Pyloric anchors and methods for intestinal bypass sleeves

Information

  • Patent Grant
  • 9622897
  • Patent Number
    9,622,897
  • Date Filed
    Thursday, March 3, 2016
    8 years ago
  • Date Issued
    Tuesday, April 18, 2017
    7 years ago
Abstract
A gastrointestinal device for implanting within a patient's gastrointestinal tract, the device having a central axis and a first expandable portion comprising a hollow tubular braided structure of wire and having a first cylinder extending parallel to the central axis, the first cylinder having a length and a first face; a neck portion extending from the first face of the first expandable portion parallel to the central axis, the neck portion having a first end, a second end, a wall extending between the first end and second end, and a diameter sized to fit within a pylorus; and a second expandable portion comprising a hollow tubular braided structure of wire and having a second cylinder extending parallel to the central axis, the second cylinder having a second face located at the proximal end of the second cylinder and oriented transverse to the central axis.
Description
TECHNICAL FIELD

The instant disclosure relates generally to implants placed within gastrointestinal systems, including the esophagus, the stomach and the intestines. More particularly, it relates to devices and methods for implant systems having components implantable and removable using endoscopic techniques for treatment of obesity, diabetes, reflux, gastroparesis and other gastrointestinal conditions.


BACKGROUND

Bariatric surgery procedures, such as sleeve gastrectomy, the Roux-en-Y gastric bypass (RYGB) and the bileo-pancreatic diversion (BPD), modify food intake and/or absorption within the gastrointestinal system to effect weight loss in obese patients. These procedures affect metabolic processes within the gastrointestinal system, by either short circuiting certain natural pathways or creating different interactions between the consumed food, the digestive tract, its secretions and the neuro-hormonal system regulating food intake and metabolism. In the last few years there has been a growing clinical consensus that obese patients who undergo bariatric surgery see a remarkable resolution of their type-2 Diabetes Mellitus (T2DM) soon after the procedure. The remarkable resolution of diabetes after RYGB and BPD typically occurs too fast to be accounted for by weight loss alone, suggesting there may be a direct impact on glucose homeostasis. The mechanism of this resolution of T2DM is not well understood, and it is quite likely that multiple mechanisms are involved.


One of the drawbacks of bariatric surgical procedures is that they require fairly invasive surgery with potentially serious complications and long patient recovery periods. In recent years, there has been increased effort to develop minimally invasive procedures to mimic the effects of bariatric surgery. One such procedure involves the use of gastrointestinal implants that modify transport and absorption of food and organ secretions. For example, U.S. Pat. No. 7,476,256 describes an implant having a tubular sleeve with anchoring barbs, which offer the physician limited flexibility and are not readily removable or replaceable. Moreover, stents with active fixation means, such as barbs that deeply penetrate into surrounding tissue, may potentially cause tissue necrosis and erosion of the implants through the tissue, which can lead to complications, such as bacterial infection of the mucosal tissue or systemic infection. Also, due to the intermittent peristaltic motion within the digestive tract, implants such as stents have a tendency to migrate.


Gastroparesis is a chronic, symptomatic disorder of the stomach that is characterized by delayed gastric emptying in the absence of mechanical obstruction. The cause of gastroparesis is unknown, but it may be caused by a disruption of nerve signals to the intestine. The three most common etiologies are diabetes mellitus, idiopathic, and postsurgical. Other causes include medication, Parkinson's disease, collagen vascular disorders, thyroid dysfunction, liver disease, chronic renal insufficiency, and intestinal pseudo-obstruction. The prevalence of diabetic gastroparesis (DGP) appears to be higher in women than in men, for unknown reasons.


Diabetic gastroparesis affects about 40% of patients with type 1 diabetes and up to 30% of patients with type 2 diabetes and especially impacts those with long-standing disease. Both symptomatic and asymptomatic DGP seem to be associated with poor glycemic control by causing a mismatch between the action of insulin (or an oral hypoglycemic drug) and the absorption of nutrients. Treatment of gastroparesis depends on the severity of the symptoms.


SUMMARY

Disclosed herein is a gastrointestinal implant for use within a pylorus, a duodenal bulb, and a duodenum of a patient, the implant having an expanded configuration and a contracted configuration and comprising: a proximal portion comprising a hollow tubular braided structure of wire shaped to form a cylinder having a proximal end, a distal end, and a proximal wall extending radially inward from the proximal portion distal end, wherein the proximal wall has an outer circumference and an inner circumference and is configured with a first bias such that the inner circumference is located closer to the proximal portion proximal end than the proximal portion outer circumference; a neck portion comprising a cylinder having a proximal end and a distal end and extending distally from the inner circumference of the proximal portion, the neck portion having a length greater than a width of a pylorus; a distal portion comprising a hollow tubular braided structure of wire shaped to form a cylinder extending distally from the neck portion and having a proximal end, a distal end, and a distal wall extending radially inward from the distal portion proximal end, wherein the distal wall has an outer circumference and an inner circumference and is configured with a second bias such that the inner circumference is located closer to the distal portion distal end than the distal portion outer circumference; and a structural element coupled to the distal portion and configured to resist circumferential compression.


Also disclosed herein is a gastrointestinal device for implanting within a pylorus, a duodenal bulb, and a duodenum of a patient's gastrointestinal tract, the device having a central axis and comprising a first expandable portion comprising a hollow tubular braided structure of wire and having a first cylinder extending parallel to the central axis, the first cylinder having a proximal end, a distal end, and a length and a first face located at the distal end of the first cylinder and oriented transverse to the central axis; a neck portion extending from the first face of the first expandable portion parallel to the central axis, the neck portion having a first end, a second end, a wall extending between the first end and second end, and a diameter sized to fit within a pylorus; and a second expandable portion comprising a hollow tubular braided structure of wire and having a second cylinder extending parallel to the central axis, the second cylinder having a proximal end a distal end and a length and a second face located at the proximal end of the second cylinder and oriented transverse to the central axis wherein the length of the second cylinder is greater than one centimeter.


A gastrointestinal device for implanting within a pylorus, a duodenal bulb, and a duodenum of a patient's gastrointestinal tract, the device comprising a first expandable portion comprising a hollow tubular braided structure of wire shaped to include a disk portion configured to be located on a stomach side of the pylorus; a central cylinder portion having a first end, a second end, and a diameter that fits within the pylorus; a second expandable portion comprising a hollow tubular braided structure of wire shaped to include a cylinder having a proximal end, and distal end, a length between the proximal end and distal end, and a disk portion to be located on an intestinal side of the pylorus, the second expandable portion including a structural element configured to resist circumferential compression; and an intestinal bypass sleeve comprising a sleeve portion, wherein the sleeve portion extends from the duodenal bulb into the duodenum.


While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional view of a portion of the digestive tract in a human body with a pyloric anchor and sleeve implanted in the pylorus.



FIG. 2 is a cross-sectional view of a portion of the digestive tract in a human body with a pyloric anchor implanted and an intestinal bypass sleeve attached.



FIG. 3 is a cross-sectional view of a portion of the digestive tract in a human body with a pyloric anchor implanted in the pylorus, showing a braided wire structure of the anchor according to some embodiments.



FIG. 4 is a cross-sectional view of a portion of the digestive tract in a human body with a pyloric anchor implanted in the pylorus, showing an overall structure of the anchor and flanges according to some embodiments.



FIG. 5 shows a pyloric implant from three points of view and illustrates an exemplary embodiment of a structural element having a ring configuration.



FIG. 6 shows a pyloric implant from three points of view and illustrates an exemplary embodiment having multiple structural elements having a ring configuration.



FIG. 7 shows a pyloric implant from three points of view and illustrates an exemplary embodiment having multiple structural elements having a ring configuration.



FIG. 8 shows a pyloric implant from three points of view and illustrates an exemplary embodiment having multiple structural elements having a ring configuration.



FIG. 9 shows a pyloric implant from three points of view and illustrates an exemplary embodiment of a structural element according to some configurations.



FIG. 10 shows a pyloric implant from three points of view and illustrates an exemplary embodiment of a structural element according to some configurations.



FIG. 11 shows a pyloric implant from three points of view and illustrates an exemplary embodiment of a structural element according to some configurations.



FIG. 12 shows an exemplary embodiment of a structural element and a pyloric implant with a structural element attached, according to some configurations.



FIG. 13 shows an exemplary embodiment of a structural element and a pyloric implant with a structural element attached, according to some configurations.



FIG. 14 shows an exemplary embodiment of a structural element and a pyloric implant with a structural element attached, according to some configurations.



FIG. 15 shows an exemplary embodiment of a structural element having rings and a pyloric implant with a structural element attached, according to some configurations.



FIG. 16 shows an exemplary embodiment of a structural element and various views of a pyloric implant with a structural element attached, according to some configurations.



FIG. 17 shows an exemplary embodiment of a structural element and various views of a pyloric implant with a structural element attached, according to some configurations.



FIG. 18 shows an exemplary embodiment of a structural element and various views of a pyloric implant with a structural element attached, according to some configurations.



FIG. 19 shows an exemplary embodiment of a structural element and various views of a pyloric implant with a structural element attached, according to some configurations.



FIG. 20 shows an exemplary embodiment of a structural element and various views of a pyloric implant with a structural element attached, according to some configurations.



FIG. 21 shows an exemplary embodiment of a structural element and various views of a pyloric implant with various structural elements attached, according to some configurations.



FIG. 22 shows an exemplary embodiment of a structural element and various views of a pyloric implant with a structural element attached, according to some configurations.



FIG. 23 shows an exemplary embodiment of a structural element and various views of a pyloric implant with a structural element attached, according to some configurations.



FIG. 24 shows an exemplary embodiment of a structural element and various views of a pyloric implant with a structural element attached, according to some configurations.



FIG. 25 is a perspective view of an exemplary pyloric implant with a proximal structural element and a distal structural element, according to some embodiments.



FIG. 26 is a side view of an exemplary pyloric implant with a proximal structural element and a distal structural element, according to some embodiments.



FIG. 27 is an axial view of an exemplary pyloric implant with a proximal structural element and a distal structural element, as viewed from the distal end, according to some embodiments.



FIG. 28 is an axial view of an exemplary pyloric implant with a proximal structural element and a distal structural element, as viewed from the proximal end, according to some embodiments.



FIG. 29 is an axial view of an exemplary structural element that can be used on a flange of an implant, according to some embodiments.



FIGS. 30A and 30B are a side view of an exemplary structural element that can be used on a flange of an implant, according to some embodiments.



FIG. 31 is a side view of an exemplary pyloric implant with a distal structural element and a proximal structural element in a contracted configuration, according to some embodiments.



FIG. 32 is a side view of an exemplary pyloric implant, according to some embodiments.



FIG. 33 is a perspective view of an exemplary implant having an intestinal bypass sleeve, according to some embodiments.



FIG. 34 is a perspective view of an exemplary implant having an intestinal bypass sleeve, according to some embodiments.





DETAILED DESCRIPTION OF THE DRAWINGS

According to some embodiments, the present disclosure includes an apparatus and method to place and/or anchor a gastrointestinal device within the pyloric antrum, pylorus, duodenum and jejunum. The gastrointestinal device disclosed herein may be implanted by inserting it endoscopically (when the device is loaded into a delivery catheter) through the mouth, throat, stomach and intestines. The gastrointestinal device may include an anchor that can be implanted and remain within a pylorus. The gastrointestinal device may also include an expandable anchor having a flexible thin-walled sleeve attached to the distal end of the anchor. In some embodiments, secondary anchors may also anchor other portions of the thin-walled sleeve.


The instant disclosure may include an expandable anchor that can also be used to hold open the pylorus and may help to reduce the symptoms of gastroparesis by allowing the stomach contents to exit the stomach easier through the pylorus into the duodenum. The instant disclosure may include additional structure, such as an expandable anchor having a short bypass sleeve or no bypass sleeve. In some embodiments, an active pumping means may also be attached to the expandable anchor to actively pump the stomach contents from the pyloric antrum into the duodenum.


The present disclosure is an exemplary version of the apparatus and methods described in U.S. Pat. No. 9,044,300, entitled “Gastrointestinal Prostheses,” granted Jun. 2, 2015, which is incorporated herein by reference. The instant disclosure provides improvements on the performance of previously designed implants. Certain design improvements are generally intended to improve the anchoring performance of the implant and decrease the likelihood that the implant can migrate in response to physiological changes of the body. Additional improvements disclosed herein minimize the likelihood that the sleeve portion of the implant becomes everted or obstructed.



FIG. 1 is a cross-sectional view of a portion of a human digestive track 10, showing an embodiment of a device 100 that may be implanted between the stomach 16 and the small intestine 18. As shown in FIG. 1, the device 100 may be implanted generally within the pylorus 20 with at least a section configured to remain within the pyloric antrum 22. The device 100 may be configured to be implanted with portions of the device 100 held within the stomach 16, the pylorus 20, and the small intestine 18. The device 100 may be endoscopically implanted within the pylorus 20 in a compressed configuration. After implantation, the device 100 may be released and assume an expanded configuration. Once in the expanded configuration, the device 100 generally anchors itself to remain with at least a portion of the device 100 within the pylorus 20.



FIG. 2 is a cross-sectional view of a portion of the digestive tract in a human body showing the pyloric antrum 22, pylorus 20, duodenum 24, and duodenal bulb 26. FIG. 2 also shows the device 100 implanted between the stomach 16 and small intestine 18. As shown in FIG. 2, the device 100 may generally comprise an expandable portion 110 that holds or anchors the device 100 in place, and a sleeve portion 120.


The device 100 as a whole may be alternatively referred to as an implant, an implantable device, a gastrointestinal device, a gastrointestinal implant, or a pyloric implant. The portion of the device 100 that is able to expand and hold the device 100 in place after implantation may be referred to as the anchor, the anchoring portion, the holder, or the holding portion. The sleeve 120 portion of the device 100 that is shown within the small intestine 18 may be alternatively referred to as the sleeve, the intestinal sleeve, the bypass sleeve, the intestinal bypass sleeve, the liner, or the bypass liner. For example, the device 100 may include an intestinal bypass sleeve 120 that is designed to be implanted in the duodenum 26 from the pylorus 20 to the ligament of treitz (not shown). As shown in FIG. 2, the sleeve 120 is generally held in place in the small intestine 18 by the anchoring portion 110 of the device that anchors within or on the pylorus 20.


According to various embodiments, the sleeve 120, the anchor 110, or both are further coupled at or within the pylorus 20 using one or more of the techniques described in either of U.S. Pat. No. 8,211,186 or U.S. Pat. No. 8,282,598 filed Jul. 9, 2010, entitled “External Anchoring Configuration for Modular Gastrointestinal Prostheses,” both of which are incorporated herein by reference. According to various embodiments of the invention, the sleeve 120 may be configured to be coupled to the anchor 110, using one or more of the configurations disclosed in U.S. Pat. No. 8,702,641, filed Jan. 7, 2011, entitled “Gastrointestinal Prostheses Having Partial Bypass Configurations,” which is incorporated herein by reference.



FIG. 3 illustrates an exemplary embodiment of the anchor 110. The anchor 110 has an overall cylindrical shape with a length and a width. In some embodiments, the anchor 110 has an overall cylindrical shape, with a central axis oriented along a longitudinal direction. The anchor 110 has a proximal portion 130, a distal portion 132, and a neck portion 134.


In some embodiments, the proximal portion 130 is shaped in a circular or disk shape. In some embodiments, the proximal portion 130 is shaped in a circular or disk shape having a lip or rim. The proximal portion 130 may interchangeably be referred to as a proximal flange. The lip or rim may define a proximal portion proximal end 140 and a proximal portion distal end 142. The lip or rim forming the proximal portion proximal end 140 and the proximal portion distal end 142 may define an overall cylindrical or tubular shape. In some embodiments, the proximal portion 130 circular or disk shape defines a face or wall 148 also referred to herein as the proximal portion wall 148 or proximal flange wall. The proximal flange wall 148 may be a disk that is located on the distal side 142 of the proximal flange 130. The proximal flange wall 148 may be a disk or disk shaped and oriented transverse to the central axis. In general, the proximal end 140 of the proximal portion 130 is open to allow chyme to enter. The distal end 142 of the proximal portion 130 may be connected to the proximal flange wall 148.


In some embodiments, the neck portion 134 defines a through-lumen 152 that allows chyme to flow from the stomach 16 to the small intestine 18. The neck portion 134 may be rigid to hold the pylorus 20 open or it may be compliant to allow the opening and closure of the through lumen 152 with the pylorus 20.


In some embodiments, the distal portion 132 is shaped in a circular or tubular shape. In some embodiments, the distal portion 132 is shaped in a circular, disk, or tubular shape having a lip or rim. The distal portion 132 may interchangeably be referred to as a distal flange. The lip or rim may define a distal portion proximal end 144 and a distal portion distal end 146. The lip or rim forming the distal portion proximal end 144 and the distal portion distal end 146 may define an overall cylindrical or tubular shape. In some embodiments, the distal portion 132 circular or disk shape defines a face or wall 150 also referred to herein as the distal portion wall 150 or distal flange wall. The distal flange wall 150 may be located on the proximal side of the distal flange 132. The distal flange wall 150 may be formed as a disk or disk shaped that is oriented transverse to the central axis. The proximal end 144 of the distal portion 132 may be connected to the distal flange wall 150. In general, the distal portion 132 or distal flange is located in the duodenum and the distal flange 132 has an opening at the distal end 146 that faces the intestine 18.


In some embodiments, the distal flange 132, and the neck portion 134 each form a generally cylindrical shape, each with an independent diameter. For example, the proximal flange 130 has an overall cylindrical shape with an open proximal end 140 having a first diameter, and a distal end 142 having a proximal flange wall 148 that necks down to a diameter of the neck portion 134. The proximal flange wall 148 can be shaped having an angle with a bias in relation to the central axis. The neck portion 134 comprises a cylinder having a second diameter and extends between the proximal flange 130 and the distal flange 132. The distal flange 132 has a generally cylindrical shape and includes the distal flange wall 150 starting from the neck portion 134 and expanding radially from the central axis. The distal flange 132 has a proximal end 144 that is positioned near the pylorus 20, and a distal end 146 that faces into the small intestine 18. The anchor can be oriented by a central axis that is defined as the direction traveling from the proximal flange 130, through the neck portion 134, and continuing through the distal flange 132.


The braided wire structure of the implant may be formed into a shape to promote anchoring to the tissue of a patient. For example, the proximal flange wall 148 and distal flange wall 150 can be angled in relation to the neck portion 134 in order to provide certain spatial relationships to the pylorus 20 at particular locations. In some embodiments, both the proximal flange 130 and distal flange 132 are shaped to apply force F to the proximal and distal face of the pylorus 20, respectively. The effect of this force is intended to keep the implant in place, anchored across the pylorus 20.


The overall length of the anchor 110 can be from about 10.0 mm to about 100.0 mm, but varying sized anchors may be formed, depending on a patient's anatomy or anatomical fit. In some embodiments, the anchor 110 length may be from about 10.0 mm to about 100 mm, from about 25.0 mm to about 75.0 mm, from about 40.0 mm to about 60.0 mm, or any length within these ranges. An exemplary anchor 110 has been formed that is about 50.0 mm long but typical anchors may be in the range of between about 45.0 mm and 55.0 mm. In some embodiments, the diameter of the proximal flange 130 can be from about 10.0 mm to about 75.0 mm, or any range in between, for example from about 25.0 mm to about 60.0 mm, and from about 40.0 mm to about 55.0 mm. An exemplary anchor 110 has been formed with the diameter of the proximal flange 130 about 40.0 mm.


In some embodiments, the distal flange 132 is shaped as a cylinder with a generally open distal end 146 and partially restricted proximal end 144 connected to the distal flange wall 150. The distal flange 132 may be formed in an overall cylindrical shape having a diameter. The length and diameter of the distal flange 132 can be sized to prevent canting or tilting within a tubular anatomical structure such as the duodenum. In some embodiments, the diameter of the distal flange 132 may be from about 5.00 mm to about 60.0 mm, or any range in between, for example from about 20.0 mm to about 50.0 mm, or from about 30.0 mm to about 40.0 mm. For example, the distal flange can have a length of roughly 18.0 mm and a diameter of 35.0 mm, to ensure the structure can remain positioned within a tubular anatomic structure such as the duodenal bulb with a diameter of about 40.0 mm. An exemplary anchor 110 has been formed with the diameter of the distal flange 132 about 35.0 mm in diameter.


As shown in FIG. 3, in some embodiments, the diameter of the distal flange 132 may define a gap or space between the diameter of the distal flange 132 and the duodenum. In some embodiments, a gap or space between the diameter of the distal flange 132 and the duodenum may allow the anchor 110 to rotate or turn in a direction generally perpendicular to the central axis of the anchor 110 or a longitudinal axis defined by the center of the opening of the pylorus. If the anchor 110 is allowed to rotate after it is implanted in a patient, the distal flange 132 or anchor 110 or both may undergo unwanted movement or deflection and in some cases become dislodged. Rotation or turning of the anchor 110 or the distal flange 132 may be inhibited by providing a distal flange 132 having a suitable length and diameter. A distal flange 132 length may allow the distal flange 132 to contact the duodenum and prevent further rotation before the distal flange 132 or anchor 110 become deflected or dislodged. The length of the distal flange 132 may determine the degree of rotation the anchor 110 may undergo before contacting the duodenum. In some embodiments, the length and the diameter of the distal flange 132 are sized such that upon rotation or canting of the anchor 110 away from the longitudinal axis, the distal end 146 of the distal flange 132 will make contact with the intestinal wall and therefore will resist migration of the anchor 110 within a patient. It has been found that a suitable distal flange 132 length that may inhibit unwanted rotation or canting or longitudinal deflection may be from about 10.0 mm to about 50.0 mm or any length in between. In some embodiments, the distal flange 132 may have a length that is sized in relation to the width of the distal flange 132.


In some embodiments, the distal flange 132 may have a length that is sized in relation to the length of the proximal flange 130. For example, the length of the distal flange 132 may be the same length as the proximal flange 130. In some embodiments, the length of the distal flange 132 may be multiples of the length of the proximal flange 130. For example, the distal flange 132 may be one and a half, two times, three times, or greater, the length of the proximal flange 130.


In some embodiments, the diameter of the neck portion 134 may be from about 2.0 mm to about 30.0 mm, or any range in between. for example from about 5.00 mm to about 30.0 mm, and from about 10.0 mm to about 20.0 mm. An exemplary anchor 110 has been formed with the diameter of the neck portion 134 about 15.0 mm.


In some embodiments, the length of the neck portion 134 may be approximately the width of a patient's pylorus. In some embodiments, the length of the neck portion 134 may be longer than the width of a patient's pylorus to provide a gap between the proximal flange wall 148 and the distal flange wall 150 and the pylorus 20. In some embodiments, the neck portion 134 may be sized to allow the proximal flange wall 148 and the distal flange wall 150 to contact the pylorus 20. In some embodiments, the anchor 110 is compressible in diameter and the overall diameter can be reduced to about 5.00 to 10.0 mm in diameter typically to allow the anchor 110 to be loaded into a catheter (described further below).


As shown in FIG. 4, in some embodiments, the anchor 110 is formed from a hollow tubular braided structure 160 of wire. The diameter of the wire that is used to form the braided structure 160 can range from about 0.001 inch to about 0.014 inch, from about 0.004 inch to about 0.011 inch, from about 0.006 inch to about 0.009 or any diameter within this range such as 0.008 inch The braided structure 160 of wire is weaved to form a mesh structure 162. The mesh structure 162 may be shaped to form the various elements of the anchor 110. The mesh structure 162 is formed into a shape with a proximal flange 130, a neck portion 134, and a distal flange 132.


The braided structure may be weaved to form a mesh structure 162, and the mesh can be formed into various components. For example, the mesh structure 162 may be formed into disks or cylinders of the various parts of the anchor 110. Suitably sized cylinders may be formed from the mesh structure and may have a diameter from about 10 mm in diameter to about 70 mm in diameter, from about 14 mm to about 50 mm in diameter, and any diameter in between. In some embodiments, a braided structure 160 of different diameters may be used at various locations of the anchor 110. For example, an anchor 110 may be created using a braided structure 160 having a diameter of about 14 mm for the neck portion 134, a braided structure 160 having a diameter of about 34 mm for the distal flange 132, and a braided structure 160 having a diameter of about 40 mm for the proximal flange 130. In exemplary embodiments, the number of wire ends in the braided structure 160 is 96 ends, but it can range from 4 ends to 256 ends. The wire can be formed from a metal such as Nitinol, MP35N, L605, Elgiloy, stainless steel or from a plastic such as Pet, Peek or Delrin or other suitable material.


The anchor 110 can be covered on the outside and/or inside side with a polymer membrane covering. The membrane covering the anchor 110 may be made from a thin-walled polymer material such as silicone, polyurethane, polytetrafluoroethylene, fluorinated ethylene propylene, polyethylene, expanded poly tetrafluoroethylene (ePTFE) or other suitable material. In some embodiments, the wall thickness of the membrane covering the anchor 110 may be in the range of 0.001 inch to 0.030 inch thick. The membrane may be made by extrusion, dip coating from a liquid solution, powder coated from fine particles of polymer or paste extruded and then stretched as is the case with ePTFE. The anchor membrane may also be cut from a flat sheet of material such as ePTFE and then bonded or sewn into a disk shape or spherical shaped structure and then attached to the anchor 110 by sewing or gluing with a polymer such as FEP.


In some embodiments, the anchor 110 also incorporates a structural element contained within the overall structure. Various configurations of the structural element can be found in the following FIGS. 5 through 24.



FIG. 5 shows three views of the implant described in FIG. 3 and is intended to highlight an exemplary embodiment of an anchor 110 and a structural element 170. In some embodiments, a structural element 170 is located in any of the proximal flange 130, the distal flange 132, or both. In an exemplary embodiment, a structural element 170 is located at least within the distal flange 132. For example, a structural element 170 may be located in the distal flange 132, proximate the neck portion 134, and may be weaved through the mesh structure 162 to maintain a suitable position. The structural element 170 is typically designed to provide support to the braided structure and contribute to resisting compression or deformation of the overall shape of the anchor 110. The braided structure 160 alone will compress uniformly in response to a circumferential force and therefore the body may be able to push the implant from its location across the pylorus, leading to migration. With the structural element 170 in place, the implant is more resistant to compression due to the shape and resistance of the structural element 170. The structural element 170 may deform independently from the braided structure 160 and therefore may provide support in addition to resistance to compression. The structural element 170 may provide support to the overall length, shape, diameter, or bias of the anchor 110.


The structural element 170 can be made from a metal such as Nitinol, MP35N, L605, Elgiloy, stainless steel or from a plastic such as PET, PEEK, or Delrin or other suitable material. In a preferred embodiment, the structural element 170 is made from superelastic Nitinol wire formed into the particular shape. The wire has a diameter from about 0.010 inch to about 0.030 inch, or from about 0.015 inch to about 0.025 inch, or any diameter in between. In one example, a structural element was formed from Nitinol wire having a diameter of about 0.020 inch in diameter. If a structural element having a particular rigidity or stiffness is required, often the size and material that the stiffening element is made from can be used to control these properties. As an example, Nitinol wire has been used to form stiffening elements, which have a compressive and expansive strength that is a function of the diameter of the wire used to make the stiffening element.


In some embodiments, the various components of the anchor 110, including the braided structure 160, the mesh structure 162, the mesh structure with a membrane, and the structural element 170 provide structural support both individually and in combination. The braided structure 160 and mesh structure 162 may contribute support both in a radial and longitudinal direction. The structural element 170 may enhance the overall strength and rigidity of the anchor both in the radial and longitudinal direction. Additionally, the structural element 170 may be tailored to provide a bias to the braided structure 160 and mesh structure 162 to allow the anchor to form a particular shape in response to certain forces. For example, the structural element 170 may add stiffness to the anchor 110 and allow it to maintain an effective circumference. The structural element 170 may provide a compression limit to the anchor 110. The structural element 170 may add longitudinal stability. The structural element 170 may inhibit the anchor 110 from moving through the pylorus.


As shown in FIG. 5, in some embodiments, the structural element 170 is comprised in the shape of a ring. The diameter of a ring formed to create a structural element may be sized to form a suitable fit for use in an anchor 110, or at various locations on an anchor. For example, the diameter of a ring may be from about 20 mm to about 50 mm, from about 25 mm to about 45 mm, from about 30 mm to about 40 mm, and any diameter within this range. In one example, a ring was formed having a diameter of about 35 mm.



FIG. 6 describes an alternative embodiment to the implant shown in FIG. 5. In some embodiment, the anchor 110 incorporates a proximal structural element 172. The proximal structural element 172 is located at the proximal wall or face 148 of the proximal flange 130, nearest to the neck portion 134 of the anchor 110. The function of the proximal structural element 172 is to resist compression of the overall structure. The proximal structural element 172 is weaved through the mesh structure 162 to secure it to the anchor 110. The proximal structural 172 element may be made from the same material as the structural element 170.



FIG. 7 is an alternative embodiment to the implant shown in FIG. 5. The anchor 110 incorporates two structural elements 174, 176 each of which are 180 degrees apart, orientated out-of-plane relative to the distal wall or face 150 of the distal flange 132. This configuration provides an additional option not available in the design shown in FIG. 5 by enabling the structure to be collapsed into a shape that can be loaded into a small diameter tube for the purpose of delivering or retrieving the implant endoscopically in a human. While the structural elements 174, 176 can still resist circumferential compression, when the structure is pulled into a tube, the structural elements 174, 176 will collapse into an elliptical shape. The structural elements 174, 176 included here comprise rings.



FIG. 8 is an additional embodiment to the implant shown in FIG. 7 in which the anchor 110 incorporates three structural elements 174, 176, 178. In this example, the structural elements 174, 176, 178 comprise rings each 120 degrees apart from each of the others, orientated out-of-plane relative to the wall or face 150 of the distal flange 132. This configuration provides an advantage over the design shown in FIG. 7 because it is symmetrical with respect to the distal flange 132 and with respect to a patient's anatomy. The overall structure can still be collapsed into a shape that can be loaded into a small diameter tube for the purpose of delivering or retrieving the implant endoscopically in a human.



FIG. 9 illustrates an additional embodiment of an alternative structural element 190. The anchor 110 incorporates a single alternative structural element 190 shaped to provide additional strength to the overall structure. This configuration provides an advantage over certain embodiments by enabling the structure to be collapsed more easily into a shape that can be loaded into a small diameter tube for the purpose of delivering or retrieving the implant endoscopically in a human. While the alternative structural element 190 can still resist circumferential compression, when the structure is pulled into a tube, the alternative structural element 190 will collapse into an elliptical shape. Various structural features also enable the anchor 110 containing an alternative structural element 190 to be collapsed and provide a bias to the direction of collapse.



FIG. 10 illustrates an additional embodiment of an alternative structural element 190. The anchor 110 incorporates an alternative structural element 190 shaped to provide additional strength to the overall implant structure. This configuration enables the structure to be collapsed into a shape that can be loaded into a small diameter tube for the purpose of delivering or retrieving the implant endoscopically in a human. While the alternative structural element 190 can still resist circumferential compression, when the structure is pulled into a tube, the alternative structural element 190 will collapse into an elliptical shape. Various structural features also enable the anchor 110 containing an alternative structural element 190 to be collapsed and provide a bias to the direction of collapse.



FIGS. 11 to 20 illustrate various embodiments and shapes of an alternative structural element 190. The embodiments shown in FIGS. 11 to 20 all have the features of providing additional strength to the overall structure of the anchor 110 and are collapsible. The illustrated embodiments enable the anchor 110 to be collapsed into a shape that can be loaded into a small diameter tube for the purpose of delivering or retrieving the implant endoscopically in a human. Various structural features also enable the anchor 110 containing an alternative structural element 190 to be collapsed and provide a bias to the direction of collapse.


The anchor 110 illustrated in FIGS. 9 to 24 has the advantage that a structural element 190 has been added to provide structural support to the anchor 110 in addition to the braided structure 160. To provide structural support and to optimize the expanded configuration of either the proximal 130 flange, the distal flange 132, or both flanges, the orientation of the structural element 190 is arranged to provide any of a static radial force, a static longitudinal force, or both. As an example, FIG. 13 contains an embodiment of a structural element 190 that is capable of providing both radial support and longitudinal support. As used herein, the term longitudinal support refers to structural support for maintaining the anchor 110 in an expanded configuration along a direction parallel to the central axis. As used herein, the term radial support refers to support for maintaining the anchor 110 in an expanded configuration along a direction perpendicular to the central axis. Often this can be accomplished by having the structural element 190 connected to the neck portion of the anchor 110 and transverse a flange in a radial direction.


In the structure illustrated in FIG. 13, the structural element 190 is generally attached to the anchor 110 at various touch points. The shape and size of the structural element 190 can be chosen to provide a suitable fit for a particular patient. It may be that certain portions of an anchor 110 require greater longitudinal support. This can be accomplished by increasing the size of the structural element 190 in the longitudinal direction, as illustrated by comparing the structural element 190 in FIGS. 11 to 13. For example, in certain embodiments, a patient may need greater support in the longitudinal direction which can be accomplished by providing a compressive force by the anchor 110 in the longitudinal direction. Another option is to provide structural support in the longitudinal direction past the end of the distal flange. This may be accomplished by using the embodiment illustrated in FIG. 13.


In some embodiments, the structural element 190 illustrated in FIG. 13 may be used, for example, to maintain a sleeve that is attached to the anchor 110 in an open configuration. As an example, a sleeve may be attached to the neck portion of the anchor 110 at the distal wall. The sleeve may be attached to the structural element 190 at various points along the sleeve as the sleeve extends through the end of the distal flange and continues out in a longitudinal direction. The structural element 190 is sized to extend past the end of the distal flange and thus a portion of the structural element 190 can be attached to the sleeve outside the distal flange. In this configuration, the sleeve is held away from the neck portion at a greater distance and thus the sleeve is prevented from everting or inverting into the neck portion. This embodiment may provide a more versatile arrangement as well when attaching a wider sleeve in, for example, a patient with a wider intestine, the structural element 190 can also be used to keep the sleeve open to allow food to enter the sleeve easier and continue on through the intestine.



FIGS. 21 to 24 illustrate various embodiments and shapes of an alternative structural element 190. The embodiments shown in FIGS. 21 to 24 all have the features of a structural element 190 providing additional strength to the overall structure of the anchor 110 and are collapsible.


In some embodiments, such as those shown in FIGS. 21 to 24, structural support can be provided to both the proximal flange and the distal flange with a single structural element 190 by providing a structural element 190 with a particular shape. For example, the structural element 190 may be shaped with the structural element 190 contoured through or oriented longitudinal to the neck portion and extending through at least one flange. The points of attachment on both the neck portion and the flanges are selected to enable compressive and expansive forces to be transferred between the flanges and the neck portion by the structural element 190.


In the embodiments illustrated in FIGS. 21 to 24, the structural element 190 traverses the neck portion of the anchor. The orientation and location of such a structural element 190 enables the structural element 190 to maintain the angle of each flange perpendicular to the neck portion. This allows each flange to resist circumferential compression while also preventing each flange from canting. The illustrated embodiments enable the anchor 110 to be collapsed into a shape that can be loaded into a small diameter tube for the purpose of delivering or retrieving the implant endoscopically in a human. Various structural features also enable the anchor 110 containing an alternative structural element 190 to be collapsed and provide a bias to the direction of collapse.


As shown in FIG. 25, in some embodiments, the anchor 110 has a distal structural element comprised of three rings 193, 194, 196 attached to the distal flange 132. The distal structural element 193, 194, 196 can be made from a metal such as Nitinol, MP35N, L605, Elgiloy, stainless steel or from a plastic such as PET, PEEK, or Delrin or other suitable material. In a preferred embodiment, the distal structural element 193, 194, 196 is made from superelastic Nitinol wire formed into the particular shape. In one example, a structural element was formed from three rings of Nitinol wire. If a structural element having a particular rigidity or stiffness is required, often the size and material that the stiffening element is made from can be used to control these properties. Typically, the Nitinol wire that has been used to form stiffening elements has a compressive and expansive strength that is a function of the diameter of the wire used to make the stiffening element.


The distal structural element 193, 194, 196 may be formed of material having a thickness in the range from 0.010 inch to about 0.040 inch, or any range in between such as from about 0.015 inch to about 0.030, from about 0.020 inch to about 0.025 inch. In an example embodiment, a distal structural element 193, 194, 196 comprised a plurality of rings formed from material having a thickness of about 0.020 inch, or about 0.51 mm. Generally, each of the three rings that form the distal structural element 193, 194, 196 have the same diameter which are in the range of from 1.0 inch to 2.0 inches, and any range within such as from about 1.2 inches to about 1.8 inches, and from about 1.3 inches to about 1.7 inches. In an example embodiment, the distal structural element 193, 194, 196 comprised material formed into rings each having a diameter of about 1.38 inches, or about 35.0 mm.


As shown in FIGS. 25 and 26, the three rings of the distal structural element 193, 194, 196 are arranged around the distal flange 132 and are attached to the distal flange 132 by being integrally woven into the flange material. The rings of the distal structural element 193, 194, 196 are attached by first weaving the formed wire of the rings though the braided structure of the distal flange 132 and then the wire ends are inserted into a sleeve and crimped or welded. FIG. 26 contains a side view of an example embodiment of the anchor 110, illustrating how each ring may be arranged with at least a portion of each ring attached to the distal flange distal end 146 and a portion attached to the distal flange distal wall 150. In still further embodiments, each ring may be attached with at least a portion of each ring closer to the distal flange proximal end 144 and a portion attached to the distal flange distal wall 150.


To provide structural support and to optimize the expansive force of the flanges, the orientation of the structural element or rings are arranged to provide any of a static radial force, a static longitudinal force or both. Often this requires the structural element to receive radial support from the neck portion or the wall of the anchor. In some embodiments, such as those shown in FIGS. 21 to 24, this is accomplished by providing a structural element with a particular shape. In some embodiments, the design of the structural element may incorporate a plurality of rings. The orientation of the rings relative to the wall or face of the flange can be designed to provide suitable static structure. This can be accomplished by placing the rings out-of-plane with the flange wall. In a structure incorporating rings for the structural element, the rings are generally attached to the implant at about four locations. The attachment locations are evenly spaced around the ring and enable the compressive and expansive forces to be transferred between the flanges and the structural element evenly.


As shown in FIGS. 25 and 26, in some embodiments the anchor 110 may have a proximal structural element 172 attached to the proximal flange 130. The proximal structural element 172 may also be referred to as a compression bias spring. The proximal structural element 172 may be constructed as a substantially circular frame having nodes 204. The proximal structural element 172 may be constructed from the same material that forms the distal structural element 193, 194, 196. The proximal structural element 172 may also provide structural support to the proximal flange 130. For example, the proximal structural element 172 generally has an overall frame that is compressible, yet also is rigid. The rigid proximal structural element 172 tends to impart additional strength to the proximal flange 130 and aids in keeping the proximal end 140 of the proximal flange 130 open. The proximal structural element 172 can be shaped to bias the collapse of the diameter of the anchor 110 for removal from a patient and for loading the device onto a delivery catheter for delivery within a patient.


As shown in FIGS. 25 and 26 in some embodiments, the anchor 110 may include a drawstring 192. The drawstring may be attached to the proximal flange 130. The drawstring 192 typically can be attached to the proximal flange 130 by weaving the drawstring 192 through the material of the proximal flange 130. As shown in FIG. 26, the drawstring may be weaved through the material of the proximal flange and have a portion of the drawstring forming a drawstring loop 205. For example, the drawstring 192 may be constructed from a string or suture that is weaved through alternating cells in the braided wire structure of the anchor 110. The draw string loop 205 allows the drawstring 192 to be attached to a retraction tool, for example by a hook or a clamp. In some embodiments, the drawstring 192 is simply a suture that is weaved through the proximal flange 130. The drawstring may be separate from the proximal structural element 172. The drawstring may be constructed from any range of suture material and may comprise a thin wire or cable. The drawstring 192 can be used to elastically contract the anchor 110 by connecting at least one loop 205 to a removal device (not shown) and by drawing into a sheath, for example a catheter. In some embodiments, the drawstring 192 allows the proximal flange 130 to collapse to the diameter of the neck portion 134.



FIG. 27 shows the anchor 110 from an axial perspective looking down the longitudinal direction from the distal end 146 of the distal flange 132. In some embodiments, the distal flange 132 has an outer circumference 198, defined by the outer most edge of the proximal end 144 or distal end 146 of the distal flange 132, and an inner circumference 199 defined by the location where the distal flange distal wall 150 meets the neck portion 134. In some embodiments, the inner circumference 199 of the distal flange is the same circumference as a circumference of the neck portion 134. As illustrated in FIG. 27, the distal structural element 193, 194, 196 may be formed by placing three rings at equal distances from each other around the distal flange 132 to provide pressure outward from an inner circumference 199, for example starting from the distal flange distal wall 150, and push outward against the outer circumference 198 of the distal flange 132.



FIG. 28 illustrates the proximal structural element 172 and the drawstring 192 within the proximal flange 130 of the anchor 110 as viewed from an axial perspective looking down the longitudinal direction from the proximal end 140 of the proximal flange 130. In some embodiments, the proximal flange 130 has an outer circumference 208, defined by the outer most edge of the proximal end 140 or distal end 142 of the proximal flange 130, and an inner circumference 209 defined by the location where the proximal flange proximal wall 148 meets the neck portion 134 (shown in FIG. 26). In some embodiments, the inner circumference 209 of the proximal flange 130 is the same as a circumference of the neck portion 134.



FIG. 29 illustrates an embodiment of the proximal structural element 172 without the anchor, to illustrate an overall shape and structure. FIG. 29 shows the proximal structural element 172 as viewed from an axial perspective looking down the longitudinal direction and shows the proximal structural element 172 having a main body 212 that is substantially circular and having a diameter 214. The proximal structural element diameter 214 may be in the range of from 1.0 inch to 2.0 inches, and any range in between such as from about 1.3 inches to about 1.8 inches, or from about 1.5 inches to about 1.7 inches. In an example embodiment, the proximal structural element main body 212 comprised a ring having a diameter of about 1.57 inches, or about 40.0 mm.


The proximal structural element 172 may be formed of material having a thickness in the range from 0.015 inch to about 0.045 inch, or any range within such as from about 0.020 inch to about 0.035 inch, from about 0.025 inch to about 0.030 inch. In an example embodiment, a proximal structural element 172 was formed from material having a thickness of about 0.025 inch, or about 0.64 mm.


In some embodiments, attached to the main body 212 of the proximal structural element 172 is a plurality of nodes 204. As shown in FIGS. 30A and 30B, when viewed from the side, the proximal structural element main body 212 has an overall planar structure, with the nodes 204 extending from the plane of the main body 212. The nodes may be at an angle 214 to the plane of the main body 212, for example the nodes 204 may be formed to extend at a 60 degree angle from the main body 212. The nodes 204 may each have an outer loop 213 and an inner curve 215. The outer loop 213 allows a bias for the proximal structural element 172 to collapse radially in response to a compressive force. This action can be desirable for removal of the anchor from a patient and for loading the implant onto a delivery catheter for delivery within a patient. Additionally, the angle 214 helps to collapse the anchor in a uniform manner when the drawstring is pulled. The angle 214 of each node 204 allows for evenly distributed tension to be imparted to the main body 212 without forming a pinch point. The angle 214 also forms a shape that allows the anchor a bias toward a retracted configuration when tension is placed on the drawstring 172.


In some embodiments, the anchor 110 may be may be configured to collapse into a narrower size. For example, the anchor 110 may be collapsed into a narrower diameter for placement or removal from a patient. FIG. 31 shows the proximal flange 130 of the anchor 110 in the collapsed stage. In some embodiments the anchor can be collapsed by pulling the drawstring. The drawstring node 205 may be pulled away from the anchor 110, collapsing the proximal structural element 172. FIG. 31 shows the proximal flange 130 in a collapsed stage after the drawstring 192 has been pulled.


As shown in FIG. 32, in some embodiments, the proximal flange wall 148 and the distal flange wall 150 may be constructed with a bias in relation to the central axis. The structural element 170 may also be configured to impart a bias on the distal flange wall 150. The proximal structural element, (not shown) may also impart a similar bias on the proximal flange wall 148. For example, the structural element 170 may be configured to impart a bias against the distal flange wall 150 in the proximal direction. For example, the distal structural element 170 may be configured to impart a bias against the distal flange wall 150 in the proximal direction. In other words, in some embodiments, the proximal flange wall 148 and the distal flange wall 150 may not be a completely flat configuration, but instead may have an angle, curve, or slope. As also shown in FIG. 32, the neck portion of the anchor has a length 216. In some embodiments, because of the slope, curve, or angle, of the proximal flange wall 148 and distal flange wall 150 the distance 218 between the outer circumference (208 in FIG. 28) of the proximal flange wall 148 and the outer circumference (198 in FIG. 27) of the distal flange wall 150 may be less than the length of the neck portion 216. As a result, the proximal flange wall 148 has a proximal gap 200 and the distal flange wall has a distal gap 202. The proximal gap 200 is defined by the difference in the longitudinal location of the proximal flange wall 148 at the outer circumference (208 in FIG. 28) and the inner circumference (209 in FIG. 28). The distal gap 202 is defined by the difference in the longitudinal location of the distal flange wall 150 at the outer circumference (198 in FIG. 27) and the inner circumference (199 in FIG. 27).



FIGS. 33 and 34 show an exemplary sleeve 120 that may be used in conjunction with an anchor. As shown previously in FIG. 2, the sleeve 120 may be attached to the anchor 110 and be placed within the small intestine 18. In various exemplary embodiments, the sleeve 120 is integrally formed with or coupled to the anchor 110. According to some embodiments, the sleeve 120 is removably or releasably coupled to the anchor 110.


As shown in FIG. 34, an overall schematic of a sleeve according to some embodiments includes a mouth 220, a sleeve body 222, and a neck 224 The sleeve body 222 diameter is generally sized to match the diameter of the human small intestine. The diameter decreases at the neck 224 to be consistent with the inner diameter of the anchor. This change in diameter also helps to prevent sleeve eversion in which the sleeve folds back into itself in response to an increase in pressure on the outside of the sleeve. According to various embodiments, the sleeve body has a thickness of between about 0.001 and about 0.015 inches. The sleeve neck 224 is intended to be thicker than the sleeve body 222, for example 0.005 inches versus 0.001 inches thick, to provide a second mechanism to prevent sleeve eversion. When the sleeve is subjected to an external pressure, the thicker neck 224 collapses and does not fold back on itself. This mechanism essentially creates a duck-bill valve.


The sleeve 120 can vary in length from 1.0-2.0 inches in length up to several feet. In some embodiments, the sleeve 120 bypasses the length of the duodenum up to the ligament of treitz. While various embodiments disclosed herein describe the intestinal bypass sleeve 120 as extending into the duodenum, in all such embodiments, it is also contemplated that the intestinal bypass sleeve 120 has a length sufficient to allow it to extend partially or fully into the jejunum. Often the length of the sleeve is dictated by the required mechanism of action. It has been shown that an effective sleeve length is one that allows it to reach the proximal jejunum; this location corresponds to the location of the ligament of Trietz. The length of the sleeve is determined based on the desired clinical outcome. Recent scientific research has indicated that a sleeve roughly 2 feet in length is sufficient to modify the transport and absorption of food and organ secretions within the small intestine, leading to remission of type 2 diabetes.


The intestinal bypass sleeve 120 may be made from a thin-walled polymer material such as silicone, polyurethane, polytetrafluoroethylene, fluorinated ethylene propylene, polyethylene, expanded polytetrafluoroethylene (ePTFE) or other suitable material. In exemplary embodiments, the wall thickness of the intestinal bypass sleeve 120 may be between 0.0006 inch and 0.010 inch thick. The intestinal bypass sleeve 120 may be made by extrusion, into a tubular form or a lay flat tubing, dip coated from a liquid solution, powder coated from fine particles of polymer or paste extruded and then stretched as is the case with ePTFE.


The gastrointestinal device thus described comprises an anchor configured to be implanted and remain within a pylorus of a patient. The gastrointestinal device may comprise an anchor having a flexible thin-walled sleeve attached to the distal end of the anchor. In some embodiments, secondary anchors may also anchor other portions of the thin-walled sleeve. The anchor may be placed within a pylorus of a patient to assist in opening a pylorus of the patient. The sleeve may be placed within the intestine of the patient and held in place by the anchor. The device thus described may function as follows.


As a person ingests food, the food enters the mouth, is chewed, and then proceeds down the esophagus and into the stomach. The food mixes with enzymes in the mouth and in the stomach. The stomach converts the food to a semi-fluid substance called chyme. The chyme enters the pyloric antrum and exits the stomach through the pylorus. The pylorus (or pyloric sphincter) is a band of muscle that functions to adjust the diameter of the pyloric orifice, which in turn effects the rate at which chyme exits the stomach. The pylorus (or phyloric sphincter or pyloric wall) also has a width (or thickness), which is the distance that the pylorus extends between the stomach and the duodenum.


A gastrointestinal implant placed within the pylorus of a patent can be employed to control the opening and closing of the pylorus to control the flow rate of chyme from the stomach to the intestine of the patient. An exemplary gastrointestinal implant has been formed that can assume both an expanded and contracted configuration. In an exemplary configuration, the implant has a neck portion that allows chyme to flow from the stomach to the intestine of a patient. The width of the neck portion can be designed to control the flow rate of chyme from the stomach to the intestine. The flow rate of chyme can optionally be modified depending on the suitable blood glucose levels of the patient.


The gastrointestinal implant may be held in place within a pylorus of a patient by using an anchor. The anchor comprises a proximal flange and a distal flange connected to the neck portion to anchor the neck portion in place. The proximal flange is configured to remain on the stomach side of a patient's pylorus and the distal flange is configured to remain on the intestinal side of a patient's pylorus. The widths of the proximal flange and distal flange in the expanded configuration are wider than the maximum diameter of the pylorus.


The length of the neck portion can be configured to provide an optimum fit within the pylorus of a patient while preventing the neck portion from agitating the tissue of the pylorus. It has been discovered that an optimum length of the neck portion reduces agitation of the tissue of the pylorus by the anchor by reducing contact between the proximal and distal flanges of the anchor and the pyloric wall. By creating the neck portion to be longer than the width of the pyloric wall, the proximal flange and distal flange are arranged such that they have minimal contact with the pylorus as the pylorus opens and closes. Additionally or alternatively, the shape of the proximal flange and distal flange can be formed to include a bias that reduces contact with the pylorus as the pylorus opens and closes. For example, the proximal flange and distal flange may be formed to provide a space between the proximal flange and distal flange and the pylorus.


The anchor may be formed from material having a hollow tubular braided structure that can assume a collapsed configuration for placement within and removal from a patient's digestive system. The hollow tubular braided structure also can assume an expanded configuration for suitable placement within a patient's digestive track. The anchor may include a structural element that provides additional structural support to the anchor and keeps the anchor in an expanded configuration yet also allows the anchor to be compressed for ease of placement within and extraction from a patient. For example, a structural element can be placed within the distal flange to provide structural support in the radial direction and thus prevent the distal flange from reverting into the stomach of a patient. Additionally or alternatively, a drawstring may be placed within the proximal flange to provide structural support in the radial direction and prevent the proximal flange from traveling into the intestine of a patient. Both the structural elements can be configured to be compressed into a collapsed configuration to allow the anchor to be placed within and removed from within a patient's digestive track. The neck portion of the anchor can be tailored to span the pylorus, and may be tailored to fit various patients of various dimensions. Additionally, the length of the neck portion can be tailored to extend past the pylorus to reduce a compressive force exerted by the flanges onto the pylorus. For example, the length of the neck portion can be designed to sit within the patient's anatomy without continuous contact with the walls of the duodenal bulb and pyloric antrum. The diameter of the neck portion can also be sized to allow food to pass from a patient's stomach to intestine yet remain narrow enough to prevent it from propping open the pylorus.


The small intestine is about 21 feet long in adults. The small intestine is comprised of three sections: the duodenum, jejunum, and ileum. The duodenum is the first portion of the small intestine and is typically 10.0-12.0 inches long. The duodenum is comprised of four sections: the superior, descending, horizontal and ascending. The duodenum ends at the ligament of treitz. The duodenal bulb is the portion of the duodenum which is closest to the stomach. Suitably designed sleeves can be sized wherein the length of the sleeve determines at what point the chyme is allowed to contact the intestine. The design and length of the sleeve also determines at what point food that is traveling through the sleeve comes into contact with digestive juices.


The gastrointestinal implant described here in can be placed within a patient's digestive track by inserting an endoscope through the mouth, esophagus and stomach to the pylorus. An over-the-wire sizing balloon is inserted through the working channel of the endoscope over a guidewire and is advanced across the pyloric opening. The balloon is inflated with saline or contrast media to a low pressure to open the pylorus and duodenum and allow measurement of the lumen diameter of the pyloric antrum, pylorus and duodenal bulb.


In some embodiments, blood glucose levels can be measured by a glucose sensor and the insulin infusion rates and optimum chyme flow rates can be set by the diameter of the neck portion. Currently diabetic patients monitor blood glucose levels and then based on their insulin levels inject themselves with insulin either with a syringe or with an infusion pump. Gastric emptying rates vary depending upon the composition of the food eaten. Sugars pass quickly from the stomach into the small intestine and protein and fats move from the stomach into the small intestine more slowly. Blood sugar control can be difficult to manage if the flow rate of chyme from the stomach to the small intestine is unpredictable and in the case of patients with gastroparesis the chyme flow rate can be very slow to zero. The disclosure herein described will allow for a tighter glucose level control by allowing more precise control of the flow rate of chyme into small intestine and modulating the flow rate of chyme base on blood glucose levels and insulin infusion rate.


Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present invention. For example, while the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the above described features.

Claims
  • 1. A gastrointestinal implant for use within a pylorus, a duodenal bulb, and a duodenum of a patient, the implant having an expanded configuration and a contracted configuration and comprising: a proximal portion comprising a hollow tubular braided structure of wire shaped to form a cylinder having a proximal end, a distal end, and a proximal wall extending radially inward from the proximal portion distal end, wherein the proximal wall has an outer circumference and an inner circumference and is configured with a first bias such that the inner circumference is located closer to the proximal portion proximal end than the proximal portion outer circumference;a neck portion comprising a cylinder having a proximal end and a distal end and extending distally from the inner circumference of the proximal portion, the neck portion having a length greater than a width of a pylorus;a distal portion comprising a hollow tubular braided structure of wire shaped to form a cylinder extending distally from the neck portion and having a proximal end, a distal end, an outer wall extending between the proximal end and distal end, and a distal wall extending radially inward from the distal portion proximal end, wherein the distal wall has an outer circumference and an inner circumference and is configured with a second bias such that the inner circumference is located closer to the distal portion distal end than the distal portion outer circumference; anda structural element including a plurality of rings attached to the hollow tubular braided structure, wherein each ring of the plurality of rings has at least a first section coupled to the distal portion distal wall and at least a second section coupled to the distal portion outer wall, and wherein each ring of the plurality of rings is oriented in a plane, and wherein the plane of each ring intersects the plane of each of the other rings between the first section of each ring and the second section of each ring, the structural element configured to resist circumferential compression along a portion of the outer wall.
  • 2. The gastrointestinal implant of claim 1, wherein upon implantation within a patient's pylorus the proximal wall first bias defines a gap between the proximal wall inner circumference and the patient's pylorus.
  • 3. The gastrointestinal implant of claim 1, wherein upon implantation within a patient's pylorus the distal wall second bias defines a gap between the distal wall inner circumference and the patient's pylorus.
  • 4. The gastrointestinal implant of claim 1, wherein the structural element includes at least three rings, wherein each ring is attached along a circumference of the outer wall at a location about 120 degrees apart from each of the other rings.
  • 5. The gastrointestinal implant of claim 4, wherein the structural element comprises a shape that consists of a round shape, a rectangular shape, a square shape or an elliptical shape.
  • 6. The gastrointestinal implant of claim 1, wherein the proximal portion includes a drawstring.
  • 7. The gastrointestinal implant of claim 1, wherein the proximal portion includes a structural element comprising a substantially circular main body and a plurality of loops extending from the main body in the proximal direction.
  • 8. A gastrointestinal device for implanting within a pylorus, a duodenal bulb, and a duodenum of a patient's gastrointestinal tract, the device having a central axis and comprising: a first expandable portion comprising a hollow tubular braided structure of wire and having a first cylinder extending parallel to the central axis, the first cylinder having a proximal end, a distal end, and a length; anda first face located at the distal end of the first cylinder and oriented transverse to the central axis;a neck portion extending from the first face of the first expandable portion parallel to the central axis, the neck portion having a first end, a second end, a wall extending between the first end and second end, and a diameter sized to fit within a pylorus; anda second expandable portion comprising a hollow tubular braided structure of wire and having a second cylinder extending parallel to the central axis, the second cylinder having a proximal end, a distal end, and a length;a second face located at the proximal end of the second cylinder and oriented transverse to the central axis; anda structural element coupled to the second face and the length of the second cylinder, the structural element including at least three rings, wherein each of the three rings is oriented in a plane and wherein the plane of each ring intersects the plane of each of the other two rings;wherein the length of the second cylinder is greater than one centimeter.
  • 9. The gastrointestinal device of claim 8, wherein the structural element comprises a plurality of circular rings arranged to provide structural support radially between the second face and the second cylinder.
  • 10. The gastrointestinal device of claim 8, wherein the structural element is configured to deform independent of the hollow tubular braided structure in response to a compressive force.
  • 11. The gastrointestinal device of claim 8, wherein the neck portion is configured to fit within the pylorus and has a through lumen that allows chyme to flow from a patient's stomach to the duodenum.
  • 12. The gastrointestinal device of claim 10, wherein the neck portion is compliant enough to allow opening and closure of the through lumen within the pylorus.
  • 13. The gastrointestinal device of claim 8, wherein the neck portion is rigid enough to hold the pylorus open.
  • 14. The gastrointestinal device of claim 8, wherein the second face is oriented transverse to the central axis at an angle less than 90 degrees.
  • 15. The gastrointestinal device of claim 8, wherein the length of the second cylinder is sized to prevent rotation of the gastrointestinal device within the duodenal bulb.
  • 16. The gastrointestinal device of claim 8, wherein the length of the second cylinder is from about 1.0 cm to about 10.0 cm.
  • 17. The gastrointestinal device of claim 8, wherein the first face is oriented transverse to the central axis at an angle less than 90 degrees.
  • 18. A gastrointestinal device for implanting within a pylorus, a duodenal bulb, and a duodenum of a patient's gastrointestinal tract, the device comprising: a first expandable portion comprising a hollow tubular braided structure of wire shaped to include a disk portion configured to be located on a stomach side of the pylorus, the first expandable portion including a first structural element configured to resist radial compression of the first expandable portion and having a ring that includes at least one node configured to bias the ring into a collapsed configuration upon application of a radial force on the first expandable portion;a central cylinder portion having a first end, a second end, and a diameter that fits within the pylorus;a second expandable portion comprising a hollow tubular braided structure of wire shaped to include a cylinder having a proximal end, and distal end, a length between the proximal end and distal end, and a disk portion to be located on an intestinal side of the pylorus, the second expandable portion including a second structural element configured to resist circumferential compression, wherein the second structural element includes a plurality of rings attached to the hollow tubular braided structure, each ring of the plurality of rings having at least a first section coupled to the disk portion of the second expandable portion and at least a second section coupled to the length of the second expandable portion, and wherein each ring of the plurality of rings is oriented in a plane, and wherein the plane of each ring of the plurality of rings intersects the plane of each of the other rings between the first section of each ring and the second section of each ring; andan intestinal bypass sleeve comprising a sleeve portion, wherein the sleeve portion is configured to extend from the duodenal bulb into the duodenum.
  • 19. The gastrointestinal device of claim 18, wherein the second structural element comprises a circular ring.
  • 20. The gastrointestinal device of claim 18, wherein the second structural element comprises a plurality of substantially circular rings.
  • 21. The gastrointestinal device of claim 18, further comprising a drawstring attached to the first expandable portion.
  • 22. The gastrointestinal device of claim 18, further comprising a drawstring attached to the first expandable portion and configured to collapse the first expandable portion.
US Referenced Citations (336)
Number Name Date Kind
4134405 Smit Jan 1979 A
4204530 Finney May 1980 A
4246893 Berson Jan 1981 A
4314405 Park Feb 1982 A
4315509 Smit Feb 1982 A
4416267 Garren et al. Nov 1983 A
4501264 Rockey Feb 1985 A
4641653 Rockey Feb 1987 A
4716900 Ravo et al. Jan 1988 A
4719916 Ravo Jan 1988 A
4763653 Rockey Aug 1988 A
4899747 Garren et al. Feb 1990 A
4905693 Ravo Mar 1990 A
5234454 Bangs Aug 1993 A
5246456 Wilkinson Sep 1993 A
5306300 Berry Apr 1994 A
5322697 Meyer Jun 1994 A
5423872 Cigaina Jun 1995 A
5474563 Myler et al. Dec 1995 A
5480423 Ravenscroft et al. Jan 1996 A
5749921 Lenker et al. May 1998 A
5753253 Meyer May 1998 A
5755769 Richard et al. May 1998 A
5820584 Crabb Oct 1998 A
6017563 Knight et al. Jan 2000 A
6224627 Armstrong et al. May 2001 B1
6267988 Meyer Jul 2001 B1
6454699 Forsell Sep 2002 B1
6540789 Silverman et al. Apr 2003 B1
6558400 Deem et al. May 2003 B2
6675809 Stack et al. Jan 2004 B2
6740121 Geitz May 2004 B2
6755869 Geitz Jun 2004 B2
6802868 Silverman et al. Oct 2004 B2
6845776 Stack et al. Jan 2005 B2
6946002 Geitz Sep 2005 B2
6994095 Burnett Feb 2006 B2
7025791 Levine et al. Apr 2006 B2
7037343 Imran May 2006 B2
7037344 Kagan et al. May 2006 B2
7044979 Silverman et al. May 2006 B2
7090699 Geitz Aug 2006 B2
7111627 Stack et al. Sep 2006 B2
7121283 Stack et al. Oct 2006 B2
7122058 Levine et al. Oct 2006 B2
7146984 Stack et al. Dec 2006 B2
7152607 Stack et al. Dec 2006 B2
7160312 Saadat Jan 2007 B2
7163554 Williams et al. Jan 2007 B2
7175638 Gannoe et al. Feb 2007 B2
7175669 Geitz Feb 2007 B2
7211094 Gannoe et al. May 2007 B2
7211114 Bessler et al. May 2007 B2
7214233 Gannoe et al. May 2007 B2
7220237 Gannoe et al. May 2007 B2
7220284 Kagan et al. May 2007 B2
7223277 DeLegge May 2007 B2
7229428 Gannoe et al. Jun 2007 B2
7261725 Binmoeller Aug 2007 B2
7267694 Levine et al. Sep 2007 B2
7288099 Deem et al. Oct 2007 B2
7288101 Deem et al. Oct 2007 B2
7291160 DeLegge Nov 2007 B2
7306614 Weller et al. Dec 2007 B2
7314489 McKenna et al. Jan 2008 B2
7316716 Egan Jan 2008 B2
7329285 Levine et al. Feb 2008 B2
7335210 Smit Feb 2008 B2
7347875 Levine et al. Mar 2008 B2
7354454 Stack et al. Apr 2008 B2
7364542 Jambor et al. Apr 2008 B2
7364591 Silverman et al. Apr 2008 B2
7367937 Jambor et al. May 2008 B2
7431725 Stack et al. Oct 2008 B2
7476256 Meade et al. Jan 2009 B2
7503922 Deem et al. Mar 2009 B2
7507218 Aliski et al. Mar 2009 B2
7510559 Deem et al. Mar 2009 B2
7513914 Schurr Apr 2009 B2
7569056 Cragg et al. Aug 2009 B2
7601178 Imran Oct 2009 B2
7608114 Levine et al. Oct 2009 B2
7608578 Miller Oct 2009 B2
7618435 Opolski Nov 2009 B2
7628821 Stack et al. Dec 2009 B2
7678068 Levine et al. Mar 2010 B2
7682330 Meade et al. Mar 2010 B2
7695446 Levine et al. Apr 2010 B2
7758535 Levine et al. Jul 2010 B2
7766861 Levine et al. Aug 2010 B2
7766973 Levine et al. Aug 2010 B2
7815589 Meade et al. Oct 2010 B2
7837643 Levine et al. Nov 2010 B2
7837669 Dann et al. Nov 2010 B2
7935073 Levine et al. May 2011 B2
7976488 Levine et al. Jul 2011 B2
7981163 Meade et al. Jul 2011 B2
8105392 Durgin Jan 2012 B2
8114045 Surti Feb 2012 B2
8182441 Swain et al. May 2012 B2
8211186 Belhe et al. Jul 2012 B2
8282598 Belhe et al. Oct 2012 B2
8579849 Grau et al. Nov 2013 B2
8702641 Belhe et al. Apr 2014 B2
8702642 Belhe et al. Apr 2014 B2
8882698 Levine et al. Nov 2014 B2
9044300 Belhe et al. Jun 2015 B2
9173760 Belhe et al. Nov 2015 B2
9278019 Thompson et al. Mar 2016 B2
20020183768 Deem et al. Dec 2002 A1
20020188354 Peghini Dec 2002 A1
20030040804 Stack et al. Feb 2003 A1
20030040808 Stack et al. Feb 2003 A1
20030060894 Dua et al. Mar 2003 A1
20030109892 Deem et al. Jun 2003 A1
20030109931 Geitz Jun 2003 A1
20030109935 Geitz Jun 2003 A1
20030120265 Deem et al. Jun 2003 A1
20030158601 Silverman et al. Aug 2003 A1
20030191476 Smit Oct 2003 A1
20030199989 Stack et al. Oct 2003 A1
20030199990 Stack et al. Oct 2003 A1
20030199991 Stack et al. Oct 2003 A1
20040019388 Starkebaum Jan 2004 A1
20040024386 Deem et al. Feb 2004 A1
20040039452 Bessler Feb 2004 A1
20040088022 Chen May 2004 A1
20040092892 Kagan et al. May 2004 A1
20040093091 Gannoe et al. May 2004 A1
20040107004 Levine et al. Jun 2004 A1
20040117031 Stack et al. Jun 2004 A1
20040122452 Deem et al. Jun 2004 A1
20040122453 Deem et al. Jun 2004 A1
20040122526 Imran Jun 2004 A1
20040133147 Woo Jul 2004 A1
20040138760 Schurr Jul 2004 A1
20040138761 Stack et al. Jul 2004 A1
20040143342 Stack et al. Jul 2004 A1
20040148034 Kagan et al. Jul 2004 A1
20040158331 Stack et al. Aug 2004 A1
20040172141 Stack et al. Sep 2004 A1
20040172142 Stack et al. Sep 2004 A1
20040172143 Geitz Sep 2004 A1
20040199262 Dua et al. Oct 2004 A1
20040204768 Geitz Oct 2004 A1
20040220682 Levine et al. Nov 2004 A1
20040249362 Levine et al. Dec 2004 A1
20050004681 Stack et al. Jan 2005 A1
20050022827 Woo et al. Feb 2005 A1
20050033331 Burnett et al. Feb 2005 A1
20050043817 McKenna et al. Feb 2005 A1
20050049718 Dann et al. Mar 2005 A1
20050055039 Burnett et al. Mar 2005 A1
20050070934 Tanaka et al. Mar 2005 A1
20050075622 Levine et al. Apr 2005 A1
20050080395 Levine et al. Apr 2005 A1
20050080431 Levine et al. Apr 2005 A1
20050080444 Kraemer et al. Apr 2005 A1
20050080480 Bolea et al. Apr 2005 A1
20050080491 Levine et al. Apr 2005 A1
20050085923 Levine et al. Apr 2005 A1
20050096673 Stack et al. May 2005 A1
20050096750 Kagan et al. May 2005 A1
20050125020 Meade et al. Jun 2005 A1
20050125075 Meade et al. Jun 2005 A1
20050149200 Silverman et al. Jul 2005 A1
20050177181 Kagan et al. Aug 2005 A1
20050183730 Byrum Aug 2005 A1
20050192614 Binmoeller Sep 2005 A1
20050197714 Sayet Sep 2005 A1
20050228413 Binmoeller et al. Oct 2005 A1
20050228504 Demarais Oct 2005 A1
20050240279 Kagan et al. Oct 2005 A1
20050246037 Starkebaum Nov 2005 A1
20050247320 Stack et al. Nov 2005 A1
20050250980 Swanstrom et al. Nov 2005 A1
20050251157 Saadat et al. Nov 2005 A1
20050251206 Maahs et al. Nov 2005 A1
20050256587 Egan Nov 2005 A1
20050267499 Stack et al. Dec 2005 A1
20050273060 Levy et al. Dec 2005 A1
20050277963 Fields Dec 2005 A1
20050283107 Kalanovic et al. Dec 2005 A1
20050288555 Binmoeller Dec 2005 A1
20060009858 Levine et al. Jan 2006 A1
20060020247 Kagan et al. Jan 2006 A1
20060020277 Gostout et al. Jan 2006 A1
20060030949 Geitz Feb 2006 A1
20060036267 Saadat et al. Feb 2006 A1
20060064120 Levine et al. Mar 2006 A1
20060155310 Binmoeller Jul 2006 A1
20060155312 Levine et al. Jul 2006 A1
20060155375 Kagan et al. Jul 2006 A1
20060161139 Levine et al. Jul 2006 A1
20060161172 Levine et al. Jul 2006 A1
20060161187 Levine et al. Jul 2006 A1
20060161265 Levine et al. Jul 2006 A1
20060178691 Binmoeller Aug 2006 A1
20060206063 Kagan et al. Sep 2006 A1
20060206064 Kagan et al. Sep 2006 A1
20060249165 Silverman et al. Nov 2006 A1
20060258906 Binmoeller Nov 2006 A1
20060265082 Meade et al. Nov 2006 A1
20060282087 Binmoeller Dec 2006 A1
20060293742 Dann et al. Dec 2006 A1
20070004963 Benchetrit Jan 2007 A1
20070005147 Levine et al. Jan 2007 A1
20070010794 Dann et al. Jan 2007 A1
20070010864 Dann et al. Jan 2007 A1
20070010865 Dann et al. Jan 2007 A1
20070010866 Dann et al. Jan 2007 A1
20070021761 Phillips Jan 2007 A1
20070027548 Levine et al. Feb 2007 A1
20070032702 Ortiz Feb 2007 A1
20070032879 Levine et al. Feb 2007 A1
20070038308 Geitz Feb 2007 A1
20070060932 Stack et al. Mar 2007 A1
20070078302 Ortiz et al. Apr 2007 A1
20070083271 Levine et al. Apr 2007 A1
20070100367 Quijano et al. May 2007 A1
20070118158 Deem et al. May 2007 A1
20070118159 Deem et al. May 2007 A1
20070135825 Binmoeller Jun 2007 A1
20070167963 Deem et al. Jul 2007 A1
20070198074 Dann et al. Aug 2007 A1
20070203517 Williams et al. Aug 2007 A1
20070213740 Deem et al. Sep 2007 A1
20070213748 Deem et al. Sep 2007 A1
20070213751 Scirica et al. Sep 2007 A1
20070213837 Ferreri et al. Sep 2007 A1
20070219570 Deem et al. Sep 2007 A1
20070239284 Skerven et al. Oct 2007 A1
20070250083 Deem et al. Oct 2007 A1
20070250132 Burnett Oct 2007 A1
20070265709 Rajan et al. Nov 2007 A1
20070276432 Stack et al. Nov 2007 A1
20070282349 Deem et al. Dec 2007 A1
20070282418 Weitzner Dec 2007 A1
20070282452 Weitzner et al. Dec 2007 A1
20070282453 Weitzner et al. Dec 2007 A1
20070282454 Krueger et al. Dec 2007 A1
20070293885 Binmoeller Dec 2007 A1
20080033574 Bessler et al. Feb 2008 A1
20080045803 Williams et al. Feb 2008 A1
20080065122 Stack et al. Mar 2008 A1
20080065136 Young Mar 2008 A1
20080071383 Levine et al. Mar 2008 A1
20080086214 Hardin et al. Apr 2008 A1
20080092910 Brooks Apr 2008 A1
20080097466 Levine et al. Apr 2008 A1
20080103604 Levine et al. May 2008 A1
20080109086 Voegele et al. May 2008 A1
20080109087 Durgin May 2008 A1
20080140172 Carpenter et al. Jun 2008 A1
20080161935 Albrecht et al. Jul 2008 A1
20080167606 Dann et al. Jul 2008 A1
20080167610 Dann et al. Jul 2008 A1
20080167629 Dann et al. Jul 2008 A1
20080167724 Ruane et al. Jul 2008 A1
20080183238 Chen Jul 2008 A1
20080195225 Silverman et al. Aug 2008 A1
20080195226 Williams et al. Aug 2008 A1
20080208135 Annunziata Aug 2008 A1
20080208161 Kaji et al. Aug 2008 A1
20080208224 Surti et al. Aug 2008 A1
20080208239 Annunziata Aug 2008 A1
20080208355 Stack et al. Aug 2008 A1
20080208356 Stack et al. Aug 2008 A1
20080208357 Melanson et al. Aug 2008 A1
20080221597 Wallace et al. Sep 2008 A1
20080221702 Wallace et al. Sep 2008 A1
20080234834 Meade et al. Sep 2008 A1
20080243151 Binmoeller et al. Oct 2008 A1
20080249533 Godin Oct 2008 A1
20080249566 Harris et al. Oct 2008 A1
20080249635 Weitzner et al. Oct 2008 A1
20080255476 Boyajian et al. Oct 2008 A1
20080255587 Cully et al. Oct 2008 A1
20080255594 Cully et al. Oct 2008 A1
20080255678 Cully et al. Oct 2008 A1
20080262529 Jacques Oct 2008 A1
20080269715 Faller et al. Oct 2008 A1
20080269797 Stack et al. Oct 2008 A1
20080287969 Tsonton et al. Nov 2008 A1
20080312559 Santilli et al. Dec 2008 A1
20080319455 Harris et al. Dec 2008 A1
20090005637 Chin et al. Jan 2009 A1
20090012541 Dahl et al. Jan 2009 A1
20090012542 N'diaye et al. Jan 2009 A1
20090012544 Thompson et al. Jan 2009 A1
20090012553 Swain et al. Jan 2009 A1
20090076588 Weber Mar 2009 A1
20090093767 Kelleher Apr 2009 A1
20090093839 Kelleher Apr 2009 A1
20090118749 Shalon et al. May 2009 A1
20090125119 Obermiller et al. May 2009 A1
20090138094 Schurr May 2009 A1
20090149871 Kagan et al. Jun 2009 A9
20090164028 Chen Jun 2009 A1
20090177215 Stack et al. Jul 2009 A1
20090182355 Levine et al. Jul 2009 A1
20090187206 Binmoeller et al. Jul 2009 A1
20090198210 Burnett et al. Aug 2009 A1
20090216262 Burnett et al. Aug 2009 A1
20090240105 Smit et al. Sep 2009 A1
20090240340 Levine et al. Sep 2009 A1
20090248171 Levine et al. Oct 2009 A1
20090276055 Harris et al. Nov 2009 A1
20090281379 Binmoeller et al. Nov 2009 A1
20090299486 Shohat et al. Dec 2009 A1
20090299487 Stack et al. Dec 2009 A1
20090326433 Albrecht et al. Dec 2009 A1
20090326675 Albrecht et al. Dec 2009 A1
20100004755 Imran Jan 2010 A1
20100016988 Stack et al. Jan 2010 A1
20100030017 Baker et al. Feb 2010 A1
20100135971 Schiffrin Jun 2010 A1
20100256775 Belhe et al. Oct 2010 A1
20100305590 Holmes et al. Dec 2010 A1
20110009690 Belhe et al. Jan 2011 A1
20110106273 Belhe et al. May 2011 A1
20120065571 Thompson et al. Mar 2012 A1
20120184893 Thompson et al. Jul 2012 A1
20120232460 Raven et al. Sep 2012 A1
20120253259 Belhe et al. Oct 2012 A1
20120253260 Belhe et al. Oct 2012 A1
20120302936 Belhe et al. Nov 2012 A1
20130030351 Belhe et al. Jan 2013 A1
20130324907 Huntley et al. Dec 2013 A1
20140194806 Belhe et al. Jul 2014 A1
20140200502 Belhe et al. Jul 2014 A1
20140309576 Belhe et al. Oct 2014 A1
20140350694 Behan Nov 2014 A1
20140379093 Durgin Dec 2014 A1
20160089256 Belhe et al. Mar 2016 A1
20160228276 Thompson et al. Aug 2016 A1
Foreign Referenced Citations (135)
Number Date Country
2006227471 Sep 2006 AU
2014200766 Jun 2015 AU
1575155 Feb 2005 CN
1618411 May 2005 CN
0137878 Apr 1985 EP
1420730 May 2004 EP
1492477 Jan 2005 EP
1492478 Jan 2005 EP
1555970 Jul 2005 EP
1569582 Sep 2005 EP
1585458 Oct 2005 EP
1680054 Jul 2006 EP
1708641 Oct 2006 EP
1708655 Oct 2006 EP
1709508 Oct 2006 EP
1749482 Feb 2007 EP
1750595 Feb 2007 EP
1778069 May 2007 EP
1786310 May 2007 EP
1799145 Jun 2007 EP
1817072 Aug 2007 EP
1832250 Sep 2007 EP
1850811 Nov 2007 EP
1850812 Nov 2007 EP
1881781 Jan 2008 EP
1887995 Feb 2008 EP
1895887 Mar 2008 EP
1937164 Jul 2008 EP
1992314 Nov 2008 EP
1416861 Dec 2008 EP
1749480 Dec 2008 EP
2010270 Jan 2009 EP
1610720 Feb 2009 EP
2023828 Feb 2009 EP
2026713 Feb 2009 EP
2061397 May 2009 EP
2066243 Jun 2009 EP
2068719 Jun 2009 EP
2080242 Jul 2009 EP
1520528 Sep 2009 EP
1610719 Jan 2010 EP
1603488 Apr 2010 EP
1585460 May 2010 EP
1933721 May 2010 EP
1768618 Apr 2011 EP
1883370 Aug 2011 EP
2945566 Nov 2015 EP
2005500127 Jan 2005 JP
2007513684 May 2007 JP
WO9849943 Nov 1998 WO
WO02096327 Dec 2002 WO
WO03017882 Mar 2003 WO
WO03086246 Oct 2003 WO
WO03086247 Oct 2003 WO
WO03094785 Nov 2003 WO
WO2004011085 Feb 2004 WO
WO2004017863 Mar 2004 WO
WO2004041133 May 2004 WO
WO2004064680 Aug 2004 WO
WO2004064685 Aug 2004 WO
WO2004087014 Oct 2004 WO
WO2004087233 Oct 2004 WO
WO2004049982 Dec 2004 WO
WO2005037152 Apr 2005 WO
WO2005058415 Jun 2005 WO
WO2005060869 Jul 2005 WO
WO2005060882 Jul 2005 WO
WO2005065412 Jul 2005 WO
WO2005097012 Oct 2005 WO
WO2005099591 Oct 2005 WO
WO2005110244 Nov 2005 WO
WO2005110280 Nov 2005 WO
WO2005112822 Dec 2005 WO
WO2005120363 Dec 2005 WO
WO2006014496 Feb 2006 WO
WO2006016894 Feb 2006 WO
WO2006020370 Feb 2006 WO
WO2006028898 Mar 2006 WO
WO2006034062 Mar 2006 WO
WO2006060049 Jun 2006 WO
WO2006062996 Jun 2006 WO
WO2006078781 Jul 2006 WO
WO2006078927 Jul 2006 WO
WO2006102012 Sep 2006 WO
WO2006102240 Sep 2006 WO
WO2006124880 Nov 2006 WO
WO2006127593 Nov 2006 WO
WO2006133311 Dec 2006 WO
WO2007019117 Feb 2007 WO
WO2007030829 Mar 2007 WO
WO2007038715 Apr 2007 WO
WO2007041598 Apr 2007 WO
WO2007075396 Jul 2007 WO
WO2007092390 Aug 2007 WO
WO2007107990 Sep 2007 WO
WO2007127209 Nov 2007 WO
WO2007136468 Nov 2007 WO
WO2007139920 Dec 2007 WO
WO2007142829 Dec 2007 WO
WO2007142832 Dec 2007 WO
WO2007142833 Dec 2007 WO
WO2007142834 Dec 2007 WO
WO2007145684 Dec 2007 WO
WO2008005510 Jan 2008 WO
WO2008030403 Mar 2008 WO
WO2008033409 Mar 2008 WO
WO2008033474 Mar 2008 WO
WO2008039800 Apr 2008 WO
WO2008101048 Aug 2008 WO
WO2008106041 Sep 2008 WO
WO2008106279 Sep 2008 WO
WO2008112942 Sep 2008 WO
WO2008127552 Oct 2008 WO
WO2008141288 Nov 2008 WO
WO2008148047 Dec 2008 WO
WO2008150905 Dec 2008 WO
WO2008154450 Dec 2008 WO
WO2008154594 Dec 2008 WO
WO2009011881 Jan 2009 WO
WO2009011882 Jan 2009 WO
WO2009012335 Jan 2009 WO
WO2009036244 Mar 2009 WO
WO2009046126 Apr 2009 WO
WO2009082710 Jul 2009 WO
WO2009085107 Jul 2009 WO
WO2009086549 Jul 2009 WO
WO2009097582 Aug 2009 WO
WO2009097585 Aug 2009 WO
WO2010115011 Oct 2010 WO
WO2011062882 May 2011 WO
WO2011073970 Jun 2011 WO
WO2011099940 Aug 2011 WO
WO2012103531 Aug 2012 WO
2014113483 Jul 2014 WO
2015138465 Sep 2015 WO
Non-Patent Literature Citations (26)
Entry
Buchwald, Henry et al., “Bariatric Surgery: A Systematic Review and Meta-Analysis”, JAMA, Oct. 13, 2004, 292 (14), pp. 1724-1737.
Cummings, David E. et al., “Role of the bypassed proximal intestine in the anti-diabetic effects of bariatric surgery”, Surgery for Obesity and Related Diseases 3 2007, pp. 109-115.
Daniels, Stephen, “Probiotics may ‘counter obesity and diabetes’: NIH study”, Jul. 10, 2013, downloaded from http://www.nutraingredients-usa.com/research/probiotics-may-counter-obesity-and-diabetes-NIH-study, 2 pages.
International Preliminary Report on Patentability issued in PCT/US2014/011702, mailed Jul. 30, 2015, 7 pages.
International Search Report and Written Opinion issued in PCT/US12/58202, mailed Jan. 23, 2013, 14 pages.
International Search Report and Written Opinion issued in PCT/US2010/029648, mailed Aug. 24, 2010.
International Search Report and Written Opinion issued in PCT/US2010/041574, mailed Jan. 25, 2011.
International Search Report and Written Opinion issued in PCT/US2011/020560, mailed Mar. 28, 2011, 10 pages.
International Search Report and Written Opinion issued in PCT/US2011/061193.
International Search Report and Written Opinion issued in PCT/US2012/023048, mailed Jun. 22, 2012.
International Search Report and Written Opinion issued in PCT/US2014/011702, mailed Mar. 21, 2014, 9 pages.
International Search Report and Written Opinion issued in PCT/US2015/019730, mailed Mar. 10, 2015, 15 pages.
Invitation to Pay Additional Fees issued in PCT/US2010/029648, mailed Jun. 1, 2010.
Ley, Ruth E. et al., “Microbial ecology: human gut microbes associated with obesity”, Nature, vol. 44, No. 7122, pp. 1022-1023, 2006.
Partial European Search Report issued in EP14172564, mailed Feb. 12, 2015 , 7pages.
Pories, Walter J. et al., “Surgical Treatment of Obesity and its Effect on Diabetes: 10-6 Follow-up”, Am J Clin Nutr 1992, 55, 582S-585S.
Pories, Walter J. et al., “Who Would Have Thought It? An Operation Proves to be the Most Effective Therapy for Adult-Onset Diabetes Mellitus”, Annals of Surgery, Sep. 1995, 222(3), pp. 339-352.
Rodriguez-Grunert, Leonardo et al., “First Human Experience With endoscopically Delivered and retrieved duodenal-jejunal bypass sleeve”, Surgery for Obesity and Related diseases 4 (2008) 55-59.
Rubino, Francesco et al,, “Effect of Duodenal-Jejunal Exclusion in a Non-Obese Animal Model of Type 2 Diabetes”, Annals of Surgery, vol. 239, No. 1, Jan. 2004, pp. 1-11.
Rubino, Francesco et al., “Potential of Surgery for Curing Type 2 Diabetes Mellitus”, Annals of Surgery, Nov. 2002, 236(5), 554-559.
Rubino, Francesco et al., “The Mechanism of Diabetes Control After Gastrointestinal Bypass Surgery Reveals a Role of the Proximal Small Intestine in the pathophysiology of Type 2 Diabetes”, Annals of Surgery, 244(5), Nov. 2006, pp. 741-749.
Schouten, Ruben et al., “A Multicenter, Randomized Efficacy Study of the endoBarrier Gastrointestinal Liner for Presurgical Weight Loss Prior to Bariatric Surgery”, Annals of Surgery, vol. 251, No. 2, Feb. 2010, pp. 236-243.
Strader, April et al., “Weight Loss Through Ileal transposition is accompanied by increased ileal hormone secretion and synthesis in rats”, Am J Physiol Endocrinol Metab 288: E447-E453, 2005.
Troy, Stephanie et al., “Intestinal Gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice”, Cell metabolism 8, 201-211, Sep. 3, 2008.
Vetter, Marion et al., “Narrative Review: Effect of bariatric Surgery on Type 2 Diabetes Mellitus”, Annals of Internal Medicine, Jan. 20, 2009, 150(2), pp. 94-104.
Yadav, Hariom et al., Beneficial Metabolic Effects of a Probiotic via Butyrate-induced GLP-1 Hormone Secretion, Journal of Biological Chemistry, 2013, vol. 288, pp. 25088-25097.