11.823
−2.263
1.00
47.36
A
C


ATOM
2521
CG1
ILE
A
574
−1.852
11.681
−2.521
1.00
47.24
A
C


ATOM
2524
CD1
ILE
A
574
−2.265
10.667
−3.589
1.00
47.19
A
C


ATOM
2528
CG2
ILE
A
574
0.468
12.038
−3.572
1.00
47.44
A
C


ATOM
2532
C
ILE
A
574
0.819
9.524
−2.312
1.00
46.58
A
C


ATOM
2533
O
ILE
A
574
0.097
8.640
−2.793
1.00
47.04
A
O


ATOM
2534
N
GLU
A
575
2.133
9.598
−2.539
1.00
45.52
A
N


ATOM
2536
CA
GLU
A
575
2.848
8.569
−3.297
1.00
44.42
A
C


ATOM
2538
CB
GLU
A
575
4.131
9.120
−3.949
1.00
44.66
A
C


ATOM
2541
CG
GLU
A
575
4.611
8.287
−5.139
1.00
45.56
A
C


ATOM
2544
CD
GLU
A
575
5.484
9.057
−6.128
1.00
47.20
A
C


ATOM
2545
OE1
GLU
A
575
6.216
9.984
−5.710
1.00
47.38
A
O


ATOM
2546
OE2
GLU
A
575
5.450
8.721
−7.335
1.00
47.58
A
O


ATOM
2547
C
GLU
A
575
3.162
7.383
−2.392
1.00
42.62
A
C


ATOM
2548
O
GLU
A
575
2.802
6.252
−2.726
1.00
43.25
A
O


ATOM
2549
N
ASP
A
576
3.840
7.644
−1.266
1.00
40.22
A
N


ATOM
2551
CA
ASP
A
576
4.075
6.649
−0.202
1.00
37.98
A
C


ATOM
2553
CB
ASP
A
576
2.750
5.995
0.225
1.00
38.18
A
C


ATOM
2556
CG
ASP
A
576
2.910
5.016
1.364
1.00
39.08
A
C


ATOM
2557
OD1
ASP
A
576
2.937
3.796
1.076
1.00
38.78
A
O


ATOM
2558
OD2
ASP
A
576
2.985
5.364
2.570
1.00
41.48
A
O


ATOM
2559
C
ASP
A
576
5.106
5.614
−0.658
1.00
35.29
A
C


ATOM
2560
O
ASP
A
576
5.117
5.222
−1.818
1.00
35.14
A
O


ATOM
2561
N
GLU
A
577
5.977
5.182
0.251
1.00
32.19
A
N


ATOM
2563
CA
GLU
A
577
7.146
4.377
−0.133
1.00
29.90
A
C


ATOM
2565
CB
GLU
A
577
8.307
4.597
0.858
1.00
29.98
A
C


ATOM
2568
CG
GLU
A
577
8.924
5.992
0.745
1.00
29.86
A
C


ATOM
2571
CD
GLU
A
577
10.252
6.149
1.479
1.00
30.30
A
C


ATOM
2572
OE1
GLU
A
577
11.230
5.443
1.141
1.00
27.60
A
O


ATOM
2573
OE2
GLU
A
577
10.322
7.008
2.384
1.00
30.64
A
O


ATOM
2574
C
GLU
A
577
6.838
2.878
−0.335
1.00
27.95
A
C


ATOM
2575
O
GLU
A
577
7.741
2.092
−0.617
1.00
26.38
A
O


ATOM
2576
N
ASP
A
578
5.568
2.488
−0.214
1.00
25.79
A
N


ATOM
2578
CA
ASP
A
578
5.152
1.130
−0.565
1.00
24.73
A
C


ATOM
2580
CB
ASP
A
578
3.756
0.802
−0.009
1.00
24.59
A
C


ATOM
2583
CG
ASP
A
578
3.755
0.507
1.479
1.00
24.22
A
C


ATOM
2584
OD1
ASP
A
578
4.758
0.759
2.173
1.00
22.79
A
O


ATOM
2585
OD2
ASP
A
578
2.761
0.021
2.040
1.00
23.67
A
O


ATOM
2586
C
ASP
A
578
5.113
0.914
−2.085
1.00
24.30
A
C


ATOM
2587
O
ASP
A
578
5.010
−0.223
−2.538
1.00
22.85
A
O


ATOM
2588
N
TYR
A
579
5.172
2.001
−2.859
1.00
24.45
A
N


ATOM
2590
CA
TYR
A
579
5.029
1.934
−4.315
1.00
25.01
A
C


ATOM
2592
CB
TYR
A
579
3.928
2.908
−4.770
1.00
25.04
A
C


ATOM
2595
CG
TYR
A
579
2.556
2.582
−4.218
1.00
24.47
A
C


ATOM
2596
CD1
TYR
A
579
2.195
2.963
−2.928
1.00
25.69
A
C


ATOM
2598
CE1
TYR
A
579
0.932
2.665
−2.409
1.00
25.75
A
C


ATOM
2600
CZ
TYR
A
579
0.022
1.977
−3.187
1.00
25.29
A
C


ATOM
2601
OH
TYR
A
579
−1.217
1.675
−2.675
1.00
25.28
A
O


ATOM
2603
CE2
TYR
A
579
0.358
1.577
−4.475
1.00
25.54
A
C


ATOM
2605
CD2
TYR
A
579
1.620
1.886
−4.984
1.00
26.01
A
C


ATOM
2607
C
TYR
A
579
6.329
2.209
−5.093
1.00
25.81
A
C


ATOM
2608
O
TYR
A
579
6.401
1.925
−6.285
1.00
26.17
A
O


ATOM
2609
N
TYR
A
580
7.349
2.751
−4.435
1.00
26.41
A
N


ATOM
2611
CA
TYR
A
580
8.617
3.046
−5.106
1.00
26.93
A
C


ATOM
2613
CB
TYR
A
580
8.598
4.475
−5.677
1.00
27.09
A
C


ATOM
2616
CG
TYR
A
580
8.584
5.554
−4.622
1.00
26.95
A
C


ATOM
2617
CD1
TYR
A
580
9.771
6.087
−4.123
1.00
27.01
A
C


ATOM
2619
CE1
TYR
A
580
9.764
7.069
−3.135
1.00
27.38
A
C


ATOM
2621
CZ
TYR
A
580
8.558
7.541
−2.647
1.00
28.47
A
C


ATOM
2622
OH
TYR
A
580
8.545
8.516
−1.674
1.00
29.60
A
O


ATOM
2624
CE2
TYR
A
580
7.363
7.032
−3.132
1.00
28.07
A
C


ATOM
2626
CD2
TYR
A
580
7.381
6.043
−4.113
1.00
27.45
A
C


ATOM
2628
C
TYR
A
580
9.823
2.867
−4.183
1.00
27.08
A
C


ATOM
2629
O
TYR
A
580
9.705
2.962
−2.949
1.00
27.01
A
O


ATOM
2630
N
LYS
A
581
10.981
2.607
−4.787
1.00
27.09
A
N


ATOM
2632
CA
LYS
A
581
12.230
2.554
−4.044
1.00
27.49
A
C


ATOM
2634
CB
LYS
A
581
13.167
1.469
−4.591
1.00
27.82
A
C


ATOM
2637
CG
LYS
A
581
12.624
0.066
−4.493
1.00
29.08
A
C


ATOM
2640
CD
LYS
A
581
12.553
−0.410
−3.054
1.00
29.95
A
C


ATOM
2643
CE
LYS
A
581
12.586
−1.923
−2.981
1.00
30.16
A
C


ATOM
2646
NZ
LYS
A
581
13.933
−2.487
−3.300
1.00
31.13
A
N


ATOM
2650
C
LYS
A
581
12.913
3.910
−4.147
1.00
27.35
A
C


ATOM
2651
O
LYS
A
581
13.313
4.327
−5.244
1.00
27.59
A
O


ATOM
2652
N
ALA
A
582
13.045
4.587
−3.008
1.00
26.87
A
N


ATOM
2654
CA
ALA
A
582
13.721
5.877
−2.940
1.00
27.05
A
C


ATOM
2656
CB
ALA
A
582
13.460
6.524
−1.587
1.00
27.03
A
C


ATOM
2660
C
ALA
A
582
15.219
5.686
−3.147
1.00
27.17
A
C


ATOM
2661
O
ALA
A
582
15.770
4.669
−2.733
1.00
26.90
A
O


ATOM
2662
N
SER
A
583
15.875
6.657
−3.789
1.00
26.98
A
N


ATOM
2664
CA
SER
A
583
17.342
6.691
−3.818
1.00
27.27
A
C


ATOM
2666
CB
SER
A
583
17.864
7.934
−4.568
1.00
27.02
A
C


ATOM
2669
OG
SER
A
583
17.666
7.842
−5.971
1.00
24.95
A
O


ATOM
2671
C
SER
A
583
17.899
6.673
−2.390
1.00
27.51
A
C


ATOM
2672
O
SER
A
583
18.853
5.960
−2.111
1.00
28.19
A
O


ATOM
2673
N
VAL
A
584
17.301
7.481
−1.511
1.00
27.95
A
N


ATOM
2675
CA
VAL
A
584
17.624
7.547
−0.081
1.00
27.95
A
C


ATOM
2677
CB
VAL
A
584
18.359
8.860
0.279
1.00
28.18
A
C


ATOM
2679
CG1
VAL
A
584
18.684
8.910
1.762
1.00
29.19
A
C


ATOM
2683
CG2
VAL
A
584
19.610
8.997
−0.529
1.00
28.53
A
C


ATOM
2687
C
VAL
A
584
16.314
7.499
0.716
1.00
27.93
A
C


ATOM
2688
O
VAL
A
584
15.532
8.445
0.693
1.00
27.03
A
O


ATOM
2689
N
THR
A
585
16.072
6.403
1.428
1.00
28.20
A
N


ATOM
2691
CA
THR
A
585
14.795
6.239
2.111
1.00
28.72
A
C


ATOM
2693
CB
THR
A
585
14.394
4.744
2.181
1.00
28.79
A
C


ATOM
2695
CG1
THR
A
585
13.033
4.623
2.621
1.00
29.29
A
O


ATOM
2697
CG2
THR
A
585
15.193
3.992
3.216
1.00
29.13
A
C


ATOM
2701
C
THR
A
585
14.779
6.882
3.494
1.00
28.58
A
C


ATOM
2702
O
THR
A
585
15.809
7.081
4.129
1.00
29.24
A
O


ATOM
2703
N
ARG
A
586
13.572
7.185
3.951
1.00
28.53
A
N


ATOM
2705
CA
ARG
A
586
13.331
7.764
5.266
1.00
27.88
A
C


ATOM
2707
CB
ARG
A
586
12.163
8.751
5.159
1.00
28.97
A
C


ATOM
2710
CG
ARG
A
586
12.163
9.613
3.892
1.00
32.87
A
C


ATOM
2713
CD
ARG
A
586
11.091
10.706
3.880
1.00
37.35
A
C


ATOM
2716
NE
ARG
A
586
11.446
11.869
4.700
1.00
40.84
A
N


ATOM
2718
CZ
ARG
A
586
12.287
12.850
4.340
1.00
42.20
A
C


ATOM
2719
NH1
ARG
A
586
12.897
12.839
3.157
1.00
42.91
A
N


ATOM
2722
NH2
ARG
A
586
12.524
13.854
5.183
1.00
42.67
A
N


ATOM
2725
C
ARG
A
586
12.978
6.639
6.271
1.00
25.82
A
C


ATOM
2726
O
ARG
A
586
12.956
6.850
7.485
1.00
25.52
A
O


ATOM
2727
N
LEU
A
587
12.724
5.449
5.742
1.00
23.19
A
N


ATOM
2729
CA
LEU
A
587
12.216
4.320
6.520
1.00
21.02
A
C


ATOM
2731
CB
LEU
A
587
11.740
3.228
5.569
1.00
21.26
A
C


ATOM
2734
CG
LEU
A
587
10.591
3.508
4.618
1.00
22.52
A
C


ATOM
2736
CD1
LEU
A
587
10.428
2.299
3.713
1.00
23.24
A
C


ATOM
2740
CD2
LEU
A
587
9.314
3.812
5.391
1.00
23.89
A
C


ATOM
2744
C
LEU
A
587
13.303
3.726
7.410
1.00
19.25
A
C


ATOM
2745
O
LEU
A
587
14.475
3.822
7.075
1.00
18.79
A
O


ATOM
2746
N
PRO
A
588
12.911
3.068
8.506
1.00
16.35
A
N


ATOM
2747
CA
PRO
A
588
13.877
2.494
9.451
1.00
14.93
A
C


ATOM
2749
CB
PRO
A
588
13.037
2.286
10.717
1.00
14.98
A
C


ATOM
2752
CG
PRO
A
588
11.683
1.973
10.177
1.00
15.18
A
C


ATOM
2755
CD
PRO
A
588
11.513
2.828
8.927
1.00
16.26
A
C


ATOM
2758
C
PRO
A
588
14.465
1.175
8.947
1.00
13.29
A
C


ATOM
2759
O
PRO
A
588
14.183
0.083
9.484
1.00
12.58
A
O


ATOM
2760
N
ILE
A
589
15.309
1.281
7.925
1.00
11.92
A
N


ATOM
2762
CA
ILE
A
589
15.866
0.118
7.230
1.00
11.54
A
C


ATOM
2764
CB
ILE
A
589
16.889
0.600
6.152
1.00
11.43
A
C


ATOM
2766
CG1
ILE
A
589
16.174
1.366
5.024
1.00
13.60
A
C


ATOM
2769
CD1
ILE
A
589
15.092
0.544
4.305
1.00
14.47
A
C


ATOM
2773
CG2
ILE
A
589
17.700
−0.581
5.601
1.00
12.99
A
C


ATOM
2777
C
ILE
A
589
16.574
−0.864
8.203
1.00
10.07
A
C


ATOM
2778
O
ILE
A
589
16.471
−2.075
8.055
1.00
9.44
A
O


ATOM
2779
N
LYS
A
590
17.300
−0.330
9.186
1.00
9.76
A
N


ATOM
2781
CA
LYS
A
590
18.065
−1.186
10.109
1.00
9.66
A
C


ATOM
2783
CB
LYS
A
590
19.111
−0.377
10.888
1.00
9.94
A
C


ATOM
2786
CG
LYS
A
590
20.252
0.122
10.016
1.00
10.30
A
C


ATOM
2789
CD
LYS
A
590
21.098
1.207
10.703
1.00
10.44
A
C


ATOM
2792
CE
LYS
A
590
22.248
1.579
9.797
1.00
12.41
A
C


ATOM
2795
NZ
LYS
A
590
23.160
2.618
10.380
1.00
12.07
A
N


ATOM
2799
C
LYS
A
590
17.174
−1.954
11.068
1.00
9.73
A
C


ATOM
2800
O
LYS
A
590
17.660
−2.830
11.790
1.00
9.50
A
O


ATOM
2801
N
TRP
A
591
15.876
−1.628
11.089
1.00
9.17
A
N


ATOM
2803
CA
TRP
A
591
14.905
−2.339
11.912
1.00
9.87
A
C


ATOM
2805
CB
TRP
A
591
14.017
−1.349
12.662
1.00
9.98
A
C


ATOM
2808
CG
TRP
A
591
14.655
−0.542
13.766
1.00
11.71
A
C


ATOM
2809
CD1
TRP
A
591
14.457
−0.709
15.103
1.00
12.20
A
C


ATOM
2811
NE1
TRP
A
591
15.141
0.252
15.803
1.00
13.37
A
N


ATOM
2813
CE2
TRP
A
591
15.793
1.065
14.924
1.00
12.15
A
C


ATOM
2814
CD2
TRP
A
591
15.490
0.607
13.627
1.00
13.10
A
C


ATOM
2815
CE3
TRP
A
591
16.031
1.299
12.533
1.00
12.17
A
C


ATOM
2817
CZ3
TRP
A
591
16.853
2.386
12.772
1.00
15.31
A
C


ATOM
2819
CH2
TRP
A
591
17.127
2.813
14.082
1.00
13.32
A
C


ATOM
2821
CZ2
TRP
A
591
16.621
2.156
15.161
1.00
12.48
A
C


ATOM
2823
C
TRP
A
591
13.997
−3.282
11.108
1.00
9.92
A
C


ATOM
2824
O
TRP
A
591
13.223
−4.039
11.706
1.00
10.09
A
O


ATOM
2825
N
MET
A
592
14.096
−3.251
9.773
1.00
9.75
A
N


ATOM
2827
CA
MET
A
592
13.094
−3.843
8.881
1.00
9.99
A
C


ATOM
2829
CB
MET
A
592
12.876
−2.908
7.667
1.00
9.83
A
C


ATOM
2832
CG
MET
A
592
12.051
−1.676
7.999
1.00
11.13
A
C


ATOM
2835
SD
MET
A
592
12.111
−0.339
6.763
1.00
14.42
A
S


ATOM
2836
CE
MET
A
592
11.786
−1.271
5.270
1.00
11.86
A
C


ATOM
2840
C
MET
A
592
13.432
−5.244
8.373
1.00
9.53
A
C


ATOM
2841
O
MET
A
592
14.602
−5.589
8.192
1.00
10.45
A
O


ATOM
2842
N
SER
A
593
12.395
−6.034
8.118
1.00
9.01
A
N


ATOM
2844
CA
SER
A
593
12.558
−7.391
7.605
1.00
9.63
A
C


ATOM
2846
CB
SER
A
593
11.241
−8.149
7.607
1.00
10.07
A
C


ATOM
2849
OG
SER
A
593
10.406
−7.605
6.617
1.00
10.36
A
O


ATOM
2851
C
SER
A
593
13.073
−7.313
6.164
1.00
9.56
A
C


ATOM
2852
O
SER
A
593
12.921
−6.287
5.511
1.00
10.05
A
O


ATOM
2853
N
PRO
A
594
13.695
−8.378
5.686
1.00
10.88
A
N


ATOM
2854
CA
PRO
A
594
14.197
−8.420
4.301
1.00
11.51
A
C


ATOM
2856
CB
PRO
A
594
14.787
−9.828
4.191
1.00
12.13
A
C


ATOM
2859
CG
PRO
A
594
15.141
−10.176
5.577
1.00
12.75
A
C


ATOM
2862
CD
PRO
A
594
14.022
−9.610
6.420
1.00
10.32
A
C


ATOM
2865
C
PRO
A
594
13.108
−8.199
3.254
1.00
11.67
A
C


ATOM
2866
O
PRO
A
594
13.366
−7.517
2.289
1.00
12.87
A
O


ATOM
2867
N
GLU
A
595
11.916
−8.754
3.455
1.00
12.18
A
N


ATOM
2869
CA
GLU
A
595
10.819
−8.588
2.509
1.00
11.54
A
C


ATOM
2871
CB
GLU
A
595
9.685
−9.578
2.796
1.00
11.95
A
C


ATOM
2874
CG
GLU
A
595
8.905
−9.349
4.080
1.00
12.54
A
C


ATOM
2877
CD
GLU
A
595
9.410
−10.169
5.261
1.00
12.35
A
C


ATOM
2878
OE1
GLU
A
595
10.587
−10.628
5.259
1.00
12.67
A
O


ATOM
2879
OE2
GLU
A
595
8.624
−10.313
6.232
1.00
11.80
A
O


ATOM
2880
C
GLU
A
595
10.325
−7.139
2.494
1.00
11.35
A
C


ATOM
2881
O
GLU
A
595
9.870
−6.621
1.462
1.00
10.36
A
O


ATOM
2882
N
SER
A
596
10.453
−6.468
3.639
1.00
11.09
A
N


ATOM
2884
CA
SER
A
596
10.129
−5.054
3.746
1.00
11.11
A
C


ATOM
2886
CB
SER
A
596
10.035
−4.639
5.215
1.00
11.61
A
C


ATOM
2889
OG
SER
A
596
9.071
−5.412
5.916
1.00
10.96
A
O


ATOM
2891
C
SER
A
596
11.154
−4.165
3.009
1.00
11.46
A
C


ATOM
2892
O
SER
A
596
10.780
−3.187
2.349
1.00
11.08
A
O


ATOM
2893
N
ILE
A
597
12.433
−4.494
3.154
1.00
11.82
A
N


ATOM
2895
CA
ILE
A
597
13.498
−3.793
2.447
1.00
12.20
A
C


ATOM
2897
CB
ILE
A
597
14.870
−4.196
3.012
1.00
12.29
A
C


ATOM
2899
CG1
ILE
A
597
15.044
−3.734
4.479
1.00
11.10
A
C


ATOM
2902
CD1
ILE
A
597
16.321
−4.267
5.140
1.00
10.75
A
C


ATOM
2906
CG2
ILE
A
597
15.980
−3.586
2.160
1.00
13.21
A
C


ATOM
2910
C
ILE
A
597
13.433
−4.051
0.923
1.00
12.61
A
C


ATOM
2911
O
ILE
A
597
13.521
−3.120
0.135
1.00
14.25
A
O


ATOM
2912
N
ASN
A
598
13.275
−5.298
0.514
1.00
12.98
A
N


ATOM
2914
CA
ASN
A
598
13.331
−5.672
−0.919
1.00
14.27
A
C


ATOM
2916
CB
ASN
A
598
13.618
−7.179
−1.052
1.00
14.04
A
C


ATOM
2919
CG
ASN
A
598
15.068
−7.523
−0.790
1.00
16.01
A
C


ATOM
2920
OD1
ASN
A
598
15.971
−6.727
−1.066
1.00
18.13
A
O


ATOM
2921
ND2
ASN
A
598
15.307
−8.734
−0.283
1.00
16.92
A
N


ATOM
2924
C
ASN
A
598
12.077
−5.337
−1.725
1.00
15.32
A
C


ATOM
2925
O
ASN
A
598
12.162
−4.886
−2.877
1.00
15.17
A
O


ATOM
2926
N
PHE
A
599
10.912
−5.552
−1.119
1.00
15.42
A
N


ATOM
2928
CA
PHE
A
599
9.636
−5.496
−1.839
1.00
15.79
A
C


ATOM
2930
CB
PHE
A
599
9.088
−6.914
−2.039
1.00
15.78
A
C


ATOM
2933
CG
PHE
A
599
10.095
−7.884
−2.566
1.00
18.17
A
C


ATOM
2934
CD1
PHE
A
599
10.746
−7.643
−3.769
1.00
20.18
A
C


ATOM
2936
CE1
PHE
A
599
11.694
−8.537
−4.245
1.00
21.90
A
C


ATOM
2938
CZ
PHE
A
599
11.975
−9.693
−3.532
1.00
20.74
A
C


ATOM
2940
CE2
PHE
A
599
11.318
−9.945
−2.336
1.00
21.69
A
C


ATOM
2942
CD2
PHE
A
599
10.391
−9.038
−1.860
1.00
19.49
A
C


ATOM
2944
C
PHE
A
599
8.574
−4.641
−1.156
1.00
15.14
A
C


ATOM
2945
O
PHE
A
599
7.427
−4.610
−1.608
1.00
15.42
A
O


ATOM
2946
N
ARG
A
600
8.951
−3.936
−0.092
1.00
15.13
A
N


ATOM
2948
CA
ARG
A
600
8.024
−3.137
0.701
1.00
15.85
A
C


ATOM
2950
CB
ARG
A
600
7.614
−1.880
−0.076
1.00
16.31
A
C


ATOM
2953
CG
ARG
A
600
8.784
−0.950
−0.377
1.00
17.77
A
C


ATOM
2956
CD
ARG
A
600
9.269
−0.173
0.835
1.00
18.17
A
C


ATOM
2959
NE
ARG
A
600
10.355
0.750
0.508
1.00
20.72
A
N


ATOM
2961
CZ
ARG
A
600
11.657
0.490
0.633
1.00
21.90
A
C


ATOM
2962
NH1
ARG
A
600
12.094
−0.680
1.078
1.00
22.93
A
N


ATOM
2965
NH2
ARG
A
600
12.543
1.419
0.299
1.00
22.61
A
N


ATOM
2968
C
ARG
A
600
6.793
−3.956
1.149
1.00
15.58
A
C


ATOM
2969
O
ARG
A
600
5.653
−3.464
1.136
1.00
15.40
A
O


ATOM
2970
N
ARG
A
601
7.046
−5.206
1.535
1.00
15.64
A
N


ATOM
2972
CA
ARG
A
601
6.022
−6.120
2.052
1.00
16.29
A
C


ATOM
2974
CB
ARG
A
601
6.363
−7.569
1.724
1.00
17.23
A
C


ATOM
2977
CG
ARG
A
601
6.233
−7.938
0.259
1.00
21.68
A
C


ATOM
2980
CD
ARG
A
601
5.955
−9.440
−0.022
1.00
25.56
A
C


ATOM
2983
NE
ARG
A
601
6.621
−9.837
−1.270
1.00
30.36
A
N


ATOM
2985
CZ
ARG
A
601
6.043
−10.295
−2.379
1.00
31.71
A
C


ATOM
2986
NH1
ARG
A
601
4.738
−10.497
−2.462
1.00
34.89
A
N


ATOM
2989
NH2
ARG
A
601
6.800
−10.599
−3.428
1.00
34.61
A
N


ATOM
2992
C
ARG
A
601
6.002
−5.963
3.571
1.00
15.73
A
C


ATOM
2993
O
ARG
A
601
7.033
−6.218
4.233
1.00
15.42
A
O


ATOM
2994
N
PHE
A
602
4.866
−5.511
4.105
1.00
14.28
A
N


ATOM
2996
CA
PHE
A
602
4.684
−5.323
5.543
1.00
14.03
A
C


ATOM
2998
CB
PHE
A
602
4.463
−3.844
5.876
1.00
13.94
A
C


ATOM
3001
CG
PHE
A
602
5.599
−2.947
5.501
1.00
15.36
A
C


ATOM
3002
CD1
PHE
A
602
6.596
−2.632
6.430
1.00
16.03
A
C


ATOM
3004
CE1
PHE
A
602
7.651
−1.772
6.090
1.00
15.79
A
C


ATOM
3006
CZ
PHE
A
602
7.690
−1.198
4.833
1.00
15.40
A
C


ATOM
3008
CE2
PHE
A
602
6.686
−1.485
3.909
1.00
15.83
A
C


ATOM
3010
CD2
PHE
A
602
5.643
−2.348
4.245
1.00
14.53
A
C


ATOM
3012
C
PHE
A
602
3.499
−6.130
6.054
1.00
13.39
A
C


ATOM
3013
O
PHE
A
602
2.353
−5.927
5.631
1.00
13.20
A
O


ATOM
3014
N
THR
A
603
3.766
−7.070
6.947
1.00
13.12
A
N


ATOM
3016
CA
THR
A
603
2.739
−7.941
7.518
1.00
12.82
A
C


ATOM
3018
CB
THR
A
603
2.851
−9.331
6.902
1.00
13.20
A
C


ATOM
3020
OG1
THR
A
603
4.143
−9.881
7.212
1.00
13.90
A
O


ATOM
3022
CG2
THR
A
603
2.771
−9.277
5.357
1.00
14.67
A
C


ATOM
3026
C
THR
A
603
2.968
−8.095
9.007
1.00
12.15
A
C


ATOM
3027
O
THR
A
603
3.936
−7.588
9.552
1.00
10.36
A
O


ATOM
3028
N
THR
A
604
2.125
−8.874
9.659
1.00
11.47
A
N


ATOM
3030
CA
THR
A
604
2.387
−9.169
11.053
1.00
11.50
A
C


ATOM
3032
CB
THR
A
604
1.228
−9.955
11.676
1.00
12.26
A
C


ATOM
3034
OG1
THR
A
604
0.043
−9.138
11.648
1.00
14.28
A
O


ATOM
3036
CG2
THR
A
604
1.493
−10.182
13.155
1.00
14.14
A
C


ATOM
3040
C
THR
A
604
3.728
−9.884
11.203
1.00
11.13
A
C


ATOM
3041
O
THR
A
604
4.391
−9.699
12.211
1.00
9.85
A
O


ATOM
3042
N
ALA
A
605
4.142
−10.679
10.206
1.00
10.23
A
N


ATOM
3044
CA
ALA
A
605
5.450
−11.338
10.258
1.00
10.32
A
C


ATOM
3046
CB
ALA
A
605
5.608
−12.374
9.156
1.00
10.78
A
C


ATOM
3050
C
ALA
A
605
6.611
−10.363
10.197
1.00
9.56
A
C


ATOM
3051
O
ALA
A
605
7.640
−10.616
10.824
1.00
8.50
A
O


ATOM
3052
N
SER
A
606
6.459
−9.272
9.445
1.00
8.64
A
N


ATOM
3054
CA
SER
A
606
7.486
−8.245
9.412
1.00
9.24
A
C


ATOM
3056
CB
SER
A
606
7.352
−7.296
8.190
1.00
9.76
A
C


ATOM
3059
OG
SER
A
606
6.179
−6.496
8.250
1.00
10.66
A
O


ATOM
3061
C
SER
A
606
7.505
−7.489
10.748
1.00
9.16
A
C


ATOM
3062
O
SER
A
606
8.572
−7.100
11.211
1.00
8.11
A
O


ATOM
3063
N
ASP
A
607
6.340
−7.307
11.379
1.00
8.37
A
N


ATOM
3065
CA
ASP
A
607
6.297
−6.717
12.720
1.00
8.68
A
C


ATOM
3067
CB
ASP
A
607
4.876
−6.507
13.225
1.00
8.94
A
C


ATOM
3070
CG
ASP
A
607
4.256
−5.197
12.785
1.00
11.42
A
C


ATOM
3071
OD1
ASP
A
607
4.925
−4.280
12.218
1.00
11.99
A
O


ATOM
3072
OD2
ASP
A
607
3.029
−5.001
13.022
1.00
12.74
A
O


ATOM
3073
C
ASP
A
607
7.034
−7.616
13.740
1.00
8.12
A
C


ATOM
3074
O
ASP
A
607
7.628
−7.111
14.678
1.00
7.11
A
O


ATOM
3075
N
VAL
A
608
6.952
−8.940
13.577
1.00
7.25
A
N


ATOM
3077
CA
VAL
A
608
7.677
−9.870
14.461
1.00
7.14
A
C


ATOM
3079
CB
VAL
A
608
7.280
−11.342
14.171
1.00
6.69
A
C


ATOM
3081
CG1
VAL
A
608
8.277
−12.331
14.822
1.00
8.13
A
C


ATOM
3085
CG2
VAL
A
608
5.840
−11.616
14.668
1.00
7.95
A
C


ATOM
3089
C
VAL
A
608
9.187
−9.687
14.332
1.00
7.61
A
C


ATOM
3090
O
VAL
A
608
9.902
−9.615
15.345
1.00
6.65
A
O


ATOM
3091
N
TRP
A
609
9.673
−9.587
13.090
1.00
7.07
A
N


ATOM
3093
CA
TRP
A
609
11.085
−9.274
12.835
1.00
7.28
A
C


ATOM
3095
CB
TRP
A
609
11.349
−9.095
11.329
1.00
7.08
A
C


ATOM
3098
CG
TRP
A
609
12.771
−8.707
10.985
1.00
7.95
A
C


ATOM
3099
CD1
TRP
A
609
13.381
−7.506
11.228
1.00
7.59
A
C


ATOM
3101
NE1
TRP
A
609
14.692
−7.555
10.821
1.00
8.83
A
N


ATOM
3103
CE2
TRP
A
609
14.958
−8.799
10.310
1.00
8.13
A
C


ATOM
3104
CD2
TRP
A
609
13.778
−9.555
10.414
1.00
6.30
A
C


ATOM
3105
CE3
TRP
A
609
13.779
−10.881
9.934
1.00
6.84
A
C


ATOM
3107
CZ3
TRP
A
609
14.944
−11.401
9.398
1.00
8.38
A
C


ATOM
3109
CH2
TRP
A
609
16.108
−10.624
9.313
1.00
7.22
A
C


ATOM
3111
CZ2
TRP
A
609
16.135
−9.313
9.749
1.00
8.92
A
C


ATOM
3113
C
TRP
A
609
11.484
−7.994
13.602
1.00
7.00
A
C


ATOM
3114
O
TRP
A
609
12.484
−7.969
14.329
1.00
7.89
A
O


ATOM
3115
N
MET
A
610
10.687
−6.954
13.449
1.00
7.31
A
N


ATOM
3117
CA
MET
A
610
11.019
−5.634
13.979
1.00
7.12
A
C


ATOM
3119
CB
MET
A
610
10.083
−4.569
13.380
1.00
7.25
A
C


ATOM
3122
CG
MET
A
610
10.433
−3.155
13.777
1.00
8.77
A
C


ATOM
3125
SD
MET
A
610
9.336
−1.944
13.037
1.00
11.18
A
S


ATOM
3126
CE
MET
A
610
10.448
−0.489
13.042
1.00
12.69
A
C


ATOM
3130
C
MET
A
610
10.945
−5.628
15.504
1.00
7.16
A
C


ATOM
3131
O
MET
A
610
11.740
−4.979
16.171
1.00
7.31
A
O


ATOM
3132
N
PHE
A
611
9.995
−6.376
16.053
1.00
7.20
A
N


ATOM
3134
CA
PHE
A
611
9.859
−6.506
17.503
1.00
6.98
A
C


ATOM
3136
CB
PHE
A
611
8.614
−7.289
17.857
1.00
7.02
A
C


ATOM
3139
CG
PHE
A
611
8.576
−7.724
19.296
1.00
8.33
A
C


ATOM
3140
CD1
PHE
A
611
8.329
−6.808
20.294
1.00
9.98
A
C


ATOM
3142
CE1
PHE
A
611
8.322
−7.188
21.610
1.00
9.82
A
C


ATOM
3144
CZ
PHE
A
611
8.587
−8.482
21.958
1.00
9.72
A
C


ATOM
3146
CE2
PHE
A
611
8.835
−9.415
20.984
1.00
11.54
A
C


ATOM
3148
CD2
PHE
A
611
8.838
−9.033
19.645
1.00
9.39
A
C


ATOM
3150
C
PHE
A
611
11.103
−7.142
18.153
1.00
6.73
A
C


ATOM
3151
O
PHE
A
611
11.557
−6.708
19.202
1.00
7.59
A
O


ATOM
3152
N
ALA
A
612
11.692
−8.119
17.491
1.00
7.27
A
N


ATOM
3154
CA
ALA
A
612
12.922
−8.703
17.973
1.00
7.36
A
C


ATOM
3156
CB
ALA
A
612
13.212
−9.987
17.272
1.00
7.52
A
C


ATOM
3160
C
ALA
A
612
14.090
−7.718
17.877
1.00
7.40
A
C


ATOM
3161
O
ALA
A
612
14.984
−7.738
18.735
1.00
7.06
A
O


ATOM
3162
N
VAL
A
613
14.094
−6.842
16.868
1.00
7.17
A
N


ATOM
3164
CA
VAL
A
613
15.098
−5.779
16.831
1.00
7.65
A
C


ATOM
3166
CB
VAL
A
613
15.096
−4.939
15.516
1.00
7.18
A
C


ATOM
3168
CG1
VAL
A
613
16.183
−3.867
15.575
1.00
8.13
A
C


ATOM
3172
CG2
VAL
A
613
15.284
−5.822
14.301
1.00
8.64
A
C


ATOM
3176
C
VAL
A
613
14.874
−4.843
18.018
1.00
7.44
A
C


ATOM
3177
O
VAL
A
613
15.816
−4.438
18.663
1.00
7.86
A
O


ATOM
3178
N
CYS
A
614
13.628
−4.521
18.312
1.00
7.31
A
N


ATOM
3180
CA
CYS
A
614
13.304
−3.712
19.482
1.00
7.38
A
C


ATOM
3182
CB
CYS
A
614
11.808
−3.409
19.500
1.00
7.62
A
C


ATOM
3185
SG
CYS
A
614
11.279
−2.363
20.856
1.00
12.24
A
S


ATOM
3186
C
CYS
A
614
13.803
−4.393
20.791
1.00
7.51
A
C


ATOM
3187
O
CYS
A
614
14.404
−3.737
21.652
1.00
8.23
A
O


ATOM
3188
N
MET
A
615
13.602
−5.700
20.939
1.00
6.99
A
N


ATOM
3190
CA
MET
A
615
14.136
−6.415
22.104
1.00
8.46
A
C


ATOM
3192
CB
MET
A
615
13.727
−7.893
22.087
1.00
8.91
A
C


ATOM
3195
CG
MET
A
615
12.273
−8.132
22.309
1.00
11.03
A
C


ATOM
3198
SD
MET
A
615
12.003
−9.900
22.802
1.00
14.28
A
S


ATOM
3199
CE
MET
A
615
12.231
−10.684
21.273
1.00
13.21
A
C


ATOM
3203
C
MET
A
615
15.657
−6.314
22.182
1.00
7.71
A
C


ATOM
3204
O
MET
A
615
16.223
−6.111
23.249
1.00
8.82
A
O


ATOM
3205
N
TRP
A
616
16.324
−6.420
21.042
1.00
7.61
A
N


ATOM
3207
CA
TRP
A
616
17.773
−6.243
20.982
1.00
7.16
A
C


ATOM
3209
CB
TRP
A
616
18.277
−6.483
19.555
1.00
7.70
A
C


ATOM
3212
CG
TRP
A
616
19.759
−6.411
19.431
1.00
6.78
A
C


ATOM
3213
CD1
TRP
A
616
20.623
−7.465
19.493
1.00
7.50
A
C


ATOM
3215
NE1
TRP
A
616
21.916
−7.021
19.337
1.00
8.34
A
N


ATOM
3217
CE2
TRP
A
616
21.913
−5.665
19.176
1.00
8.17
A
C


ATOM
3218
CD2
TRP
A
616
20.559
−5.247
19.199
1.00
5.69
A
C


ATOM
3219
CE3
TRP
A
616
20.285
−3.876
19.074
1.00
8.29
A
C


ATOM
3221
CZ3
TRP
A
616
21.327
−3.003
18.884
1.00
8.52
A
C


ATOM
3223
CH2
TRP
A
616
22.663
−3.460
18.833
1.00
7.88
A
C


ATOM
3225
CZ2
TRP
A
616
22.964
−4.786
18.940
1.00
8.12
A
C


ATOM
3227
C
TRP
A
616
18.171
−4.841
21.476
1.00
7.53
A
C


ATOM
3228
O
TRP
A
616
19.125
−4.732
22.241
1.00
8.03
A
O


ATOM
3229
N
GLU
A
617
17.425
−3.794
21.081
1.00
7.69
A
N


ATOM
3231
CA
GLU
A
617
17.671
−2.434
21.555
1.00
8.18
A
C


ATOM
3233
CB
GLU
A
617
16.718
−1.416
20.918
1.00
8.57
A
C


ATOM
3236
CG
GLU
A
617
16.871
−1.110
19.441
1.00
10.70
A
C


ATOM
3239
CD
GLU
A
617
15.817
−0.100
19.000
1.00
13.08
A
C


ATOM
3240
OE1
GLU
A
617
16.176
0.998
18.510
1.00
13.59
A
O


ATOM
3241
OE2
GLU
A
617
14.620
−0.372
19.205
1.00
14.34
A
O


ATOM
3242
C
GLU
A
617
17.496
−2.334
23.066
1.00
8.12
A
C


ATOM
3243
O
GLU
A
617
18.304
−1.700
23.749
1.00
8.06
A
O


ATOM
3244
N
ILE
A
618
16.453
−2.970
23.593
1.00
8.10
A
N


ATOM
3246
CA
ILE
A
618
16.172
−2.899
25.027
1.00
8.31
A
C


ATOM
3248
CB
ILE
A
618
14.810
−3.549
25.349
1.00
8.09
A
C


ATOM
3250
CG1
ILE
A
618
13.676
−2.696
24.783
1.00
7.50
A
C


ATOM
3253
CD1
ILE
A
618
12.296
−3.333
24.895
1.00
9.45
A
C


ATOM
3257
CG2
ILE
A
618
14.641
−3.746
26.867
1.00
9.02
A
C


ATOM
3261
C
ILE
A
618
17.314
−3.569
25.805
1.00
8.52
A
C


ATOM
3262
O
ILE
A
618
17.884
−2.983
26.731
1.00
9.07
A
O


ATOM
3263
N
LEU
A
619
17.674
−4.780
25.406
1.00
9.16
A
N


ATOM
3265
CA
LEU
A
619
18.752
−5.517
26.063
1.00
9.73
A
C


ATOM
3267
CB
LEU
A
619
18.742
−6.989
25.626
1.00
10.15
A
C


ATOM
3270
CG
LEU
A
619
17.821
−7.924
26.416
1.00
11.23
A
C


ATOM
3272
CD1
LEU
A
619
18.274
−8.131
27.852
1.00
12.73
A
C


ATOM
3276
CD2
LEU
A
619
16.384
−7.464
26.361
1.00
12.78
A
C


ATOM
3280
C
LEU
A
619
20.132
−4.906
25.858
1.00
9.41
A
C


ATOM
3281
O
LEU
A
619
21.071
−5.239
26.600
1.00
11.30
A
O


ATOM
3282
N
SER
A
620
20.249
−3.996
24.890
1.00
9.34
A
N


ATOM
3284
CA
SER
A
620
21.466
−3.226
24.656
1.00
9.57
A
C


ATOM
3286
CB
SER
A
620
21.748
−3.159
23.147
1.00
9.27
A
C


ATOM
3289
OG
SER
A
620
21.720
−4.438
22.539
1.00
9.62
A
O


ATOM
3291
C
SER
A
620
21.412
−1.788
25.217
1.00
10.03
A
C


ATOM
3292
O
SER
A
620
22.253
−0.958
24.870
1.00
10.13
A
O


ATOM
3293
N
PHE
A
621
20.438
−1.495
26.072
1.00
10.21
A
N


ATOM
3295
CA
PHE
A
621
20.281
−0.168
26.658
1.00
10.99
A
C


ATOM
3297
CB
PHE
A
621
21.380
0.092
27.686
1.00
11.57
A
C


ATOM
3300
CG
PHE
A
621
21.417
−0.916
28.786
1.00
11.76
A
C


ATOM
3301
CD1
PHE
A
621
20.585
−0.777
29.903
1.00
14.73
A
C


ATOM
3303
CE1
PHE
A
621
20.616
−1.720
30.939
1.00
13.38
A
C


ATOM
3305
CZ
PHE
A
621
21.455
−2.806
30.845
1.00
15.10
A
C


ATOM
3307
CE2
PHE
A
621
22.282
−2.966
29.728
1.00
15.45
A
C


ATOM
3309
CD2
PHE
A
621
22.257
−2.020
28.708
1.00
14.11
A
C


ATOM
3311
C
PHE
A
621
20.204
0.974
25.633
1.00
11.51
A
C


ATOM
3312
O
PHE
A
621
20.746
2.054
25.840
1.00
11.76
A
O


ATOM
3313
N
GLY
A
622
19.533
0.715
24.513
1.00
12.15
A
N


ATOM
3315
CA
GLY
A
622
19.195
1.755
23.561
1.00
12.52
A
C


ATOM
3318
C
GLY
A
622
20.125
1.958
22.389
1.00
13.31
A
C


ATOM
3319
O
GLY
A
622
19.957
2.916
21.631
1.00
13.27
A
O


ATOM
3320
N
LYS
A
623
21.117
1.086
22.224
1.00
13.94
A
N


ATOM
3322
CA
LYS
A
623
22.003
1.199
21.072
1.00
14.20
A
C


ATOM
3324
CB
LYS
A
623
23.120
0.167
21.156
1.00
15.30
A
C


ATOM
3327
CG
LYS
A
623
24.036
0.374
22.340
1.00
18.22
A
C


ATOM
3330
CD
LYS
A
623
25.359
−0.349
22.137
1.00
23.13
A
C


ATOM
3333
CE
LYS
A
623
25.198
−1.851
22.058
1.00
23.04
A
C


ATOM
3336
NZ
LYS
A
623
26.022
−2.515
23.072
1.00
22.31
A
N


ATOM
3340
C
LYS
A
623
21.223
1.016
19.765
1.00
13.35
A
C


ATOM
3341
O
LYS
A
623
20.175
0.354
19.732
1.00
12.25
A
O


ATOM
3342
N
GLN
A
624
21.720
1.631
18.694
1.00
12.33
A
N


ATOM
3344
CA
GLN
A
624
21.074
1.532
17.390
1.00
11.79
A
C


ATOM
3346
CB
GLN
A
624
21.471
2.693
16.471
1.00
12.79
A
C


ATOM
3349
CG
GLN
A
624
20.803
2.653
15.092
1.00
16.84
A
C


ATOM
3352
CD
GLN
A
624
21.480
3.512
14.033
1.00
20.72
A
C


ATOM
3353
OE1
GLN
A
624
22.510
3.139
13.484
1.00
22.00
A
O


ATOM
3354
NE2
GLN
A
624
20.863
4.642
13.706
1.00
25.56
A
N


ATOM
3357
C
GLN
A
624
21.484
0.218
16.750
1.00
10.43
A
C


ATOM
3358
O
GLN
A
624
22.674
−0.085
16.700
1.00
9.05
A
O


ATOM
3359
N
PRO
A
625
20.527
−0.543
16.226
1.00
9.21
A
N


ATOM
3360
CA
PRO
A
625
20.857
−1.773
15.510
1.00
8.85
A
C


ATOM
3362
CB
PRO
A
625
19.489
−2.336
15.099
1.00
8.81
A
C


ATOM
3365
CG
PRO
A
625
18.589
−1.182
15.135
1.00
8.12
A
C


ATOM
3368
CD
PRO
A
625
19.077
−0.284
16.226
1.00
8.87
A
C


ATOM
3371
C
PRO
A
625
21.690
−1.483
14.260
1.00
9.18
A
C


ATOM
3372
O
PRO
A
625
21.427
−0.517
13.529
1.00
8.70
A
O


ATOM
3373
N
PHE
A
626
22.699
−2.312
14.017
1.00
8.97
A
N


ATOM
3375
CA
PHE
A
626
23.530
−2.167
12.825
1.00
8.80
A
C


ATOM
3241
OE2
GLU
A
617
14.620
−0.372
19.205
1.00
14.34
A
O


ATOM
3242
C
GLU
A
617
17.496
−2.334
23.066
1.00
8.12
A
C


ATOM
3243
O
GLU
A
617
18.304
−1.700
23.749
1.00
8.06
A
O


ATOM
3244
N
ILE
A
618
16.453
−2.970
23.593
1.00
8.10
A
N


ATOM
3246
CA
ILE
A
618
16.172
−2.899
25.027
1.00
8.31
A
C


ATOM
3248
CB
ILE
A
618
14.810
−3.549
25.349
1.00
8.09
A
C


ATOM
3250
CG1
ILE
A
618
13.676
−2.696
24.783
1.00
7.50
A
C


ATOM
3253
CD1
ILE
A
618
12.296
−3.333
24.895
1.00
9.45
A
C


ATOM
3257
CG2
ILE
A
618
14.641
−3.746
26.867
1.00
9.02
A
C


ATOM
3261
C
ILE
A
618
17.314
−3.569
25.805
1.00
8.52
A
C


ATOM
3262
O
ILE
A
618
17.884
−2.983
26.731
1.00
9.07
A
O


ATOM
3263
N
LEU
A
619
17.674
−4.780
25.406
1.00
9.16
A
N


ATOM
3265
CA
LEU
A
619
18.752
−5.517
26.063
1.00
9.73
A
C


ATOM
3267
CB
LEU
A
619
18.742
−6.989
25.626
1.00
10.15
A
C


ATOM
3270
CG
LEU
A
619
17.821
−7.924
26.416
1.00
11.23
A
C


ATOM
3272
CD1
LEU
A
619
18.274
−8.131
27.852
1.00
12.73
A
C


ATOM
3276
CD2
LEU
A
619
16.384
−7.464
26.361
1.00
12.78
A
C


ATOM
3280
C
LEU
A
619
20.132
−4.906
25.858
1.00
9.41
A
C


ATOM
3281
O
LEU
A
619
21.071
−5.239
26.600
1.00
11.30
A
O


ATOM
3282
N
SER
A
620
20.249
−3.996
24.890
1.00
9.34
A
N


ATOM
3284
CA
SER
A
620
21.466
−3.226
24.656
1.00
9.57
A
C


ATOM
3286
CB
SER
A
620
21.748
−3.159
23.147
1.00
9.27
A
C


ATOM
3289
OG
SER
A
620
21.720
−4.438
22.539
1.00
9.62
A
O


ATOM
3291
C
SER
A
620
21.412
−1.788
25.217
1.00
10.03
A
C


ATOM
3292
O
SER
A
620
22.253
−0.958
24.870
1.00
10.13
A
O


ATOM
3293
N
PHE
A
621
20.438
−1.495
26.072
1.00
10.21
A
N


ATOM
3295
CA
PHE
A
621
20.281
−0.168
26.658
1.00
10.99
A
C


ATOM
3297
CB
PHE
A
621
21.380
0.092
27.686
1.00
11.57
A
C


ATOM
3300
CG
PHE
A
621
21.417
−0.916
28.786
1.00
11.76
A
C


ATOM
3301
CD1
PHE
A
621
20.585
−0.777
29.903
1.00
14.73
A
C


ATOM
3303
CE1
PHE
A
621
20.616
−1.720
30.939
1.00
13.38
A
C


ATOM
3305
CZ
PHE
A
621
21.455
−2.806
30.845
1.00
15.10
A
C


ATOM
3307
CE2
PHE
A
621
22.282
−2.966
29.728
1.00
15.45
A
C


ATOM
3309
CD2
PHE
A
621
22.257
−2.020
28.708
1.00
14.11
A
C


ATOM
3311
C
PHE
A
621
20.204
0.974
25.633
1.00
11.51
A
C


ATOM
3312
O
PHE
A
621
20.746
2.054
25.840
1.00
11.76
A
O


ATOM
3313
N
GLY
A
622
19.533
0.715
24.513
1.00
12.15
A
N


ATOM
3315
CA
GLY
A
622
19.195
1.755
23.561
1.00
12.52
A
C


ATOM
3318
C
GLY
A
622
20.125
1.958
22.389
1.00
13.31
A
C


ATOM
3319
O
GLY
A
622
19.957
2.916
21.631
1.00
13.27
A
O


ATOM
3320
N
LYS
A
623
21.117
1.086
22.224
1.00
13.94
A
N


ATOM
3322
CA
LYS
A
623
22.003
1.199
21.072
1.00
14.20
A
C


ATOM
3324
CB
LYS
A
623
23.120
0.167
21.156
1.00
15.30
A
C


ATOM
3327
CG
LYS
A
623
24.036
0.374
22.340
1.00
18.22
A
C


ATOM
3330
CD
LYS
A
623
25.359
−0.349
22.137
1.00
23.13
A
C


ATOM
3333
CE
LYS
A
623
25.198
−1.851
22.058
1.00
23.04
A
C


ATOM
3336
NZ
LYS
A
623
26.022
−2.515
23.072
1.00
22.31
A
N


ATOM
3340
C
LYS
A
623
21.223
1.016
19.765
1.00
13.35
A
C


ATOM
3341
O
LYS
A
623
20.175
0.354
19.732
1.00
12.25
A
O


ATOM
3342
N
GLN
A
624
21.720
1.631
18.694
1.00
12.33
A
N


ATOM
3344
CA
GLN
A
624
21.074
1.532
17.390
1.00
11.79
A
C


ATOM
3346
CB
GLN
A
624
21.471
2.693
16.471
1.00
12.79
A
C


ATOM
3349
CG
GLN
A
624
20.803
2.653
15.092
1.00
16.84
A
C


ATOM
3352
CD
GLN
A
624
21.480
3.512
14.033
1.00
20.72
A
C


ATOM
3353
OE1
GLN
A
624
22.510
3.139
13.484
1.00
22.00
A
O


ATOM
3354
NE2
GLN
A
624
20.863
4.642
13.706
1.00
25.56
A
N


ATOM
3357
C
GLN
A
624
21.484
0.218
16.750
1.00
10.43
A
C


ATOM
3358
O
GLN
A
624
22.674
−0.085
16.700
1.00
9.05
A
O


ATOM
3359
N
PRO
A
625
20.527
−0.543
16.226
1.00
9.21
A
N


ATOM
3360
CA
PRO
A
625
20.857
−1.773
15.510
1.00
8.85
A
C


ATOM
3362
CB
PRO
A
625
19.489
−2.336
15.099
1.00
8.81
A
C


ATOM
3365
CG
PRO
A
625
18.589
−1.182
15.135
1.00
8.12
A
C


ATOM
3368
CD
PRO
A
625
19.077
−0.284
16.226
1.00
8.87
A
C


ATOM
3371
C
PRO
A
625
21.690
−1.483
14.260
1.00
9.18
A
C


ATOM
3372
O
PRO
A
625
21.427
−0.517
13.529
1.00
8.70
A
O


ATOM
3373
N
PHE
A
626
22.699
−2.312
14.017
1.00
8.97
A
N


ATOM
3375
CA
PHE
A
626
23.530
−2.167
12.825
1.00
8.80
A
C


ATOM
3377
CB
PHE
A
626
22.755
−2.516
11.552
1.00
9.35
A
C


ATOM
3380
CG
PHE
A
626
22.317
−3.959
11.476
1.00
7.57
A
C


ATOM
3381
CD1
PHE
A
626
23.263
−4.982
11.428
1.00
8.74
A
C


ATOM
3383
CE1
PHE
A
626
22.880
−6.293
11.333
1.00
7.90
A
C


ATOM
3385
CZ
PHE
A
626
21.544
−6.621
11.266
1.00
9.02
A
C


ATOM
3387
CE2
PHE
A
626
20.584
−5.630
11.313
1.00
7.58
A
C


ATOM
3389
CD2
PHE
A
626
20.967
−4.303
11.402
1.00
7.59
A
C


ATOM
3391
C
PHE
A
626
24.153
−0.762
12.737
1.00
9.81
A
C


ATOM
3392
O
PHE
A
626
24.281
−0.193
11.669
1.00
9.56
A
O


ATOM
3393
N
PHE
A
627
24.554
−0.231
13.879
1.00
9.82
A
N


ATOM
3395
CA
PHE
A
627
25.190
1.088
13.917
1.00
11.48
A
C


ATOM
3397
CB
PHE
A
627
25.448
1.543
15.365
1.00
11.15
A
C


ATOM
3400
CG
PHE
A
627
26.395
0.662
16.150
1.00
11.35
A
C


ATOM
3401
CD1
PHE
A
627
27.774
0.810
16.042
1.00
9.33
A
C


ATOM
3403
CE1
PHE
A
627
28.637
0.017
16.772
1.00
10.69
A
C


ATOM
3405
CZ
PHE
A
627
28.131
−0.911
17.652
1.00
12.10
A
C


ATOM
3407
CE2
PHE
A
627
26.746
−1.042
17.787
1.00
10.84
A
C


ATOM
3409
CD2
PHE
A
627
25.905
−0.256
17.051
1.00
9.05
A
C


ATOM
3411
C
PHE
A
627
26.475
1.142
13.092
1.00
12.51
A
C


ATOM
3412
O
PHE
A
627
26.881
2.214
12.636
1.00
14.55
A
O


ATOM
3413
N
TRP
A
628
27.076
−0.021
12.879
1.00
12.47
A
N


ATOM
3415
CA
TRP
A
628
28.355
−0.158
12.189
1.00
13.92
A
C


ATOM
3417
CB
TRP
A
628
29.085
−1.409
12.710
1.00
13.56
A
C


ATOM
3420
CG
TRP
A
628
28.298
−2.730
12.615
1.00
13.24
A
C


ATOM
3421
CD1
TRP
A
628
28.356
−3.647
11.600
1.00
13.12
A
C


ATOM
3423
NE1
TRP
A
628
27.528
−4.710
11.871
1.00
14.92
A
N


ATOM
3425
CE2
TRP
A
628
26.894
−4.493
13.060
1.00
13.87
A
C


ATOM
3426
CD2
TRP
A
628
27.366
−3.256
13.566
1.00
12.08
A
C


ATOM
3427
CE3
TRP
A
628
26.861
−2.807
14.784
1.00
13.25
A
C


ATOM
3429
CZ3
TRP
A
628
25.928
−3.597
15.468
1.00
13.18
A
C


ATOM
3431
CH2
TRP
A
628
25.490
−4.812
14.935
1.00
12.66
A
C


ATOM
3433
CZ2
TRP
A
628
25.966
−5.276
13.739
1.00
12.17
A
C


ATOM
3435
C
TRP
A
628
28.204
−0.203
10.658
1.00
14.82
A
C


ATOM
3436
O
TRP
A
628
29.199
−0.297
9.938
1.00
16.19
A
O


ATOM
3437
N
LEU
A
629
26.963
−0.177
10.171
1.00
14.95
A
N


ATOM
3439
CA
LEU
A
629
26.653
−0.266
8.744
1.00
15.95
A
C


ATOM
3441
CB
LEU
A
629
25.711
−1.447
8.475
1.00
15.63
A
C


ATOM
3444
CG
LEU
A
629
26.128
−2.866
8.839
1.00
15.85
A
C


ATOM
3446
CD1
LEU
A
629
25.034
−3.791
8.377
1.00
17.66
A
C


ATOM
3450
CD2
LEU
A
629
27.437
−3.241
8.191
1.00
17.21
A
C


ATOM
3454
C
LEU
A
629
25.957
0.991
8.249
1.00
16.16
A
C


ATOM
3455
O
LEU
A
629
25.422
1.767
9.042
1.00
17.19
A
O


ATOM
3456
N
GLU
A
630
26.012
1.200
6.933
1.00
17.08
A
N


ATOM
3458
CA
GLU
A
630
25.159
2.176
6.244
1.00
17.66
A
C


ATOM
3460
CB
GLU
A
630
25.859
2.759
4.990
1.00
18.54
A
C


ATOM
3463
CG
GLU
A
630
27.107
3.592
5.285
1.00
22.16
A
C


ATOM
3466
CD
GLU
A
630
27.834
4.104
4.035
1.00
26.66
A
C


ATOM
3467
OE1
GLU
A
630
28.025
3.347
3.054
1.00
30.10
A
O


ATOM
3468
OE2
GLU
A
630
28.254
5.276
4.041
1.00
31.44
A
O


ATOM
3469
C
GLU
A
630
23.877
1.444
5.840
1.00
16.80
A
C


ATOM
3470
O
GLU
A
630
23.899
0.232
5.644
1.00
16.52
A
O


ATOM
3471
N
ASN
A
631
22.777
2.177
5.693
1.00
16.64
A
N


ATOM
3473
CA
ASN
A
631
21.494
1.588
5.288
1.00
16.86
A
C


ATOM
3475
CB
ASN
A
631
20.444
2.692
5.027
1.00
16.92
A
C


ATOM
3478
CG
ASN
A
631
19.758
3.184
6.315
1.00
18.23
A
C


ATOM
3479
OD1
ASN
A
631
19.981
2.645
7.395
1.00
19.71
A
O


ATOM
3480
ND2
ASN
A
631
18.935
4.230
6.196
1.00
18.99
A
N


ATOM
3483
C
ASN
A
631
21.626
0.674
4.067
1.00
16.54
A
C


ATOM
3484
O
ASN
A
631
21.011
−0.395
4.008
1.00
16.91
A
O


ATOM
3485
N
LYS
A
632
22.435
1.094
3.097
1.00
17.10
A
N


ATOM
3487
CA
LYS
A
632
22.531
0.396
1.817
1.00
17.56
A
C


ATOM
3489
CB
LYS
A
632
23.263
1.260
0.770
1.00
17.78
A
C


ATOM
3492
CG
LYS
A
632
24.756
1.461
0.990
1.00
19.40
A
C


ATOM
3495
CD
LYS
A
632
25.297
2.438
−0.081
1.00
23.92
A
C


ATOM
3498
CE
LYS
A
632
26.787
2.688
0.044
1.00
24.81
A
C


ATOM
3501
NZ
LYS
A
632
27.592
1.430
0.014
1.00
27.18
A
N


ATOM
3505
C
LYS
A
632
23.194
−0.965
1.940
1.00
17.38
A
C


ATOM
3506
O
LYS
A
632
23.086
−1.798
1.040
1.00
17.61
A
O


ATOM
3507
N
ASP
A
633
23.863
−1.195
3.064
1.00
17.62
A
N


ATOM
3509
CA
ASP
A
633
24.618
−2.423
3.287
1.00
17.79
A
C


ATOM
3511
CB
ASP
A
633
25.892
−2.111
4.070
1.00
18.50
A
C


ATOM
3514
CG
ASP
A
633
26.869
−1.242
3.289
1.00
22.13
A
C


ATOM
3515
OD1
ASP
A
633
27.019
−1.425
2.062
1.00
25.82
A
O


ATOM
3516
OD2
ASP
A
633
27.534
−0.344
3.843
1.00
29.08
A
O


ATOM
3517
C
ASP
A
633
23.830
−3.477
4.054
1.00
16.35
A
C


ATOM
3518
O
ASP
A
633
24.244
−4.631
4.106
1.00
16.00
A
O


ATOM
3519
N
VAL
A
634
22.698
−3.086
4.639
1.00
14.77
A
N


ATOM
3521
CA
VAL
A
634
21.941
−3.962
5.535
1.00
14.11
A
C


ATOM
3523
CB
VAL
A
634
20.767
−3.188
6.199
1.00
14.20
A
C


ATOM
3525
CG1
VAL
A
634
19.834
−4.110
6.957
1.00
14.96
A
C


ATOM
3529
CG2
VAL
A
634
21.298
−2.120
7.131
1.00
15.06
A
C


ATOM
3533
C
VAL
A
634
21.448
−5.224
4.823
1.00
13.43
A
C


ATOM
3534
O
VAL
A
634
21.685
−6.339
5.289
1.00
12.23
A
O


ATOM
3535
N
ILE
A
635
20.792
−5.063
3.676
1.00
13.66
A
N


ATOM
3537
CA
ILE
A
635
20.175
−6.214
3.010
1.00
13.87
A
C


ATOM
3539
CB
ILE
A
635
19.308
−5.792
1.786
1.00
14.01
A
C


ATOM
3541
CG1
ILE
A
635
18.407
−6.942
1.344
1.00
13.90
A
C


ATOM
3544
CD1
ILE
A
635
17.406
−7.408
2.394
1.00
14.48
A
C


ATOM
3548
CG2
ILE
A
635
20.169
−5.256
0.628
1.00
14.55
A
C


ATOM
3552
C
ILE
A
635
21.205
−7.287
2.666
1.00
14.30
A
C


ATOM
3553
O
ILE
A
635
20.961
−8.467
2.912
1.00
13.32
A
O


ATOM
3554
N
GLY
A
636
22.369
−6.865
2.167
1.00
14.75
A
N


ATOM
3556
CA
GLY
A
636
23.483
−7.771
1.868
1.00
14.87
A
C


ATOM
3559
C
GLY
A
636
23.898
−8.630
3.048
1.00
14.75
A
C


ATOM
3560
O
GLY
A
636
24.068
−9.846
2.937
1.00
14.77
A
O


ATOM
3561
N
VAL
A
637
24.046
−7.989
4.195
1.00
14.62
A
N


ATOM
3563
CA
VAL
A
637
24.396
−8.669
5.431
1.00
14.71
A
C


ATOM
3565
CB
VAL
A
637
24.620
−7.610
6.548
1.00
15.24
A
C


ATOM
3567
CG1
VAL
A
637
24.587
−8.215
7.928
1.00
15.93
A
C


ATOM
3571
CG2
VAL
A
637
25.932
−6.869
6.295
1.00
16.95
A
C


ATOM
3575
C
VAL
A
637
23.336
−9.700
5.841
1.00
14.05
A
C


ATOM
3576
O
VAL
A
637
23.644
−10.829
6.188
1.00
13.96
A
O


ATOM
3577
N
LEU
A
638
22.074
−9.322
5.779
1.00
13.42
A
N


ATOM
3579
CA
LEU
A
638
20.995
−10.231
6.146
1.00
13.52
A
C


ATOM
3581
CB
LEU
A
638
19.669
−9.472
6.179
1.00
13.37
A
C


ATOM
3584
CG
LEU
A
638
19.587
−8.329
7.203
1.00
12.38
A
C


ATOM
3586
CD1
LEU
A
638
18.240
−7.644
7.078
1.00
12.99
A
C


ATOM
3590
CD2
LEU
A
638
19.783
−8.855
8.587
1.00
13.05
A
C


ATOM
3594
C
LEU
A
638
20.902
−11.427
5.188
1.00
14.41
A
C


ATOM
3595
O
LEU
A
638
20.640
−12.547
5.617
1.00
13.64
A
O


ATOM
3596
N
GLU
A
639
21.119
−11.170
3.897
1.00
15.99
A
N


ATOM
3598
CA
GLU
A
639
21.032
−12.204
2.860
1.00
17.38
A
C


ATOM
3600
CB
GLU
A
639
20.974
−11.585
1.446
1.00
17.84
A
C


ATOM
3603
CG
GLU
A
639
19.567
−11.053
1.155
1.00
19.95
A
C


ATOM
3606
CD
GLU
A
639
19.349
−10.385
−0.196
1.00
24.27
A
C


ATOM
3607
OE1
GLU
A
639
20.314
−9.998
−0.890
1.00
26.43
A
O


ATOM
3608
OE2
GLU
A
639
18.156
−10.234
−0.555
1.00
28.41
A
O


ATOM
3609
C
GLU
A
639
22.171
−13.190
3.015
1.00
18.02
A
C


ATOM
3610
O
GLU
A
639
21.998
−14.362
2.755
1.00
18.32
A
O


ATOM
3611
N
LYS
A
640
23.319
−12.733
3.503
1.00
18.92
A
N


ATOM
3613
CA
LYS
A
640
24.431
−13.645
3.751
1.00
19.98
A
C


ATOM
3615
CB
LYS
A
640
25.777
−12.903
3.693
1.00
20.94
A
C


ATOM
3618
CG
LYS
A
640
26.233
−12.229
4.965
1.00
24.88
A
C


ATOM
3621
CD
LYS
A
640
27.432
−11.309
4.704
1.00
28.51
A
C


ATOM
3624
CE
LYS
A
640
28.699
−12.102
4.445
1.00
30.97
A
C


ATOM
3627
NZ
LYS
A
640
29.922
−11.339
4.842
1.00
32.88
A
N


ATOM
3631
C
LYS
A
640
24.244
−14.456
5.038
1.00
19.37
A
C


ATOM
3632
O
LYS
A
640
25.047
−15.343
5.324
1.00
20.32
A
O


ATOM
3633
N
GLY
A
641
23.172
−14.188
5.795
1.00
18.02
A
N


ATOM
3635
CA
GLY
A
641
22.864
−14.947
7.006
1.00
17.51
A
C


ATOM
3638
C
GLY
A
641
23.309
−14.328
8.324
1.00
16.94
A
C


ATOM
3639
O
GLY
A
641
23.063
−14.876
9.398
1.00
17.26
A
O


ATOM
3640
N
ASP
A
642
23.978
−13.186
8.260
1.00
15.83
A
N


ATOM
3642
CA
ASP
A
642
24.426
−12.516
9.476
1.00
15.01
A
C


ATOM
3644
CB
ASP
A
642
25.482
−11.476
9.155
1.00
15.19
A
C


ATOM
3647
CG
ASP
A
642
26.786
−12.079
8.651
1.00
18.80
A
C


ATOM
3648
OD1
ASP
A
642
27.065
−13.269
8.921
1.00
19.61
A
O


ATOM
3649
OD2
ASP
A
642
27.586
−11.400
7.975
1.00
23.88
A
O


ATOM
3650
C
ASP
A
642
23.249
−11.815
10.152
1.00
13.57
A
C


ATOM
3651
O
ASP
A
642
22.307
−11.354
9.490
1.00
12.33
A
O


ATOM
3652
N
ARG
A
643
23.362
−11.697
11.464
1.00
12.50
A
N


ATOM
3654
CA
ARG
A
643
22.331
−11.111
12.317
1.00
12.39
A
C


ATOM
3656
CB
ARG
A
643
21.489
−12.225
12.953
1.00
12.39
A
C


ATOM
3659
CG
ARG
A
643
20.694
−13.090
11.983
1.00
12.03
A
C


ATOM
3662
CD
ARG
A
643
19.623
−12.348
11.205
1.00
11.99
A
C


ATOM
3665
NE
ARG
A
643
18.815
−13.225
10.362
1.00
13.20
A
N


ATOM
3667
CZ
ARG
A
643
19.009
−13.447
9.066
1.00
12.12
A
C


ATOM
3668
NH1
ARG
A
643
20.017
−12.891
8.422
1.00
12.02
A
N


ATOM
3671
NH2
ARG
A
643
18.192
−14.246
8.407
1.00
13.42
A
N


ATOM
3674
C
ARG
A
643
22.971
−10.248
13.403
1.00
11.47
A
C


ATOM
3675
O
ARG
A
643
24.193
−10.287
13.620
1.00
12.13
A
O


ATOM
3676
N
LEU
A
644
22.153
−9.467
14.099
1.00
10.94
A
N


ATOM
3678
CA
LEU
A
644
22.594
−8.737
15.290
1.00
10.40
A
C


ATOM
3680
CB
LEU
A
644
21.419
−7.958
15.904
1.00
9.69
A
C


ATOM
3683
CG
LEU
A
644
20.852
−6.832
15.018
1.00
11.08
A
C


ATOM
3685
CD1
LEU
A
644
19.472
−6.365
15.508
1.00
9.53
A
C


ATOM
3689
CD2
LEU
A
644
21.813
−5.666
14.973
1.00
10.40
A
C


ATOM
3693
C
LEU
A
644
23.159
−9.720
16.313
1.00
10.18
A
C


ATOM
3694
O
LEU
A
644
22.586
−10.783
16.529
1.00
9.49
A
O


ATOM
3695
N
PRO
A
645
24.294
−9.404
16.929
1.00
11.40
A
N


ATOM
3696
CA
PRO
A
645
24.890
−10.317
17.908
1.00
11.04
A
C


ATOM
3698
CB
PRO
A
645
26.306
−9.773
18.072
1.00
11.53
A
C


ATOM
3701
CG
PRO
A
645
26.133
−8.323
17.893
1.00
12.78
A
C


ATOM
3704
CD
PRO
A
645
25.098
−8.180
16.770
1.00
11.64
A
C


ATOM
3707
C
PRO
A
645
24.153
−10.280
19.237
1.00
10.76
A
C


ATOM
3708
O
PRO
A
645
23.433
−9.317
19.545
1.00
10.19
A
O


ATOM
3709
N
LYS
A
646
24.334
−11.309
20.050
1.00
10.57
A
N


ATOM
3711
CA
LYS
A
646
23.713
−11.298
21.372
1.00
11.04
A
C


ATOM
3713
CB
LYS
A
646
23.920
−12.626
22.090
1.00
11.87
A
C


ATOM
3716
CG
LYS
A
646
23.106
−12.693
23.388
1.00
12.94
A
C


ATOM
3719
CD
LYS
A
646
23.208
−14.023
24.094
1.00
15.55
A
C


ATOM
3722
CE
LYS
A
646
24.549
−14.181
24.784
1.00
17.68
A
C


ATOM
3725
NZ
LYS
A
646
24.744
−13.211
25.909
1.00
17.61
A
N


ATOM
3729
C
LYS
A
646
24.245
−10.171
22.262
1.00
11.04
A
C


ATOM
3730
O
LYS
A
646
25.455
−10.098
22.512
1.00
10.00
A
O


ATOM
3731
N
PRO
A
647
23.367
−9.298
22.764
1.00
11.04
A
N


ATOM
3732
CA
PRO
A
647
23.795
−8.304
23.753
1.00
11.70
A
C


ATOM
3734
CB
PRO
A
647
22.493
−7.562
24.101
1.00
11.68
A
C


ATOM
3737
CG
PRO
A
647
21.613
−7.755
22.933
1.00
10.24
A
C


ATOM
3740
CD
PRO
A
647
21.939
−9.134
22.407
1.00
10.94
A
C


ATOM
3743
C
PRO
A
647
24.385
−9.009
24.989
1.00
12.95
A
C


ATOM
3744
O
PRO
A
647
23.903
−10.073
25.362
1.00
13.55
A
O


ATOM
3745
N
ASP
A
648
25.404
−8.419
25.596
1.00
14.13
A
N


ATOM
3747
CA
ASP
A
648
26.079
−9.025
26.746
1.00
15.83
A
C


ATOM
3749
CB
ASP
A
648
27.078
−8.037
27.343
1.00
16.30
A
C


ATOM
3752
CG
ASP
A
648
27.957
−8.685
28.387
1.00
19.77
A
C


ATOM
3753
OD1
ASP
A
648
28.581
−9.737
28.087
1.00
23.36
A
O


ATOM
3754
OD2
ASP
A
648
28.045
−8.239
29.538
1.00
22.83
A
O


ATOM
3755
C
ASP
A
648
25.132
−9.530
27.867
1.00
15.47
A
C


ATOM
3756
O
ASP
A
648
25.328
−10.620
28.405
1.00
15.60
A
O


ATOM
3757
N
LEU
A
649
24.107
−8.758
28.208
1.00
15.04
A
N


ATOM
3759
CA
LEU
A
649
23.198
−9.145
29.293
1.00
15.54
A
C


ATOM
3761
CB
LEU
A
649
22.786
−7.917
30.102
1.00
16.16
A
C


ATOM
3764
CG
LEU
A
649
23.972
−7.268
30.829
1.00
18.63
A
C


ATOM
3766
CD1
LEU
A
649
23.508
−6.172
31.752
1.00
21.84
A
C


ATOM
3770
CD2
LEU
A
649
24.819
−8.285
31.590
1.00
20.44
A
C


ATOM
3774
C
LEU
A
649
21.958
−9.928
28.864
1.00
15.26
A
C


ATOM
3775
O
LEU
A
649
21.143
−10.329
29.702
1.00
15.43
A
O


ATOM
3776
N
CYS
A
650
21.816
−10.172
27.573
1.00
14.41
A
N


ATOM
3778
CA
CYS
A
650
20.722
−10.976
27.078
1.00
14.24
A
C


ATOM
3780
CB
CYS
A
650
20.630
−10.821
25.562
1.00
14.58
A
C


ATOM
3783
SG
CYS
A
650
19.263
−11.720
24.860
1.00
14.34
A
S


ATOM
3784
C
CYS
A
650
20.886
−12.462
27.463
1.00
14.97
A
C


ATOM
3785
O
CYS
A
650
21.918
−13.062
27.147
1.00
14.59
A
O


ATOM
3786
N
PRO
A
651
19.882
−13.046
28.131
1.00
15.29
A
N


ATOM
3787
CA
PRO
A
651
19.881
−14.480
28.453
1.00
15.51
A
C


ATOM
3789
CB
PRO
A
651
18.505
−14.690
29.096
1.00
15.33
A
C


ATOM
3792
CG
PRO
A
651
18.118
−13.377
29.606
1.00
16.20
A
C


ATOM
3795
CD
PRO
A
651
18.647
−12.395
28.606
1.00
15.45
A
C


ATOM
3798
C
PRO
A
651
19.950
−15.280
27.156
1.00
15.61
A
C


ATOM
3799
O
PRO
A
651
19.232
−14.936
26.226
1.00
13.93
A
O


ATOM
3800
N
PRO
A
652
20.796
−16.304
27.069
1.00
15.46
A
N


ATOM
3801
CA
PRO
A
652
20.857
−17.144
25.865
1.00
15.22
A
C


ATOM
3803
CB
PRO
A
652
21.714
−18.328
26.322
1.00
16.43
A
C


ATOM
3806
CG
PRO
A
652
22.606
−17.704
27.397
1.00
15.77
A
C


ATOM
3809
CD
PRO
A
652
21.777
−16.707
28.093
1.00
16.56
A
C


ATOM
3812
C
PRO
A
652
19.492
−17.602
25.303
1.00
14.66
A
C


ATOM
3813
O
PRO
A
652
19.290
−17.564
24.078
1.00
13.44
A
O


ATOM
3814
N
VAL
A
653
18.583
−18.024
26.175
1.00
14.07
A
N


ATOM
3816
CA
VAL
A
653
17.232
−18.429
25.766
1.00
14.45
A
C


ATOM
3818
CB
VAL
A
653
16.422
−18.968
26.990
1.00
15.04
A
C


ATOM
3820
CG1
VAL
A
653
16.178
−17.897
28.039
1.00
16.41
A
C


ATOM
3824
CG2
VAL
A
653
15.103
−19.588
26.565
1.00
16.73
A
C


ATOM
3828
C
VAL
A
653
16.476
−17.297
25.056
1.00
13.12
A
C


ATOM
3829
O
VAL
A
653
15.724
−17.519
24.101
1.00
13.27
A
O


ATOM
3830
N
LEU
A
654
16.671
−16.075
25.525
1.00
12.25
A
N


ATOM
3832
CA
LEU
A
654
16.061
−14.930
24.859
1.00
11.55
A
C


ATOM
3834
CB
LEU
A
654
16.133
−13.699
25.762
1.00
12.25
A
C


ATOM
3837
CG
LEU
A
654
15.424
−12.465
25.211
1.00
11.73
A
C


ATOM
3839
CD1
LEU
A
654
13.992
−12.763
24.836
1.00
12.71
A
C


ATOM
3843
CD2
LEU
A
654
15.497
−11.336
26.213
1.00
15.67
A
C


ATOM
3847
C
LEU
A
654
16.705
−14.659
23.499
1.00
11.43
A
C


ATOM
3848
O
LEU
A
654
16.017
−14.299
22.532
1.00
9.70
A
O


ATOM
3849
N
TYR
A
655
18.023
−14.819
23.391
1.00
10.65
A
N


ATOM
3851
CA
TYR
A
655
18.650
−14.626
22.089
1.00
10.82
A
C


ATOM
3853
CB
TYR
A
655
20.170
−14.605
22.197
1.00
10.18
A
C


ATOM
3856
CG
TYR
A
655
20.847
−14.244
20.909
1.00
10.71
A
C


ATOM
3857
CD1
TYR
A
655
20.691
−12.978
20.344
1.00
9.23
A
C


ATOM
3859
CE1
TYR
A
655
21.328
−12.648
19.126
1.00
10.02
A
C


ATOM
3861
CZ
TYR
A
655
22.107
−13.582
18.493
1.00
10.45
A
C


ATOM
3862
OH
TYR
A
655
22.732
−13.275
17.313
1.00
11.48
A
O


ATOM
3864
CE2
TYR
A
655
22.257
−14.848
19.030
1.00
11.87
A
C


ATOM
3866
CD2
TYR
A
655
21.607
−15.175
20.222
1.00
11.48
A
C


ATOM
3868
C
TYR
A
655
18.159
−15.669
21.083
1.00
11.69
A
C


ATOM
3869
O
TYR
A
655
17.945
−15.356
19.924
1.00
13.15
A
O


ATOM
3870
N
THR
A
656
17.913
−16.896
21.538
1.00
12.50
A
N


ATOM
3872
CA
THR
A
656
17.343
−17.927
20.681
1.00
12.57
A
C


ATOM
3874
CB
THR
A
656
17.203
−19.233
21.454
1.00
12.96
A
C


ATOM
3876
OG1
THR
A
656
18.524
−19.752
21.709
1.00
13.90
A
O


ATOM
3878
CG2
THR
A
656
16.497
−20.292
20.634
1.00
13.68
A
C


ATOM
3882
C
THR
A
656
16.002
−17.478
20.123
1.00
12.60
A
C


ATOM
3883
O
THR
A
656
15.725
−17.642
18.942
1.00
12.69
A
O


ATOM
3884
N
LEU
A
657
15.196
−16.876
20.968
1.00
12.41
A
N


ATOM
3886
CA
LEU
A
657
13.896
−16.387
20.550
1.00
13.31
A
C


ATOM
3888
CB
LEU
A
657
13.159
−15.855
21.767
1.00
13.71
A
C


ATOM
3891
CG
LEU
A
657
11.651
−15.834
21.701
1.00
17.10
A
C


ATOM
3893
CD1
LEU
A
657
11.129
−17.245
21.475
1.00
17.52
A
C


ATOM
3897
CD2
LEU
A
657
11.093
−15.233
22.999
1.00
17.71
A
C


ATOM
3901
C
LEU
A
657
14.035
−15.306
19.478
1.00
12.69
A
C


ATOM
3902
O
LEU
A
657
13.318
−15.328
18.471
1.00
11.85
A
O


ATOM
3903
N
MET
A
658
14.973
−14.381
19.681
1.00
12.08
A
N


ATOM
3905
CA
MET
A
658
15.256
−13.329
18.704
1.00
12.19
A
C


ATOM
3907
CB
MET
A
658
16.394
−12.406
19.158
1.00
12.40
A
C


ATOM
3910
CG
MET
A
658
16.108
−11.534
20.375
1.00
14.24
A
C


ATOM
3913
SD
MET
A
658
17.644
−10.690
20.859
1.00
17.59
A
S


ATOM
3914
CE
MET
A
658
17.109
−9.824
22.311
1.00
17.80
A
C


ATOM
3918
C
MET
A
658
15.622
−13.928
17.361
1.00
11.84
A
C


ATOM
3919
O
MET
A
658
15.138
−13.476
16.317
1.00
11.75
A
O


ATOM
3920
N
THR
A
659
16.467
−14.964
17.370
1.00
11.94
A
N


ATOM
3922
CA
THR
A
659
16.955
−15.520
16.113
1.00
12.12
A
C


ATOM
3924
CB
THR
A
659
18.149
−16.515
16.292
1.00
12.54
A
C


ATOM
3926
OG1
THR
A
659
17.762
−17.627
17.096
1.00
16.72
A
O


ATOM
3928
CG2
THR
A
659
19.287
−15.907
17.045
1.00
12.86
A
C


ATOM
3932
C
THR
A
659
15.821
−16.169
15.321
1.00
11.44
A
C


ATOM
3933
O
THR
A
659
15.857
−16.155
14.085
1.00
11.07
A
O


ATOM
3934
N
ARG
A
660
14.828
−16.730
16.026
1.00
11.23
A
N


ATOM
3936
CA
ARG
A
660
13.648
−17.313
15.390
1.00
11.85
A
C


ATOM
3938
CB
ARG
A
660
12.801
−18.090
16.395
1.00
12.33
A
C


ATOM
3941
CG
ARG
A
660
13.442
−19.396
16.829
1.00
15.41
A
C


ATOM
3944
CD
ARG
A
660
12.668
−20.082
17.920
1.00
18.66
A
C


ATOM
3947
NE
ARG
A
660
11.342
−20.465
17.435
1.00
21.96
A
N


ATOM
3949
CZ
ARG
A
660
10.238
−20.507
18.175
1.00
24.62
A
C


ATOM
3950
NH1
ARG
A
660
10.262
−20.224
19.484
1.00
25.28
A
N


ATOM
3953
NH2
ARG
A
660
9.104
−20.872
17.604
1.00
25.04
A
N


ATOM
3956
C
ARG
A
660
12.790
−16.249
14.711
1.00
11.14
A
C


ATOM
3957
O
ARG
A
660
12.256
−16.473
13.614
1.00
11.17
A
O


ATOM
3958
N
CYS
A
661
12.695
−15.082
15.345
1.00
10.45
A
N


ATOM
3960
CA
CYS
A
661
12.009
−13.926
14.756
1.00
10.32
A
C


ATOM
3962
CB
CYS
A
661
11.839
−12.812
15.791
1.00
10.37
A
C


ATOM
3965
SG
CYS
A
661
10.842
−13.203
17.247
1.00
11.06
A
S


ATOM
3966
C
CYS
A
661
12.729
−13.350
13.538
1.00
10.43
A
C


ATOM
3967
O
CYS
A
661
12.100
−12.678
12.705
1.00
10.50
A
O


ATOM
3968
N
TRP
A
662
14.036
−13.597
13.427
1.00
9.89
A
N


ATOM
3970
CA
TRP
A
662
14.812
−13.171
12.269
1.00
9.87
A
C


ATOM
3972
CB
TRP
A
662
16.154
−12.573
12.706
1.00
9.96
A
C


ATOM
3975
CG
TRP
A
662
16.045
−11.379
13.624
1.00
7.99
A
C


ATOM
3976
CD1
TRP
A
662
15.098
−10.395
13.601
1.00
9.64
A
C


ATOM
3978
NE1
TRP
A
662
15.341
−9.479
14.599
1.00
9.65
A
N


ATOM
3980
CE2
TRP
A
662
16.458
−9.867
15.292
1.00
9.01
A
C


ATOM
3981
CD2
TRP
A
662
16.915
−11.064
14.707
1.00
8.52
A
C


ATOM
3982
CE3
TRP
A
662
18.060
−11.668
15.241
1.00
8.33
A
C


ATOM
3984
CZ3
TRP
A
662
18.678
−11.079
16.328
1.00
9.97
A
C


ATOM
3986
CH2
TRP
A
662
18.197
−9.903
16.882
1.00
9.90
A
C


ATOM
3988
CZ2
TRP
A
662
17.091
−9.285
16.390
1.00
8.65
A
C


ATOM
3990
C
TRP
A
662
15.035
−14.293
11.250
1.00
10.88
A
C


ATOM
3991
O
TRP
A
662
16.003
−14.279
10.518
1.00
11.46
A
O


ATOM
3992
N
ASP
A
663
14.117
−15.247
11.169
1.00
12.36
A
N


ATOM
3994
CA
ASP
A
663
14.145
−16.205
10.079
1.00
13.31
A
C


ATOM
3996
CB
ASP
A
663
13.079
−17.269
10.250
1.00
13.47
A
C


ATOM
3999
CG
ASP
A
663
13.383
−18.523
9.450
1.00
17.38
A
C


ATOM
4000
OD1
ASP
A
663
13.368
−18.472
8.199
1.00
19.87
A
O


ATOM
4001
OD2
ASP
A
663
13.623
−19.611
10.004
1.00
19.38
A
O


ATOM
4002
C
ASP
A
663
13.902
−15.428
8.791
1.00
13.36
A
C


ATOM
4003
O
ASP
A
663
13.021
−14.564
8.740
1.00
12.27
A
O


ATOM
4004
N
TYR
A
664
14.708
−15.693
7.772
1.00
13.88
A
N


ATOM
4006
CA
TYR
A
664
14.563
−14.999
6.493
1.00
14.75
A
C


ATOM
4008
CB
TYR
A
664
15.586
−15.465
5.445
1.00
15.39
A
C


ATOM
4011
CG
TYR
A
664
15.757
−14.437
4.351
1.00
16.86
A
C


ATOM
4012
CD1
TYR
A
664
16.650
−13.378
4.508
1.00
19.69
A
C


ATOM
4014
CE1
TYR
A
664
16.807
−12.418
3.526
1.00
21.35
A
C


ATOM
4016
CZ
TYR
A
664
16.055
−12.492
2.381
1.00
21.53
A
C


ATOM
4017
OH
TYR
A
664
16.230
−11.512
1.432
1.00
26.28
A
O


ATOM
4019
CE2
TYR
A
664
15.146
−13.520
2.189
1.00
21.81
A
C


ATOM
4021
CD2
TYR
A
664
14.992
−14.490
3.181
1.00
19.31
A
C


ATOM
4023
C
TYR
A
664
13.158
−15.162
5.918
1.00
15.14
A
C


ATOM
4024
O
TYR
A
664
12.615
−14.215
5.389
1.00
15.70
A
O


ATOM
4025
N
ASP
A
665
12.602
−16.366
6.020
1.00
15.67
A
N


ATOM
4027
CA
ASP
A
665
11.266
−16.674
5.507
1.00
16.37
A
C


ATOM
4029
CB
ASP
A
665
11.137
−18.185
5.297
1.00
16.98
A
C


ATOM
4032
CG
ASP
A
665
9.894
−18.570
4.536
1.00
20.27
A
C


ATOM
4033
OD1
ASP
A
665
8.880
−17.841
4.603
1.00
21.22
A
O


ATOM
4034
OD2
ASP
A
665
9.847
−19.600
3.828
1.00
25.29
A
O


ATOM
4035
C
ASP
A
665
10.197
−16.222
6.508
1.00
15.72
A
C


ATOM
4036
O
ASP
A
665
10.133
−16.769
7.607
1.00
14.51
A
O


ATOM
4037
N
PRO
A
666
9.382
−15.230
6.167
1.00
16.24
A
N


ATOM
4038
CA
PRO
A
666
8.375
−14.747
7.129
1.00
16.93
A
C


ATOM
4040
CB
PRO
A
666
7.583
−13.690
6.346
1.00
17.41
A
C


ATOM
4043
CG
PRO
A
666
8.026
−13.812
4.904
1.00
17.55
A
C


ATOM
4046
CD
PRO
A
666
9.371
−14.460
4.914
1.00
16.23
A
C


ATOM
4049
C
PRO
A
666
7.471
−15.869
7.673
1.00
17.49
A
C


ATOM
4050
O
PRO
A
666
7.117
−15.846
8.857
1.00
16.21
A
O


ATOM
4051
N
SER
A
667
7.161
−16.855
6.823
1.00
18.52
A
N


ATOM
4053
CA
SER
A
667
6.277
−17.980
7.182
1.00
19.22
A
C


ATOM
4055
CB
SER
A
667
6.089
−18.936
5.988
1.00
19.21
A
C


ATOM
4058
OG
SER
A
667
5.265
−18.349
5.018
1.00
22.33
A
O


ATOM
4060
C
SER
A
667
6.774
−18.786
8.355
1.00
18.58
A
C


ATOM
4061
O
SER
A
667
5.977
−19.427
9.028
1.00
19.88
A
O


ATOM
4062
N
ASP
A
668
8.083
−18.767
8.602
1.00
18.14
A
N


ATOM
4064
CA
ASP
A
668
8.691
−19.514
9.690
1.00
17.77
A
C


ATOM
4066
CB
ASP
A
668
10.041
−20.074
9.239
1.00
18.75
A
C


ATOM
4069
CG
ASP
A
668
9.875
−21.107
8.141
1.00
22.03
A
C


ATOM
4070
OD1
ASP
A
668
10.883
−21.598
7.597
1.00
27.40
A
O


ATOM
4071
OD2
ASP
A
668
8.741
−21.464
7.754
1.00
25.19
A
O


ATOM
4072
C
ASP
A
668
8.866
−18.773
10.999
1.00
16.19
A
C


ATOM
4073
O
ASP
A
668
9.285
−19.368
11.975
1.00
16.42
A
O


ATOM
4074
N
ARG
A
669
8.544
−17.484
11.041
1.00
14.15
A
N


ATOM
4076
CA
ARG
A
669
8.698
−16.742
12.294
1.00
12.17
A
C


ATOM
4078
CB
ARG
A
669
8.754
−15.241
12.032
1.00
11.55
A
C


ATOM
4081
CG
ARG
A
669
9.876
−14.823
11.139
1.00
10.93
A
C


ATOM
4084
CD
ARG
A
669
9.765
−13.404
10.667
1.00
8.98
A
C


ATOM
4087
NE
ARG
A
669
10.697
−13.209
9.551
1.00
9.01
A
N


ATOM
4089
CZ
ARG
A
669
10.533
−12.298
8.608
1.00
8.74
A
C


ATOM
4090
NH1
ARG
A
669
9.534
−11.433
8.687
1.00
9.38
A
N


ATOM
4093
NH2
ARG
A
669
11.399
−12.224
7.601
1.00
9.94
A
N


ATOM
4096
C
ARG
A
669
7.528
−17.054
13.223
1.00
11.87
A
C


ATOM
4097
O
ARG
A
669
6.428
−17.374
12.748
1.00
11.94
A
O


ATOM
4098
N
PRO
A
670
7.721
−16.936
14.531
1.00
11.24
A
N


ATOM
4099
CA
PRO
A
670
6.624
−17.164
15.492
1.00
10.97
A
C


ATOM
4101
CB
PRO
A
670
7.294
−16.965
16.857
1.00
12.04
A
C


ATOM
4104
CG
PRO
A
670
8.752
−16.960
16.597
1.00
12.70
A
C


ATOM
4107
CD
PRO
A
670
8.967
−16.549
15.200
1.00
11.74
A
C


ATOM
4110
C
PRO
A
670
5.502
−16.141
15.365
1.00
10.78
A
C


ATOM
4111
O
PRO
A
670
5.748
−15.057
14.862
1.00
10.11
A
O


ATOM
4112
N
ARG
A
671
4.306
−16.486
15.841
1.00
10.15
A
N


ATOM
4114
CA
ARG
A
671
3.225
−15.531
16.041
1.00
10.66
A
C


ATOM
4116
CB
ARG
A
671
1.913
−16.274
16.265
1.00
11.28
A
C


ATOM
4119
CG
ARG
A
671
1.425
−17.188
15.162
1.00
14.40
A
C


ATOM
4122
CD
ARG
A
671
0.097
−17.817
15.566
1.00
18.14
A
C


ATOM
4125
NE
ARG
A
671
−0.602
−18.573
14.531
1.00
19.61
A
N


ATOM
4127
CZ
ARG
A
671
−0.460
−19.884
14.309
1.00
22.54
A
C


ATOM
4128
NH1
ARG
A
671
0.379
−20.617
15.035
1.00
21.69
A
N


ATOM
4131
NH2
ARG
A
671
−1.180
−20.473
13.358
1.00
23.16
A
N


ATOM
4134
C
ARG
A
671
3.478
−14.710
17.304
1.00
9.70
A
C


ATOM
4135
O
ARG
A
671
4.179
−15.161
18.193
1.00
9.46
A
O


ATOM
4136
N
PHE
A
672
2.854
−13.549
17.425
1.00
9.68
A
N


ATOM
4138
CA
PHE
A
672
2.954
−12.793
18.661
1.00
9.83
A
C


ATOM
4140
CB
PHE
A
672
2.376
−11.377
18.529
1.00
9.02
A
C


ATOM
4143
CG
PHE
A
672
3.314
−10.400
17.874
1.00
7.29
A
C


ATOM
4144
CD1
PHE
A
672
4.499
−10.034
18.499
1.00
7.29
A
C


ATOM
4146
CE1
PHE
A
672
5.348
−9.114
17.899
1.00
6.39
A
C


ATOM
4148
CZ
PHE
A
672
5.024
−8.548
16.678
1.00
6.43
A
C


ATOM
4150
CE2
PHE
A
672
3.873
−8.906
16.040
1.00
7.92
A
C


ATOM
4152
CD2
PHE
A
672
3.008
−9.841
16.639
1.00
7.47
A
C


ATOM
4154
C
PHE
A
672
2.316
−13.516
19.857
1.00
10.52
A
C


ATOM
4155
O
PHE
A
672
2.809
−13.376
20.963
1.00
10.42
A
O


ATOM
4156
N
THR
A
673
1.245
−14.285
19.652
1.00
11.02
A
N


ATOM
4158
CA
THR
A
673
0.664
−15.049
20.764
1.00
12.24
A
C


ATOM
4160
CB
THR
A
673
−0.597
−15.834
20.351
1.00
12.82
A
C


ATOM
4162
OG1
THR
A
673
−0.322
−16.642
19.189
1.00
13.06
A
O


ATOM
4164
CG2
THR
A
673
−1.684
−14.908
19.961
1.00
14.88
A
C


ATOM
4168
C
THR
A
673
1.682
−16.025
21.330
1.00
12.24
A
C


ATOM
4169
O
THR
A
673
1.768
−16.205
22.552
1.00
13.08
A
O


ATOM
4170
N
GLU
A
674
2.448
−16.653
20.435
1.00
11.03
A
N


ATOM
4172
CA
GLU
A
674
3.482
−17.598
20.811
1.00
11.45
A
C


ATOM
4174
CB
GLU
A
674
3.971
−18.366
19.575
1.00
11.48
A
C


ATOM
4177
CG
GLU
A
674
2.851
−19.201
18.944
1.00
12.48
A
C


ATOM
4180
CD
GLU
A
674
3.143
−19.750
17.549
1.00
17.12
A
C


ATOM
4181
OE1
GLU
A
674
4.096
−19.296
16.881
1.00
15.46
A
O


ATOM
4182
OE2
GLU
A
674
2.370
−20.657
17.120
1.00
18.19
A
O


ATOM
4183
C
GLU
A
674
4.651
−16.904
21.527
1.00
11.40
A
C


ATOM
4184
O
GLU
A
674
5.194
−17.429
22.504
1.00
12.34
A
O


ATOM
4185
N
LEU
A
675
5.006
−15.714
21.070
1.00
11.03
A
N


ATOM
4187
CA
LEU
A
675
6.064
−14.951
21.712
1.00
10.62
A
C


ATOM
4189
CB
LEU
A
675
6.459
−13.750
20.855
1.00
10.87
A
C


ATOM
4192
CG
LEU
A
675
7.212
−14.093
19.574
1.00
11.12
A
C


ATOM
4194
CD1
LEU
A
675
7.279
−12.885
18.652
1.00
11.98
A
C


ATOM
4198
CD2
LEU
A
675
8.608
−14.669
19.883
1.00
12.08
A
C


ATOM
4202
C
LEU
A
675
5.674
−14.489
23.125
1.00
10.64
A
C


ATOM
4203
O
LEU
A
675
6.537
−14.412
23.997
1.00
10.13
A
O


ATOM
4204
N
VAL
A
676
4.401
−14.147
23.340
1.00
10.75
A
N


ATOM
4206
CA
VAL
A
676
3.949
−13.746
24.663
1.00
10.97
A
C


ATOM
4208
CB
VAL
A
676
2.481
−13.353
24.703
1.00
11.26
A
C


ATOM
4210
CG1
VAL
A
676
1.972
−13.247
26.176
1.00
11.67
A
C


ATOM
4214
CG2
VAL
A
676
2.265
−12.044
23.975
1.00
11.71
A
C


ATOM
4218
C
VAL
A
676
4.193
−14.922
25.623
1.00
12.06
A
C


ATOM
4219
O
VAL
A
676
4.724
−14.750
26.719
1.00
11.23
A
O


ATOM
4220
N
CYS
A
677
3.827
−16.118
25.189
1.00
12.77
A
N


ATOM
4222
CA
CYS
A
677
4.070
−17.309
26.003
1.00
13.59
A
C


ATOM
4224
CB
CYS
A
677
3.486
−18.526
25.322
1.00
14.78
A
C


ATOM
4227
SG
CYS
A
677
1.727
−18.420
25.306
1.00
23.73
A
S


ATOM
4228
C
CYS
A
677
5.544
−17.543
26.310
1.00
12.70
A
C


ATOM
4229
O
CYS
A
677
5.911
−17.813
27.472
1.00
12.44
A
O


ATOM
4230
N
SER
A
678
6.384
−17.449
25.280
1.00
10.95
A
N


ATOM
4232
CA
SER
A
678
7.809
−17.673
25.412
1.00
11.22
A
C


ATOM
4234
CB
SER
A
678
8.501
−17.631
24.052
1.00
11.49
A
C


ATOM
4237
OG
SER
A
678
8.087
−18.690
23.218
1.00
12.71
A
O


ATOM
4239
C
SER
A
678
8.463
−16.617
26.319
1.00
10.73
A
C


ATOM
4240
O
SER
A
678
9.291
−16.946
27.175
1.00
10.09
A
O


ATOM
4241
N
LEU
A
679
8.075
−15.359
26.131
1.00
10.12
A
N


ATOM
4243
CA
LEU
A
679
8.633
−14.277
26.941
1.00
10.19
A
C


ATOM
4245
CB
LEU
A
679
8.272
−12.920
26.386
1.00
10.05
A
C


ATOM
4248
CG
LEU
A
679
9.120
−12.519
25.180
1.00
10.35
A
C


ATOM
4250
CD1
LEU
A
679
8.594
−11.187
24.639
1.00
10.06
A
C


ATOM
4254
CD2
LEU
A
679
10.583
−12.406
25.546
1.00
13.61
A
C


ATOM
4258
C
LEU
A
679
8.185
−14.379
28.400
1.00
10.85
A
C


ATOM
4259
O
LEU
A
679
8.975
−14.105
29.293
1.00
10.86
A
O


ATOM
4260
N
SER
A
680
6.944
−14.812
28.632
1.00
11.33
A
N


ATOM
4262
CA
SER
A
680
6.442
−15.009
29.976
1.00
11.30
A
C


ATOM
4264
CB
SER
A
680
4.975
−15.458
29.955
1.00
11.82
A
C


ATOM
4267
OG
SER
A
680
4.160
−14.393
29.529
1.00
13.70
A
O


ATOM
4269
C
SER
A
680
7.294
−16.054
30.696
1.00
11.10
A
C


ATOM
4270
O
SER
A
680
7.569
−15.914
31.876
1.00
10.06
A
O


ATOM
4271
N
ASP
A
681
7.709
−17.079
29.965
1.00
11.27
A
N


ATOM
4273
CA
ASP
A
681
8.555
−18.151
30.489
1.00
11.79
A
C


ATOM
4275
CB
ASP
A
681
8.582
−19.302
29.480
1.00
12.73
A
C


ATOM
4278
CG
ASP
A
681
9.205
−20.567
30.017
1.00
16.09
A
C


ATOM
4279
OD1
ASP
A
681
9.063
−20.869
31.226
1.00
18.24
A
O


ATOM
4280
OD2
ASP
A
681
9.823
−21.351
29.260
1.00
19.49
A
O


ATOM
4281
C
ASP
A
681
9.962
−17.637
30.793
1.00
11.36
A
C


ATOM
4282
O
ASP
A
681
10.524
−17.962
31.832
1.00
10.57
A
O


ATOM
4283
N
VAL
A
682
10.514
−16.805
29.911
1.00
10.17
A
N


ATOM
4285
CA
VAL
A
682
11.831
−16.189
30.137
1.00
10.71
A
C


ATOM
4287
CB
VAL
A
682
12.323
−15.421
28.879
1.00
11.06
A
C


ATOM
4289
CG1
VAL
A
682
13.585
−14.610
29.186
1.00
13.37
A
C


ATOM
4293
CG2
VAL
A
682
12.586
−16.394
27.719
1.00
12.19
A
C


ATOM
4297
C
VAL
A
682
11.784
−15.270
31.371
1.00
10.10
A
C


ATOM
4298
O
VAL
A
682
12.698
−15.271
32.194
1.00
9.87
A
O


ATOM
4299
N
TYR
A
683
10.713
−14.501
31.498
1.00
9.76
A
N


ATOM
4301
CA
TYR
A
683
10.535
−13.588
32.615
1.00
10.41
A
C


ATOM
4303
CB
TYR
A
683
9.258
−12.801
32.428
1.00
10.16
A
C


ATOM
4306
CG
TYR
A
683
8.986
−11.749
33.480
1.00
11.77
A
C


ATOM
4307
CD1
TYR
A
683
9.973
−10.837
33.858
1.00
12.15
A
C


ATOM
4309
CE1
TYR
A
683
9.719
−9.862
34.816
1.00
14.98
A
C


ATOM
4311
CZ
TYR
A
683
8.480
−9.787
35.386
1.00
15.15
A
C


ATOM
4312
OH
TYR
A
683
8.225
−8.818
36.312
1.00
16.29
A
O


ATOM
4314
CE2
TYR
A
683
7.477
−10.669
35.022
1.00
16.42
A
C


ATOM
4316
CD2
TYR
A
683
7.743
−11.648
34.070
1.00
13.80
A
C


ATOM
4318
C
TYR
A
683
10.482
−14.356
33.933
1.00
10.77
A
C


ATOM
4319
O
TYR
A
683
11.155
−13.994
34.896
1.00
10.66
A
O


ATOM
4320
N
GLN
A
684
9.701
−15.438
33.952
1.00
11.00
A
N


ATOM
4322
CA
GLN
A
684
9.618
−16.300
35.132
1.00
11.22
A
C


ATOM
4324
CB
GLN
A
684
8.629
−17.444
34.930
1.00
11.31
A
C


ATOM
4327
CG
GLN
A
684
8.375
−18.269
36.236
1.00
13.65
A
C


ATOM
4330
CD
GLN
A
684
7.820
−17.402
37.374
1.00
15.94
A
C


ATOM
4331
OE1
GLN
A
684
8.477
−17.197
38.403
1.00
19.21
A
O


ATOM
4332
NE2
GLN
A
684
6.630
−16.887
37.180
1.00
16.15
A
N


ATOM
4335
C
GLN
A
684
10.971
−16.890
35.468
1.00
11.59
A
C


ATOM
4336
O
GLN
A
684
11.344
−16.943
36.636
1.00
11.70
A
O


ATOM
4337
N
MET
A
685
11.690
−17.356
34.453
1.00
12.42
A
N


ATOM
4339
CA
MET
A
685
13.022
−17.913
34.646
1.00
14.85
A
C


ATOM
4341
CB
MET
A
685
13.616
−18.457
33.334
1.00
15.51
A
C


ATOM
4344
CG
MET
A
685
15.075
−18.894
33.413
1.00
20.31
A
C


ATOM
4347
SD
MET
A
685
16.347
−17.557
33.428
1.00
30.38
A
S


ATOM
4348
CE
MET
A
685
16.971
−17.643
31.702
1.00
29.94
A
C


ATOM
4352
C
MET
A
685
13.952
−16.870
35.251
1.00
14.79
A
C


ATOM
4353
O
MET
A
685
14.707
−17.201
36.149
1.00
14.67
A
O


ATOM
4354
N
GLU
A
686
13.908
−15.623
34.767
1.00
15.09
A
N


ATOM
4356
CA
GLU
A
686
14.782
−14.564
35.321
1.00
15.60
A
C


ATOM
4358
CB
GLU
A
686
14.765
−13.293
34.457
1.00
15.66
A
C


ATOM
4361
CG
GLU
A
686
15.520
−13.394
33.143
1.00
18.58
A
C


ATOM
4364
CD
GLU
A
686
17.018
−13.650
33.305
1.00
19.75
A
C


ATOM
4365
OE1
GLU
A
686
17.692
−12.967
34.110
1.00
19.12
A
O


ATOM
4366
OE2
GLU
A
686
17.521
−14.545
32.603
1.00
25.71
A
O


ATOM
4367
C
GLU
A
686
14.431
−14.212
36.776
1.00
15.84
A
C


ATOM
4368
O
GLU
A
686
15.319
−13.886
37.568
1.00
15.94
A
O


ATOM
4369
N
LYS
A
687
13.146
−14.251
37.124
1.00
15.72
A
N


ATOM
4371
CA
LYS
A
687
12.727
−14.031
38.499
1.00
16.97
A
C


ATOM
4373
CB
LYS
A
687
11.206
−13.895
38.594
1.00
16.88
A
C


ATOM
4376
CG
LYS
A
687
10.707
−12.578
38.036
1.00
17.92
A
C


ATOM
4379
CD
LYS
A
687
9.303
−12.243
38.452
1.00
19.62
A
C


ATOM
4382
CE
LYS
A
687
8.270
−13.060
37.692
1.00
20.81
A
C


ATOM
4385
NZ
LYS
A
687
6.878
−12.646
38.085
1.00
20.18
A
N


ATOM
4389
C
LYS
A
687
13.225
−15.171
39.407
1.00
17.45
A
C


ATOM
4390
O
LYS
A
687
13.629
−14.925
40.534
1.00
18.25
A
O


ATOM
4391
N
ASP
A
688
13.214
−16.399
38.900
1.00
18.00
A
N


ATOM
4393
CA
ASP
A
688
13.607
−17.573
39.679
1.00
19.39
A
C


ATOM
4395
CB
ASP
A
688
13.129
−18.859
38.991
1.00
19.60
A
C


ATOM
4398
CG
ASP
A
688
11.616
−19.005
39.009
1.00
20.07
A
C


ATOM
4399
OD1
ASP
A
688
10.939
−18.210
39.683
1.00
18.55
A
O


ATOM
4400
OD2
ASP
A
688
11.017
−19.885
38.363
1.00
21.49
A
O


ATOM
4401
C
ASP
A
688
15.114
−17.677
39.938
1.00
20.75
A
C


ATOM
4402
O
ASP
A
688
15.519
−18.280
40.936
1.00
20.21
A
O


ATOM
4403
N
ILE
A
689
15.932
−17.094
39.064
1.00
22.34
A
N


ATOM
4405
CA
ILE
A
689
17.401
−17.136
39.206
1.00
24.85
A
C


ATOM
4407
CB
ILE
A
689
18.096
−17.337
37.831
1.00
25.22
A
C


ATOM
4409
CG1
ILE
A
689
18.027
−16.062
36.982
1.00
24.97
A
C


ATOM
4412
CD1
ILE
A
689
18.969
−16.063
35.816
1.00
26.04
A
C


ATOM
4416
CG2
ILE
A
689
17.485
−18.515
37.100
1.00
26.30
A
C


ATOM
4420
C
ILE
A
689
17.989
−15.894
39.845
1.00
26.98
A
C


ATOM
4421
O
ILE
A
689
19.220
−15.772
39.945
1.00
27.14
A
O


ATOM
4422
N
ALA
A
690
17.122
−14.964
40.247
1.00
29.52
A
N


ATOM
4424
CA
ALA
A
690
17.543
−13.708
40.840
1.00
31.03
A
C


ATOM
4426
CB
ALA
A
690
16.576
−12.605
40.460
1.00
31.13
A
C


ATOM
4430
C
ALA
A
690
17.629
−13.834
42.357
1.00
32.63
A
C


ATOM
4431
O
ALA
A
690
16.599
−13.900
43.042
1.00
32.75
A
O


ATOM
4432
N
MET
A
691
18.863
−13.859
42.864
1.00
34.71
A
N


ATOM
4434
CA
MET
A
691
19.159
−13.824
44.304
1.00
35.61
A
C


ATOM
4436
CB
MET
A
691
18.556
−12.572
44.955
1.00
36.56
A
C


ATOM
4439
CG
MET
A
691
19.081
−11.260
44.382
1.00
39.02
A
C


ATOM
4442
SD
MET
A
691
18.165
−9.844
45.010
1.00
44.70
A
S


ATOM
4443
CE
MET
A
691
16.654
−10.005
44.062
1.00
44.31
A
C


ATOM
4447
C
MET
A
691
18.685
−15.085
45.012
1.00
35.54
A
C


ATOM
4448
O
MET
A
691
18.582
−16.116
44.329
1.00
35.63
A
O


ATOM
4449
OXT
MET
A
691
18.437
−15.031
46.228
1.00
34.84
A
O


ATOM
4450
O1A
ANP
L
1
5.879
14.129
17.474
1.00
56.03
L
O


ATOM
4451
PA
ANP
L
1
5.828
13.237
18.779
1.00
54.99
L
P


ATOM
4452
O2A
ANP
L
1
4.359
12.664
18.974
1.00
55.47
L
O


ATOM
4454
O3A
ANP
L
1
6.928
12.057
18.803
1.00
58.70
L
O


ATOM
4455
PB
ANP
L
1
7.534
11.319
17.499
1.00
61.85
L
P


ATOM
4456
O1B
ANP
L
1
6.806
11.789
16.164
1.00
60.90
L
O


ATOM
4457
O2B
ANP
L
1
7.338
9.749
17.688
1.00
61.90
L
O


ATOM
4459
N3B
ANP
L
1
9.254
11.643
17.401
1.00
63.51
L
N


ATOM
4461
PG
ANP
L
1
9.852
13.230
16.957
1.00
65.53
L
P


ATOM
4462
O3G
ANP
L
1
10.884
13.100
15.748
1.00
66.11
L
O


ATOM
4464
O2G
ANP
L
1
10.586
13.911
18.193
1.00
64.86
L
O


ATOM
4466
O1G
ANP
L
1
8.643
14.135
16.458
1.00
65.59
L
O


ATOM
4467
O5*
ANP
L
1
6.277
14.111
20.050
1.00
51.13
L
O


ATOM
4468
C5*
ANP
L
1
7.549
14.739
20.107
1.00
46.73
L
C


ATOM
4471
C4*
ANP
L
1
8.168
14.467
21.461
1.00
44.62
L
C


ATOM
4473
O4*
ANP
L
1
7.254
14.809
22.510
1.00
41.60
L
O


ATOM
4474
C1*
ANP
L
1
7.281
13.799
23.515
1.00
38.50
L
C


ATOM
4476
C2*
ANP
L
1
8.155
12.643
23.037
1.00
42.11
L
C


ATOM
4478
O2*
ANP
L
1
9.304
12.486
23.860
1.00
44.90
L
O


ATOM
4480
C3*
ANP
L
1
8.524
12.998
21.614
1.00
43.96
L
C


ATOM
4482
O3*
ANP
L
1
9.901
12.797
21.351
1.00
45.53
L
O


ATOM
4484
N9
ANP
L
1
5.951
13.197
23.740
1.00
31.30
L
N


ATOM
4485
C8
ANP
L
1
5.015
12.876
22.819
1.00
28.19
L
C


ATOM
4487
N7
ANP
L
1
3.913
12.295
23.381
1.00
25.49
L
N


ATOM
4488
C5
ANP
L
1
4.161
12.228
24.694
1.00
24.63
L
C


ATOM
4489
C6
ANP
L
1
3.506
11.746
25.918
1.00
21.30
L
C


ATOM
4490
N6
ANP
L
1
2.277
11.204
25.779
1.00
18.20
L
N


ATOM
4493
C4
ANP
L
1
5.475
12.793
24.898
1.00
26.86
L
C


ATOM
4494
N3
ANP
L
1
6.067
12.897
26.207
1.00
23.82
L
N


ATOM
4495
C2
ANP
L
1
5.359
12.433
27.261
1.00
22.61
L
C


ATOM
4497
N1
ANP
L
1
4.129
11.883
27.114
1.00
19.81
L
N


ATOM
4498
O
HOH
M
1
11.906
10.877
19.048
1.00
54.80
M
O


ATOM
4501
O
HOH
W
1
19.443
−9.552
13.290
1.00
12.78
W
O


ATOM
4504
O
HOH
W
2
24.437
−5.004
22.245
1.00
16.30
W
O


ATOM
4507
O
HOH
W
3
16.956
−5.546
11.116
1.00
14.32
W
O


ATOM
4510
O
HOH
W
4
23.654
−5.882
27.256
1.00
16.76
W
O


ATOM
4513
O
HOH
W
5
19.773
−2.500
2.719
1.00
17.82
W
O


ATOM
4516
O
HOH
W
6
14.677
3.342
18.254
1.00
12.86
W
O


ATOM
4519
O
HOH
W
7
15.460
−2.754
37.319
1.00
19.09
W
O


ATOM
4522
O
HOH
W
8
0.917
−6.788
13.617
1.00
19.87
W
O


ATOM
4525
O
HOH
W
9
6.262
−4.291
9.880
1.00
17.35
W
O


ATOM
4528
O
HOH
W
10
−8.084
−9.594
20.676
1.00
19.55
W
O


ATOM
4531
O
HOH
W
11
9.378
−6.760
37.711
1.00
23.16
W
O


ATOM
4534
O
HOH
W
12
−4.324
2.362
25.030
1.00
17.21
W
O


ATOM
4537
O
HOH
W
13
2.631
−4.978
2.213
1.00
21.67
W
O


ATOM
4540
O
HOH
W
14
13.357
9.278
28.253
1.00
18.85
W
O


ATOM
4543
O
HOH
W
15
18.009
2.532
9.354
1.00
17.12
W
O


ATOM
4546
O
HOH
W
16
17.534
−9.551
37.009
1.00
20.96
W
O


ATOM
4549
O
HOH
W
17
27.129
−8.112
21.598
1.00
20.80
W
O


ATOM
4552
O
HOH
W
18
18.189
−15.606
12.347
1.00
21.79
W
O


ATOM
4555
O
HOH
W
19
13.177
0.863
35.291
1.00
23.40
W
O


ATOM
4558
O
HOH
W
20
17.054
−4.703
8.729
1.00
17.25
W
O


ATOM
4561
O
HOH
W
21
7.866
−18.942
20.500
1.00
24.06
W
O


ATOM
4564
O
HOH
W
22
14.700
7.035
22.806
1.00
16.93
W
O


ATOM
4567
O
HOH
W
23
−2.679
2.607
28.131
1.00
23.11
W
O


ATOM
4570
O
HOH
W
24
6.040
−9.803
37.824
1.00
33.92
W
O


ATOM
4573
O
HOH
W
25
10.004
−5.316
9.507
1.00
23.61
W
O


ATOM
4576
O
HOH
W
26
25.491
−5.320
24.819
1.00
23.18
W
O


ATOM
4579
O
HOH
W
27
4.534
32.921
12.514
1.00
20.02
W
O


ATOM
4582
O
HOH
W
28
21.903
−11.752
31.783
1.00
27.60
W
O


ATOM
4585
O
HOH
W
29
−2.817
−12.294
18.585
1.00
19.69
W
O


ATOM
4588
O
HOH
W
30
0.619
25.243
18.899
1.00
22.14
W
O


ATOM
4591
O
HOH
W
31
4.508
−2.772
−1.220
1.00
21.13
W
O


ATOM
4594
O
HOH
W
32
26.872
−11.629
24.125
1.00
24.32
W
O


ATOM
4597
O
HOH
W
33
26.063
−13.556
19.248
1.00
23.37
W
O


ATOM
4600
O
HOH
W
34
−4.463
26.591
28.285
1.00
28.20
W
O


ATOM
4603
O
HOH
W
35
−0.377
−9.432
8.082
1.00
25.76
W
O


ATOM
4606
O
HOH
W
36
11.357
4.915
15.323
1.00
31.17
W
O


ATOM
4609
O
HOH
W
37
0.444
−0.589
8.490
1.00
27.25
W
O


ATOM
4612
O
HOH
W
38
12.025
−12.305
3.518
1.00
20.13
W
O


ATOM
4615
O
HOH
W
39
−7.592
21.532
34.079
1.00
24.16
W
O


ATOM
4618
O
HOH
W
40
−3.034
25.675
20.623
1.00
27.86
W
O


ATOM
4621
O
HOH
W
41
19.252
−18.574
29.007
1.00
24.11
W
O


ATOM
4624
O
HOH
W
42
18.447
5.050
22.545
1.00
26.98
W
O


ATOM
4627
O
HOH
W
43
18.236
2.548
19.150
1.00
23.34
W
O


ATOM
4630
O
HOH
W
44
23.599
−4.581
0.730
1.00
23.86
W
O


ATOM
4633
O
HOH
W
45
5.670
−14.733
33.566
1.00
22.95
W
O


ATOM
4636
O
HOH
W
46
14.080
−19.737
23.406
1.00
22.24
W
O


ATOM
4639
O
HOH
W
47
22.734
4.890
34.891
1.00
26.97
W
O


ATOM
4642
O
HOH
W
48
−3.602
22.418
16.052
1.00
29.22
W
O


ATOM
4645
O
HOH
W
49
25.830
−12.392
15.030
1.00
32.70
W
O


ATOM
4648
O
HOH
W
50
−2.320
−15.117
16.246
1.00
28.09
W
O


ATOM
4651
O
HOH
W
51
2.614
−23.096
16.430
1.00
31.67
W
O


ATOM
4654
O
HOH
W
52
17.362
−18.998
43.191
1.00
26.88
W
O


ATOM
4657
O
HOH
W
53
26.474
−8.992
12.337
1.00
31.87
W
O


ATOM
4660
O
HOH
W
54
16.830
−4.474
−1.805
1.00
36.41
W
O


ATOM
4663
O
HOH
W
55
4.947
−4.071
36.311
1.00
25.83
W
O


ATOM
4666
O
HOH
W
56
1.631
1.495
10.141
1.00
25.82
W
O


ATOM
4669
O
HOH
W
57
21.157
−1.727
−0.971
1.00
32.21
W
O


ATOM
4672
O
HOH
W
58
20.249
−8.173
36.530
1.00
21.67
W
O


ATOM
4675
O
HOH
W
59
−2.610
−9.023
9.489
1.00
35.63
W
O


ATOM
4678
O
HOH
W
60
−9.404
23.395
33.556
1.00
27.23
W
O


ATOM
4681
O
HOH
W
61
11.153
3.802
−0.793
1.00
32.48
W
O


ATOM
4684
O
HOH
W
62
2.156
−13.178
30.950
1.00
32.64
W
O


ATOM
4687
O
HOH
W
63
15.393
−13.901
45.580
1.00
34.94
W
O


ATOM
4690
O
HOH
W
64
5.734
−20.060
12.705
1.00
28.43
W
O


ATOM
4693
O
HOH
W
65
−0.390
18.866
1.150
1.00
37.04
W
O


ATOM
4696
O
HOH
W
66
9.308
23.821
20.537
1.00
33.19
W
O


ATOM
4699
O
HOH
W
67
−8.657
−12.592
15.980
1.00
30.95
W
O


ATOM
4702
O
HOH
W
68
6.009
−10.288
5.499
1.00
30.71
W
O


ATOM
4705
O
HOH
W
69
5.849
−14.630
36.206
1.00
36.64
W
O


ATOM
4708
O
HOH
W
70
−0.379
−15.926
24.303
1.00
26.34
W
O


ATOM
4711
O
HOH
W
71
19.013
6.091
37.596
1.00
29.23
W
O


ATOM
4714
O
HOH
W
72
−2.437
−8.935
24.621
1.00
26.00
W
O


ATOM
4717
O
HOH
W
73
13.274
10.054
0.171
1.00
32.22
W
O


ATOM
4720
O
HOH
W
74
11.266
−4.798
37.300
1.00
27.56
W
O


ATOM
4723
O
HOH
W
75
18.634
5.650
3.509
1.00
30.22
W
O


ATOM
4726
O
HOH
W
76
17.088
−17.411
8.048
1.00
26.93
W
O


ATOM
4729
O
HOH
W
77
23.077
3.880
2.721
1.00
25.25
W
O


ATOM
4732
O
HOH
W
78
24.631
5.289
28.100
1.00
53.16
W
O


ATOM
4735
O
HOH
W
79
10.896
−4.046
−5.174
1.00
30.72
W
O


ATOM
4738
O
HOH
W
80
21.483
−18.240
22.299
1.00
31.63
W
O


ATOM
4741
O
HOH
W
81
17.664
−12.362
36.744
1.00
27.21
W
O


ATOM
4744
O
HOH
W
82
−6.800
−5.096
9.419
1.00
31.32
W
O


ATOM
4747
O
HOH
W
83
3.254
−6.214
33.543
1.00
29.36
W
O


ATOM
4750
O
HOH
W
84
−6.655
5.297
23.427
1.00
38.97
W
O


ATOM
4753
O
HOH
W
85
6.119
3.003
3.176
1.00
39.55
W
O


ATOM
4756
O
HOH
W
86
16.440
5.449
7.469
1.00
35.83
W
O


ATOM
4759
O
HOH
W
87
−6.743
15.088
41.223
1.00
33.66
W
O


ATOM
4762
O
HOH
W
88
−8.714
−10.654
12.475
1.00
45.30
W
O


ATOM
4765
O
HOH
W
89
5.455
6.147
14.560
1.00
34.25
W
O


ATOM
4768
O
HOH
W
90
7.863
−2.178
41.320
1.00
41.21
W
O


ATOM
4771
O
HOH
W
91
3.037
−8.511
31.787
1.00
43.98
W
O


ATOM
4774
O
HOH
W
92
−5.700
2.904
27.490
1.00
30.78
W
O


ATOM
4777
O
HOH
W
93
10.698
−16.094
41.240
1.00
40.42
W
O


ATOM
4780
O
HOH
W
94
8.297
−21.654
26.890
1.00
35.50
W
O


ATOM
4783
O
HOH
W
95
−7.043
26.092
27.806
1.00
33.08
W
O


ATOM
4786
O
HOH
W
96
12.953
−20.340
21.075
1.00
26.90
W
O


ATOM
4789
O
HOH
W
97
−1.020
6.390
14.791
1.00
42.20
W
O


ATOM
4792
O
HOH
W
98
9.903
−2.480
37.263
1.00
39.90
W
O


ATOM
4795
O
HOH
W
99
−14.690
5.403
20.304
1.00
43.77
W
O


ATOM
4798
O
HOH
W
100
7.497
−20.614
33.258
1.00
42.00
W
O


ATOM
4801
O
HOH
W
101
−6.310
−0.802
28.924
1.00
38.73
W
O


ATOM
4804
O
HOH
W
102
23.429
2.695
26.110
1.00
30.05
W
O


ATOM
4807
O
HOH
W
103
5.939
23.666
15.058
1.00
45.24
W
O


ATOM
4810
O
HOH
W
104
15.157
−8.657
41.812
1.00
48.42
W
O


ATOM
4813
O
HOH
W
105
22.584
5.351
6.685
1.00
32.02
W
O


ATOM
4816
O
HOH
W
106
1.947
−13.531
12.995
1.00
35.70
W
O


ATOM
4819
O
HOH
W
107
0.843
−3.343
5.954
1.00
35.00
W
O


ATOM
4822
O
HOH
W
108
10.764
8.978
−0.078
1.00
47.97
W
O


ATOM
4825
O
HOH
W
109
12.609
11.593
33.799
1.00
33.88
W
O


ATOM
4828
O
HOH
W
110
−2.559
28.085
29.916
1.00
40.24
W
O


ATOM
4831
O
HOH
W
111
−8.695
−8.532
8.837
1.00
37.60
W
O


ATOM
4834
O
HOH
W
112
1.265
18.134
33.506
1.00
37.44
W
O


ATOM
4837
O
HOH
W
113
−9.981
6.869
11.619
1.00
38.18
W
O


ATOM
4840
O
HOH
W
114
−2.744
14.784
38.949
1.00
50.37
W
O


ATOM
4843
O
HOH
W
115
20.301
−12.723
34.212
1.00
40.49
W
O


ATOM
4846
O
HOH
W
116
14.851
9.838
20.023
1.00
37.48
W
O


ATOM
4849
O
HOH
W
117
23.651
3.698
39.134
1.00
37.78
W
O


ATOM
4852
O
HOH
W
118
−18.557
13.257
30.128
1.00
41.89
W
O


ATOM
4855
O
HOH
W
119
18.487
−21.421
23.859
1.00
39.29
W
O


ATOM
4858
O
HOH
W
120
21.377
4.874
37.522
1.00
28.87
W
O


ATOM
4861
O
HOH
W
121
18.415
−7.751
−2.248
1.00
36.44
W
O


ATOM
4864
O
HOH
W
122
17.602
−7.842
12.411
1.00
16.38
W
O


ATOM
4867
O
HOH
W
123
16.678
4.872
18.751
1.00
22.46
W
O


ATOM
4870
O
HOH
W
124
14.066
−0.309
37.545
1.00
30.70
W
O


ATOM
4873
O
HOH
W
125
7.740
−4.673
37.771
1.00
27.15
W
O


ATOM
4876
O
HOH
W
126
13.728
4.405
15.630
1.00
25.76
W
O


ATOM
4879
O
HOH
W
127
27.821
−6.501
23.920
1.00
31.77
W
O


ATOM
4882
O
HOH
W
128
−3.928
27.852
25.640
1.00
29.97
W
O


ATOM
4885
O
HOH
W
129
16.702
6.462
21.069
1.00
30.52
W
O


ATOM
4888
O
HOH
W
130
26.185
−5.646
20.509
1.00
24.01
W
O


ATOM
4891
O
HOH
W
131
1.974
−3.227
0.396
1.00
29.45
W
O


ATOM
4894
O
HOH
W
132
18.503
−17.071
10.260
1.00
34.39
W
O


ATOM
4897
O
HOH
W
133
10.397
−13.616
1.651
1.00
39.32
W
O


ATOM
4900
O
HOH
W
134
−2.831
28.209
21.200
1.00
30.33
W
O


ATOM
4903
O
HOH
W
135
15.320
−22.101
24.023
1.00
25.19
W
O


ATOM
4906
O
HOH
W
136
4.007
−9.460
34.087
1.00
38.19
W
O


ATOM
4909
O
HOH
W
137
−1.239
−11.368
25.339
1.00
28.01
W
O


ATOM
4912
O
HOH
W
138
25.810
−13.282
12.651
1.00
29.26
W
O


ATOM
4915
O
HOH
W
139
−11.471
3.486
23.719
1.00
43.71
W
O


ATOM
4918
O
HOH
W
140
−14.572
6.189
16.547
1.00
32.73
W
O


ATOM
4921
O
HOH
W
141
25.455
−4.517
28.979
1.00
27.27
W
O


ATOM
4924
O
HOH
W
142
−2.265
−18.449
18.806
1.00
31.12
W
O


ATOM
4927
O
HOH
W
143
24.881
−12.339
32.109
1.00
47.48
W
O


ATOM
4930
O
HOH
W
144
3.783
−12.994
33.207
1.00
40.92
W
O


ATOM
4933
O
HOH
W
145
16.661
4.952
10.161
1.00
41.86
W
O


ATOM
4936
O
HOH
W
146
−9.286
−1.522
21.390
1.00
35.03
W
O


ATOM
4939
O
HOH
W
147
14.410
−11.209
45.987
1.00
39.95
W
O


ATOM
4942
O
HOH
W
148
−1.544
−13.594
23.703
1.00
33.58
W
O


ATOM
4945
O
HOH
W
149
4.387
7.952
19.690
1.00
35.86
W
O


ATOM
4948
O
HOH
W
150
−8.699
18.279
6.531
1.00
32.48
W
O


ATOM
4951
O
HOH
W
151
3.719
−3.684
38.401
1.00
30.50
W
O


ATOM
4954
O
HOH
W
152
3.775
−20.312
14.291
1.00
42.65
W
O


ATOM
4957
O
HOH
W
153
27.957
−13.614
22.778
1.00
37.15
W
O


ATOM
4960
O
HOH
W
154
−6.363
−9.621
22.860
1.00
31.35
W
O


ATOM
4963
O
HOH
W
155
17.426
−9.113
39.788
1.00
41.82
W
O


ATOM
4966
O
HOH
W
156
11.719
−0.755
38.894
1.00
44.37
W
O


ATOM
4969
O
HOH
W
157
−1.823
−18.279
23.964
1.00
31.03
W
O


ATOM
4972
O
HOH
W
158
1.236
19.857
5.620
1.00
33.82
W
O


ATOM
4975
O
HOH
W
159
−5.447
−2.279
8.958
1.00
43.06
W
O


ATOM
4978
O
HOH
W
160
6.495
1.870
6.024
1.00
32.59
W
O


ATOM
4981
O
HOH
W
161
−1.902
−10.079
30.428
1.00
40.56
W
O


ATOM
4984
O
HOH
W
162
12.781
−10.832
0.891
1.00
28.70
W
O


ATOM
4987
O
HOH
W
163
15.705
−18.496
12.332
1.00
42.03
W
O


ATOM
4990
O
HOH
W
164
11.477
23.027
19.258
1.00
43.18
W
O


ATOM
4993
O
HOH
W
165
11.794
−19.441
25.110
1.00
34.30
W
O


ATOM
4996
O
HOH
W
166
−9.142
6.492
24.586
1.00
37.55
W
O


ATOM
4999
O
HOH
W
167
−3.791
−17.095
17.004
1.00
40.54
W
O


ATOM
5002
O
HOH
W
168
18.861
−5.381
−3.135
1.00
38.29
W
O


ATOM
5005
O
HOH
W
169
1.506
21.043
36.589
1.00
44.96
W
O


ATOM
5008
O
HOH
W
170
12.593
−2.711
−7.043
1.00
44.98
W
O


ATOM
5011
O
HOH
W
171
15.127
−0.179
0.329
1.00
35.60
W
O


ATOM
5014
O
HOH
W
172
15.056
2.474
−0.998
1.00
37.93
W
O


ATOM
5017
O
HOH
W
173
−7.283
−6.499
7.178
1.00
49.30
W
O


ATOM
5020
O
HOH
W
174
21.316
0.314
−2.427
1.00
41.75
W
O


ATOM
5023
O
HOH
W
175
26.651
−5.640
2.963
1.00
36.35
W
O


ATOM
5026
O
HOH
W
176
29.087
−10.247
25.287
1.00
39.54
W
O


ATOM
5029
O
HOH
W
177
23.713
5.560
13.541
1.00
39.25
W
O


ATOM
5032
O
HOH
W
178
−1.768
14.984
−1.759
1.00
40.11
W
O


ATOM
5035
O
HOH
W
179
13.927
−22.767
20.107
1.00
44.51
W
O


ATOM
5038
O
HOH
W
180
−5.833
17.092
42.432
1.00
39.14
W
O


ATOM
5041
O
HOH
W
181
4.780
28.120
30.190
1.00
35.76
W
O


ATOM
5044
O
HOH
W
182
5.232
−21.397
10.130
1.00
32.74
W
O


ATOM
5047
O
HOH
W
183
−0.609
−13.905
29.169
1.00
42.77
W
O


ATOM
5050
O
HOH
W
184
−8.615
−12.423
20.365
1.00
38.88
W
O


ATOM
5053
O
HOH
W
185
−2.742
24.869
15.943
1.00
35.44
W
O


ATOM
5056
O
HOH
W
186
−6.914
23.870
13.421
1.00
38.92
W
O


ATOM
5059
O
HOH
W
187
−9.844
5.148
9.425
1.00
47.06
W
O


ATOM
5062
O
HOH
W
188
−3.377
1.908
31.500
1.00
47.62
W
O


ATOM
5065
O
HOH
W
189
8.535
−2.717
9.847
1.00
20.99
W
O


ATOM
5068
O
HOH
W
190
−2.120
23.920
11.635
1.00
33.73
W
O


ATOM
5071
O
HOH
W
191
−1.821
12.406
36.174
1.00
33.31
W
O


ATOM
5074
O
HOH
W
192
15.430
−22.456
17.980
1.00
32.67
W
O


ATOM
5077
O
HOH
W
193
26.766
−7.447
10.363
1.00
37.80
W
O


ATOM
5080
O
HOH
W
194
7.871
−12.672
1.551
1.00
33.24
W
O


ATOM
5083
O
HOH
W
195
11.658
−13.419
−1.004
1.00
38.16
W
O


ATOM
5086
O
HOH
W
196
16.826
1.526
0.614
1.00
50.30
W
O


ATOM
5089
O
HOH
W
197
15.595
6.152
14.916
1.00
40.35
W
O


ATOM
5092
O
HOH
W
198
−1.881
25.715
18.176
1.00
37.84
W
O


ATOM
5095
O
HOH
W
199
−11.651
11.014
33.297
1.00
32.46
W
O


ATOM
5098
O
HOH
W
200
18.893
−2.239
0.202
1.00
36.54
W
O


ATOM
5101
O
HOH
W
201
8.083
−15.775
41.296
1.00
35.79
W
O


ATOM
5104
O
HOH
W
202
27.247
−8.234
2.554
1.00
45.23
W
O


ATOM
5107
O
HOH
W
203
−1.222
−15.328
27.055
1.00
46.27
W
O


ATOM
5110
O
HOH
W
204
13.756
−2.002
41.227
1.00
44.19
W
O


ATOM
5113
O
HOH
W
205
18.212
11.234
28.397
1.00
46.27
W
O


ATOM
5116
O
HOH
W
206
10.446
24.528
22.495
1.00
29.18
W
O


ATOM
5119
O
HOH
W
207
9.812
7.702
16.580
1.00
47.51
W
O


ATOM
5122
O
HOH
W
208
8.614
13.189
26.746
1.00
42.96
W
O


ATOM
5125
O
HOH
W
209
26.242
4.872
13.201
1.00
34.36
W
O


ATOM
5128
O
HOH
W
210
3.417
32.021
7.569
1.00
43.78
W
O


ATOM
5131
O
HOH
W
211
13.082
12.607
−0.030
1.00
38.29
W
O


ATOM
5134
O
HOH
W
212
11.113
−16.047
1.534
1.00
48.53
W
O


ATOM
5137
O
HOH
W
213
16.799
−19.980
17.140
1.00
42.01
W
O


ATOM
5140
O
HOH
W
214
8.100
2.699
9.516
1.00
38.54
W
O


ATOM
5143
O
HOH
W
215
21.192
−10.596
35.721
1.00
42.09
W
O


ATOM
5146
O
HOH
W
216
−12.311
27.355
25.513
1.00
46.88
W
O


ATOM
5149
O
HOH
W
217
2.196
18.838
8.312
1.00
40.97
W
O


ATOM
5152
O
HOH
W
218
2.760
7.802
34.907
1.00
40.65
W
O


ATOM
5155
O
HOH
W
219
2.052
34.572
8.653
1.00
28.96
W
O


ATOM
5158
O
HOH
W
220
20.199
10.058
26.993
1.00
39.00
W
O


ATOM
5161
O
HOH
W
221
0.666
6.917
33.693
1.00
41.05
W
O


ATOM
5164
O
HOH
W
222
19.656
−20.516
17.448
1.00
49.29
W
O


ATOM
5167
O
HOH
W
223
24.529
−13.997
28.898
1.00
44.80
W
O


ATOM
5170
O
HOH
W
224
−15.502
8.924
35.463
1.00
46.22
W
O


ATOM
5173
O
HOH
W
225
6.321
6.726
39.047
1.00
40.39
W
O


ATOM
5176
O
HOH
W
226
13.346
−19.882
30.564
1.00
27.35
W
O


ATOM
5179
O
HOH
W
227
2.475
8.509
20.962
1.00
37.71
W
O


ATOM
5182
O
HOH
W
228
25.697
−17.409
7.650
1.00
40.93
W
O


ATOM
5185
O
HOH
W
229
−5.326
22.902
36.076
1.00
34.85
W
O


ATOM
5188
O
HOH
W
230
18.689
1.894
1.969
1.00
40.05
W
O


ATOM
5191
O
HOH
W
231
22.256
9.449
29.382
1.00
38.70
W
O


ATOM
5194
O
HOH
W
232
6.671
16.029
32.045
1.00
45.79
W
O


ATOM
5197
O
HOH
W
233
−12.901
11.354
24.852
1.00
42.77
W
O


ATOM
5200
O
HOH
W
234
11.146
−21.564
4.017
1.00
44.94
W
O


ATOM
5203
O
HOH
W
235
25.034
−1.313
25.290
1.00
35.63
W
O


ATOM
5206
O
HOH
W
236
−14.460
18.497
19.730
1.00
43.85
W
O


ATOM
5209
O
HOH
W
237
−12.580
11.671
30.829
1.00
49.50
W
O


ATOM
5212
O
HOH
W
238
−15.352
9.953
23.232
1.00
41.57
W
O


ATOM
5215
O
HOH
W
239
−1.668
11.121
33.395
1.00
56.23
W
O


ATOM
5218
O
HOH
W
240
8.754
−13.126
−3.263
1.00
52.79
W
O


ATOM
5221
O
HOH
W
241
−1.876
−3.651
6.368
1.00
34.87
W
O


ATOM
5224
O
HOH
W
242
19.512
−18.187
6.893
1.00
42.20
W
O


ATOM
5227
O
HOH
W
243
−8.077
30.761
18.011
1.00
33.22
W
O


ATOM
5230
O
HOH
W
244
11.861
14.174
19.992
1.00
49.09
W
O


ATOM
5233
O
HOH
W
245
0.301
11.850
−6.763
1.00
46.36
W
O


ATOM
5236
O
HOH
W
246
−2.640
12.555
0.451
1.00
48.51
W
O


ATOM
5239
O
HOH
W
247
12.588
−19.822
12.376
1.00
48.93
W
O


ATOM
5242
O
HOH
W
248
11.738
20.944
27.362
1.00
51.67
W
O


ATOM
5245
O
HOH
W
249
17.071
8.568
19.617
1.00
43.62
W
O


ATOM
5248
O
HOH
W
250
−2.350
−17.778
11.732
1.00
51.64
W
O


ATOM
5251
O
HOH
W
251
12.306
−4.700
40.223
1.00
48.28
W
O


END










embedded image






TABLE 4








PYK2 in pET15S
















U33284; Human protein tyrosine kinase PYK2 mRNA, complete cds



Full-length protein in pET15S: 293 aa (SEQ ID NO: 2)


Mass: 33872.2 pI: 6.07





PYK2 kinase domain I420-M691 (not including first 21 aa in



following sequence) SEQ ID NO: 1









1
MGSSHHHHHH SSGLVPRGSH MIAREDVVLN RILGEGFFGE VYEGVYTNHK GEKINVAVKT






61
CKKDCTLDNK EKFMSEAVIM KNLDHPHIVK LIGIIEEEPT WIIMELYPYG ELGHYLERNK





121
NSLKVLTLVL YSLQICKAMA YLESINCVHR DIAVRNILVA SPECVKLGDF GLSRYIEDED





181
YYKASVTRLP IKWMSPESIN FRRFTTASDV WMFAVCMWEI LSFGKQPFFW LENKDVIGVL





241
EKGDRLPKPD LCPPVLYTLM TRCWDYDPSD RPRFTELVCS LSDVYQMEKD IAM













SEQ ID NO: 5





PYK2-C1;
5′-TCCACAG CATATG ATTGCCCGTGAAGATGTGGT-3′
33 mer





SEQ ID NO: 6


PYK2-N2;
TGGAGAAGGACATTGCCATG TAG GTCGAC GAGAG (Origin)






5′-CTCTC GTCGAC CTA CATGGCAATGTCCTTCTCCA-3′
34 mer











pET15S sequence PCR product; 843 bp (SEQ ID NO: 4)



Sequence encoding PYK2 kinase domain (in small letters below)


(SEQ ID NO: 3)








TCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGGGCAGCAGCCATCATCATCATCAT






CACAGCAGCGGCCTGGTGCCGCGCGGCAGCCATATG













    attgcc cgtgaagatg






1381
tggtcctgaa tcgtattctt ggggaaggct tttttgggga ggtctatgaa ggtgtctaca





1441
caaatcacaa aggggagaaa atcaatgtag ctgtcaagac ctgcaagaaa gactgcactc





1501
tggacaacaa ggagaagttc atgagcgagg cagtgatcat gaagaacctc gaccacccgc





1561
acatcgtgaa gctgatcggc atcattgaag aggagcccac ctggatcatc atggaattgt





1621
atccctatgg ggagctgggc cactacctgg agcggaacaa gaactccctg aaggtgctca





1681
ccctcgtgct gtactcactg cagatatgca aagccatggc ctacctggag agcatcaact





1741
gcgtgcacag ggacattgct gtccggaaca tcctggtggc ctcccctgag tgtgtgaagc





1801
tgggggactt tggtctttcc cggtacattg aggacgagga ctattacaaa gcctctgtga





1861
ctcgtctccc catcaaatgg atgtccccag agtccattaa cttccgacgc ttcacgacag





1921
ccagtgacgt ctggatgttc gccgtgtgca tgtgggagat cctgagcttt gggaagcagc





1981
ccttcttctg gctggagaac aaggatgtca tcggggtgct ggagaaagga gaccggctgc





2041
ccaagcctga tctctgtcca ccggtccttt ataccctcat gacccgctgc tgggactacg





2101
accccagtga ccggccccgc ttcaccgagc tggtgtgcag cctcagtgac gtttatcaga





2161
tggagaagga cattgccatg











TAGGTCGACTAGAGCCTGCAGTCTCGACCATCATCATCATCATCATTAATAAAAGGGCGAATTCCAG






CACACTGGCGGCCGTTACTAGTGGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGG













TABLE 5










Pyk2 Activity and the Inhibition by ATP Analogs














Pyk2
Vmax
Vmax (SE)
K
K (SE)
K (Lo 95%)
K (Up 95%)
Equation





8 ng/well
1.25e+4
9.11e+2
7.37e+0
2.79e+0
3.27e+0
1.66e+1
y = (Vmax * x)/(K + x)


















Compounds
Vmax
K
K (SE)
K (Lo 95%)
K (Up 95%)
Y2
n
Equation





Adenosine
1.82e+4
2.54e+2
2.65e+2
2.47e+1
2.60e+3
7.33e+2
−5.14e−1
y = ((Vmax * x{circumflex over ( )}n)/(K{circumflex over ( )}n + x{circumflex over ( )}n)) + Y2


AMP
1.82e+4
8.02e+1
3.76e+1
2.82e+1
2.28e+2
7.33e+2
−5.05e−1
y = ((Vmax * x{circumflex over ( )}n)/(K{circumflex over ( )}n + x{circumflex over ( )}n)) + Y2


ADT
1.82e+4
1.49e+1
2.69e+0
9.93e+0
2.22e+1
7.33e+2
−7.69e−1
y = ((Vmax * x{circumflex over ( )}n)/(K{circumflex over ( )}n + x{circumflex over ( )}n)) + Y2


AMPPCP
1.82e+4
7.69e+3
1.99e+4
2.43e+1
2.44e+6
7.33e+2
−2.03e−1
y = ((Vmax * x{circumflex over ( )}n)/(K{circumflex over ( )}n + x{circumflex over ( )}n)) + Y2


AMPPNP
1.82e+4
1.81e+1
2.82e+0
1.28e+1
2.56e+1
7.33e+2
−7.18e−1
y = ((Vmax * x{circumflex over ( )}n)/(K{circumflex over ( )}n + x{circumflex over ( )}n)) + Y2


ATP-g-S
1.82e+4
1.36e+1
1.49e+0
1.06e+1
1.73e+1
7.33e+2
−9.66e−1
y = ((Vmax * x{circumflex over ( )}n)/(K{circumflex over ( )}n + x{circumflex over ( )}n)) + Y2









Claims
  • 1. A method for identifying compounds binding to PYK2, comprising determining the orientation of at least one compound bound with PYK2 in co-crystals of PYK2 with said compound.
  • 2. The method of claim 1, wherein said compound is identified as a molecular scaffold if it binds weakly to PYK2 and has a molecular weight less than 350 daltons.
  • 3. The method of claim 2, wherein said method further comprises identifying chemical structures of said molecular scaffolds, that, when modified, alter the binding affinity or binding specificity or both between the molecular scaffold and PYK2.
  • 4. The method of claim 3, wherein further comprising synthesizing a ligand wherein one or more of the chemical structures of the molecular scaffold is modified to provide a ligand that binds to PYK2 with altered binding affinity or binding specificity or both.
  • 5. The method of claim 2, wherein said molecular scaffold binds to a plurality of kinases.
  • 6. The method of claim 2, wherein said molecular scaffold interacts with one or more of PYK2 residues 503, 505, 457, 488, 567, and 554.
  • 7. The method of claim 4, wherein said ligand has a chemical structure of Formula
  • 8. A method for obtaining improved ligands binding to PYK2, comprising identifying a compound that binds to PYK2 and determining whether said compound interacts with one or more of PYK2 residues 503, 505, 457, 488, 567, and 554; determining whether a derivative of said compound binds to PYK2 with greater affinity or greater specificity or both than said compound, wherein binding with greater affinity or greater specificity or both indicates that said derivative is an improved ligand.
  • 9. The method of claim 8, wherein said derivative has at least 10-fold greater affinity or specificity or both than said compound.
  • 10. The method of claim 8, wherein said derivative has at least 100-fold greater affinity or specificity or both.
  • 11. The method of claim 8, wherein said compound has a chemical structure of Formula I.
  • 12. A method for developing ligands specific for PYK2, comprising identifying a compound that binds to a plurality of kinases; and determining whether a derivative of said compound has greater specificity for PYK2 than said compound.
  • 13. The method of claim 12, wherein said compound binds to PYK2 with an affinity at least 10-fold greater than for binding to any of said plurality of kinases.
  • 14. The method of claim 12, wherein said compound interacts with at least one of PYK2 residues residues 503, 505, 457, 488, 567, and 554.
  • 15. The method of claim 12, wherein said compound is a compound of Formula I.
  • 16. The method of claim 12, wherein said compound binds weakly to said plurality of kinases.
  • 17. A crystalline form of PYK2 kinase domain.
  • 18. The crystalline form of claim 17, having coordinates as described in Table 1.
  • 19. The crystalline form of claim 17, comprising one more more heavy metal atoms.
  • 20. The crystalline form of claim 17, wherein said crystalline form comprises a co-crystal of PYK2 with a binding compound.
  • 21. The crystalline form of claim 20, wherein said binding compound interacts with one or more of PYK2 residues 503, 505, 457, 488, 567, and 554.
  • 22. The crystalline form of claim 17, wherein said crystalline form is in an X-ray beam.
  • 23. The crystalline form of claim 17, wherein said PYK2 is mutated.
  • 24. A method for obtaining a crystal of PYK2, comprising subjecting PYK2 protein at 5-20 mg/ml to crystallization condition substantially equivalent to 2-10% polyethylene glycol (PEG) 8000, 0.2 M sodium acetate, 0.1% sodium cacodylate pH 6.5, 20% glycerol for a time sufficient for cystal development.
  • 25. The method of claim 24, further comprising optimizing said crystallization condition.
  • 26. The method of claim 24, wherein said crystallization condition comprises approximately 8% polyethylene glycol (PEG) 8000.
  • 27. The method of claim 24, wherein said PYK2 is seleno-methionine labeled PYK2.
  • 28. A co-crystal of PYK2 and a PYK2 binding compound.
  • 29. The co-crystal of claim 28, wherein said binding compound interacts with at least one of PYK2 residues 503, 505, 457, 488, 567, and 554.
  • 30. The co-crystal of claim 28, wherein said binding compound has a chemical structure of Formula I.
  • 31. The co-crystal of claim 28, wherein said co-crystal is in an X-ray beam.
  • 32. A method for obtaining co-crystals of PYK2 with a binding compound, comprising subjecting PYK2 protein at 5-20 mg/ml to crystallization conditions 2-10% polyethylene glycol (PEG) 8000, 0.2 M sodium acetate, 0.1% sodium cacodylate pH 6.5, 20% glycerol in the presence of binding compound for a time sufficient for cystal development.
  • 33. The method of claim 32, wherein said binding compound is added to said protein to a final concentration of 0.5 to 1.0 mM.
  • 34. The method of claim 32, wherein said binding compound is in a dimethyl sulfoxide solution.
  • 35. The method of claim 32, wherein said crystallization condition comprise approximately 8% polyethylene glycol (PEG) 8000.
  • 36. A method for determining a structure of a kinase, comprising creating a homology model from an electronic representation of a PYK2 structure.
  • 37. The method of claim 36, wherein said creating comprises identifying conserved amino acid residues between PYK2 and said kinase; transferring the atomic coordinates of a plurality of conserved amino acids in said PYK2 structure to the corresponding amino acids of said kinase to provide a rough structure of said kinase; and constructing structures representing the remainder of said kinase using electronic representations of the structures of the remaining amino acid residues in said kinase.
  • 38. The method of claim 37, further comprising fitting said homology model to low resolution x-ray diffraction data from one or more crystals of said kinase.
  • 39. The method of claim 37, wherein the coordinates of conserved residues from Table 3 are utilized.
  • 40. The method of claim 37, wherein coordinates of conserved residues from a mutated PYK2 are utilized.
  • 41. An electronic representation of a crystal structure of PYK2.
  • 42. The electronic representation of claim 41, containing atomic coordinate representations corresponding to the coordinates listed in Table 1 or Table 2.
  • 43. The electronic representation of claim 41, comprising a schematic representation.
  • 44. The electronic representation of claim 41, wherein atomic coordinates for a mutated PYK2 are utilized.
  • 45. The electronic representation of claim 44, wherein said PYK2 consists essentially of a PYK2 kinase domain.
  • 46. An electronic representation of a binding site of PYK2.
  • 47. The electronic representation of claim 46, comprising representations of PYK2 residues 503, 505, 457, 488, 567, and 554.
  • 48. The electronic representation of claim 46, comprising a binding site surface contour.
  • 49. The electronic representation of claim 46, comprising representations of the binding character of a plurality of conserved amino acid residues.
  • 50. The electronic representation of claim 46, further comprising an electronic representation of a binding compound in a binding site of PYK2.
  • 51. The electronic representation of claim 46, wherein said PYK2 is a mutated PYK2.
  • 52. An electronic representation of a PYK2 based homology model for a kinase.
  • 53. The electronic representation of claim 52, wherein said homology model utilizes conserved residue atomic coordinates of Table 1 or Table 2.
  • 54. The electronic representation of claim 52, wherein atomic coordinates for a mutated PYK2 are utilized.
  • 55. A method for identifying a ligand binding to PYK2, comprising determining whether a derivative compound that includes a core structure of Formula I binds to PYK2 with altered binding affinity or specificity or both as compared to the parent compound.
  • 56. A method for modulating PYK2 activity, comprising contacting PYK2 with a compound that binds to PYK2 and interacts with three or more of residues 503, 505, 457, 488, 567, and 554.
  • 57. The method of claim 56, wherein said compound is a compound of Formula I.
  • 58. The method of claim 56, wherein said compound is at a concentration of 200 μM or less.
  • 59. A method for treating a patient suffering from a disease or condition characterized by abnormal PYK2 activity, comprising administering to said patient a compound that interacts with three or more of PYK2 residues 503, 505, 457, 488, 567, and 554.
  • 60. The method of claim 59, wherein said compound is a compound of Formula I.
  • 61. The method of claim 59 wherein said disease or condition is a cancer.
  • 62. The method of claim 59, wherein said disease or condition is an inflammatory disease or condition.
  • 63. The method of claim 59, wherein said compound interacts with residues 503 and 505.
  • 64. An electronic representation of a modified PYK2 crystal structure, comprising an electronic representation of the atomic coordinates of a modified PYK2.
  • 65. The electronic representation of claim 64, wherein said modified PYK2 comprises a C-terminal deletion, an N-terminal deletion or both.
  • 66. A method for developing a biological agent, comprising analyzing a PYK2 crystal structure and identifying at least one sub-structure for forming a said biological agent.
  • 67. The method of claim 66, wherein said substructure comprises an epitope, and said method further comprises developing antibodies against said epitope.
  • 68. The method of claim 66, wherein said sub-structure comprises a mutation site expected to provide altered activity, and said method further comprises creating a mutation at said site thereby providing a modified PYK2.
  • 69. The method of claim 66, wherein said sub-structure comprises an attachment point for attaching a separate moiety.
  • 70. The method of claim 69, wherein said separate moiety is selected from the group consisting of a peptide, a polypeptide, a solid phase material, a linker, and a label.
  • 71. The method of claim 69, further comprising attaching said separate moiety.
  • 72. A method for identifying potential PYK2 binding compounds, comprising fitting at least one electronic representation of a compound in an electronic representation of a PYK2 binding site.
  • 73. The method of claim 72, wherein said electronic representation of a PYK2 binding site is defined by atomic structural coordinates set forth in Table 1 or Table 2.
  • 74. The method of claim 73, comprising removing a computer representation of a compound complexed with PYK2 and fitting a computer representation of a compound from a computer database with a computer representation of the active site of PYK2; and identifying compounds that best fit said active site based on favorable geometric fit and energetically favorable complementary interactions as potential binding compounds.
  • 75. The method of claim 73, comprising modifying a computer representation of a compound complexed with PYK2 by the deletion or addition or both of one or more chemical groups; fitting a computer representation of a compound from a computer database with a computer representation of the active site of PYK2; and identifying compounds that best fit said active site based on favorable geometric fit and energetically favorable complementary interactions as potential binding compounds.
  • 76. The method of claim 73, comprising removing a computer representation of a compound complexed with PYK2 and; and searching a database for compounds having structural similarity to said compound using a compound searching computer program or replacing portions of said compound with similar chemical structures using a compound construction computer program.
  • 77. The method of claim 73, wherein said compound is a compound of Formula I.
  • 78. The method of claim 82, wherein said fitting comprises determining whether a said compound will interact with one or more of PYK2 residues 503, 505, 457, 488, 567, and 554.
  • 79. A method for attaching a PYK2 binding compound to an attachment component, comprising identifying energetically allowed sites for attachment of a said attachment component on a kinase binding compound; and attaching said compound or derivative thereof to said attachment component at said energetically allowed site.
  • 80. The method of claim 79, wherein said attachment component is a linker for attachement to a solid phase medium, and said method further comprises attaching said compound or derivative to a solid phase medium through a linker attached at a said energetically allowed site.
  • 81. The method of claim 79, wherein said kinase comprises conserved residues matching at least one of PYK2 residues 503, 505, 457, 488, 567, and 554.
  • 82. The method of claim 80, wherein said linker is a traceless linker.
  • 83. The method of claim 80, wherein said kinase binding compound or derivative thereof is synthesized on a said linker attached to said solid phase medium.
  • 84. The method of claim 83, wherein a plurality of said compounds or derivatives are synthesized in combinatorial synthesis.
  • 85. The method of claim 80, wherein attachment of said compound to said solid phase medium provides an affinity medium.
  • 86. The method of claim 79, wherein said attachment component comprises a label.
  • 87. The method of claim 86, wherein said label comprises a fluorophore.
  • 88. A modified compound, comprising a compound of Formula I, with a linker moiety attached thereto at an energetically allowed site for binding of said modified compound to PYK2.
  • 89. The compound of claim 88, whereins said linker is attached to a solid phase.
  • 90. The compound of claim 88, wherein said linker comprises or is attached to a label.
  • 91. The compound of claim 88, wherein said linker is a traceless linker.
  • 92. A method for developing a ligand for a kinase comprising conserved residues matching one or more of PYK2 residues residues 503, 505, 457, 488, 567, and 554, comprising determining whether a compound of Formula I binds to said kinase and interacts with said residue.
  • 93. The method of claim 92, wherein said kinase comprises conserved residues matching at least 2 of PYK2 residues 503, 505, 457, 488, 567, and 554.
  • 94. The method of claim 92, wherein said kinase comprises conserved residues matching PYK2 residues 503, 505, 457, 488, 567, and 554.
  • 95. The method of claim 92, further comprising determining whether said compound modulates said kinase.
  • 96. The method of claim 92, wherein said determining comprises computer fitting said compound in a binding site of said kinase.
  • 97. The method of claim 92, further comprising forming a co-crystal of said kinase and said compound.
  • 98. The method of claim 97, further comprising determining the binding orientation of said compound with said kinase.
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

This application claims the benefit of Ibrahim et al., U.S. Provisional Application 60/451,101, filed Feb. 28, 2003, which is incorporated herein by reference in its entirety, including drawings.

Provisional Applications (1)
Number Date Country
60451101 Feb 2003 US