PYRAZOLE AMINOPYRIMIDINE DERIVATIVES AS LRRK2 MODULATORS

Abstract
Compounds of the formula I:
Description
FIELD OF THE INVENTION

This invention pertains to compounds that modulate the function of LRRK2 and are useful for treatment of LRRK2-mediated diseases and conditions such as Parkinson's disease.


BACKGROUND OF THE INVENTION

Neurodegenerative diseases such as Parkinson's disease, Lewy body dementia and Huntington's disease affect millions of individuals. Parkinson's disease is a chronic, progressive motor system disorder that afflicts approximately one out of every 1000 people, with hereditary Parkinson's disease accounting for 5-10% of all of patients. Parkinson's disease is caused by progressive loss of mid-brain dopamine neurons, leaving patients with impaired ability to direct and control their movements. The primary Parkinson's disease symptoms are trembling, rigidity, slowness of movement, and impaired balance. Many Parkinson's disease patients also experience other symptoms such as emotional changes, memory loss, speech problems, and sleeping disorders.


The gene encoding the leucine-rich repeat kinase 2 protein (LRRK2) has been identified in association with hereditary Parkinson's disease (Paisan-Ruiz et al., Neuron, Vol. 44(4), 2004, pp 595-600; Zimprich et al., Neuron, Vol. 44(4), 2004, 601-607). In-vitro studies show that Parkinson's disease-associated mutation leads to increased LRRK2 kinase activity and decreased rate of GTP hydrolysis compared to wild-type (Guo et al., Experimental Cell Research, Vol. 313(16), 2007, pp. 3658-3670. Anti-LRRK2 antibodies have been used to label brainstem Lewy bodies associated with Parkinson's disease and cortical antibodies associated with Lewis bodydementia suggesting that LRRK2 may play an important role in Lewie body formation and pathogenesis associated with these diseases (Zhou et al., Molecular Degeneration, 2006, 1:17 doi:10.1186/1750-1326-1-17). LRRK2 has also been identified as a gene potentially associated with increased susceptibility to Crohn's disease and susceptibility to leprosy (Zhang et al., New England J. Med. Vol. 361 (2009) pp. 2609-2618.


LRRK2 has also been associated with the transition of mild cognitive impairment to Alzheimer's disease (WO2007/149789); L-Dopa induced dyskinesia (Hurley et al., Eur. J. Neurosci., Vol. 26, 2007, pp. 171-177; CNS disorders associated with neuronal progenitor differentiation (Milosevic et al., Neurodegen., Vol. 4, 2009, p. 25); cancers such as kidney, breast, prostate, blood and lung cancers and acute myelogenous leukemia (WO2011/038572); papillary renal and thyroid carcinomas (Looyenga et al., www.pnas.org/cgi/doi/10.1073/pnas.1012500108); multiple myeloma (Chapman et al., Nature Vol. 471, 2011, pp. 467-472); amyotrophic lateral sclerosis (Shtilbans et al., Amyotrophic Lateral Sclerosis “Early Online 2011, pp. 1-7); rheumatoid arthritis (Nakamura et al., DNA Res. Vol. 13(4), 2006, pp. 169-183); and ankylosing spondylytis (Danoy et al., PLoS Genetics, Vol. 6(12), 2010, e1001195, pp. 1-5).


Accordingly, compounds and compositions effective at modulating LRRK2 activity may provide a treatment for neurodegenerative diseases such as Parkinson's disease and Lewie body dementia, for CNS disorders such as Alzheimer's disease and L-Dopa induced dyskinesia, for cancers such as kidney, breast, prostate, blood, papillary and lung cancers, acute myelogenous leukemia and multiple myeloma, and for inflammatory diseases such as leprosy, Crohn's disease, amyotrophic lateral sclerosis, rheumatoid arthritis, and ankylosing spondylytis. Particularly, there is a need for compounds with LRRK2 affinity that are selective for LRRK2 over other kinases, such as JAK2, which can provide effective drugs for treatment of neurodegenerative disorders such as PD.


SUMMARY OF THE INVENTION

The invention provides compounds of the formula I:




embedded image


or pharmaceutically acceptable salts thereof,


wherein:


X is: —NRa—; or —O— wherein Ra is hydrogen or C1-6alkyl;


R1 is: C1-6alkyl; C2-6alkenyl; C2-6alkynyl; halo-C1-6alkyl; C1-6alkoxy-C1-6alkyl; hydroxy-C1-6alkyl; amino-C1-6alkyl; C1-6alkylsulfonyl-C1-6alkyl; C3-6cycloalkyl optionally substituted one or more times with C1-6alkyl; C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with C1-6alkyl; heterocyclyl optionally substituted one or more times with R7; or heterocyclyl-C1-6alkyl optionally substituted one or more times with R7;


or X and R1 together form C1-6alkyl; C1-6alkoxy-C1-6alkyl; C3-6cycloalkyl optionally substituted one or more times with R6; or C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with R6;


or R1 and Ra together with the atoms to which they are attached may form a three- to six-membered heterocyclic ring optionally substituted one or more times with R7;


R2 is: C1-6alkyl; halo; C1-6alkoxy; cyano; C2-6alkynyl; C2-6alkenyl; halo-C1-6alkyl; halo-C1-6alkoxy; C3-6cycloalkyl optionally substituted one or more times with R6; C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with R6; —ORb wherein Rb is C1-6alkyl, C3-6cycloalkyl optionally substituted one or more times with R6, or C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with R6; or —C(O)—Rc wherein Rc is C1-6alkyl, C1-6alkoxy, amino, or heterocyclyl optionally substituted one or more times with R7;


R3 is: hydrogen; C1-6alkyl; halo-C1-6alkyl; C2-6alkenyl; C2-6alkynyl; hydroxy-C1-6alkyl; C1-6alkoxy-C1-6alkyl; cyano-C1-6alkyl; C1-6alkylsulfonyl; C1-6alkylsulfonylC1-6alkyl; amino-C1-6alkyl; C3-6cycloalkyl optionally substituted one or more times with R6; C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with R6; C3-6cycloalkyl-sulfonyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with R6; heterocyclyl optionally substituted one or more times with R7; heterocyclyl-C1-6alkyl wherein the heterocyclyl portion is optionally substituted one or more times with R7; aryl optionally substituted one or more times with R8; aryl-C1-6alkyl wherein the aryl portion is optionally substituted one or more times with R8; heteroaryl optionally substituted one or more times with R8; heteroaryl-C1-6alkyl wherein the heteroaryl portion is optionally substituted one or more times with R8; or —Y—C(O)—Rd;


Y is C2-6alkylene or a bond;


Rd is C1-6alkyl, C1-6alkoxy, amino, C1-6alkyl-amino, di-C1-6alkyl-amino, halo-C1-6alkyl-amino, di-halo-C1-6alkyl-amino, halo-C1-6alkyl, hydroxy-C1-6alkyl, hydroxy, C1-6alkoxy-C1-6alkyl, cyano-C1-6alkyl, C1-6alkylsulfonylC1-6alkyl, amino-C1-6alkyl, C3-6cycloalkyl optionally substituted one or more times with R6, C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with R6 heterocyclyl optionally substituted one or more times with R7, or heterocyclyl-C1-6alkyl wherein the heterocyclyl portion is optionally substituted one or more times with R7;


R4 is: hydrogen; C1-6alkyl; halo; cyano; halo-C1-6alkyl; C2-6alkenyl; C2-6alkynyl; C1-6alkoxy; C1-6alkoxy-C1-6alkyl; hydroxy-C1-6alkyl; C3-6cycloalkyl optionally substituted one or more times with R6; C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with R6; or —Y—C(O)—Rd;


R5 is: hydrogen; or C1-6alkyl;


each R6 is independently: C1-6alkyl; halo-C1-6alkyl; C1-6alkoxy; oxo; cyano; halo; or Y—C(O)—Rd;


each R7 is independently: C1-6alkyl; halo-C1-6alkyl; halo; oxo; C1-6alkoxy; C1-6alkylsulfonyl; C1-6alkoxy-C1-6alkyl; cyano; —Y—C(O)—Rd; heterocyclyl; heterocyclyl-C1-6alkyl; C3-6cycloalkyl; C3-6cycloalkyl-C1-6alkyl; or C3-6cycloalkylsulfonyl; and


each R8 is independently: oxo; C1-6alkyl; halo-C1-6alkyl; halo; C1-6alkyl-sulfonyl; C1-6alkoxy; C1-6alkoxy-C1-6alkyl; cyano; hetoeryclyl; heterocyclyl-C1-6alkyl; —Y—C(O)—Rd; C3-6cycloalkyl, C3-6cycloalkyl-C1-6alkyl, or C3-6cycloalkyl-sulfonyl.


The invention also provides pharmaceutical compositions comprising the compounds, methods of using the compounds, and methods of preparing the compounds.







DETAILED DESCRIPTION OF THE INVENTION
Definitions

Unless otherwise stated, the following terms used in this application, including the specification and claims, have the definitions given below. It must be noted that, as used in the specification and the appended claims, the singular forms “a”, “an,” and “the” include plural referents unless the context clearly dictates otherwise.


“Alkyl” means the monovalent linear or branched saturated hydrocarbon moiety, consisting solely of carbon and hydrogen atoms, having from one to twelve carbon atoms. “Lower alkyl” refers to an alkyl group of one to six carbon atoms, i.e. C1-C6alkyl. Examples of alkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, isobutyl, sec-butyl, tert-butyl, pentyl, n-hexyl, octyl, dodecyl, and the like.


“Alkenyl” means a linear monovalent hydrocarbon radical of two to six carbon atoms or a branched monovalent hydrocarbon radical of three to six carbon atoms, containing at least one double bond, e.g., ethenyl, propenyl, and the like.


“Alkynyl” means a linear monovalent hydrocarbon radical of two to six carbon atoms or a branched monovalent hydrocarbon radical of three to six carbon atoms, containing at least one triple bond, e.g., ethynyl, propynyl, and the like.


“Alkylene” means a linear saturated divalent hydrocarbon radical of one to six carbon atoms or a branched saturated divalent hydrocarbon radical of three to six carbon atoms, e.g., methylene, ethylene, 2,2-dimethylethylene, propylene, 2-methylpropylene, butylene, pentylene, and the like.


“Alkoxy” and “alkyloxy”, which may be used interchangeably, mean a moiety of the formula —OR, wherein R is an alkyl moiety as defined herein. Examples of alkoxy moieties include, but are not limited to, methoxy, ethoxy, isopropoxy, and the like.


“Alkoxyalkyl” means a moiety of the formula Ra—O—Rb—, where Ra is alkyl and Rb is alkylene as defined herein. Exemplary alkoxyalkyl groups include, by way of example, 2-methoxyethyl, 3-methoxypropyl, 1-methyl-2-methoxyethyl, 1-(2-methoxyethyl)-3-methoxypropyl, and 1-(2-methoxyethyl)-3-methoxypropyl.


“Alkoxyalkoxy” means a group of the formula —O—R—R′ wherein R is alkylene and R′ is alkoxy as defined herein.


“Alkylcarbonyl” means a moiety of the formula —C(O)—R, wherein R is alkyl as defined herein.


“Alkoxycarbonyl” means a group of the formula —C(O)—R wherein R is alkoxy as defined herein.


“Alkylcarbonylalkyl” means a group of the formula —R—C(O)—R wherein R is alkylene and R′ is alkyl as defined herein.


“Alkoxycarbonylalkyl” means a group of the formula —R—C(O)—R wherein R is alkylene and R′ is alkoxy as defined herein.


“Alkoxycarbonylalkoxy” means a group of the formula —O—R—C(O)—R′ wherein R is alkylene and R′ is alkoxy as defined herein.


“Hydroxycarbonylalkoxy” means a group of the formula —O—R—C(O)—OH wherein R is alkylene as defined herein.


“Alkylaminocarbonylalkoxy” means a group of the formula —O—R—C(O)—NHR′ wherein R is alkylene and R′ is alkyl as defined herein.


“Dialkylaminocarbonylalkoxy” means a group of the formula —O—R—C(O)—NR′R″ wherein R is alkylene and R′ and R″ are alkyl as defined herein.


“Alkylaminoalkoxy” means a group of the formula —O—R—NHR′ wherein R is alkylene and R′ is alkyl as defined herein.


“Dialkylaminoalkoxy” means a group of the formula —O—R—NR′R′ wherein R is alkylene and R′ and R″ are alkyl as defined herein.


“Alkylsulfonyl” means a moiety of the formula —SO2—R, wherein R is alkyl as defined herein.


“Alkylsulfonylalkyl means a moiety of the formula —R′—SO2—R″ where R′ is alkylene and R″ is alkyl as defined herein.


“Alkylsulfonylalkoxy” means a group of the formula —O—R—SO2—R′ wherein R is alkylene and R′ is alkyl as defined herein.


“Amino means a moiety of the formula —NRR′ wherein R and R′ each independently is hydrogen or alkyl as defined herein. “Amino thus includes “alkylamino (where one of R and R′ is alkyl and the other is hydrogen) and “dialkylamino (where R and R′ are both alkyl.


“Aminocarbonyl” means a group of the formula —C(O)—R wherein R is amino as defined herein.


“Alkoxyamino” means a moiety of the formula —NR—OR′ wherein R is hydrogen or alkyl and R′ is alkyl as defined herein.


“Alkylsulfanyl” means a moiety of the formula —SR wherein R is alkyl as defined herein.


“Aminoalkyl” means a group —R—R′ wherein R′ is amino and R is alkylene as defined herein. “Aminoalkyl” includes aminomethyl, aminoethyl, 1-aminopropyl, 2-aminopropyl, and the like. The amino moiety of “aminoalkyl” may be substituted once or twice with alkyl to provide “alkylaminoalkyl” and “dialkylaminoalkyl” respectively. “Alkylaminoalkyl” includes methylaminomethyl, methylaminoethyl, methylaminopropyl, ethylaminoethyl and the like. “Dialkylaminoalkyl” includes dimethylaminomethyl, dimethylaminoethyl, dimethylaminopropyl, N-methyl-N-ethylaminoethyl, and the like.


“Aminoalkoxy” means a group —OR—R′ wherein R′ is amino and R is alkylene as defined herein.


“Alkylsulfonylamido” means a moiety of the formula —NR′SO2—R wherein R is alkyl and R′ is hydrogen or alkyl.


“Aminocarbonyloxyalkyl” or “carbamylalkyl” means a group of the formula —R—O—C(O)—NR′R″ wherein R is alkylene and R′, R″ each independently is hydrogen or alkyl as defined herein.


“Alkynylalkoxy” means a group of the formula —O—R—R′ wherein R is alkylene and R′ is alkynyl as defined herein.


“Aryl” means a monovalent cyclic aromatic hydrocarbon moiety consisting of a mono-, bi- or tricyclic aromatic ring. The aryl group can be optionally substituted as defined herein. Examples of aryl moieties include, but are not limited to, phenyl, naphthyl, phenanthryl, fluorenyl, indenyl, pentalenyl, azulenyl, oxydiphenyl, biphenyl, methylenediphenyl, aminodiphenyl, diphenylsulfidyl, diphenylsulfonyl, diphenylisopropylidenyl, benzodioxanyl, benzofuranyl, benzodioxylyl, benzopyranyl, benzoxazinyl, benzoxazinonyl, benzopiperadinyl, benzopiperazinyl, benzopyrrolidinyl, benzomorpholinyl, methylenedioxyphenyl, ethylenedioxyphenyl, and the like, including partially hydrogenated derivatives thereof, each being optionally substituted.


“Arylalkyl” and “Aralkyl”, which may be used interchangeably, mean a radical-RaRb where Ra is an alkylene group and Rb is an aryl group as defined herein; e.g., phenylalkyls such as benzyl, phenylethyl, 3-(3-chlorophenyl)-2-methylpentyl, and the like are examples of arylalkyl.


“Arylsulfonyl means a group of the formula —SO2—R wherein R is aryl as defined herein.


“Aryloxy” means a group of the formula —O—R wherein R is aryl as defined herein.


“Aralkyloxy” means a group of the formula —O—R—R″ wherein R is alkylene and R′ is aryl as defined herein.


“Carboxy” or “hydroxycarbonyl”, which may be used interchangeably, means a group of the formula —C(O)—OH.


“Cyanoalkyl” “means a moiety of the formula —R′—R″, where R′ is alkylene as defined herein and R″ is cyano or nitrile.


“Cycloalkyl” means a monovalent saturated carbocyclic moiety consisting of mono- or bicyclic rings. Particular cycloalkyl are unsubstituted or substituted with alkyl. Cycloalkyl can optionally be substituted with one or more substituents, wherein each substituent is independently hydroxy, alkyl, alkoxy, halo, haloalkyl, amino, monoalkylamino, or dialkylamino, unless otherwise specifically indicated. Examples of cycloalkyl moieties include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and the like, including partially unsaturated (cycloalkenyl) derivatives thereof


“Cycloalkylalkyl” means a moiety of the formula —R′—R″, where R′ is alkylene and R″ is cycloalkyl as defined herein.


“Cycloalkylalkoxy” means a group of the formula —O—R—R′ wherein R is alkylene and R′ is cycloalkyl as defined herein.


“Heteroalkyl” means an alkyl radical as defined herein wherein one, two or three hydrogen atoms have been replaced with a substituent independently selected from the group consisting of —ORa, —NRbRc, and —S(O)nRd (where n is an integer from 0 to 2), with the understanding that the point of attachment of the heteroalkyl radical is through a carbon atom, wherein Ra is hydrogen, acyl, alkyl, cycloalkyl, or cycloalkylalkyl; Rb and Rc are independently of each other hydrogen, acyl, alkyl, cycloalkyl, or cycloalkylalkyl; and when n is 0, Rd is hydrogen, alkyl, cycloalkyl, or cycloalkylalkyl, and when n is 1 or 2, Rd is alkyl, cycloalkyl, cycloalkylalkyl, amino, acylamino, monoalkylamino, or dialkylamino Representative examples include, but are not limited to, 2-hydroxyethyl, 3-hydroxypropyl, 2-hydroxy-1-hydroxymethylethyl, 2,3-dihydroxypropyl, 1-hydroxymethylethyl, 3-hydroxybutyl, 2,3-dihydroxybutyl, 2-hydroxy-1-methylpropyl, 2-aminoethyl, 3-aminopropyl, 2-methylsulfonylethyl, aminosulfonylmethyl, aminosulfonylethyl, aminosulfonylpropyl, methylaminosulfonylmethyl, methylaminosulfonylethyl, methylaminosulfonylpropyl, and the like.


“Heteroaryl” means a monocyclic or bicyclic radical of 5 to 12 ring atoms having at least one aromatic ring containing one, two, or three ring heteroatoms selected from N, O, or S, the remaining ring atoms being C, with the understanding that the attachment point of the heteroaryl radical will be on an aromatic ring. The heteroaryl ring may be optionally substituted as defined herein. Examples of heteroaryl moieties include, but are not limited to, optionally substituted imidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, oxadiazolyl, thiadiazolyl, pyrazinyl, thienyl, benzothienyl, thiophenyl, furanyl, pyranyl, pyridyl, pyrrolyl, pyrazolyl, pyrimidyl, quinolinyl, isoquinolinyl, benzofuryl, benzothiophenyl, benzothiopyranyl, benzimidazolyl, benzooxazolyl, benzooxadiazolyl, benzothiazolyl, benzothiadiazolyl, benzopyranyl, indolyl, isoindolyl, triazolyl, triazinyl, quinoxalinyl, purinyl, quinazolinyl, quinolizinyl, naphthyridinyl, pteridinyl, carbazolyl, azepinyl, diazepinyl, acridinyl and the like, including partially hydrogenated derivatives thereof, each optionally substituted.


Heteroarylalkyl” or “heteroaralkyl” means a group of the formula —R—R′ wherein R is alkylene and R′ is heteroaryl as defined herein.


“Heteroarylsulfonyl means a group of the formula —SO2—R wherein R is heteroaryl as defined herein.


“Heteroaryloxy” means a group of the formula —O—R wherein R is heteroaryl as defined herein.


“Heteroaralkyloxy” means a group of the formula —O—R—R″ wherein R is alkylene and R′ is heteroaryl as defined herein.


The terms “halo”, “halogen” and “halide”, which may be used interchangeably, refer to a substituent fluoro, chloro, bromo, or iodo.


“Haloalkyl” means alkyl as defined herein in which one or more hydrogen has been replaced with same or different halogen. Exemplary haloalkyls include —CH2Cl, —CH2CF3, —CH2CCl3, perfluoroalkyl (e.g., —CF3), and the like.


“Haloalkoxy” means a moiety of the formula —OR, wherein R is a haloalkyl moiety as defined herein. An exemplary haloalkoxy is difluoromethoxy.


“Heterocycloamino” means a saturated ring wherein at least one ring atom is N, NH or N-alkyl and the remaining ring atoms form an alkylene group.


“Heterocyclyl” means a monovalent saturated moiety, consisting of one to three rings, incorporating one, two, or three or four heteroatoms (chosen from nitrogen, oxygen or sulfur). The heterocyclyl ring may be optionally substituted as defined herein. Examples of heterocyclyl moieties include, but are not limited to, optionally substituted piperidinyl, piperazinyl, homopiperazinyl, azepinyl, pyrrolidinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, pyridinyl, pyridazinyl, pyrimidinyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinuclidinyl, quinolinyl, isoquinolinyl, benzimidazolyl, thiadiazolylidinyl, benzothiazolidinyl, benzoazolylidinyl, dihydrofuryl, tetrahydrofuryl, dihydropyranyl, tetrahydropyranyl, thiamorpholinyl, thiamorpholinylsulfoxide, thiamorpholinylsulfone, dihydroquinolinyl, dihydrisoquinolinyl, tetrahydroquinolinyl, tetrahydrisoquinolinyl, and the like.


“Heterocyclylalkyl” means a moiety of the formula —R—R′ wherein R is alkylene and R′ is heterocyclyl as defined herein.


“Heterocyclyloxy” means a moiety of the formula —OR wherein R is heterocyclyl as defined herein.


“Heterocyclylalkoxy” means a moiety of the formula —OR—R′ wherein R is alkylene and R′ is heterocyclyl as defined herein.


“Hydroxyalkoxy” means a moiety of the formula —OR wherein R is hydroxyalkyl as defined herein.


“Hydroxyalkylamino” means a moiety of the formula —NR—R′ wherein R is hydrogen or alkyl and R′ is hydroxyalkyl as defined herein.


“Hydroxyalkylaminoalkyl” means a moiety of the formula —R—NR′—R″ wherein R is alkylene, R′ is hydrogen or alkyl, and R″ is hydroxyalkyl as defined herein.


“Hydroxycarbonylalkyl” or “carboxyalkyl” means a group of the formula —R—(CO)—OH where R is alkylene as defined herein.


“Hydroxycarbonylalkoxy” means a group of the formula —O—R—C(O)—OH wherein R is alkylene as defined herein.


“Hydroxyalkyloxycarbonylalkyl” or “hydroxyalkoxycarbonylalkyl” means a group of the formula —R—C(O)—O—R—OH wherein each R is alkylene and may be the same or different.


“Hydroxyalkyl” means an alkyl moiety as defined herein, substituted with one or more, for example, one, two or three hydroxy groups, provided that the same carbon atom does not carry more than one hydroxy group. Representative examples include, but are not limited to, hydroxymethyl, 2-hydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl, 1-(hydroxymethyl)-2-methylpropyl, 2-hydroxybutyl, 3-hydroxybutyl, 4-hydroxybutyl, 2,3-dihydroxypropyl, 2-hydroxy-1-hydroxymethylethyl, 2,3-dihydroxybutyl, 3,4-dihydroxybutyl and 2-(hydroxymethyl)-3-hydroxypropyl


“Hydroxycycloalkyl” means a cycloalkyl moiety as defined herein wherein one, two or three hydrogen atoms in the cycloalkyl radical have been replaced with a hydroxy substituent. Representative examples include, but are not limited to, 2-, 3-, or 4-hydroxycyclohexyl, and the like.


“Alkoxy hydroxyalkyl” and “hydroxy alkoxyalkyl”, which may be used interchangeably, means an alkyl as defined herein that is substituted at least once with hydroxy and at least once with alkoxy. “Alkoxy hydroxyalkyl” and “hydroxy alkoxyalkyl” thus encompass, for example, 2-hydroxy-3-methoxy-propan-1-yl and the like.


“Urea” or “ureido” means a group of the formula —NR′—C(O)—NR″R′″ wherein R′, R″ and R′″ each independently is hydrogen or alkyl.


“Carbamate” means a group of the formula —O—C(O)—NR′R″ wherein R′ and R″ each independently is hydrogen or alkyl.


“Carboxy” means a group of the formula —O—C(O)—OH.


“Sulfonamido” means a group of the formula —SO2—NR′R″ wherein R′, R″ and R′″ each independently is hydrogen or alkyl.


“Optionally substituted”, when used in association with “aryl”, phenyl”, “heteroaryl” “cycloalkyl” or “heterocyclyl”, means an aryl, phenyl, heteroaryl, cycloalkyl or heterocyclyl which is optionally substituted independently with one to four substituents, for example one or two substituents selected from alkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, hydroxyalkyl, halo, nitro, cyano, hydroxy, alkoxy, amino, acylamino, mono-alkylamino, di-alkylamino, haloalkyl, haloalkoxy, heteroalkyl, —COR, —SO2R (where R is hydrogen, alkyl, phenyl or phenylalkyl), —(CR′R″)n—COOR (where n is an integer from 0 to 5, R′ and R″ are independently hydrogen or alkyl, and R is hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, phenyl or phenylalkyl), or —(CR′R″)n—CONRaRb (where n is an integer from 0 to 5, R′ and R″ are independently hydrogen or alkyl, and Ra and Rb are, independently of each other, hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, phenyl or phenylalkyl). Certain particular optional substituents for “aryl”, phenyl”, “heteroaryl” “cycloalkyl” or “heterocyclyl” include alkyl, halo, haloalkyl, alkoxy, cyano, amino and alkylsulfonyl. In one embodiment substituents are methyl, fluoro, chloro, trifluoromethyl, methoxy, amino and methanesulfonyl.


“Leaving group” means the group with the meaning conventionally associated with it in synthetic organic chemistry, i.e., an atom or group displaceable under substitution reaction conditions. Examples of leaving groups include, but are not limited to, halogen, alkane- or arylenesulfonyloxy, such as methanesulfonyloxy, ethanesulfonyloxy, thiomethyl, benzenesulfonyloxy, tosyloxy, and thienyloxy, dihalophosphinoyloxy, optionally substituted benzyloxy, isopropyloxy, acyloxy, and the like.


“Modulator” means a molecule that interacts with a target. The interactions include, but are not limited to, agonist, antagonist, and the like, as defined herein.


“Optional” or “optionally” means that the subsequently described event or circumstance may but need not occur, and that the description includes instances where the event or circumstance occurs and instances in which it does not.


“Disease” and “Disease state” means any disease, condition, symptom, disorder or indication.


“Inert organic solvent” or “inert solvent” means the solvent is inert under the conditions of the reaction being described in conjunction therewith, including for example, benzene, toluene, acetonitrile, tetrahydrofuran, N,N-dimethylformamide, chloroform, methylene chloride or dichloromethane, dichloroethane, diethyl ether, ethyl acetate, acetone, methyl ethyl ketone, methanol, ethanol, propanol, isopropanol, tert-butanol, dioxane, pyridine, and the like. Unless specified to the contrary, the solvents used in the reactions of the present invention are inert solvents.


“Pharmaceutically acceptable” means that which is useful in preparing a pharmaceutical composition that is generally safe, non-toxic, and neither biologically nor otherwise undesirable and includes that which is acceptable for veterinary as well as human pharmaceutical use.


“Pharmaceutically acceptable salts” of a compound means salts that are pharmaceutically acceptable, as defined herein, and that possess the desired pharmacological activity of the parent compound.


It should be understood that all references to pharmaceutically acceptable salts include solvent addition forms (solvates) or crystal forms (polymorphs) as defined herein, of the same acid addition salt.


“Protective group” or “protecting group” means the group which selectively blocks one reactive site in a multifunctional compound such that a chemical reaction can be carried out selectively at another unprotected reactive site in the meaning conventionally associated with it in synthetic chemistry. Certain processes of this invention rely upon the protective groups to block reactive nitrogen and/or oxygen atoms present in the reactants. For example, the terms “amino-protecting group” and “nitrogen protecting group” are used interchangeably herein and refer to those organic groups intended to protect the nitrogen atom against undesirable reactions during synthetic procedures. Exemplary nitrogen protecting groups include, but are not limited to, trifluoroacetyl, acetamido, benzyl (Bn), benzyloxycarbonyl (carbobenzyloxy, CBZ), p-methoxybenzyloxycarbonyl, p-nitrobenzyloxycarbonyl, tert-butoxycarbonyl (BOC), and the like. The artisan in the art will know how to chose a group for the ease of removal and for the ability to withstand the following reactions.


“Solvates” means solvent additions forms that contain either stoichiometric or non stoichiometric amounts of solvent. Some compounds have a tendency to trap a fixed molar ratio of solvent molecules in the crystalline solid state, thus forming a solvate. If the solvent is water the solvate formed is a hydrate, when the solvent is alcohol, the solvate formed is an alcoholate. Hydrates are formed by the combination of one or more molecules of water with one of the substances in which the water retains its molecular state as H2O, such combination being able to form one or more hydrate.


“Parkinson's disease” means a degenerative disorder of the central nervous system that impairs motor skills, speech, and/or cognitive function. Symptoms of Parkinson's disease may include, for example, muscle rigidity, tremor, slowing of physical movement (bradykinesia) and loss of physical movement (akinesia).


“Lewie (Lewy) body disease” also called “Lewie body dementia”, diffuse Lewie body disease”, cortical Lewie body disease”, means a neurogenerative disorder characterized anatomically by the presence of Lewie bodies in the brain.


“Subject” means mammals and non-mammals. Mammals means any member of the mammalia class including, but not limited to, humans; non-human primates such as chimpanzees and other apes and monkey species; farm animals such as cattle, horses, sheep, goats, and swine; domestic animals such as rabbits, dogs, and cats; laboratory animals including rodents, such as rats, mice, and guinea pigs; and the like. Examples of non-mammals include, but are not limited to, birds, and the like. The term “subject” does not denote a particular age or sex.


“Therapeutically effective amount” means an amount of a compound that, when administered to a subject for treating a disease state, is sufficient to effect such treatment for the disease state. The “therapeutically effective amount” will vary depending on the compound, disease state being treated, the severity or the disease treated, the age and relative health of the subject, the route and form of administration, the judgment of the attending medical or veterinary practitioner, and other factors.


The terms “those defined above” and “those defined herein” when referring to a variable incorporates by reference the broad definition of the variable as well as particular definitions, if any.


“Treating” or “treatment” of a disease state includes, inter alia, inhibiting the disease state, i.e., arresting the development of the disease state or its clinical symptoms, and/or relieving the disease state, i.e., causing temporary or permanent regression of the disease state or its clinical symptoms.


The terms “treating”, “contacting” and “reacting” when referring to a chemical reaction means adding or mixing two or more reagents under appropriate conditions to produce the indicated and/or the desired product. It should be appreciated that the reaction which produces the indicated and/or the desired product may not necessarily result directly from the combination of two reagents which were initially added, i.e., there may be one or more intermediates which are produced in the mixture which ultimately leads to the formation of the indicated and/or the desired product.


Nomenclature and Structures

In general, the nomenclature used in this application is based on AUTONOM™ v.4.0, a Beilstein Institute computerized system for the generation of IUPAC systematic nomenclature. Chemical structures shown herein were prepared using ISIS® version 2.2. Any open valency appearing on a carbon, oxygen sulfur or nitrogen atom in the structures herein indicates the presence of a hydrogen atom unless indicated otherwise. Where a nitrogen-containing heteroaryl ring is shown with an open valency on a nitrogen atom, and variables such as Ra, Rb or Rc are shown on the heteroaryl ring, such variables may be bound or joined to the open valency nitrogen. Where one or more chiral centers exists in a structure but no specific stereochemistry is shown for the chiral centers, both enantiomers associated with each such chiral center are encompassed by the structure. Where a structure shown herein may exist in multiple tautomeric forms, all such tautomers are encompassed by the structure. The atoms represented in the structures herein are intended to encompass all naturally occurring isotopes of such atoms. Thus, for example, the hydrogen atoms represented herein are meant to include deuterium and tritium, and the carbon atoms are meant to include C13 and C14 isotopes.


All patents and publications identified herein are incorporated herein by reference in their entirety.


Compounds of the Invention

The invention provides compounds of the formula I:




embedded image


or pharmaceutically acceptable salts thereof,


wherein:


X is: —NRa—; or —O— wherein Ra is hydrogen or C1-6alkyl;


R1 is: C1-6alkyl; C2-6alkenyl; C2-6alkynyl; halo-C1-6alkyl; C1-6alkoxy-C1-6alkyl; hydroxy-C1-6alkyl; amino-C1-6alkyl; C1-6alkylsulfonyl-C1-6alkyl; C3-6cycloalkyl optionally substituted one or more times with C1-6alkyl; C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with C1-6alkyl; heterocyclyl optionally substituted one or more times with R7; or heterocyclyl-C1-6alkyl optionally substituted one or more times with R7;


or X and R1 together form C1-6alkyl; C1-6alkoxy-C1-6alkyl; C3-6cycloalkyl optionally substituted one or more times with R6; or C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with R6;


or R1 and Ra together with the atoms to which they are attached may form a three- to six-membered heterocyclic ring optionally substituted one or more times with R7;


R2 is: C1-6alkyl; halo; C1-6alkoxy; cyano; C2-6alkynyl; C2-6alkenyl; halo-C1-6alkyl; halo-C1-6alkoxy; C3-6cycloalkyl optionally substituted one or more times with R6; C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with R6; —ORb wherein Rb is C1-6alkyl, C3-6cycloalkyl optionally substituted one or more times with R6, or C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with R6; or —C(O)—Rc wherein Rc is C1-6alkyl, C1-6alkoxy, amino, or heterocyclyl optionally substituted one or more times with R7;


R3 is: hydrogen; C1-6alkyl; halo-C1-6alkyl; C2-6alkenyl; C2-6alkynyl; hydroxy-C1-6alkyl; C1-6alkoxy-C1-6alkyl; cyano-C1-6alkyl; C1-6alkylsulfonyl; C1-6alkylsulfonylC1-6alkyl; amino-C1-6alkyl; C3-6cycloalkyl optionally substituted one or more times with R6; C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with R6; C3-6cycloalkyl-sulfonyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with R6; heterocyclyl optionally substituted one or more times with R7; heterocyclyl-C1-6alkyl wherein the heterocyclyl portion is optionally substituted one or more times with R7; aryl optionally substituted one or more times with R8; aryl-C1-6alkyl wherein the aryl portion is optionally substituted one or more times with R8; heteroaryl optionally substituted one or more times with R8; heteroaryl-C1-6alkyl wherein the heteroaryl portion is optionally substituted one or more times with R8; or —Y—C(O)—Rd;


Y is C2-6alkylene or a bond;


Rd is C1-6alkyl, C1-6alkoxy, amino, C1-6alkyl-amino, di-C1-6alkyl-amino, halo-C1-6alkyl-amino, di-halo-C1-6alkyl-amino, halo-C1-6alkyl, hydroxy-C1-6alkyl, hydroxy, C1-6alkoxy-C1-6alkyl, cyano-C1-6alkyl, C1-6alkylsulfonylC1-6alkyl, amino-C1-6alkyl, C3-6cycloalkyl optionally substituted one or more times with R6, C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with R6 heterocyclyl optionally substituted one or more times with R7, or heterocyclyl-C1-6alkyl wherein the heterocyclyl portion is optionally substituted one or more times with R7;


R4 is: hydrogen; C1-6alkyl; halo; cyano; halo-C1-6alkyl; C2-6alkenyl; C2-6alkynyl; C1-6alkoxy; C1-6alkoxy-C1-6alkyl; hydroxy-C1-6alkyl; C3-6cycloalkyl optionally substituted one or more times with R6; C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with R6; or —Y—C(O)—Rd;


R5 is: hydrogen; or C1-6alkyl;


each R6 is independently: C1-6alkyl; halo-C1-6alkyl; C1-6alkoxy; oxo; cyano; halo; or Y—C(O)—Rd;


each R7 is independently: C1-6alkyl; halo-C1-6alkyl; halo; oxo; C1-6alkoxy; C1-6alkylsulfonyl; C1-6alkoxy-C1-6alkyl; cyano; —Y—C(O)—Rd; heterocyclyl; heterocyclyl-C1-6alkyl; C3-6cycloalkyl; C3-6cycloalkyl-C1-6alkyl; or C3-6cycloalkylsulfonyl; and


each R8 is independently: oxo; C1-6alkyl; halo-C1-6alkyl; halo; C1-6alkyl-sulfonyl; C1-6alkoxy; C1-6alkoxy-C1-6alkyl; cyano; hetoeryclyl; heterocyclyl-C1-6alkyl; —Y—C(O)—Rd; C3-6cycloalkyl, C3-6cycloalkyl-C1-6alkyl, or C3-6cycloalkyl-sulfonyl.


In certain embodiments the invention provides compounds of the formula II:




embedded image


or pharmaceutically acceptable salts thereof,


wherein:


X is: —NRa—; or —O— wherein Ra is hydrogen or C1-6alkyl;


R1 is: C1-6alkyl; C2-6alkenyl; C2-6alkynyl; halo-C1-6alkyl; C1-6alkoxy-C1-6alkyl; hydroxy-C1-6alkyl; amino-C1-6alkyl; C1-6alkylsulfonyl-C1-6alkyl; C3-6cycloalkyl optionally substituted with C1-6alkyl; C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted with C1-6alkyl; heterocyclyl; or heterocyclyl-C1-6alkyl;


or X and R1 together form C1-6alkyl; C3-6cycloalkyl optionally substituted with C1-6alkyl; or C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted with C1-6alkyl;


or R1 and Ra together with the atoms to which they are attached may form a three- to six-membered heterocyclic ring.


R2 is: C1-6alkyl; halo; C1-6alkoxy; cyano; C2-6alkynyl; C2-6alkenyl; halo-C1-6alkyl; halo-C1-6alkoxy; C3-6cycloalkyl optionally substituted with C1-6alkyl; C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted with C1-6alkyl; —ORb wherein Rb is C1-6alkyl, C3-6cycloalkyl optionally substituted with C1-6alkyl, or C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted with C1-6alkyl; or —C(O)—Rc wherein Rc is C1-6alkyl, C1-6alkoxy, amino, or heterocyclyl;


R3 is: hydrogen; C1-6alkyl; halo-C1-6alkyl; C2-6alkenyl; C2-6alkynyl; hydroxy-C1-6alkyl; C1-6alkoxy-C1-6alkyl; cyano-C1-6alkyl; C1-6alkylsulfonyl; C1-6alkylsulfonylalkyl; amino-C1-6alkyl; C3-6cycloalkyl optionally substituted with C1-6alkyl; C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted with C1-6alkyl; heterocyclyl; heterocyclyl-C1-6alkyl; aryl; heteroaryl; or —C(O)—Rc wherein Rc is C1-6alkyl, C1-6alkoxy, amino, or heterocyclyl;


R4 is: hydrogen; C1-6alkyl; halo; cyano; halo-C1-6alkyl; C2-6alkenyl; C2-6alkynyl; C1-6alkoxy-C1-6alkyl; hydroxy-C1-6alkyl; C3-6cycloalkyl optionally substituted with C1-6alkyl; C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted with C1-6alkyl; or —C(O)—Rc wherein Rc is C1-6alkyl, C1-6alkoxy, amino, or heterocyclyl; and


R5 is: hydrogen; or C1-6alkyl.


In certain embodiments of formula I or formula II, X is —NRa— or —O—.


In certain embodiments of formula I or formula II, X is —NRa.


In certain embodiments of formula I or formula II, X is —O—.


In certain embodiments of formula I or formula II, X is —NH— or —O—.


In certain embodiments of formula I or formula II, X is —NH—.


In certain embodiments of formula I or formula II, X is —O—.


In certain embodiments of formula I or formula II, Ra is hydrogen.


In certain embodiments of formula I or formula II, Ra is C1-6alkyl.


In certain embodiments of formula I or formula II, R1 is: C1-6alkyl; C2-6alkenyl; C2-6alkynyl; halo-C1-6alkyl; C1-6alkoxy-C1-6alkyl; hydroxy-C1-6alkyl; amino-C1-6alkyl; C1-6alkylsulfonyl-C1-6alkyl; C3-6cycloalkyl optionally substituted with C1-6alkyl; C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted with C1-6alkyl; heterocyclyl; or heterocyclyl-C1-6alkyl.


In certain embodiments of formula I or formula II, R1 is: C1-6alkyl; halo-C1-6alkyl; C1-6alkoxy-C1-6alkyl; amino-C1-6alkyl; C1-6alkylsulfonyl-C1-6alkyl; C3-6cycloalkyl; or C3-6cycloalkyl-C1-6alkyl.


In certain embodiments of formula I or formula II, R1 is: C1-6alkyl; C3-6cycloalkyl optionally substituted with C1-6alkyl; or C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted with C1-6alkyl.


In certain embodiments of formula I or formula II, R1 is: C1-6alkyl; halo-C1-6alkyl; C1-6alkoxy-C1-6alkyl; amino-C1-6alkyl; C1-6alkylsulfonyl-C1-6alkyl; tetrahydrofuranyl; tetrahydrofuranyl-C1-6alkyl; oxetanyl; or oxetan-C1-6alkyl.


In certain embodiments of formula I or formula II, R1 is: C1-6alkyl; halo-C1-6alkyl; C1-6alkoxy-C1-6alkyl; amino-C1-6alkyl; or C1-6alkylsulfonyl-C1-6alkyl.


In certain embodiments of formula I or formula II, R1 is C1-6alkyl or halo-C1-6alkyl.


In certain embodiments of formula I or formula II, R1 is C1-6alkyl.


In certain embodiments of formula I or formula II, R1 is halo-C1-6alkyl.


In certain embodiments of formula I or formula II, R1 is C1-6alkoxy-C1-6alkyl.


In certain embodiments of formula I or formula II, R1 is amino-C1-6alkyl.


In certain embodiments of formula I or formula II, R1 is C1-6alkylsulfonyl-C1-6alkyl.


In certain embodiments of formula I or formula II, R1 is C3-6cycloalkyl optionally substituted with C1-6alkyl.


In certain embodiments of formula I or formula II, R1 is C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted with C1-6alkyl.


In certain embodiments of formula I or formula II, R1 is heterocyclyl or heterocyclyl-C1-6alkyl.


In embodiments of formula I or formula II wherein R1 is heterocyclyl or heterocyclyl-C1-6alkyl, such heterocyclyl may be piperidinyl, piperazinyl, morpholinyl, tetrahydropyranyl, pyrrolidinyl, tetrahydrofuranyl or oxetanyl, each optionally substituted as defined herein.


In embodiments of formula I or formula II wherein R1 is heterocyclyl or heterocyclyl-C1-6alkyl, such heterocyclyl may be tetrahydropyranyl, piperidinyl, tetrahydrofuranyl or oxetanyl, each optionally substituted as defined herein.


In certain embodiments of formula I or formula II, R1 is tetrahydrofuranyl.


In certain embodiments of formula I or formula II, R1 is tetrahydropyranyl.


In certain embodiments of formula I or formula II, R1 is tetrahydrofuranyl-C1-6alkyl or oxetanyl.


In certain embodiments of formula I or formula II, R1 is tetrahydrofuranyl-C1-6alkyl.


In certain embodiments of formula I or formula II, R1 is oxetanyl.


In certain embodiments of formula I or formula II, R1 is or oxetan-C1-6alkyl.


In certain embodiments of formula I or formula II, R1 is: methyl; ethyl; n-propyl; isopropyl; isobutyl; 3,3-dimethylpropyl; cyclopropyl; cyclobutyl; cyclopentyl; cyclohexyl; cyclopropylmethyl; cyclobutylmethyl; cyclopentylmethyl; cyclopropylethyl; methoxyethyl; oxetanyl; tetrahydropyranyl; 2,2-difluoroethyl; or tetrahydrofuranylmethyl.


In certain embodiments of formula I or formula II, R1 is: methyl; ethyl; n-propyl; isopropyl; isobutyl; 3,3-dimethylpropyl; cyclopentyl; cyclohexyl; cyclopropylmethyl; cyclobutylmethyl; cyclopentylmethyl; cyclopropylethyl; methoxyethyl; oxetanyl; tetrahydropyranyl; 2,2-difluoroethyl; or tetrahydrofuranylmethyl.


In certain embodiments of formula I or formula II, R1 is: methyl; ethyl; n-propyl; isopropyl; isobutyl; 3,3-dimethylpropyl; cyclopentyl; cyclohexyl; cyclopentylmethyl; methoxyethyl; oxetanyl; tetrahydropyranyl; or tetrahydrofuranylmethyl.


In certain embodiments of formula I or formula II, R1 is 2,2-difluoroethyl.


In certain embodiments of formula I or formula II, R1 is: methyl; ethyl; n-propyl; isopropyl; or isobutyl.


In certain embodiments of formula I or formula II, R1 is methyl or ethyl.


In certain embodiments of formula I or formula II, R1 is methyl.


In certain embodiments of formula I or formula II, R1 is ethyl.


In certain embodiments of formula I or formula II, R1 is: cyclopropyl; cyclobutyl; cyclopentyl; cyclohexyl; cyclopropylmethyl; cyclobutylmethyl; cyclopentylmethyl; or cyclopropylethyl.


In certain embodiments of formula I or formula II, R1 is: cyclopentyl; cyclohexyl; or cyclopentylmethyl.


In certain embodiments of formula I or formula II, R1 is: cyclopropyl.


In certain embodiments of formula I or formula II, R1 and Ra together with the atoms to which they are attached may form a three- to six-membered heterocyclic ring.


In certain embodiments of formula I or formula II, R1 and Ra together with the atoms to which they are attached may form a three-membered heterocyclic ring.


In certain embodiments of formula I or formula II, R1 and Ra together with the atoms to which they are attached may form a four-membered heterocyclic ring.


In certain embodiments of formula I or formula II, R1 and Ra together with the atoms to which they are attached may form a five-membered heterocyclic ring.


In certain embodiments of formula I or formula II, R1 and Ra together with the atoms to which they are attached may form a six-membered heterocyclic ring.


In certain embodiments of formula I or formula II, X and R1 together form C1-6alkyl; C3-6cycloalkyl optionally substituted with C1-6alkyl; or C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted with C1-6alkyl.


In certain embodiments of formula I or formula II, X and R1 together form C1-6alkyl.


In certain embodiments of formula I or formula II, X and R1 together form C3-6cycloalkyl optionally substituted with C1-6alkyl.


In certain embodiments of formula I or formula II, X and R1 together form C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted with C1-6alkyl.


In certain embodiments of formula I or formula II, R2 is: C1-6alkyl; halo; C1-6alkoxy; cyano; C2-6alkynyl; C2-6alkenyl; halo-C1-6alkyl; halo-C1-6alkoxy; C3-6cycloalkyl optionally substituted with C1-6alkyl; C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted with C1-6alkyl; —ORb wherein Rb is C1-6alkyl, C3-6cycloalkyl optionally substituted with C1-6alkyl, or C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted with C1-6alkyl; or —C(O)—Rc.


In certain embodiments of formula I or formula II, R2 is: halo; C1-6alkoxy; halo-C1-6alkyl; halo-C1-6alkoxy; C3-6cycloalkyl wherein the C3-6cycloalkyl portion is optionally substituted with C1-6alkyl; C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted with C1-6alkyl; tetrahydrofuranyl; tetrahydrofuranyl-C1-6alkyl; oxetanyl; or oxetan-C1-6alkyl.


In certain embodiments of formula I or formula II, R2 is: halo; C1-6alkoxy; halo-C1-6alkyl; cyano; C2-6alkynyl; C2-6alkenyl; C3-6cycloalkyl; or C3-6cycloalkyl-C1-6alkyl.


In certain embodiments of formula I or formula II, R2 is: halo; C1-6alkoxy; halo-C1-6alkyl; cyano; C3-6cycloalkyl; or C3-6cycloalkyl-C1-6alkyl.


In certain embodiments of formula I or formula II, R2 is: halo; C1-6alkoxy; halo-C1-6alkyl; C3-6cycloalkyl; or C3-6cycloalkyl-C1-6alkyl.


In certain embodiments of formula I or formula II, R2 is: halo; halo-C1-6alkyl or cyano.


In certain embodiments of formula I or formula II, R2 is: fluoro; bromo; chloro; iodo; trifluoromethyl; or cyano.


In certain embodiments of formula I or formula II, R2 is: chloro; trifluoromethyl; or cyano.


In certain embodiments of formula I or formula II, R2 is: halo; or halo-C1-6alkyl.


In certain embodiments of formula I or formula II, R2 is C1-6alkyl.


In certain embodiments of formula I or formula II, R2 is halo.


In certain embodiments of formula I or formula II, R2 is C1-6alkoxy.


In certain embodiments of formula I or formula II, R2 is halo-C1-6alkoxy.


In certain embodiments of formula I or formula II, R2 is halo-C1-6alkyl.


In certain embodiments of formula I or formula II, R2 is C3-6cycloalkyl.


In certain embodiments of formula I or formula II, R2 is C3-6cycloalkyl-C1-6alkyl.


In certain embodiments of formula I or formula II, R2 is tetrahydrofuranyl.


In certain embodiments of formula I or formula II, R2 is tetrahydrofuranyl-C1-6alkyl.


In certain embodiments of formula I or formula II, R2 is oxetanyl.


In certain embodiments of formula I or formula II, R2 is oxetan-C1-6alkyl.


In certain embodiments of formula I or formula II, R2 is fluoro, chloro or bromo.


In certain embodiments of formula I or formula II, R2 is chloro.


In certain embodiments of formula I or formula II, R2 is fluoro.


In certain embodiments of formula I or formula II, R2 is bromo.


In certain embodiments of formula I or formula II, R2 is bromo.


In certain embodiments of formula I or formula II, R2 is iodo.


In certain embodiments of formula I or formula II, R2 is trifluoromethyl.


In certain embodiments of formula I or formula II, R2 is methoxy.


In certain embodiments of formula I or formula II, R2 is cyano.


In certain embodiments of formula I or formula II, R2 is C2-6alkynyl.


In certain embodiments of formula I or formula II, R2 is C2-6alkenyl.


In certain embodiments of formula I or formula II, R2 is —ORb wherein Rb is C1-6alkyl, C3-6cycloalkyl optionally substituted with C1-6alkyl, or C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted with C1-6alkyl.


In certain embodiments of formula I, R2 is —C(O)—Rc wherein Rc is C1-6alkyl, C1-6alkoxy, amino, or heterocyclyl.


In certain embodiments of formula I or formula II, R3 is: C1-6alkyl; halo-C1-6alkyl; C2-6alkenyl; C2-6alkynyl; hydroxy-C1-6alkyl; C1-6alkoxy-C1-6alkyl; cyano-C1-6alkyl; C1-6alkylsulfonyl; C1-6alkylsulfonylC1-6alkyl; amino-C1-6alkyl; C3-6cycloalkyl optionally substituted one or more times with R6; C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with R6; heterocyclyl optionally substituted one or more times with R7; heterocyclyl-C1-6alkyl wherein the heterocyclyl portion is optionally substituted one or more times with R7; aryl optionally substituted one or more times with R8; heteroaryl optionally substituted one or more times with R8; or —Y—C(O)—Rd.


In certain embodiments of formula I or formula II, R3 is: hydrogen; C1-6alkyl; halo-C1-6alkyl; C2-6alkenyl; C2-6alkynyl; hydroxy-C1-6alkyl; C1-6alkoxy-C1-6alkyl; cyano-C1-6alkyl; C1-6alkylsulfonyl; C1-6alkylsulfonylalkyl; amino-C1-6alkyl; C3-6cycloalkyl optionally substituted with C1-6alkyl; C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted with C1-6alkyl; heterocyclyl; heterocyclyl-C1-6alkyl; aryl; heteroaryl; or —C(O)—Rc.


In certain embodiments of formula I or formula II, R3 is: C1-6alkyl; halo-C1-6alkyl; hydroxy-C1-6alkyl; C1-6alkoxy-C1-6alkyl; C3-6cycloalkyl optionally substituted with C1-6alkyl; C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted with C1-6alkyl; heterocyclyl; heterocyclyl-C1-6alkyl; or —C(O)—Rb wherein Rb is C1-6alkyl, C1-6alkoxy, amino, or heterocyclyl.


In certain embodiments of formula I or formula II, R3 is: C1-6alkyl; hydroxy-C1-6alkyl; C1-6alkoxy-C1-6alkyl; C3-6cycloalkyl optionally substituted with C1-6alkyl; C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted with C1-6alkyl; heterocyclyl; heterocyclyl-C1-6alkyl; or —C(O)—Rc wherein Rc is C1-6alkyl, C1-6alkoxy, amino, or heterocyclyl.


In certain embodiments of formula I or formula II, R3 is: C1-6alkyl; hydroxy-C1-6alkyl; C1-6alkoxy-C1-6alkyl; C3-6cycloalkyl optionally substituted one or more times with R6; C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with R6; heterocyclyl optionally substituted one or more times with R7; heterocyclyl-C1-6alkyl wherein the heterocyclyl portion is optionally substituted one or more times with R7; or —C(O)—Rd.


In certain embodiments of formula I or formula II, R3 is: C1-6alkyl; hydroxy-C1-6alkyl; C1-6alkoxy-C1-6alkyl; heterocyclyl; heterocyclyl-C1-6alkyl; or —C(O)—Rc wherein Rc is C1-6alkyl, C1-6alkoxy, amino, or heterocyclyl.


In certain embodiments of formula I or formula II, R3 is: C1-6alkyl; hydroxy-C1-6alkyl;


C1-6alkoxy-C1-6alkyl; heterocyclyl; or heterocyclyl-C1-6alkyl.


In certain embodiments of formula I or formula II, R3 is: C1-6alkyl; hydroxy-C1-6alkyl; or C1-6alkoxy-C1-6alkyl.


In embodiments of formula I or formula II wherein R3 is heterocyclyl or heterocyclyl-C1-6alkyl, such heterocyclyl may be piperidinyl, piperazinyl, morpholinyl, tetrahydropyranyl, pyrrolidinyl, tetrahydrofuranyl or oxetanyl.


In embodiments of formula I or formula II wherein R3 is heterocyclyl or heterocyclyl-C1-6alkyl, such heterocyclyl may be piperidinyl, piperazinyl, morpholinyl, tetrahydropyranyl, pyrrolidinyl, azetidinyl, tetrahydrofuranyl or oxetanyl, each optionally substituted one or more times, or one or two times, with R7 as defined herein.


In embodiments of formula I or formula II wherein R3 is heterocyclyl or heterocyclyl-C1-6alkyl, such heterocyclyl may be piperidinyl, morpholinyl, tetrahydropyranyl, tetrahydrofuranyl or oxetanyl.


In embodiments of formula I or formula II wherein R3 is heterocyclyl or heterocyclyl-C1-6alkyl, such heterocyclyl may be piperidinyl, pyrrolidinyl, azetidinyl, morpholinyl, tetrahydropyranyl, tetrahydrofuranyl or oxetanyl, each optionally substituted one or more times, or one or two times, with R7 as defined herein.


In certain embodiments of formula I or formula II, R3 is: methyl; ethyl; n-propyl; isopropyl; 2-methoxy-ethyl; oxetan-3-yl; 2-(morpholin-4-yl)-ethyl; 2-hydroxy-2-methyl-propan-1-yl; tetrahydropyran-4-yl; or morpholin-4-yl-carbonyl.


In certain embodiments of formula I, R3 is: methyl; ethyl; n-propyl; isopropyl; 2-methoxy-ethyl; oxetan-3-yl; 2-(morpholin-4-yl)-ethyl; 2-hydroxy-2-methyl-propan-1-yl; or tetrahydropyran-4-yl.


In certain embodiments of formula I or formula II, R3 is hydrogen.


In certain embodiments of formula I or formula II, R3 is C1-6alkyl.


In certain embodiments of formula I or formula II, R3 is halo-C1-6alkyl.


In certain embodiments of formula I or formula II, R3 is C2-6alkenyl.


In certain embodiments of formula I or formula II, R3 is C2-6alkynyl.


In certain embodiments of formula I or formula II, R3 is hydroxy-C1-6alkyl.


In certain embodiments of formula I or formula II, R3 is C1-6alkoxy-C1-6alkyl.


In certain embodiments of formula I or formula II, R3 is C3-6cycloalkyl optionally substituted one or more times with R6.


In certain embodiments of formula I or formula II, R3 is C3-6cycloalkyl optionally substituted with C1-6alkyl.


In certain embodiments of formula I or formula II, R3 is C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with R6.


In certain embodiments of formula I or formula II, R3 is C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted with C1-6alkyl.


In certain embodiments of formula I or formula II, R3 is heterocyclyl optionally substituted one or more times with R7.


In certain embodiments of formula I or formula II, R3 is heterocyclyl.


In certain embodiments of formula I or formula II, R3 is heterocyclyl-C1-6alkyl wherein the heterocyclyl portion is optionally substituted one or more times with R7.


In certain embodiments of formula I or formula II, R3 is heterocyclyl-C1-6alkyl.


In certain embodiments of formula I or formula II, R3 is —C(O)—Rc.


In certain embodiments of formula I or formula II, R3 is cyano-C1-6alkyl.


In certain embodiments of formula I or formula II, R3 is C1-6alkylsulfonyl.


In certain embodiments of formula I or formula II, R3 is C1-6alkylsulfonyl-C1-6alkyl.


In certain embodiments of formula I or formula II, R3 is amino-C1-6alkyl.


In certain embodiments of formula I or formula II, R3 is aryl optionally substituted one or more times with R8.


In certain embodiments of formula I or formula II, R3 is aryl.


In certain embodiments of formula I or formula II, R3 is phenyl optionally substituted one or more times, or one or two times, with R8.


In certain embodiments of formula I or formula II, R3 is heteroaryl optionally substituted one or more times, or one or two times, with R8.


In certain embodiments of formula I or formula II, R3 is heteroaryl.


In certain embodiments of formula I or formula II, R3 is C3-6cycloalkyl-sulfonyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with R6


In certain embodiments of formula I or formula II, R3 is: hydrogen; methyl; ethyl; propyl; isopropyl; butyl; cyclopropyl; cyclopropylmethyl; cyclobutyl; methanesulfonyl; ethylsulfonyl; cyclopropylsulfonyl; sec-butylsulfonyl; morpholin-4-yl-ethyl; oxetan-3-yl; 2-methoxyethyl; 2-hydroxy-2-methyl-propyl; 3-hydroxy-2-methyl-propan-2-yl; 2-methoxy-propyl; tetrahydro-2H-pyran-4-yl; tetrahydrofuran-3-yl; 2,6-dimethyltetrahydro-2H-pyran-4-yl; tetrahydro-2H-pyran-3-yl); phenyl; 4-(methylsulfonyl)phenyl); 4-cyano-phenyl; 4-fluoro-phenyl; 4-chloro-phenyl; 3,5-difluorophenyl; 4-(dimethylamino-carbonyl)-phenyl); 4-(cyclopropylsulfonyl)phenyl; 2,2,2-trifluoroethyl; 2-fluoroethyl; difluoromethyl; 2-dimethyl-1,3-dioxan-5-yl; 1-methyl-cyclopropyl-carbonyl; 3-methylpyridin-4-yl; 2-methylpyridin-4-yl; pyridin-2-yl; pyrimidin-2-yl; pyrimidin-5-yl; pyridin-2-ylmethyl; 1-(pyridin-2-yl)ethyl; cyclopropylsulfonyl; 1-cyano-1-methyl-ethyl (also called 2-cyano-propan-2-yl); 2-cyano-ethyl; 1-cyano-ethyl; 2-cyano-2-methyl-propyl; 1-(2,2,2-trifluoroethyl)piperidin-4-yl; 1-(methylsulfonyl)azetidin-3-yl; (3-methyloxetan-3-yl)methyl; (1 S,5S)-8-oxabicyclo[3.2.1]octan-3-yl; 1-(oxetan-3-yl)piperidin-4-yl; 1-acetyl-piperidin-4-yl; 1-(cyclopropyl-carbonyl)-piperidin-4-yl; 1-methyl-piperidin-4-yl; 1-methyl-2-oxo-piperidin-5-yl; 2-oxo-piperidin-5-yl; 1-(isopropyl-carbonyl)-piperidin-4-yl; 1-(oxetan-3-yl)azetidin-3-yl; 1-(cyclopropyl-carbonyl)-piperidin-4-yl; 2-methoxycyclopentyl; 3-methoxycyclopentyl; 1-methoxy-2-methylpropan-2-yl; tetrahydro-2H-1,1-dioxo-thiopyran-4-yl; 3-fluoro-1-(oxetan-3-yl)piperidin-4-yl; 1-methoxypropan-2-yl; 1-(2,2,2-trifluoroethyl)azetidin-3-yl); 1-(oxetan-3-yl)pyrrolidin-3-yl; 1-isopropylazetidin-3-yl; 3-fluoro-1-methylpiperidin-4-yl; 1-ethyl-3-fluoropiperidin-4-yl; 1-methylpyrrolidin-3-yl; 2-methoxyethyl)piperidin-4-yl); 1-methyl-1-(methylamino-carbonyl)-ethyl; 2-methyl-2-morpholino-propyl; 4,4-difluorocyclohexyl; morpholin-4-yl-carbonyl; dimethylamino-carbonyl-methyl; methylamino-carbonyl-methyl; 1-methyl-1-(dimethylamino-carbonyl)-ethyl; pyrrolidin-′-yl-carbonyl; 1-cyamo-cyclopropyl; 1-(pyrrolidin-′-yl-carbonyl)-ethyl; 1-(dimethylamino-carbonyl)-ethyl; 1-(methoxy-carbonyl)-ethyl; 1-(tert-butylamino-carbonyl)-1-methyl-ethyl; 1-(2,2,2-trifluoroethyllamino-carbonyl)-1-methyl-ethyl; 1-(ethylamino-carbonyl)-1-methyl-ethyl; 1-(cyclopropylmethylamino-carbonyl)-1-methyl-ethyl; 1-(ethylamino-carbonyl)-cyclobutyl; 1-(isopropylamino-carbonyl)-1-methyl-ethyl; 1-cyano-cyclobutyl; 2-methoxy-1-methyl-ethyl; 1-methyl-1-(methoxy-carbonyl)-ethyl; 2-methoxy-2-methyl-propan-1-yl; 1-(oxetan-3-yl)-pyrrolidin-3-yl; isopropylsulfonyl; butane-2-sulfonyl; 1-(2-fluoroethyl)-piperidin-4-yl; 3-fluoro-1-methyl-piperidin-4-yl; 1-ethyl-3-fluoro-piperidin-4-yl; pyridin-3-ylmethyl; 6-methyl-pyridin-2-ylmethyl; 2-(morpholin-1-yl)-1,1,dimethyl-ethyl; pyrimdin-2-yl-methyl; 3-fluoro-1-(oxetan-3-yl)-piperidin-4-yl; 1-(oxetan-3-yl)-piperidin-3-yl; 1-([1,3]Dioxolan-2-ylmethyl)-piperidin-4-yl; pyridazin-3-ylmethyl; piperidin-3-yl; pyrazin-2-ylmethyl; 2-hydroxy-3-methyl-butan-1-yl; 1-([1,3]Dioxolan-2-ylmethyl)-pyrrolidin-3-yl; pyrimidin-4-ylmethyl; 1-methyl-1H-pyrazol-3-ylmethyl; 1-methyl-1-(4H-[1,2,4]triazol-3-yl)-ethyl; 1-methyl-1-(5-methyl-4H-[1,2,4]triazol-3-yl)-ethyl; 3-fluoro-piperidin-4-yl; 2-hydroxy-cyclopentyl; dimethyl-[1,3]dioxan-5-yl, 2-(5-methyl-1,3,4-oxadiazol-2-yl)propan-2-yl; 2-(4-methyl-4H-1,2,4-triazol-3-yl)propan-2-yl; 2-(1-methyl-1H-1,2,4-triazol-3-yl)propan-2-yl; 2-(1-methyl-1H-pyrazol-4-yl)propan-2-yl; 2-(1-methyl-1H-pyrazol-3-yl)propan-2-yl; 2-(1-methyl-1H-pyrazol-5-yl; 2-(4H-1,2,4-triazol-3-yl)propan-2-yl; or 1-methyl-1H-pyrazole-4-yl.


In certain embodiments of formula I or formula II, R3 is: methyl; ethyl; propyl; isopropyl; butyl; cyclopropyl; cyclopropylmethyl; cyclobutyl; methanesulfonyl; ethylsulfonyl; cyclopropylsulfonyl; sec-butylsulfonyl; morpholin-4-yl-ethyl; oxetan-3-yl; 2-methoxyethyl; 2-hydroxy-2-methyl-propyl; 3-hydroxy-2-methyl-propan-2-yl; 2-methoxy-propyl; tetrahydro-2H-pyran-4-yl; tetrahydrofuran-3-yl; 2,6-dimethyltetrahydro-2H-pyran-4-yl; tetrahydro-2H-pyran-3-yl); phenyl; 4-(methylsulfonyl)phenyl); 4-cyano-phenyl; 4-fluoro-phenyl; 4-chloro-phenyl; 3,5-difluorophenyl; 4-(dimethylamino-carbonyl)-phenyl); 4-(cyclopropylsulfonyl)phenyl; 2,2,2-trifluoroethyl; 2-fluoroethyl; difluoromethyl; 2-dimethyl-1,3-dioxan-5-yl; 1-methyl-cyclopropyl-carbonyl; 3-methylpyridin-4-yl; 2-methylpyridin-4-yl; pyridin-2-yl; pyrimidin-2-yl; pyrimidin-5-yl; pyridin-2-ylmethyl; 1-(pyridin-2-yl)ethyl; cyclopropylsulfonyl; 1-cyano-1-methyl-ethyl (also called 2-cyano-propan-2-yl); 2-cyano-ethyl; 1-cyano-ethyl; 2-cyano-2-methyl-propyl; 1-(2,2,2-trifluoroethyl)piperidin-4-yl; 1-(methylsulfonyl)azetidin-3-yl; (3-methyloxetan-3-yl)methyl; (1S,5S)-8-oxabicyclo[3.2.1]octan-3-yl; 1-(oxetan-3-yl)piperidin-4-yl; 1-acetyl-piperidin-4-yl; 1-(cyclopropyl-carbonyl)-piperidin-4-yl; 1-methyl-piperidin-4-yl; 1-methyl-2-oxo-piperidin-5-yl; 2-oxo-piperidin-5-yl; 1-(isopropyl-carbonyl)-piperidin-4-yl; 1-(oxetan-3-yl)azetidin-3-yl; 1-(cyclopropyl-carbonyl)-piperidin-4-yl; 2-methoxycyclopentyl; 3-methoxycyclopentyl; 1-methoxy-2-methylpropan-2-yl; tetrahydro-2H-1,1-dioxo-thiopyran-4-yl; 3-fluoro-1-(oxetan-3-yl)piperidin-4-yl; 1-methoxypropan-2-yl; 1-(2,2,2-trifluoroethyl)azetidin-3-yl); 1-(oxetan-3-yl)pyrrolidin-3-yl; 1-isopropylazetidin-3-yl; 3-fluoro-1-methylpiperidin-4-yl; 1-ethyl-3-fluoropiperidin-4-yl; 1-methylpyrrolidin-3-yl; 2-methoxyethyl)piperidin-4-yl); 1-methyl-1-(methylamino-carbonyl)-ethyl; 2-methyl-2-morpholino-propyl; 4,4-difluorocyclohexyl; morpholin-4-yl-carbonyl; dimethylamino-carbonyl-methyl; methylamino-carbonyl-methyl; 1-methyl-1-(dimethylamino-carbonyl)-ethyl; pyrrolidin-′-yl-carbonyl; 1-cyamo-cyclopropyl; 1-(pyrrolidin-′-yl-carbonyl)-ethyl; 1-(dimethylamino-carbonyl)-ethyl; 1-(methoxy-carbonyl)-ethyl; 1-(tert-butylamino-carbonyl)-1-methyl-ethyl; 1-(2,2,2-trifluoroethyllamino-carbonyl)-1-methyl-ethyl; 1-(ethylamino-carbonyl)-1-methyl-ethyl; 1-(cyclopropylmethylamino-carbonyl)-1-methyl-ethyl; 1-(ethylamino-carbonyl)-cyclobutyl; 1-(isopropylamino-carbonyl)-1-methyl-ethyl; 1-cyano-cyclobutyl; 2-methoxy-1-methyl-ethyl; 1-methyl-1-(methoxy-carbonyl)-ethyl; 2-methoxy-2-methyl-propan-1-yl; 1-(oxetan-3-yl)-pyrrolidin-3-yl; isopropylsulfonyl; butane-2-sulfonyl; 1-(2-fluoroethyl)-piperidin-4-yl; 3-fluoro-1-methyl-piperidin-4-yl; 1-ethyl-3-fluoro-piperidin-4-yl; pyridin-3-ylmethyl; 6-methyl-pyridin-2-ylmethyl; 2-(morpholin-1-yl)-1,1,dimethyl-ethyl; pyrimdin-2-yl-methyl; 3-fluoro-1-(oxetan-3-yl)-piperidin-4-yl; 1-(oxetan-3-yl)-piperidin-3-yl; 1-([1,3]Dioxolan-2-ylmethyl)-piperidin-4-yl; pyridazin-3-ylmethyl; piperidin-3-yl; pyrazin-2-ylmethyl; 2-hydroxy-3-methyl-butan-1-yl; 1-([1,3]Dioxolan-2-ylmethyl)-pyrrolidin-3-yl; pyrimidin-4-ylmethyl; 1-methyl-1H-pyrazol-3-ylmethyl; 1-methyl-1-(4H-[1,2,4]triazol-3-yl)-ethyl; 1-methyl-1-(5-methyl-4H-[1,2,4]triazol-3-yl)-ethyl; 3-fluoro-piperidin-4-yl; 2-hydroxy-cyclopentyl; dimethyl-[1,3]dioxan-5-yl; 2-(5-methyl-1,3,4-oxadiazol-2-yl)propan-2-yl; 2-(4-methyl-4H-1,2,4-triazol-3-yl)propan-2-yl; 2-(1-methyl-1H-1,2,4-triazol-3-yl)propan-2-yl; 2-(1-methyl-1H-pyrazol-4-yl)propan-2-yl; 2-(1-methyl-1H-pyrazol-3-yl)propan-2-yl; 2-(1-methyl-1H-pyrazol-5-yl; 2-(4H-1,2,4-triazol-3-yl)propan-2-yl; or 1-methyl-1H-pyrazole-4-yl.


In certain embodiments of formula I or formula II, R3 is: hydrogen; methyl; ethyl; n-propyl; isopropyl; 2-methoxy-ethyl; oxetan-3-yl; 2-hydroxy-2-methyl-propan-1-yl; tetrahydropyran-4-yl; or morpholin-4-yl-carbonyl.


In certain embodiments of formula I or formula II, R3 is: methyl; ethyl; n-propyl; isopropyl; 2-methoxy-ethyl; oxetan-3-yl; 2-hydroxy-2-methyl-propan-1-yl; or tetrahydropyran-4-yl.


In certain embodiments of formula I or formula II, R3 is: methyl; ethyl; isopropyl; 2-methoxy-ethyl; oxetan-3-yl; or 2-hydroxy-2-methyl-propan-1-yl.


In certain embodiments of formula I or formula II, R3 is: methyl; ethyl; isopropyl; 2-methoxy-ethyl; oxetan-3-yl; or 2-hydroxy-2-methyl-propan-1-yl.


In certain embodiments of formula I or formula II, R3 is: methyl; ethyl; or isopropyl.


In certain embodiments of formula I or formula II, R3 is hydrogen.


In certain embodiments of formula I or formula II, R3 is methyl.


In certain embodiments of formula I or formula II, R3 is ethyl.


In certain embodiments of formula I or formula II, R3 is n-propyl.


In certain embodiments of formula I or formula II, R3 is isopropyl.


In certain embodiments of formula I or formula II, R3 is 2-methoxy-ethyl.


In certain embodiments of formula I or formula II, R3 is oxetan-3-yl.


In certain embodiments of formula I or formula II, R3 is 2-hydroxy-2-methyl-propan-1-yl.


In certain embodiments of formula I or formula II, R3 is tetrahydropyran-4-yl.


In certain embodiments of formula I or formula II, R3 is morpholin-4-yl-carbonyl.


In certain embodiments of formula I or formula II, R3 is butyl.


In certain embodiments of formula I or formula II, R3 is cyclopropyl.


In certain embodiments of formula I or formula II, R3 is cyclopropylmethyl.


In certain embodiments of formula I or formula II, R3 is cyclobutyl.


In certain embodiments of formula I or formula II, R3 is methanesulfonyl.


In certain embodiments of formula I or formula II, R3 is ethylsulfonyl.


In certain embodiments of formula I or formula II, R3 is cyclopropylsulfonyl.


In certain embodiments of formula I or formula II, R3 is sec-butylsulfonyl.


In certain embodiments of formula I or formula II, R3 is morpholin-4-yl-ethyl.


In certain embodiments of formula I or formula II, R3 is 2-hydroxy-2-methyl-propyl.


In certain embodiments of formula I or formula II, R3 is 3-hydroxy-2-methyl-propan-2-yl.


In certain embodiments of formula I or formula II, R3 is 2-methoxy-propyl.


In certain embodiments of formula I or formula II, R3 is tetrahydro-2H-pyran-4-yl.


In certain embodiments of formula I or formula II, R3 is tetrahydrofuran-3-yl.


In certain embodiments of formula I or formula II, R3 is 2,6-dimethyltetrahydro-2H-pyran-4-yl.


In certain embodiments of formula I or formula II, R3 is tetrahydro-2H-pyran-3-yl).


In certain embodiments of formula I or formula II, R3 is phenyl.


In certain embodiments of formula I or formula II, R3 is 4-(methylsulfonyl)phenyl).


In certain embodiments of formula I or formula II, R3 is 4-cyano-phenyl.


In certain embodiments of formula I or formula II, R3 is 4-fluoro-phenyl.


In certain embodiments of formula Iv, R3 is 4-chloro-phenyl.


In certain embodiments of formula I or formula II, R3 is 3,5-difluorophenyl.


In certain embodiments of formula I or formula II, R3 is 4-(dimethylamino-carbonyl)-phenyl).


In certain embodiments of formula I or formula II, R3 is 4-(cyclopropylsulfonyl)phenyl.


In certain embodiments of formula I or formula II, R3 is 2,2,2-trifluoroethyl.


In certain embodiments of formula I or formula II, R3 is 2-fluoroethyl.


In certain embodiments of formula I or formula II, R3 is difluoromethyl.


In certain embodiments of formula I or formula II, R3 is 2-dimethyl-1,3-dioxan-5-yl.


In certain embodiments of formula I or formula II, R3 is 1-methyl-cyclopropyl-carbonyl.


In certain embodiments of formula I or formula II, R3 is 3-methylpyridin-4-yl.


In certain embodiments of formula I or formula II, R3 is 2-methylpyridin-4-yl.


In certain embodiments of formula I or formula II, R3 is pyridin-2-yl.


In certain embodiments of formula I or formula II, R3 is pyrimidin-2-yl.


In certain embodiments of formula I or formula II, R3 is pyrimidin-5-yl.


In certain embodiments of formula I or formula II, R3 is pyridin-2-ylmethyl.


In certain embodiments of formula I or formula II, R3 is 1-(pyridin-2-yl)ethyl.


In certain embodiments of formula I or formula II, R3 is cyclopropylsulfonyl.


In certain embodiments of formula I or formula II, R3 is 1-cyano-1-methyl-ethyl (also called 2-cyano-propan-2-yl).


In certain embodiments of formula I or formula II, R3 is 2-cyano-ethyl.


In certain embodiments of formula I or formula II, R3 is 1-cyano-ethyl.


In certain embodiments of formula I or formula II, R3 is 2-cyano-2-methyl-propyl.


In certain embodiments of formula I or formula II, R3 is 1-(2,2,2-trifluoroethyl)piperidin-4-yl.


In certain embodiments of formula I or formula II, R3 is 1-(methylsulfonyl)azetidin-3-yl.


In certain embodiments of formula I or formula II, R3 is (3-methyloxetan-3-yl)methyl.


In certain embodiments of formula I or formula II, R3 is (1S,5S)-8-oxabicyclo[3.2.1]octan-3-yl.


In certain embodiments of formula I or formula II, R3 is 1-(oxetan-3-yl)piperidin-4-yl.


In certain embodiments of formula I or formula II, R3 is 1-acetyl-piperidin-4-yl.


In certain embodiments of formula I or formula II, R3 is 1-(cyclopropyl-carbonyl)-piperidin-4-yl.


In certain embodiments of formula I or formula II, R3 is 1-methyl-piperidin-4-yl.


In certain embodiments of formula I or formula II, R3 is 1-methyl-2-oxo-piperidin-5-yl.


In certain embodiments of formula I or formula II, R3 is 2-oxo-piperidin-5-yl.


In certain embodiments of formula I or formula II, R3 is 1-(isopropyl-carbonyl)-piperidin-4-yl.


In certain embodiments of formula I or formula II, R3 is 1-(oxetan-3-yl)azetidin-3-yl.


In certain embodiments of formula I or formula II, R3 is 1-(cyclopropyl-carbonyl)-piperidin-4-yl.


In certain embodiments of formula I or formula II, R3 is 2-methoxycyclopentyl.


In certain embodiments of formula I or formula II, R3 is 3-methoxycyclopentyl.


In certain embodiments of formula I or formula II, R3 is 1-methoxy-2-methylpropan-2-yl.


In certain embodiments of formula I or formula II, R3 is tetrahydro-2H-1,1-dioxo-thiopyran-4-yl.


In certain embodiments of formula I or formula II, R3 is 3-fluoro-1-(oxetan-3-yl)piperidin-4-yl.


In certain embodiments of formula I or formula II, R3 is 1-methoxypropan-2-yl.


In certain embodiments of formula I or formula II, R3 is 1-(2,2,2-trifluoroethyl)azetidin-3-yl).


In certain embodiments of formula I or formula II, R3 is 1-(oxetan-3-yl)pyrrolidin-3-yl.


In certain embodiments of formula I or formula II, R3 is 1-isopropylazetidin-3-yl.


In certain embodiments of formula I or formula II, R3 is 3-fluoro-1-methylpiperidin-4-yl.


In certain embodiments of formula I or formula II, R3 is 1-ethyl-3-fluoropiperidin-4-yl.


In certain embodiments of formula I or formula II, R3 is 1-methylpyrrolidin-3-yl.


In certain embodiments of formula I or formula II, R3 is 2-methoxyethyl)piperidin-4-yl).


In certain embodiments of formula I or formula II, R3 is 1-methyl-1-(methylamino-carbonyl)-ethyl.


In certain embodiments of formula I or formula II, R3 is 2-methyl-2-morpholino-propyl.


In certain embodiments of formula I or formula II, R3 is 4,4-difluorocyclohexyl.


In certain embodiments of formula I or formula II, R3 is dimethylamino-carbonyl-methyl.


In certain embodiments of formula I or formula II, R3 is methylamino-carbonyl-methyl.


In certain embodiments of formula I or formula II, R3 is 1-methyl-1-(dimethylamino-carbonyl)-ethyl.


In certain embodiments of formula I or formula II, R3 is pyrrolidin-′-yl-carbonyl.


In certain embodiments of formula I or formula II, R3 is 1-cyano-cyclopropyl.


In certain embodiments of formula I or formula II, R3 is 1-(pyrrolidin-′-yl-carbonyl)-ethyl.


In certain embodiments of formula I or formula II, R3 is 1-(dimethylamino-carbonyl)-ethyl.


In certain embodiments of formula I or formula II, R3 is 1-(methoxy-carbonyl)-ethyl.


In certain embodiments of formula I or formula II, R3 is 1-(tert-butylamino-carbonyl)-1-methyl-ethyl.


In certain embodiments of formula I or formula II, R3 is 1-(2,2,2-trifluoroethyllamino-carbonyl)-1-methyl-ethyl.


In certain embodiments of formula I or formula II, R3 is 1-(ethylamino-carbonyl)-1-methyl-ethyl.


In certain embodiments of formula I or formula II, R3 is 1-(cyclopropylmethylamino-carbonyl)-1-methyl-ethyl.


In certain embodiments of formula I or formula II, R3 is 1-(ethylamino-carbonyl)-cyclobutyl.


In certain embodiments of formula I or formula II, R3 is 1-(isopropylamino-carbonyl)-1-methyl-ethyl.


In certain embodiments of formula I or formula II, R3 is 1-cyano-cyclobutyl.


In certain embodiments of formula I or formula II, R3 is dimethyl-[1,3]dioxan-5-yl.


In certain embodiments of formula I or formula II, R3 is 2-methoxy-2-methyl-propan-1-yl.


In certain embodiments of formula I or formula II, R3 is 2-methoxy-1-methyl-ethyl.


In certain embodiments of formula I or formula II, R3 is 1-methyl-1-(methoxy-carbonyl)-ethyl.


In certain embodiments of formula I or formula II, R3 is 1-oxetan-3-yl-pyrrolidin-3-yl.


In certain embodiments of formula I or formula II, R3 is isopropylsulfonyl.


In certain embodiments of formula I or formula II, R3 is butane-2-sulfonyl.


In certain embodiments of formula I or formula II, R3 is 1-(2-fluoroethyl)-piperidin-4-yl.


In certain embodiments of formula I or formula II, R3 is 3-fluoro-1-methyl-piperidin-4-yl.


In certain embodiments of formula I or formula II, R3 is 1-ethyl-3-fluoro-piperidin-4-yl. In certain embodiments of formula I or formula II, R3 is pyridin-3-ylmethyl.


In certain embodiments of formula I or formula II, R3 is 6-methyl-pyridin-2-ylmethyl.


In certain embodiments of formula I or formula II, R3 is 2-(morpholin-1-yl)-1,1,dimethyl-ethyl.


In certain embodiments of formula I or formula II, R3 is pyrimdin-2-yl-methyl.


In certain embodiments of formula I or formula II, R3 is 3-fluoro-1-(oxetan-3-yl)-piperidin-4-yl.


In certain embodiments of formula I or formula II, R3 is 1-(oxetan-3-yl)-piperidin-3-yl.


In certain embodiments of formula I or formula II, R3 is 1-([1,3]Dioxolan-2-ylmethyl)-piperidin-4-yl.


In certain embodiments of formula I or formula II, R3 is pyridazin-3-ylmethyl.


In certain embodiments of formula I or formula II, R3 is piperidin-3-yl.


In certain embodiments of formula I or formula II, R3 is pyrazin-2-ylmethyl.


In certain embodiments of formula I or formula II, R3 is 2-hydroxy-3-methyl-butan-1-yl.


In certain embodiments of formula I or formula II, R3 is 1-([1,3]dioxolan-2-ylmethyl)-pyrrolidin-3-yl.


In certain embodiments of formula I or formula II, R3 is pyrimidin-4-ylmethyl.


In certain embodiments of formula I or formula II, R3 is 1-methyl-1H-pyrazol-3-ylmethyl.


In certain embodiments of formula I or formula II, R3 is 1-methyl-1-(5-methyl-4H-[1,2,4]triazol-3-yl)-ethyl.


In certain embodiments of formula I or formula II, R3 is 1-methyl-1-(4H-[1,2,4]triazol-3-yl)-ethyl.


In certain embodiments of formula I or formula II, R3 is 3-fluoro-piperidin-4-yl; 2-hydroxy-cyclopentyl.


In certain embodiments of formula I or formula II, R3 is 2-(5-methyl-1,3,4-oxadiazol-2-yl)propan-2-yl.


In certain embodiments of formula I or formula II, R3 is 2-(4-methyl-4H-1,2,4-triazol-3-yl)propan-2-yl.


In certain embodiments of formula I or formula II, R3 is 2-(1-methyl-1H-1,2,4-triazol-3-yl)propan-2-yl.


In certain embodiments of formula I or formula II, R3 is 2-(1-methyl-1H-pyrazol-4-yl)propan-2-yl; 2-(1-methyl-1H-pyrazol-3-yl)propan-2-yl.


In certain embodiments of formula I or formula II, R3 is 2-(1-methyl-1H-pyrazol-5-yl.


In certain embodiments of formula I or formula II, R3 is 2-(4H-1,2,4-triazol-3-yl)propan-2-yl.


In certain embodiments of formula I or formula II, R3 is 1-methyl-1H-pyrazole-4-yl.


In embodiments of formula I or formula II wherein R3 is aryl, such aryl may be unsubstituted phenyl or phenyl substituted one or more times with R8, or in certain embodiments, once, twice or three times with a group or groups independently selected from C1-6alkyl, halo, halo-C1-6alkyl, C1-6alkoxy, hydroxy or cyano.


In embodiments of formula I or formula II wherein R3 is heteroaryl or heteroaryl-C1-6alkyl, such heteroaryl moiety may be pyrrolyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, isoxazolyl, isothiazolyl, triazolyl, oxadiaolyl, thiadiazolyl or tetrazolyl, each being unsubstituted or substituted once or twice with R8, or in certain embodiments, substituted once or twice with C1-6alkyl.


In embodiments of formula I or formula II wherein R3 is heteroaryl or heteroaryl-C1-6alkyl, such heteroaryl moiety may be pyrazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazolyl or oxadiaolyl each being unsubstituted or substituted once or twice with R8, or in certain embodiments, substituted once or twice with C1-6alkyl.


In embodiments of formula I or formula II wherein R3 is heteroaryl or heteroaryl-C1-6alkyl, such heteroaryl moiety may be pyrrolyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl, pyridinyl, pyrimidinyl, pyrazinyl or pyridazinyl, each being unsubstituted or substituted one or more times with R8


In embodiments of formula I or formula II wherein R3 is heterocyclyl, such heterocyclyl moiety may be piperidinyl, pyrrolidinyl, oxetanyl, tetrahydropyranyl, tetrahydrofuranyl, azetidinyl, [1,3]dioxolanyl or tetrahydrothiopyranyl, each being unsubstituted or substituted one or more times with R7.


In embodiments of formula I or formula II wherein R3 is heterocyclyl-C1-6alkyl, such heterocyclyl moiety may be piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, pyrrolidinyl, oxetanyl, tetrahydropyranyl, tetrahydrofuranyl, azetidinyl, [1,3]dioxolanyl or tetrahydrothiopyranyl, each being unsubstituted or substituted one or more times with R7.


In certain embodiments of formula I or formula II, R3 is —Y—C(O)—Rd.


In certain embodiments of formula I or formula II, Y is a bond.


In certain embodiments of formula I or formula II, Y is C2-6alkylene.


In certain embodiments of formula I or formula II, Y is isopropylidine.


In certain embodiments of formula I or formula II, Y is methylene.


In certain embodiments of formula I or formula II, Y is ethylene.


In certain embodiments of formula I or formula II, Y is —C(CH3)2—.


In certain embodiments of formula I or formula II, Y is —CH2—.


In certain embodiments of formula I or formula II, Y is —CH(CH3)—.


In certain embodiments of formula I or formula II, Y is —CH2—C(CH3)2—.


In certain embodiments of formula I or formula II, Y is —C(CH3)2—CH2—.


In certain embodiments of formula I or formula II, Rd is C1-6alkyl, C1-6alkoxy, amino, or heterocyclyl.


In certain embodiments of formula I or formula II, Rd is C1-6alkyl.


In certain embodiments of formula I or formula II, Rd is C1-6alkoxy.


In certain embodiments of formula I or formula II, Rd is amino


In certain embodiments of formula I or formula II, Rd is halo-C1-6alkyl.


In certain embodiments of formula I or formula II, Rd is hydroxy-C1-6alkyl.


In certain embodiments of formula I or formula II, Rd is C1-6alkoxy-C1-6alkyl.


In certain embodiments of formula I or formula II, Rd is cyano-C1-6alkyl.


In certain embodiments of formula I or formula II, Rd is C1-6alkylsulfonylC1-6alkyl.


In certain embodiments of formula I or formula II, Rd is amino-C1-6alkyl.


In certain embodiments of formula I or formula II, Rd is C3-6cycloalkyl optionally substituted one or more times with R6.


In certain embodiments of formula I or formula II, Rd is C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with R6.


In certain embodiments of formula I or formula II, Rd is heterocyclyl optionally substituted one or more times with R7.


In certain embodiments of formula I or formula II, Rd is heterocyclyl-C1-6alkyl wherein the heterocyclyl portion is optionally substituted one or more times with R7.


In certain embodiments of formula I or formula II, Rd is 1-methyl-cyclopropyl; methylamino; dimethylamino; pyrrolidin-1-yl; methoxy; cyclopropyl-methyl; ethyl; 2,2,2-trifluoro-ethyl; tert-butyl; or isopropyl.


In certain embodiments of formula I or formula II, Rd is 1-methyl-cyclopropyl.


In certain embodiments of formula I or formula II, Rd is methylamino.


In certain embodiments of formula I or formula II, Rd is dimethylamino


In certain embodiments of formula I or formula II, Rd is pyrrolidin-1-yl.


In certain embodiments of formula I or formula II, Rd is methoxy.


In certain embodiments of formula I or formula II, Rd is cyclopropyl-methyl.


In certain embodiments of formula I or formula II, Rd is ethyl.


In certain embodiments of formula I or formula II, Rd is 2,2,2-trifluoro-ethyl.


In certain embodiments of formula I or formula II, Rd is tert-butyl.


In certain embodiments of formula I or formula II, Rd is isopropyl.


In embodiments of formula I or formula II wherein Rd is heterocyclyl or heterocyclyl-C1-6alkyl, such heterocyclyl may be piperidinyl, piperazinyl, morpholinyl, tetrahydropyranyl, pyrrolidinyl, azetidinyl, tetrahydrofuranyl or oxetanyl, each optionally substituted one or more times, or one or two times, with R7 as defined herein.


In embodiments of formula I or formula II wherein Rd is heterocyclyl, such heterocyclyl moiety may be piperidinyl, pyrrolidinyl, oxetanyl, tetrahydropyranyl, tetrahydrofuranyl, azetidinyl, [1,3]dioxolanyl or tetrahydrothiopyranyl, each being unsubstituted or substituted one or more times with R7.


In embodiments of formula I or formula II wherein Rd is heterocyclyl-C1-6alkyl, such heterocyclyl moiety may be piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, pyrrolidinyl, oxetanyl, tetrahydropyranyl, tetrahydrofuranyl, azetidinyl, [1,3]dioxolanyl or tetrahydrothiopyranyl, each being unsubstituted or substituted one or more times with R7.


In certain embodiments of formula I or formula II, R4 is: hydrogen; C1-6alkyl; halo; halo-C1-6alkyl; C1-6alkoxy-C1-6alkyl; hydroxy-C1-6alkyl; C3-6cycloalkyl optionally substituted with C1-6alkyl; C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted with C1-6alkyl; or —C(O)—Rc wherein Rc is C1-6alkyl, C1-6alkoxy, amino, or heterocyclyl.


In certain embodiments of formula I or formula II, R4 is: C1-6alkyl; halo; halo-C1-6alkyl; C1-6alkoxy-C1-6alkyl; hydroxy-C1-6alkyl; C3-6cycloalkyl optionally substituted with C1-6alkyl; C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted with C1-6alkyl; or —C(O)—Rc wherein Rc is C1-6alkyl, C1-6alkoxy, amino, or heterocyclyl.


In certain embodiments of formula I or formula II, R4 is: hydrogen; C1-6alkyl; halo; C3-6cycloalkyl optionally substituted with C1-6alkyl; C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted with C1-6alkyl; or —C(O)—Rc wherein Rc is C1-6alkyl, C1-6alkoxy, amino, or heterocyclyl.


In certain embodiments of formula I or formula II, R4 is: hydrogen; C1-6alkyl; halo; or C3-6cycloalkyl optionally substituted with C1-6alkyl.


In certain embodiments of formula I or formula II, R4 is hydrogen or C1-6alkyl.


In certain embodiments of formula I or formula II, R4 is hydrogen.


In certain embodiments of formula I or formula II, R4 is C1-6alkyl.


In certain embodiments of formula I or formula II, R4 is halo.


In certain embodiments of formula I or formula II, R4 is cyano.


In certain embodiments of formula I or formula II, R4 is halo-C1-6alkyl.


In certain embodiments of formula I or formula II, R4 is C1-6alkoxy-C1-6alkyl.


In certain embodiments of formula I or formula II, R4 is hydroxy-C1-6alkyl.


In certain embodiments of formula I or formula II, R4 is C3-6cycloalkyl optionally substituted with C1-6alkyl.


In certain embodiments of formula I or formula II, R4 is hydrogen or methyl.


In certain embodiments of formula I or formula II, R4 is C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted with C1-6alkyl.


In certain embodiments of formula I or formula II, R4 is —C(O)—Rc wherein Rc is C1-6alkyl, C1-6alkoxy, amino, or heterocyclyl.


In certain embodiments of formula I or formula II, R4 is —C(O)—Rc wherein Rc is heterocyclyl.


In embodiments of formula I or formula II wherein Rc is heterocyclyl, such heterocyclyl may be pyrrolidinyl, piperidinyl, piperazinyl or morpholinyl.


In embodiments of formula I or formula II wherein Rc is heterocyclyl, such heterocyclyl may be piperidinyl, piperazinyl or morpholinyl.


In certain embodiments of formula I or formula II, R4 is: hydrogen; methyl; isopropyl; cyclopropyl; chloro; or morpholin-4-yl-carbonyl.


In certain embodiments of formula I or formula II, R4 is: hydrogen; methyl; isopropyl; cyclopropyl; or chloro.


In certain embodiments of formula I or formula II, R4 is hydrogen.


In certain embodiments of formula I or formula II, R4 is methyl.


In certain embodiments of formula I or formula II, R4 is isopropyl.


In certain embodiments of formula I or formula II, R4 is cyclopropyl.


In certain embodiments of formula I or formula II, R4 is chloro.


In certain embodiments of formula I or formula II, R4 is morpholin-4-yl-carbonyl.


In certain embodiments of formula I or formula II, R4 is 2-fluoro-ethyl.


In certain embodiments of formula I or formula II, R4 is C3-6cycloalkyl optionally substituted one or more times, or one or two times, with R6.


In certain embodiments of formula I or formula II, R4 is C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times, or one or two times, with R6.


In certain embodiments of formula I or formula II, R4 is —Y—C(O)—Rd.


In certain embodiments of formula I or formula II, or R3 and R4 together with the atoms to which they are attached may form a 5- or 6-membered ring that optionally includes a heteroatom selected from O, N and S.


In certain embodiments of formula I or formula II, R5 is hydrogen.


In certain embodiments of formula I or formula II, R5 is C1-6alkyl.


In certain embodiments of formula I or formula II, R5 is methyl.


In certain embodiments of formula I or formula II, each R6 is independently C1-6alkyl; halo-C1-6alkyl; C1-6alkoxy; cyano; or halo.


In certain embodiments of formula I or formula II, R6 is C1-6alkyl; halo-C1-6alkyl; C1-6alkoxy; or halo.


In certain embodiments of formula I or formula II, R6 is C1-6alkyl; halo-C1-6alkyl; or halo.


In certain embodiments of formula I or formula II, R6 is C1-6alkyl.


In certain embodiments of formula I or formula II, R6 is halo-C1-6alkyl. In certain embodiments of formula I or formula II, R6 is C1-6alkoxy.


In certain embodiments of formula I or formula II, R6 is cyano.


In certain embodiments of formula I or formula II, R6 is halo.


In certain embodiments of formula I or formula II, R6 is Y—C(O)—Rd.


In certain embodiments of formula I or formula II, R6 is oxo.


In certain embodiments of formula I or formula II, each R7 is independently C1-6alkyl; halo-C1-6alkyl; halo; C1-6alkylsulfonyl; C1-6alkoxy-C1-6alkyl; cyano; heterocyclyl; or C3-6cycloalkylsulfonyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with R6.


In certain embodiments of formula I or formula II, R7 is C1-6alkyl.


In certain embodiments of formula I or formula II, R7 is halo-C1-6alkyl.


In certain embodiments of formula I or formula II, R7 is halo.


In certain embodiments of formula I or formula II, R7 is C1-6alkylsulfonyl.


In certain embodiments of formula I or formula II, R7 is C1-6alkoxy-C1-6alkyl.


In certain embodiments of formula I or formula II, R7 is cyano.


In certain embodiments of formula I or formula II, R7 is —Y—C(O)—Rd.


In certain embodiments of formula I or formula II, R7 is heterocyclyl.


In certain embodiments of formula I or formula II, R7 is C3-6cycloalkylsulfonyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with R6.


In certain embodiments of formula I or formula II, R7 is oxo.


In certain embodiments of formula I or formula II, R7 is C1-6alkoxy.


In certain embodiments of formula I or formula II, R7 is heterocyclyl-C1-6alkyl.


In certain embodiments of formula I or formula II, R7 is C3-6cycloalkyl.


In certain embodiments of formula I or formula II, R7 is C3-6cycloalkyl-C1-6alkyl.


In embodiments of formula I or formula II wherein R7 is heterocyclyl, such heterocyclyl moiety may be piperidinyl, pyrrolidinyl, oxetanyl, tetrahydropyranyl, tetrahydrofuranyl, azetidinyl, [1,3]dioxolanyl or tetrahydrothiopyranyl.


In embodiments of formula I or formula II wherein R7 is heterocyclyl-C1-6alkyl, such heterocyclyl moiety may be piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, pyrrolidinyl, oxetanyl, tetrahydropyranyl, tetrahydrofuranyl, azetidinyl, [1,3]dioxolanyl or tetrahydrothiopyranyl.


In certain embodiments of formula I or formula II, each R8 is independently oxo; C1-6alkyl; halo-C1-6alkyl; halo; C1-6alkoxy; C1-6alkoxy-C1-6alkyl; cyano; C3-6cycloalkyl optionally substituted one or more times with R6, C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with R6, or C3-6cycloalkyl-sulfonyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with R6.


In certain embodiments of formula I or formula II, R8 is oxo. In certain embodiments of formula I or formula II, R7 is C1-6alkyl.


In certain embodiments of formula I or formula II, R7 is halo-C1-6alkyl In certain embodiments of formula I or formula II, R7 is halo. In certain embodiments of formula I or formula II, R7 is C1-6alkoxy.


In certain embodiments of formula I or formula II, R7 is C1-6alkoxy-C1-6alkyl.


In certain embodiments of formula I or formula II, R7 is cyano.


In certain embodiments of formula I or formula II, R7 is hetoeryclyl.


In certain embodiments of formula I or formula II, R7 is —Y—C(O)—Rd.


In certain embodiments of formula I or formula II, R7 is C3-6cycloalkyl optionally substituted one or more times with R6.


In certain embodiments of formula I or formula II, R7 is C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with R6.


In certain embodiments of formula I or formula II, R7 is C3-6cycloalkyl-sulfonyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with R6.


In certain embodiments of formula I or formula II, R8 is oxo.


In certain embodiments of formula I or formula II, R8 is C1-6alkyl.


In certain embodiments of formula I or formula II, R8 is halo-C1-6alkyl.


In certain embodiments of formula I or formula II, R8 is halo.


In certain embodiments of formula I or formula II, R8 is C1-6alkyl-sulfonyl.


In certain embodiments of formula I or formula II, R8 is C1-6alkoxy.


In certain embodiments of formula I or formula II, R8 is C1-6alkoxy-C1-6alkyl.


In certain embodiments of formula I or formula II, R8 is cyano; hetoeryclyl.


In certain embodiments of formula I or formula II, R8 is heterocyclyl-C1-6alkyl.


In certain embodiments of formula I or formula II, R8 is —Y—C(O)—Rd.


In certain embodiments of formula I or formula II, R8 is C3-6cycloalkyl.


In certain embodiments of formula I or formula II, R8 is C3-6cycloalkyl-C1-6alkyl-C3-6cycloalkyl-sulfonyl.


In embodiments of formula I or formula II wherein R8 is heterocyclyl, such heterocyclyl moiety may be piperidinyl, pyrrolidinyl, oxetanyl, tetrahydropyranyl, tetrahydrofuranyl, azetidinyl, [1,3]dioxolanyl or tetrahydrothiopyranyl.


In embodiments of formula I or formula II wherein R8 is heterocyclyl-C1-6alkyl, such heterocyclyl moiety may be piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, pyrrolidinyl, oxetanyl, tetrahydropyranyl, tetrahydrofuranyl, azetidinyl, [1,3]dioxolanyl or tetrahydrothiopyranyl.


In certain embodiments of the invention, compounds of formulas III, IV and V are provided:




embedded image


wherein X, R1, R, R2, R3, R4 and R5 are as defined herein.


In certain embodiments of the invention, the subject compounds are of formula III.


In certain embodiments of the invention, the subject compounds are of formula IV.


In certain embodiments of the invention, the subject compounds are of formula V.


Where any of R1, R2, R′ R4, R5, R6, R7, R8 Ra, Rb, Rc and Rd is alkyl or contains an alkyl moiety, such alkyl may be lower alkyl, i.e. C1-C6alkyl, and in many embodiments may be C1-C4alkyl.


The invention also provides a method for treating a disease or condition mediated by or otherwise associated with the LRRK2 receptor, the method comprising administering to a subject in need thereof an effective amount of a compound of the invention.


The disease may be a neurodegenerative disease such as Parkinson's disease, Huntington's disease or Lewie body dementia.


The disease may be a CNS disorder such as Alzheimer's disease or L-Dopa induced dyskinesia.


The disease may be a cancer or proliferative disorder such as kidney, breast, prostate, blood, papillary or lung cancer, acute myelogenous leukemia, or multiple myeloma.


The disease may be an inflammatory disease such as leprosy, Crohn's disease, amyotrophic lateral sclerosis, rheumatoid arthritis, or ankylosing spondylytis.


The invention also provides a method for enhancing cognitive memory, the method comprising administering to a subject in need thereof an effective amount of a compound of the invention.


Representative compounds in accordance with the methods of the invention are shown in the experimental examples below.


Synthesis

Compounds of the present invention can be made by a variety of methods depicted in the illustrative synthetic reaction schemes shown and described below.


The starting materials and reagents used in preparing these compounds generally are either available from commercial suppliers, such as Aldrich Chemical Co., or are prepared by methods known to those skilled in the art following procedures set forth in references such as Fieser and Fieser's Reagents for Organic Synthesis; Wiley & Sons: New York, 1991, Volumes 1-15; Rodd's Chemistry of Carbon Compounds, Elsevier Science Publishers, 1989, Volumes 1-5 and Supplementals; and Organic Reactions, Wiley & Sons: New York, 1991, Volumes 1-40. The following synthetic reaction schemes are merely illustrative of some methods by which the compounds of the present invention can be synthesized, and various modifications to these synthetic reaction schemes can be made and will be suggested to one skilled in the art having referred to the disclosure contained in this application.


The starting materials and the intermediates of the synthetic reaction schemes can be isolated and purified if desired using conventional techniques, including but not limited to, filtration, distillation, crystallization, chromatography, and the like. Such materials can be characterized using conventional means, including physical constants and spectral data.


Unless specified to the contrary, the reactions described herein may be conducted under an inert atmosphere at atmospheric pressure at a reaction temperature range of from about −78° C. to about 150° C., for example, from about 0° C. to about 125° C., or conveniently at about room (or ambient) temperature, e.g., about 20° C.


Scheme A below illustrates one synthetic procedure usable to prepare specific compounds of formula I, wherein X, R1, R2, R3, R4 and R5 are as defined herein.




embedded image


In step 1 of Scheme A, dichloropyrimidine compound a is reacted with reagent b to afford pyrimidine compound c. The reaction of step 1 may take place under polar solvent conditions. In embodiments of the invention where X is —O— (reagent b is an alcohol), the reaction of step 1 may be carried out in the presence of base.


Following step 1, one of steps 2a, 2b and 2c is carried out. In step 2a, pyrimidine compound c undergoes reaction with 4-amino-pyrazole compound d1 to provide an aminopyrimidine compound of formula III. In step 2b, pyrimidine compound c is reacted with 5-amino-pyrazole compound d2 to afford an aminopyrimidine compound of formula IV. In step 2c, pyrimidine compound c is treated with 3-amino-pyrazole compound d3 to yield an aminopyrimidine compound of formula V. The reaction of steps 2a-2c may take place in polar protic solvent and in the presence of acid such as HCl.


Many variations on the procedure of Scheme A are possible and will suggest themselves to those skilled in the art. Specific details for producing compounds of the invention are described in the Examples below.


Administration and Pharmaceutical Composition

The invention includes pharmaceutical compositions comprising at least one compound of the present invention, or an individual isomer, racemic or non-racemic mixture of isomers or a pharmaceutically acceptable salt or solvate thereof, together with at least one pharmaceutically acceptable carrier, and optionally other therapeutic and/or prophylactic ingredients.


In general, the compounds of the invention will be administered in a therapeutically effective amount by any of the accepted modes of administration for agents that serve similar utilities. Suitable dosage ranges are typically 1-500 mg daily, for example 1-100 mg daily, and in some embodiments 1-30 mg daily, depending upon numerous factors such as the severity of the disease to be treated, the age and relative health of the subject, the potency of the compound used, the route and form of administration, the indication towards which the administration is directed, and the preferences and experience of the medical practitioner involved. One of ordinary skill in the art of treating such diseases will be able, without undue experimentation and in reliance upon personal knowledge and the disclosure of this application, to ascertain a therapeutically effective amount of the compounds of the present invention for a given disease.


Compounds of the invention may be administered as pharmaceutical formulations including those suitable for oral (including buccal and sub-lingual), rectal, nasal, topical, pulmonary, vaginal, or parenteral (including intramuscular, intraarterial, intrathecal, subcutaneous and intravenous) administration or in a form suitable for administration by inhalation or insufflation. A particular manner of administration is generally oral using a convenient daily dosage regimen which can be adjusted according to the degree of affliction.


A compound or compounds of the invention, together with one or more conventional adjuvants, carriers, or diluents, may be placed into the form of pharmaceutical compositions and unit dosages. The pharmaceutical compositions and unit dosage forms may be comprised of conventional ingredients in conventional proportions, with or without additional active compounds or principles, and the unit dosage forms may contain any suitable effective amount of the active ingredient commensurate with the intended daily dosage range to be employed. The pharmaceutical compositions may be employed as solids, such as tablets or filled capsules, semisolids, powders, sustained release formulations, or liquids such as solutions, suspensions, emulsions, elixirs, or filled capsules for oral use; or in the form of suppositories for rectal or vaginal administration; or in the form of sterile injectable solutions for parenteral use. Formulations containing about one (1) milligram of active ingredient or, more broadly, about 0.01 to about one hundred (100) milligrams, per tablet, are accordingly suitable representative unit dosage forms.


The compounds of the invention may be formulated in a wide variety of oral administration dosage forms. The pharmaceutical compositions and dosage forms may comprise a compound or compounds of the present invention or pharmaceutically acceptable salts thereof as the active component. The pharmaceutically acceptable carriers may be either solid or liquid. Solid form preparations include powders, tablets, pills, capsules, cachets, suppositories, and dispersible granules. A solid carrier may be one or more substances which may also act as diluents, flavouring agents, solubilizers, lubricants, suspending agents, binders, preservatives, tablet disintegrating agents, or an encapsulating material. In powders, the carrier generally is a finely divided solid which is a mixture with the finely divided active component. In tablets, the active component generally is mixed with the carrier having the necessary binding capacity in suitable proportions and compacted in the shape and size desired. The powders and tablets may contain from about one (1) to about seventy (70) percent of the active compound. Suitable carriers include but are not limited to magnesium carbonate, magnesium stearate, talc, sugar, lactose, pectin, dextrin, starch, gelatine, tragacanth, methylcellulose, sodium carboxymethylcellulose, a low melting wax, cocoa butter, and the like. The term “preparation” is intended to include the formulation of the active compound with encapsulating material as carrier, providing a capsule in which the active component, with or without carriers, is surrounded by a carrier, which is in association with it. Similarly, cachets and lozenges are included. Tablets, powders, capsules, pills, cachets, and lozenges may be as solid forms suitable for oral administration.


Other forms suitable for oral administration include liquid form preparations including emulsions, syrups, elixirs, aqueous solutions, aqueous suspensions, or solid form preparations which are intended to be converted shortly before use to liquid form preparations. Emulsions may be prepared in solutions, for example, in aqueous propylene glycol solutions or may contain emulsifying agents, for example, such as lecithin, sorbitan monooleate, or acacia. Aqueous solutions can be prepared by dissolving the active component in water and adding suitable colorants, flavors, stabilizers, and thickening agents. Aqueous suspensions can be prepared by dispersing the finely divided active component in water with viscous material, such as natural or synthetic gums, resins, methylcellulose, sodium carboxymethylcellulose, and other well known suspending agents. Solid form preparations include solutions, suspensions, and emulsions, and may contain, in addition to the active component, colorants, flavors, stabilizers, buffers, artificial and natural sweeteners, dispersants, thickeners, solubilizing agents, and the like.


The compounds of the invention may be formulated for parenteral administration (e.g., by injection, for example bolus injection or continuous infusion) and may be presented in unit dose form in ampoules, pre-filled syringes, small volume infusion or in multi-dose containers with an added preservative. The compositions may take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, for example solutions in aqueous polyethylene glycol. Examples of oily or nonaqueous carriers, diluents, solvents or vehicles include propylene glycol, polyethylene glycol, vegetable oils (e.g., olive oil), and injectable organic esters (e.g., ethyl oleate), and may contain formulatory agents such as preserving, wetting, emulsifying or suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form, obtained by aseptic isolation of sterile solid or by lyophilization from solution for constitution before use with a suitable vehicle, e.g., sterile, pyrogen-free water.


The compounds of the invention may be formulated for topical administration to the epidermis as ointments, creams or lotions, or as a transdermal patch. Ointments and creams may, for example, be formulated with an aqueous or oily base with the addition of suitable thickening and/or gelling agents. Lotions may be formulated with an aqueous or oily base and will in general also containing one or more emulsifying agents, stabilizing agents, dispersing agents, suspending agents, thickening agents, or coloring agents. Formulations suitable for topical administration in the mouth include lozenges comprising active agents in a flavored base, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert base such as gelatine and glycerine or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable liquid carrier.


The compounds of the invention may be formulated for administration as suppositories. A low melting wax, such as a mixture of fatty acid glycerides or cocoa butter is first melted and the active component is dispersed homogeneously, for example, by stirring. The molten homogeneous mixture is then poured into convenient sized molds, allowed to cool, and to solidify.


The compounds of the invention may be formulated for vaginal administration. Pessaries, tampons, creams, gels, pastes, foams or sprays containing in addition to the active ingredient such carriers as are known in the art to be appropriate.


The subject compounds may be formulated for nasal administration. The solutions or suspensions are applied directly to the nasal cavity by conventional means, for example, with a dropper, pipette or spray. The formulations may be provided in a single or multidose form. In the latter case of a dropper or pipette, this may be achieved by the patient administering an appropriate, predetermined volume of the solution or suspension. In the case of a spray, this may be achieved for example by means of a metering atomizing spray pump.


The compounds of the invention may be formulated for aerosol administration, particularly to the respiratory tract and including intranasal administration. The compound will generally have a small particle size for example of the order of five (5) microns or less. Such a particle size may be obtained by means known in the art, for example by micronization. The active ingredient is provided in a pressurized pack with a suitable propellant such as a chlorofluorocarbon (CFC), for example, dichlorodifluoromethane, trichlorofluoromethane, or dichlorotetrafluoroethane, or carbon dioxide or other suitable gas. The aerosol may conveniently also contain a surfactant such as lecithin. The dose of drug may be controlled by a metered valve. Alternatively the active ingredients may be provided in a form of a dry powder, for example a powder mix of the compound in a suitable powder base such as lactose, starch, starch derivatives such as hydroxypropylmethyl cellulose and polyvinylpyrrolidine (PVP). The powder carrier will form a gel in the nasal cavity. The powder composition may be presented in unit dose form for example in capsules or cartridges of e.g., gelatine or blister packs from which the powder may be administered by means of an inhaler.


When desired, formulations can be prepared with enteric coatings adapted for sustained or controlled release administration of the active ingredient. For example, the compounds of the present invention can be formulated in transdermal or subcutaneous drug delivery devices. These delivery systems are advantageous when sustained release of the compound is necessary and when patient compliance with a treatment regimen is crucial. Compounds in transdermal delivery systems are frequently attached to an skin-adhesive solid support. The compound of interest can also be combined with a penetration enhancer, e.g., Azone (1-dodecylazacycloheptan-2-one). Sustained release delivery systems are inserted subcutaneously into the subdermal layer by surgery or injection. The subdermal implants encapsulate the compound in a lipid soluble membrane, e.g., silicone rubber, or a biodegradable polymer, e.g., polylactic acid.


The pharmaceutical preparations may be in unit dosage forms. In such form, the preparation is subdivided into unit doses containing appropriate quantities of the active component. The unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, such as packeted tablets, capsules, and powders in vials or ampoules. Also, the unit dosage form can be a capsule, tablet, cachet, or lozenge itself, or it can be the appropriate number of any of these in packaged form.


Other suitable pharmaceutical carriers and their formulations are described in Remington: The Science and Practice of Pharmacy 1995, edited by E. W. Martin, Mack Publishing Company, 19th edition, Easton, Pa. Representative pharmaceutical formulations containing a compound of the present invention are described below.


Utility

The compounds of the invention are useful for treatment of LRRK2-mediated diseases or conditions, including neurodegenerative diseases such as Parkinson's disease, Lewy body dementia and Huntington's disease, and for enhancemenent of cognitive memory generally in subjects in need thereof.


EXAMPLES

The following preparations and examples are given to enable those skilled in the art to more clearly understand and to practice the present invention. They should not be considered as limiting the scope of the invention, but merely as being illustrative and representative thereof.


Unless otherwise stated, all temperatures including melting points (i.e., MP) are in degrees celsius (° C.). It should be appreciated that the reaction which produces the indicated and/or the desired product may not necessarily result directly from the combination of two reagents which were initially added, i.e., there may be one or more intermediates which are produced in the mixture which ultimately leads to the formation of the indicated and/or the desired product. The following abbreviations may be used in the Preparations and Examples.


Abbreviations



  • AcOH Acetic acid

  • AIBN 2,2′-Azobis(2-methylpropionitrile)

  • Atm. Atmosphere

  • (BOC)2O di-tent-Butyl dicarbonate

  • dba tris(dibenzylideneacetone)

  • DCM Dichloromethane/Methylene chloride

  • DIAD Diisopropyl azodicarboxylate

  • DIPEA Diisopropylethylamine

  • DMAP 4-Dimethylaminopyridine

  • DME 1,2-Dimethoxyethane

  • DMF N,N-Dimethylformamide

  • DMSO Dimethyl sulfoxide

  • DPPF 1,1′-Bis(diphenylphosphino)ferrocene

  • Et2O Diethyl ether

  • EtOH Ethanol/Ethyl alcohol

  • EtOAc Ethyl acetate

  • HATU 2-(1H-7-Azabenzotriazol-1-yl)-1,1,3,3-tetramethyl uronium hexafluorophosphate Methanaminium

  • HBTU O-Benzotriazol-1-yl-N,N,N′,N′-tetramethyluronium hexafluorophosphate

  • HOBT 1-Hydroxybenzotriazole

  • HPLC High pressure liquid chromatography

  • HPLC Reverse phase high pressure liquid chromatography

  • i-PrOH Isopropanol/isopropyl alcohol

  • LCMS Liquid Chromatograph/Mass Spectroscopy

  • MeOH Methanol/Methyl alcohol

  • MW Microwaves

  • NBS N-Bromosuccinimide

  • NMP 1-Methyl-2-pyrrolidinone

  • PSI Pound per square inch

  • RT Room temperature

  • SFC Supercritical fluid chromatography

  • TBDMS tert-Butyldimethylsilyl

  • TFA Trifluoroacetic acid

  • THF Tetrahydrofuran

  • TLC Thin layer chromatography

  • Xphos 2-Dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl



Liquid Chromatography-Mass Spectrometry Method A

LC-MS was performed on an Agilent 1200 Series LC coupled to an Agilent 6140 quadrupole mass spectrometer using an Agilent SD-C18 column (1.8 μm, 2.1×30 mm) with a linear gradient of 3-95% acetonitrile/water (with 0.05% trifluoroacetic acid in each mobile phase) within 8.5 minutes and held at 95% for 2.5 minutes.


Liquid Chromatography-Mass Spectrometry Method B

LC-MS was performed on a Waters 2795 Alliance HT HPLC with Waters 2996 Diode Array Detector coupled to a Micromass ZQ, single quadrapole mass spectrometer using a Phenomenex Luna C18 (2) column (5 um, 100×4.6 mm plus guard cartridge) with a linear gradient of 5-95% acetonitrile/water (with 0.1% formic acid in each mobile phase) within 3.5 minutes and held at 95% for 2.0 minutes.


Liquid Chromatography-Mass Spectrometry Method C

LC-MS was performed on a Waters 2795 Alliance HT HPLC with Waters 2996 Diode Array Detector coupled to a Micromass ZQ, single quadrapole mass spectrometer using a Waters Xterra MS C18 column (5 um, 100×4.6 mm plus guard cartridge) being initially held at 5% acetonitrile/water (with 10 mM ammonium bicarbonate in the aqueous mobile phase) for 0.5 minutes, followed by a linear gradient of 5-95% within 3.5 minutes and then held at 95% for 1.5 minutes.


Analytical Methods


1H Nuclear magnetic resonance (NMR) spectroscopy was carried out using a Bruker instrument operating at 400 or 500 MHz using the stated solvent at around room temperature unless otherwise stated. In all cases, NMR data were consistent with the proposed structures. Characteristic chemical shifts (δ) are given in parts-per-million using conventional abbreviations for designation of major peaks: e.g. s, singlet; d, doublet; t, triplet; q, quartet; dd, doublet of doublets; dt, doublet of triplets; br, broad. Where thin layer chromatography (TLC) has been used it refers to silica gel TLC using silica gel MK6F 60 Å plates, Rf is the distance travelled by the compound divided by the distance travelled by the solvent on a TLC plate. Flash chromatography refers to silica gel chromatography and is carried out using an SP4 or an Isolara 4 MPLC system (manufactured by Biotage); pre-packed silica gel cartridges (supplied by Biotage); or using conventional glass column chromatography.


Compound Preparation

Where the preparation of starting materials is not described, these are commercially available, known in the literature, or readily obtainable by those skilled in the art using standard procedures. Where it is stated that compounds were prepared analogously to earlier examples or intermediates, it will be appreciated by the skilled person that the reaction time, number of equivalents of reagents and temperature can be modified for each specific reaction and that it may be necessary or desirable to employ different work-up or purification techniques. Where reactions are carried out using microwave irradiation, the microwave used is an Initiator 60 supplied by Biotage. The actual power supplied varies during the course of the reaction in order to maintain a constant temperature.


Compounds made in the following examples are summarized in the Tables below, which shows affinity values for LRRK2 (Ki, micromolar) for representative compounds together with LCMS method (M), LC retention time (RT) in minutes, and Mass Spec m/z values (molecular weight).


Intermediate 1
2,5-Dichloro-4-methoxypyrimidine



embedded image


To a 250 mL round bottom flask equipped with a stir bar was added 2,4,5-trichloro-pyrimidine (1 g), and diethyl ether (15 mL). The mixture was cooled to 0° C. in an ice bath and then 1 equivalent of sodium methoxide in methanol (prepared from reacting 120 mg of sodium with 4 mL of methanol at room temperature) was slowly added. The reaction was stirred over night at room temperature and checked by LCMS. The white precipitate was filtered and the solid washed with cold methanol. After drying, 0.98 g of pure 2,5-dichloro-4-methoxypyrimidine was obtained and this material was used without further purification. 1H-NMR (DMSO): δ 8.61 (s, 1H), 4.05 (s, 3H).


Intermediate 2
2,5-Dichloro-N-methylpyrimidin-4-amine



embedded image


To a cooled (0° C.) solution of 2,4,5-trichloropyrimidine (2.0 g, 11 mmol) in methanol (30 mL) was added dropwise a 2 M solution of methylamine in methanol (6.3 mL). The reaction was allowed to warm to room temperature and stirred overnight. The reaction was then concentrated and redissolved in DCM. The solution was washed with sat. NaHCO3, brine, dried over Na2SO4, filtered and concentrated. The crude product was purified by column chromatography (0-40% EtOAc in heptane) to give 2,5-dichloro-N-methylpyrimidin-4-amine (0.9 g, 50%). 1H-NMR (DMSO): δ 8.13 (s, 1H), 7.89 (s, 1H), 2.86 (d, J=4.5, 3H).


Intermediate 3
5-Bromo-2-chloro-N-methylpyrimidin-4-amine



embedded image


To a cooled (0° C.) solution of 5-bromo-2,4-dichloropyrimidine (5.0 g, 22 mmol) in methanol (42 mL) was added dropwise a 33 wt % solution of methylamine in ethanol (3.3 mL). The reaction was allowed to warm to room temperature. The reaction was then concentrated. The crude product was purified by column chromatography (0-10% methanol in DCM) to give 5-bromo-2-chloro-N-methylpyrimidin-4-amine (1.8 g, 39%). 1H-NMR (DMSO): δ 8.22 (s, 1H), 7.75 (s, 1H), 2.85 (d, J=3.9, 3H).


Intermediate 4
5-Bromo-2-chloro-4-methoxypyrimidine



embedded image


To a cooled (−78° C.) solution of 5-bromo-2,4-dichloropyrimidine (1.7 g, 7.3 mmol) in THF (30 mL) was added dropwise a 25 wt % solution of methylamine in ethanol (1.7 mL). The reaction was allowed to warm to 0° C. and stirred for 1 h. The reaction was then concentrated and re-dissolved in EtOAc. The solution was washed with brine, dried over Na2SO4, filtered and concentrated to give 5-bromo-2-chloro-4-methoxypyrimidine (1.25 g, 76%). 1H-NMR (CDCl3): δ 8.43 (s, 1H), 4.10 (s, 3H).


Intermediate 5
2-chloro-5-fluoro-N-methylpyrimidin-4-amine



embedded image


To a 250 mL round bottom flask equipped with a stir bar was added 5-fluoro-2,4-dichloro-pyrimidine (9 g), methanol (40 mL) and 8M methylamine in ethanol (15 mL). The reaction heated up (mild exo-therm) and was allowed to stir at room temperature for 30 minutes. A check by TLC (1:1 EtOAc:heptane) and LCMS showed complete reaction. The reaction was concentrated down to give 9.77 g crude material which was purified on a silica column running a gradient of 1% to 10% MeOH in DCM over 35 minutes to give 2-chloro-5-fluoro-N-methylpyrimidin-4-amine (6.77 g).


Intermediate 6
2-Chloro-5-iodo-N-methylpyrimidin-4-amine



embedded image


2-chloro-5-iodo-N-methylpyrimidin-4-amine was prepared following the procedure of Intermediate 5 but using 2,4-dichloro-5-iodopyrimidine. 1H-NMR (DMSO): δ 8.26 (s, 1H), 5.47 (s, 1H), 3.07 (d, J=4.9, 3H).


Intermediate 7
2-Chloro-N-methyl-5-(trifluoromethyl)pyrimidin-4-amine



embedded image


To a cooled (−10° C.) solution of 2,4-dichloro-5-trifluoromethylpyrimidine (20 g, 0.089 mol) in methanol (100 mL) was added triethylamine (12.5 mL, 0.089 mol) and a 2 M solution of methylamine in methanol (45 mL). The reaction was allowed to warm to room temperature and stirred overnight. The reaction was then concentrated and re-dissolved in ethyl acetate. The solution was washed with sat. NaHCO3, brine, dried over MgSO4, filtered and concentrated. The crude product was purified by column chromatography (5-25% EtOAc in heptane) to give 2-chloro-N-methyl-5-(trifluoromethyl)pyrimidin-4-amine (8.6 g, 45%). 1H-NMR (DMSO): δ 8.37 (s, 1H), 7.90 (s, 1H), 2.90 (s, 3H).


Intermediate 8
2-chloro-4-(pyrrolidin-1-yl)-5-(trifluoromethyl)pyrimidine



embedded image


2-Chloro-4-(pyrrolidin-1-yl)-5-(trifluoromethyl)pyrimidine was prepared according to the procedure described for intermediate 7 using pyrrolidine.


Intermediate 9
2,5-Dichloro-4-(tetrahydro-2H-pyran-4-yloxy)pyrimidine



embedded image


To a solution of tetrahydro-4-pyranol (0.36 g, 3.54 mmol) in DMF (5 mL) was added sodium hydride (60% dispersion, 0.17 g, 4.25 mmol). The resulting mixture was added to a solution of 2,4,5-trichloropyrimidine (650 mg, 3.5 mmol) in THF at 0° C. The combined mixture was then allowed to warm to room temperature. To the reaction was then added water and the product was extracted with a 1:1 EtOAc-Heptane mixture. The extract was then dried over Na2SO4, filtered and concentrated. The crude product was purified by column chromatrography (0-30% EtOAc in heptane) to give 2,5-dichloro-4-(tetrahydro-2H-pyran-4-yloxy)pyrimidine. 1H-NMR (CDCl3): δ 8.33 (s, 1H), 5.42 (m, 1H), 4.09-3.90 (m, 2H), 3.65 (m, 2H), 2.19-1.99 (m, 2H), 1.87 (m, 2H).


Additional intermediates prepared using similar methods as described above are listed in Table 1 below:











TABLE 1







10
2-chloro-N-ethyl-5- (trifluoromethyl)pyrimidin- 4-amine


embedded image







11
2-chloro-N-(2,2- difluoroethyl)-5- (trifluoromethyl)pyrimidin- 4-amine


embedded image







12
2-chloro-N-((tetrahydro- 2H-pyran-4-yl)methyl)-5- (trifluoromethyl)pyrimidin- 4-amine


embedded image







13
2,5-dichloro-4- ethoxypyrimidine


embedded image







14
2-chloro-4-(2,2,2- trifluoroethoxy)-5- (trifluoromethyl)pyrimidine


embedded image







15
2-chloro-4-(2,2- difluoroethoxy)-5- (trifluoromethyl)pyrimidine


embedded image







16
2,5-dichloro-4-(2,2- difluoroethoxy)pyrimidine


embedded image







17
2,5-dichloro-4-(oxetan- 3-yloxy)pyrimidine


embedded image







18
2-chloro-N-cyclopropyl-5- (trifluoromethyl)pyrimidin- 4-amine


embedded image











Intermediates 19 and 20
5-Methyl-1-(oxetan-3-yl)-1H-pyrazol-4-amine and 3-methyl-1-(oxetan-3-yl)-1H-pyrazol-4-amine



embedded image


Step 1 5-Methyl-4-nitro-1-(oxetan-3-yl)-1H-pyrazole and 3-methyl-4-nitro-1-(oxetan-3-yl)-1H-pyrazole

To a mixture of 3-methyl-4-nitro-pyrazole (0.80 g, 6.3 mmol), cesium carbonate (4.1 g, 12 mmol) in DMF (10 mL) was added 3-iodo-oxetane (3.47 g, 19 mmol). The mixture was stirred at 100° C. for 3 h. The reaction was diluted with water and extracted with ethyl acetate (3×). The combined extracts were washed with brine, dried over Na2SO4, filtered and concentrated. The crude product was purified by column chromatrography (20-100% EtOAc-heptane) to give a mixture of 5-methyl-4-nitro-1-(oxetan-3-yl)-1H-pyrazole and 3-methyl-4-nitro-1-(oxetan-3-yl)-1H-pyrazole (0.85 g, 74%).


Step 2 5-Methyl-1-(oxetan-3-yl)-1H-pyrazol-4-amine and 3-methyl-1-(oxetan-3-yl)-1H-pyrazol-4-amine

To a solution of 5-methyl-4-nitro-1-(oxetan-3-yl)-1H-pyrazole and 3-methyl-4-nitro-1-(oxetan-3-yl)-1H-pyrazole (0.137 g, 0.75 mmol) in ethanol (2 mL) was added Pd—C (10 wt %, 0.10 g). The mixture was stirred under a hydrogen atmosphere for 24 hours. The reaction was filtered through Celite® and concentrated to give a mixture of 5-methyl-1-(oxetan-3-yl)-1H-pyrazol-4-amine and 3-methyl-1-(oxetan-3-yl)-1H-pyrazol-4-amine (83 mg, 73%), which were used together in the following Examples.


Additional intermediates made using the above procedure are shown in Table 2 below.











TABLE 2







21
1-(2-methoxyethyl)-5- methyl-1H-pyrazol-4-amine


embedded image







22
1-(2-methoxyethyl)-3- methyl-1H-pyrazol-4-amine


embedded image







23
1-(4-Amino-5-methyl- 1H-pyrazol-1-y1)-2- methylpropan-2-ol


embedded image







24
1-(4-amino-3-methyl- 1H-pyrazol-1-yl)-2- methylpropan-2-ol


embedded image







25
5-Methyl-1-(tetrahydro- 2H-pyran-4-yl)-1H- pyrazol-4-amine


embedded image







26
3-Methyl-1-(tetrahydro- 2H-pyran-4-yl)-1H- pyrazol-4-amine


embedded image







27
3-methyl-1-(2,2,2- trifluoroethyl)-1H-pyrazol- 4-amine


embedded image







28
5-methyl-1-(2,2,2- trifluoroethyl)-1H-pyrazol- 4-amine


embedded image







29
3-methyl-1-(tetrahydrofuran- 3-yl)-1H-pyrazol-4-amine


embedded image







30
5-methyl-1-(tetrahydrofuran- 3-yl)-1H-pyrazol-4-amine


embedded image







31
5-(4-amino-5-methyl- 1H-pyrazol-1-yl)-1- methylpiperidin-2-one


embedded image







32
5-(4-amino-3-methyl- 1H-pyrazol-1-yl)-1- methylpiperidin-2-one


embedded image







33
5-(4-amino-3-methyl- 1H-pyrazol-1-yl)piperidin- 2-one


embedded image







34
5-(4-amino-5-methyl- 1H-pyrazol-1-yl)piperidin- 2-one


embedded image







35
1-(1-methoxy-2- methylpropan-2-yl)-5-methyl- 1H-pyrazol-4-amine


embedded image







36
1-(2-methoxy-2- methylpropyl)-5-methyl- 1H-pyrazol-4-amine


embedded image







37
1-(2-methoxypropyl)-5- methyl-1H-pyrazol-4- amine


embedded image







38
1-(1-methoxypropan-2-yl)- 5-methyl-1H-pyrazol-4- amine


embedded image







39
3-methyl-1-(methylsulfonyl)- 1H-pyrazol-4-amine


embedded image







40
1-(isopropylsulfonyl)-3- methyl-1H-pyrazol-4- amine


embedded image







41
1-(cyclopropylsulfonyl)- 3-methyl-1H-pyrazol-4- amine


embedded image







42
1-(isopropylsulfonyl)- 5-methyl-1H-pyrazol-4- amine


embedded image







43
1-(cyclopropylsulfonyl)- 5-methyl-1H-pyrazol-4- amine


embedded image







44
1-(sec-butylsulfonyl)- 5-methyl-1H-pyrazol-4- amine


embedded image







45
1-(2,2-dimethyl-1,3- dioxan-5-yl)-5-methyl-1H- pyrazol-4-amine


embedded image







46
5-methyl-1-((3- methyloxetan-3-yl)methyl)- 1H-pyrazol-4-amine


embedded image







47
1-(2-fluoroethyl)-5- methyl-1H-pyrazol-4-amine


embedded image







48
1-isopropy1-5-methyl- 1H-pyrazol-4-amine


embedded image











Intermediate 49
5-Chloro-1-methyl-1H-pyrazol-4-amine



embedded image


To a suspension of 5-chloro-1-methyl-1H-pyrazole-4-carboxylic acid (1.0 g, 6.2 mmol) in toluene (15 mL) was added triethylamine (1.7 mL, 12 mmol) and diphenylphosphonic azide (2 mL, 9.3 mmol). The resulting solution was stirred at room temperature for 30 minutes before heating at 95° C. for 1 h. After cooling to room temperature, the reaction was diluted with water and extracted with ethyl acetate (3×). The combined extracts were washed with brine, dried over Na2SO4, filtered and concentrated to give a yellow syrup. The crude product was purified by column chromatography (0-50% EtOAc in heptane) to give 5-chloro-1-methyl-1H-pyrazol-4-amine 1H-NMR (CDCl3): δ 7.90 (s, 1H), 3.88 (s, 2H), 1.55 (s, 3H).


Intermediates 50 and 51
(S)-3-methyl-1-(1-(oxetan-3-yl)pyrrolidin-3-yl)-1H-pyrazol-4-amine and (S)-5-methyl-1-(1-(oxetan-3-yl)pyrrolidin-3-yl)-1H-pyrazol-4-amine



embedded image


Step 1: (R)-tert-butyl 3-(methylsulfonyloxy)pyrrolidine-1-carboxylate

(R)-tert-butyl 3-hydroxypyrrolidine-1-carboxylate (5.0 g, 26.7 mmol) and Et3N (8.0 g, 80.2 mmol) were dissolved in dichloromethane (50 mL). The mixture was stirred at 0° C. for 30 minutes, then methanesulfonyl chloride (4.5 g, 40.1 mmol) was added dropwise. It was stirred at room temperature for 2 h and concentrated under reduced pressure. DCM (50 mL) and water (50 mL) were added. The organic phase was washed with saturated NaHCO3 (30 mL) and H2O (2×30 mL), and concentrated to afford the title compound as oil (6 g, 100%).


Step 2: (5)-tert-butyl 3-(3-methyl-4-nitro-1H-pyrazol-1-yl)pyrrolidine-1-carboxylate and (5)-tert-butyl 3-(5-methyl-4-nitro-1H-pyrazol-1-yl)pyrrolidine-1-carboxylate

A microwave vial equipped with a magnetic stirrer was charged with (R)-tert-butyl 3-(methylsulfonyloxy)pyrrolidine-1-carboxylate (6.0 g, 22.5 mmol), 5-methyl-4-nitro-1H-pyrazole (2 g, 15.1 mmol), K2CO3 (6.2 g, 45.3 mmol) and DMF (50 mL). The reaction mixture was heated at 100° C. for 1 h under microwave irradiation. It was then filtered to get rid of K2CO3 and the filtrate was concentrated. The residue was purified by silica gel chromatography eluting with petroleum ether/ethyl acetate (2:1) to afford the mixture of the two title compounds as brown oil (5 g, 100%). m/z (ES+APCI)+: [M+H]+ 241.


Alternatively, (5)-tert-butyl 3-(3-methyl-4-nitro-1H-pyrazol-1-yl)pyrrolidine-1-carboxylate (049-3) and (S)-tert-butyl 3-(5-methyl-4-nitro-1H-pyrazol-1-yl)pyrrolidine-1-carboxylate or related analogs, such as tert-butyl 3-fluoro-4-(3-methyl-4-nitro-1H-pyrazol-1-yl)piperidine-1-carboxylate, can be prepared by the following procedure: To a solution of 5-methyl-4-nitro-1H-pyrazole (0.99 g, 7.8 mmol), tert-butyl 3-fluoro-4-hydroxypiperidine-1-carboxylate (1.7 g, 7.8 mmol) and triphenylphosphine (2.3 g, 8.5 mmol) in THF (8 mL) was added diisopropyl azodicarboxylate (2 g, 9.3 mmol). The reaction was stirred at room temperature for 2 hours before being diluted with water and extracted with EtOAc (4×). The organic extracts were washed with brine, dried over sodium sulfate, filtered and concentrated. The crude product was purified by chromatography to give tert-butyl 3-fluoro-4-(3-methyl-4-nitro-1H-pyrazol-1-yl)piperidine-1-carboxylate (2.25 g, 88%).


Step 3: (S)-3-methyl-4-nitro-1-(pyrrolidin-3-yl)-1H-pyrazole and (S)-5-methyl-4-nitro-1-(pyrrolidin-3-yl)-1H-pyrazole

The mixture of (S)-tert-butyl 3-(3-methyl-4-nitro-1H-pyrazol-1-yl)pyrrolidine-1-carboxylate and (5)-tert-butyl 3-(5-methyl-4-nitro-1H-pyrazol-1-yl)pyrrolidine-1-carboxylate (5 g, 16.9 mmol) was dissolved in dichloromethane (40 mL). CF3COOH (10 mL) was added and the mixture was stirred at room temperature for overnight. The solvent was removed under reduced pressure to afford the mixture of the two title compounds as brown oil (4.0 g, 100%). m/z (ES+APCI)+: [M+H]+ 197.


Step 4: (S)-3-methyl-4-nitro-1-(1-(oxetan-3-yl)pyrrolidin-3-yl)-1H-pyrazole and (S)-5-methyl-4-nitro-1-(1-(oxetan-3-yl)pyrrolidin-3-yl)-1H-pyrazole

To the mixture of (S)-3-methyl-4-nitro-1-(pyrrolidin-3-yl)-1H-pyrazole and (S)-5-methyl-4-nitro-1-(pyrrolidin-3-yl)-1H-pyrazole (4 g, 20.4 mmol), oxetan-3-one (4.4 g, 61.2 mmol), and ZnCl2 (8.3 g, 61.2 mmol) in MeOH (50 mL) was added NaBH4 (3.8 g, 61.2 mmol). The mixture was stirred at 50° C. for 5 h. Then the solvent was removed in vacuum. Dichloromethane (100 mL) was added and the mixture was washed with water (2×50 mL). It was then concentrated in vacuo and purified by silica gel chromatography eluting with dichloromethane/methanol (25/1) to afford the mixture of the two title compounds as yellow oil (3.8 g, 75%). m/z (ES+APCI)+: [M+H]+ 253.


Step 5: (S)-3-methyl-1-(1-(oxetan-3-yl)pyrrolidin-3-yl)-1H-pyrazol-4-amine and (S)-5-methyl-1-(1-(oxetan-3-yl)pyrrolidin-3-yl)-1H-pyrazol-4-amine

To the mixture of (S)-3-methyl-4-nitro-1-(1-(oxetan-3-yl)pyrrolidin-3-yl)-1H-pyrazole and (S)-5-methyl-4-nitro-1-(1-(oxetan-3-yl)pyrrolidin-3-yl)-1H-pyrazole (500 mg, 1.98 mmol), and Zn (506 mg, 7.94 mmol) in methanol (20 mL) was added THF (20 mL) and NH4Cl (841 mg, 15.9 mmol). The mixture was stirred at 50° C. for 2 h. It was then concentrated and purified by reverse-phase prep-HPLC to afford the mixture of the two title compounds as yellow solid (200 mg, 45%). m/z (ES+APCI)+: [M+H]+ 223.


Additional intermediates made using the above procedure are shown in Table 3 below.











TABLE 3







52
5-methyl-1-(1-(2,2,2- trifluoroethyl)piperidin- 4-yl)-1H-pyrazol-4-amine


embedded image







53
3-methyl-1-(1-(2,2,2- trifluoroethyl)piperidin- 4-yl)-1H-pyrazol-4-amine


embedded image







54
3-methyl-1-(1-(oxetan- 3-yl)piperidin-4-yl)- 1H-pyrazol-4-amine


embedded image







55
5-methyl-1-(1-(oxetan- 3-yl)piperidin-4-yl)- 1H-pyrazol-4-amine


embedded image







56
1-(1-methylpiperidin- 4-yl)-1H-pyrazol-4- amine


embedded image







57
3-methyl-1-(1- methylpiperidin-4-yl)- 1H-pyrazol-4-amine


embedded image







58
1-(4-(4-amino-3- methyl-1H-pyrazol-1- yl)piperidin-1-yl)ethanone


embedded image







59
1-(4-(4-amino-5- methyl-1H-pyrazol-1- yl)piperidin-1-yl)ethanone


embedded image







60
(4-(4-amino-5- methyl-1H-pyrazol-1- yl)piperidin-1-yl) (cyclopropyl)methanone


embedded image







61
(4-(4-amino-3- methyl-1H-pyrazol-1- yl)piperidin-1-yl) (cyclopropyl)methanone


embedded image







62
(4-(4-amino-3-methyl- 1H-pyrazol-1- yl)piperidin-1-yl)(1- methylcyclo- propyl)methanone


embedded image







63
3-methyl-1-(1- methylpiperidin-4-yl)-1H- pyrazol-4-amine


embedded image







64
1-(3-fluoro-1- methylpiperidin-4-yl)- 3-methyl- 1H-pyrazol-4-amine


embedded image







65
1-(1-ethyl-3- fluoropiperidin-4-yl)- 3-methyl- 1H-pyrazol-4-amine


embedded image







66
3-methyl-1-(1- methylpyrrolidin-3-yl)- 1H-pyrazol-4-amine


embedded image











Intermediates 67 and 68
3-Methyl-1-(4-(methylsulfonyl)phenyl)-4-nitro-1H-pyrazole compound with 5-methyl-1-(4-(methylsulfonyl)phenyl)-4-nitro-1H-pyrazole



embedded image


Step 1: 3-Methyl-1-(4-(methylsulfonyl)phenyl)-4-nitro-1H-pyrazole compound and 5-methyl-1-(4-(methylsulfonyl)phenyl)-4-nitro-1H-pyrazole

A mixture of 3-methyl-4-nitro-1H-pyrazole (2.1 g, 17 mmol) and 4-methylsulfonylphenylboronic acid (5.0 g, 25 mmol), copper (II) acetate monohydrate (0.91 g, 5.0 mmol) and pyridine (0.5 g, 6.6 mmol) in DMF was stirred at 95° C. under an oxygen atmosphere for 7 hours. The reaction was diluted with water, extracted with EtOAc (3×). The combined extracts were washed with brine, dried over sodium sulfate, filtered and concentrated. The crude product was purified by flash chromatography to give a mixture of 3-methyl-1-(4-(methylsulfonyl)phenyl)-4-nitro-1H-pyrazole compound and 5-methyl-1-(4-(methylsulfonyl)phenyl)-4-nitro-1H-pyrazole (1.3 g, 28%).


Step 2: 3-Methyl-1-(4-(methylsulfonyl)phenyl)-4-nitro-1H-pyrazole compound with 5-methyl-1-(4-(methylsulfonyl)phenyl)-4-nitro-1H-pyrazole

A suspension of 3-methyl-1-(4-(methylsulfonyl)phenyl)-4-nitro-1H-pyrazole compound and 5-methyl-1-(4-(methylsulfonyl)phenyl)-4-nitro-1H-pyrazole (0.57 g, 2.0 mmol) and palladium on carbon (10 wt %, 0.2 g) in ethanol was stirred under a hydrogen atmosphere at 55° C. for 18 hours. The reaction mixture was filtered through celite and concentrated to give the title compounds as a mixture of regioisomers (446 mg, 87%).


Additional intermediates made using the above procedure are shown in Table 4 below











TABLE 4







69
3-methyl-1-phenyl- 1H-pyrazol-4-amine


embedded image







70
5-methyl-1-phenyl- 1H-pyrazol-4-amine


embedded image







71
1-(4-chlorophenyl)-5- methyl-1H-pyrazol- 4-amine


embedded image







72
1-(4-chlorophenyl)-3- methyl-1H-pyrazol- 4-amine


embedded image







73
1-(4-fluorophenyl)-3- methyl-1H-pyrazol- 4-amine


embedded image







74
1-(4-fluorophenyl)-5- methyl-1H-pyrazol- 4-amine


embedded image







75
4-(4-amino-5-methyl- 1H-pyrazol-1- yl)benzonitrile


embedded image







76
4-(4-amino-3-methyl- 1H-pyrazol-1- yl)benzonitrile


embedded image







77
4-(4-amino-3-methyl- 1H-pyrazol-1-yl)-N,N- dimethylbenzamide


embedded image







78
4-(4-amino-5-methyl- 1H-pyrazol-1-yl)-N,N- dimethylbenzamide


embedded image







79
1-(3,5-difluorophenyl)- 5-methyl-1H-pyrazol- 4-amine


embedded image







80
1-(3,5-difluorophenyl)- 3-methyl-1H-pyrazol- 4-amine


embedded image







81
3-methyl-1-(pyridin- 2-yl)-1H-pyrazol- 4-amine


embedded image







82
3-methyl-1-(pyrimidin- 5-yl)-1H-pyrazol- 4-amine


embedded image







83
3-methyl-1-(2- methylpyridin-4-yl)- 1H-pyrazol-4-amine


embedded image







84
5-methyl-1-(2- methylpyridin-4-yl)- 1H-pyrazol-4-amine


embedded image











Intermediate 85
5-Chloro-1-(tetrahydro-2H-pyran-4-yl)-1H-pyrazol-4-amine



embedded image


Step 1: 5-Chloro-4-nitro-1-(tetrahydro-2H-pyran-4-yl)-1H-pyrazole

To a solution of 4-nitro-1-tetrahydropyran-4-yl-pyrazole (1.32 g; 6.69 mmol) in THF (15 mL) was added dropwise LHMDS (1 mol/L) in THF (2.0 equiv.; 13.4 mmol) at −78° C. The reaction was stirred at −78° C. for 30 minutes before the addition of hexachloroethane (2.4 g, 10 mmol) in THF (5 mL). The reaction was stirred at −78° C. before warming to room temperature. The reaction was diluted with sat. NaCl and extracted with EtOAc (3×). The combined extracts were washed with brine, dried over sodium sulfate, filtered and concentrated. The crude product was purified by flash chromatography to give 5-chloro-4-nitro-1-(tetrahydro-2H-pyran-4-yl)-1H-pyrazole (0.98 g, 63%).


Step 2: 5-Chloro-1-(tetrahydro-2H-pyran-4-yl)-1H-pyrazol-4-amine

To a solution of 5-chloro-4-nitro-1-(tetrahydro-2H-pyran-4-yl)-1H-pyrazole (0.4 g, 2 mmol) in ethanol (10 mL) was added ammonium chloride (0.3 g, 5 mmol) and iron (0.3 g). The reaction was stirred at 90° C. for 30 minutes before filtered through celite and concentrated. The residue was titurated in EtOAc and filtered. The filtrated was concentrated to give the title compound (0.34 g, quant.)


Additional intermediates made using the above procedure are shown in Table 5 below.











TABLE 5







86
1-(4-amino-5-chloro-1H- pyrazol-1-yl)-2-methylpropan- 2-ol


embedded image







87
methyl 2-(4-amino-5-chloro-1H- pyrazol-1-yl)-2- methylpropanoate


embedded image







88
5-chloro-1-(oxetan-3-yl)-1H- pyrazol-4-amine


embedded image







89
5-chloro-1-(cyclopropylmethyl)- 1H-pyrazol-4-amine


embedded image







90
5-chloro-1-(1-methylpiperidin-4- yl)-1H-pyrazol-4-amine


embedded image







91
5-chloro-1-(3-fluoro-1- methylpiperidin-4-yl)-1H- pyrazol-4-amine


embedded image







92
5-chloro-1-ethyl-1H-pyrazol- 4-amine


embedded image







93
5-chloro-1-(1-ethyl-3- fluoropiperidin-4-yl)-1H- pyrazol-4-amine


embedded image







94
5-chloro-1-isopropyl-1H- pyrazol-4-amine


embedded image







95
2-(4-amino-5-chloro-1H- pyrazol-1-yl)-2-methylpropan- 1-ol


embedded image











Intermediates 96
3-Cyclopropyl-4-nitro-1H-pyrazole



embedded image


Step 1: 3-cyclopropyl-1H-pyrazole

Ethynylcyclopropane (660 mg, 10 mmol) mixed with (diazomethyl)trimethylsilane (5 mL, 2M in hexane) in a 30 mL microwave tube was microwaved at 135° C. for 1 h. Then this reaction was concentrated in vacuo to give a light yellow oil product (1.02 g, 94%). This product was pure enough to be used to the next step reaction without further purification. MS: [M+H]+109.


Step 2: 3-Cyclopropyl-4-nitro-1H-pyrazole

To a cooling (0° C.) solution of 3-cyclopropyl-1H-pyrazole (1.5 g, 13.89 mmol) in concentrated H2SO4 (20 mL, 98%) was added concentrated HNO3 (20 mL, 65%) over 2 min. The reaction mixture was stirred over 1 hr at this temperature. It was then diluted with ice-water and extracted with EA (30 mL×4). The organic phase was combined and washed with saturated sodium bicarbonate (50 mL). It was dried over Na2SO4 and concentrated in vacuo to give a crude product (1.5 g, 70%). This crude product was pure enough to be delivered or used to the next step reaction. MS: [M+H]+154. 1H NMR (500 MHz, CDCl3) δ 0.97 (m, 2H), 1.22 (m, 2H), 2.66 (m, 1H), 8.20 (s, 1H), 8.38 (s, 1H).


Intermediates made using the above procedure are shown in Table 6 below











TABLE 6







 97
5-isopropyl-4-nitro-1H-pyrazole


embedded image







 98
5-cyclobutyl-4-nitro-1H-pyrazole


embedded image







 99
5-tert-butyl-4-nitro-1H-pyrazole


embedded image







100
4-nitro-5-(trifluoromethyl)-1H-pyrazole


embedded image











Example 1
N2-(1-isopropyl-1H-pyrazol-4-yl)-N4-methyl-5-(trifluoromethyl)pyrimidine-2,4-diamine



embedded image


To a microwave tube was added 2-chloro-N-methyl-5-(trifluoromethyl)pyrimidin-4-amine (112 mg, 0.53 mmol), 1-isopropyl-1H-pyrazol-4-amine (55 mg, 0.44 mmol), cesium carbonate (0.287 g, 0.88 mmol), XPhos (21 mg, 0.044 mmol), Pd2(dba)3 (20 mg, 0.02 mmol) and dioxane (2.5 mL). The tube was sealed and the reaction was irradiated in the microwave at 140° C. for 30 minutes. The reaction mixture was then filtered and concentrated. The crude product was purified by reverse phase HPLC to give N2-(1-isopropyl-1H-pyrazol-4-yl)-N4-methyl-5-(trifluoromethyl)pyrimidine-2,4-diamine (22 mg, 16%). LCMS (Method A): [MH+]=301.1 at 3.2 min. 1H-NMR (DMSO): δ 9.43 (m, 2H), 8.08 (s, 1H), 7.89 (s, 1H), 7.54 (s, 1H), 6.96 (m, 2H), 4.43 (m, 1H), 2.92 (d, J=8.0, 3H), 1.39 (d, J=6.6, 6H).


Compounds made using the above procedure are shown in Table 7 below, together with low resolution mass spectrometry (M+H), proton NMR, and LRRK2 Ki (micromolar) data for selected compounds determined from the assay described below.














TABLE 7






Name
Structure

1H NMR

M + H+
KI







 2
N2-(1,5-dimethyl- 1H-pyrazol-4-yl)- N4-methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H-NMR (DMSO): δ 8.87 (s, 1 H), 8.04 (s, 1 H), 7.64 (s, 1 H), 6.90 (s, 2 H), 3.69 (s, 3 H), 2.84 (s, 3 H), 2.17 (s, 3 H).

287.0






 3
N4-methyl-N2-(1- (2- morpholinoethyl)- 1H-pyrazol-4-yl)- 5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H-NMR (DMSO): δ 9.53 (s, 1 H), 8.08 (s, 1 H), 7.88 (s, 1 H), 7.55 (s, 1 H), 7.04 (s, 1 H), 4.17 (t, J = 6.0, 2 H), 3.61-3.49 (m, 4 H), 2.96 (s, 3 H), 2.67 (t, J = 6.4, 2 H), 2.39 (s, 3 H).

372.1
0.015





 4
N4-methyl-N2-(1- methyl-1H- pyrazol-4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H-NMR (DMSO): δ 9.53 (s, 1 H), 8.08 (s, 1 H), 7.81 (s, 1 H), 7.53 (s, 1 H), 7.06 (s, 1 H), 3.79 (s, 3 H), 2.95 (s, 3 H).

273.0
0.0097





 5
5-chloro-N2-(1- isopropyl-1H- pyrazol-4-yl)-N4- methyl- pyrimidine- 2,4-diamine


embedded image



1H-NMR (DMSO): δ 9.00 (s, 1 H), 7.5 (s, 2 H), 7.47 (s, 1 H), 7.06 (s, 1 H), 4.47- 4.32 (m, 1 H), 2.91 (s, 3 H), 1.38 (d, J = 6.6, 6 H).

267.0






 6
N4-methyl-N2-(1- methyl-1H- pyrazol-5-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H-NMR (DMSO): δ 9.40 (s, 1 H), 8.14 (s, 1 H), 7.32 (s, 1 H), 7.13 (s, 1 H), 6.23 (s, 1 H), 3.66 (s, 3 H), 2.84 (d, J = 3.8, 3 H).

273.0
0.016





 7
N4-methyl-N2-(1- methyl-1H- pyrazol-3-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H-NMR (DMSO): δ 9.69 (s, 1 H), 8.10 (s, 1 H), 7.53 (s, 1 H), 7.02 (s, 1 H), 6.60 (s, 1 H), 3.73 (s, 3 H), 2.91 (s, 3 H).

273.0
0.018





 8
N2-(1,3-dimethyl- 1H-pyrazol-4-yl)- N4-methyl-5- (trifluoromethyl) pyrimidine-2,4- diaminc


embedded image



1H-NMR (DMSO): δ 8.86 (s, 1 H), 8.07 (s, 1 H), 7.79 (s, 1 H), 6.94 (s, 1 H), 3.72 (s, 3 H), 2.88 (s, 3 H), 2.10 (s, 3 H).

287.0






 9
5-Chloro-N-(1,5- dimethyl-1H- pyrazol-4-yl)-4- (tetrahydro-2H- pyran-4- yloxy)pyrimidin- 2-amine


embedded image



1H-NMR (DMSO): δ 8.78 (s, 1 H), 8.15 (s, 1 H), 7.44 (s, 1 H), 5.20 (s, 1 H), 3.85 (m, 2 H), 3.69 (s, 3 H), 3.47 (m, 2 H), 2.15 (s, 3 H), 1.98 (s, 2 H), 1.66 (m, 2 H).

324.1
0.039





10
N4-methyl-5- (trifluoromethyl)- N2-(1,3,5- trimethyl-1H- pyrazol-4- yl)pyrimidinc-2,4- diamine


embedded image



1H-NMR (DMSO): δ 8.39 (m, 1 H), 7.99 (s, 1 H), 6.79 (s, 1 H), 3.62 (s, 3 H), 2.78 (m, 3 H), 2.03 (s, 3 H), 1.94 (s, 3 H).

301.1
0.096





11
5-Chloro-N-(1- isopropyl-1H- pyrazol-4-yl)-4- (tetrahydro-2H- pyran-4- yloxy)pyrimidin- 2-amine


embedded image



1H-NMR (DMSO): δ 9.49 (s, 1 H), 8.23 (s, 1 H), 7.80 (s, 1 H), 7.47 (s, 1 H), 5.31 (m, 1 H), 4.45 (m, 1 H), 3.88 (m, 2 H), 3.53 (m, 2 H), 2.06 (m, 2 H), 1.70 (m, 2 H), 1.40 (d, 6 H).

338.1
0.033





12
5-Chloro-N-(1,5- dimethyl-1H- pyrazol-4-yl)-4- methoxy- pyrimidin- 2-amine


embedded image



1H-NMR (DMSO): δ 8.82 (s, 1 H), 8.13 (s, 1 H), 7.48 (s, 1 H), 3.91 (s, 3 H), 3.69 (s, 3 H), 2.15 (s, 3 H).

254.0
0.0091





13
N-(1,5-dimethyl- 1H-pyrazol-4-yl)- 4-(pyrrolidin-1- yl)-5- (trifluoromethyl) pyrimidin-2-amine


embedded image



1H-NMR (DMSO): δ 8.88 (s, 1 H), 8.22 (s, 1 H), 7.61 (s, 1 H), 3.69 (s, 3 H), 3.51 (s, 4 H), 2.17 (s, 3 H), 1.87 (s, 4 H).

327.1
0.012





14
N2-(1-ethyl-5- methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H-NMR (DMSO): δ 8.90 (s, 1 H), 8.05 (s, 1 H), 7.67 (s, 1 H), 6.95 (s, 1 H), 4.01 (m, 2 H), 2.82 (s, 3 H), 2.19 (s, 3 H), 1.27 (t, J = 7.2, 3 H).

301.1
0.024





15
5-Chloro-N-(1,3- dimethyl-1H- pyrazol-4-yl)-4- methoxy- pyrimidin- 2-amine


embedded image



1H-NMR (DMSO): δ 8.87 (s, 1 H), 8.17 (s, 1 H), 7.77 (s, 1 H), 3.95 (s, 3 H), 3.72 (s, 3 H), 2.09 (s, 3 H).

254.0
0.0144


16
N4-methyl-N2-(3- methyl-1-(oxetan- 3-yl)-1H-pyrazol- 4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H-NMR (DMSO): δ 8.97 (s, 1 H), 8.08 (m, 2 H), 6.96 (s, 1 H), 5.44 (m, 1 H), 4.85 (m, 4 H), 2.89 (d, J = 4.4, 3 H), 2.18 (s, 3 H).

329.1



17
N2-(5-chloro-1- methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H-NMR (DMSO): δ 8.87 (s, 1 H), 8.07 (s, 1 H), 7.71 (s, 1 H), 6.98 (s, 1 H), 3.77 (s, 3 H), 2.83 (s, 3 H).

307.0



18
5-Chloro-4- methoxy-N-(3- methyl-1-(oxetan- 3-yl)-1H-pyrazol- 4-yl)pyrimidin-2- amine


embedded image



1H-NMR (DMSO): δ 8.97 (s, 1 H), 8.19 (s, 1 H), 7.98 (s, 1 H), 5.46 (s, 1 H), 4.85 (s, 4 H), 3.96 (s, 3 H), 2.18 (s, 3 H).

296.0
0.022


19
5-Chloro-4- methoxy-N-(1-(2- methoxyethyl)-3- methyl-1H- pyrazol-4- yl)pyrimidin-2- amine


embedded image



1H-NMR (DMSO): δ 8.81 (s, 1 H), 8.13 (s, 1 H), 7.53 (s, 1 H), 4.14 (t, J = 5.4, 2 H), 3.90 (s, 3 H), 3.63 (t, J = 5.4, 2 H), 3.21 (s, 3 H), 2.16 (s, 3 H)

298.0
0.015


20
5-chloro-4- methoxy-N-(1-(2- methoxyethyl)-5- methyl-1H- pyrazol-4- yl)pyrimidin-2- amine


embedded image


1H-NMR (DMSO): δ 8.90 (s, 1 H), 8.17 (s, 1 H), 7.83 (s, 1 H), 4.13 (t, J = 5.2, 2 H), 3.95 (s, 3 H), 3.63 (t, J = 5.3, 2 H), 3.22 (s, 3 H), 2.11 s, 3 H).
298.0
0.019


21
5-Chloro-N-(5- chloro-1-methyl- 1H-pyrazol-4-yl)- 4-methoxy- pyrimidin-2- amine


embedded image



1H-NMR (DMSO): δ 8.99 (s, 1 H), 8.18 (s, 1 H), 7.67 (s, 1 H), 3.91 (s, 3 H), 3.78 (s, 3 H).

274.0
0.020


22
2-Methyl-1-(3- methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)propan-2-ol


embedded image



1H-NMR (DMSO): δ 8.89 (s, 1 H), 8.07 (s, 1 H), 7.95 (s, 1 H), 6.93 (s, 1 H), 4.60 (s, 1 H), 3.88 (s, 2 H), 2.87 (d, J = 4.1, 3 H), 2.13 (s, 3 H), 1.05 (s, 6 H).

345.1



23
2-Methyl-1-(3- methyl-4-(4- (methylamino)-5- chloro-pyrimidin- 2-ylamino)-1H- pyrazol-1- yl)propan-2-ol


embedded image



1H-NMR (DMSO): δ 8.92 (s, 1 H), 8.18 (s, 1 H), 7.86 (s, 1 H), 4.61 (s, 1 H), 3.94 (s, 3 H), 3.89 (s, 2 H), 2.12 (s, 3 H), 1.05 (s, 6 H).

312.1
0.027


24
N2-(1-(2- methoxyethyl)-3- methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H-NMR (DMSO): δ 8.82 (s, 1 H), 8.04 (s, 1 H), 7.64 (s, 1 H), 6.88 (s, 1 H), 4.13 (t, J = 5.4, 2 H), 3.63 (t, J = 5.4, 2 H), 3.21 (s, 3 H), 2.83 (s, 3 H), 2.17 (s, 3 H)

331.1
0.019


25
N2-(1-(2- methoxyethyl)-5- methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H-NMR (DMSO): δ 8.89 (s, 1 H), 8.07 (s, 1 H), 7.91 (s, 1 H), 6.94 (s, 1 H), 4.12 (t, J = 5.2, 2 H), 3.63 (t, J = 5.3, 2 H), 3.22 (s, 3 H), 2.88 (d, J = 4.4, 3 H), 2.12 (s, 3 H).

331.1



26
5-Chloro-N-(1- ethyl-3-methyl- 1H-pyrazol-4- yl)-4-methoxy- pyrimidin-2- amine


embedded image



1H-NMR (DMSO): δ 8.87 (s, 1 H), 8.17 (s, 1 H), 7.81 (s, 1 H), 4.01 (q, J = 7.3, 2 H), 3.95 (s, 3 H), 2.10 (s, 3 H), 1.32 (t, J = 7.3, 3 H).

268.0
0.013


27
5-Chloro-N4- methyl-N2-(3- methyl-1-(oxetan- 3-yl)-1H-pyrazol- 4-yl)pyrimidine- 2,4-diamine


embedded image



1H-NMR (DMSO): δ 8.36 (s, 1 H), 7.97 (s, 1 H), 7.82 (s, 1 H), 7.01 (d, J = 4.5, 1 H), 5.43 (m, 1 H), 4.85 (m, 4 H), 2.88 (d, J = 4.6, 3 H), 2.17 (s, 3 H).

295.0
0.0088


28
N2-(1-isopropyl-3- methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H-NMR (DMSO): δ 8.89 (s, 1 H), 8.07 (s, 1 H), 7.93 (s, 1 H), 6.95 (s, 1 H), 4.34 (m, 1 H), 2.88 (d, J = 4.4, 3 H), 2.12 (s, 3 H), 1.37 (d, J = 6.7, 6 H).

315.1



29
5-Chloro-N-(1- isopropyl-3- methyl-1H- pyrazol-4-yl)-4- methoxy- pyrimidin-2- amine


embedded image



1H-NMR (DMSO): δ 8.87 (s, 1 H), 8.17 (s, 1 H), 7.84 (s, 1 H), 4.36 (m, 1 H), 3.95 (s, 3 H), 2.11 (s, 3 H), 1.37 (d, J = 6.7, 6 H).

282.1
0.022


30
5-Chloro-N2-(1,3- dimethyl-1H- pyrazol-4-yl)-N4- methylpyrimidine- 2,4-diamine


embedded image



1H-NMR (DMSO): δ 8.25 (s, 1 H), 7.80 (s, 1 H), 7.74 (s, 1 H), 6.98 (d, J = 4.5, 1 H), 3.70 (s, 3 H), 2.87 (d, J = 4.6, 3 H), 2.08 (s, 3 H).

253.0



31
5-Chloro-N2-(1- isopropyl-3- methyl-1H- pyrazol-4-yl)-N4- methylpyrimidine- 2,4-diamine


embedded image



1H-NMR (DMSO): δ 8.26 (s, 1 H), 7.83 (s, 1 H), 7.80 (s, 1 H), 6.98 (d, J = 4.3, 1 H), 4.33 (m, 1 H), 2.87 (d, J = 4.6, 3 H), 2.10 (s, 3 H), 1.36 (d, J = 6.7, 7 H).

281.1
0.012


32
N4-methyl-N2-(3- methyl-1- (tetrahydro-2H- pyran-4-yl)-1H- pyrazol-4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H-NMR (DMSO): δ 8.90 (s, 1 H), 8.07 (s, 1 H), 7.96 (s, 1 H), 6.95 (s, 1 H), 4.24 (s, 1 H), 3.93 (d, J = 10.9, 2 H), 3.44 (t, J = 12.5, 2 H), 2.89 (d, J = 4.3, 3 H), 2.13 (s, 3 H), 1.92 (s, 4 H).

357.2
0.024


33
N4-methyl-N2-(5- methyl-1- (tetrahydro-2H- pyran-4-yl)-1H- pyrazol-4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H-NMR (DMSO): δ 8.83 (s, 1 H), 8.04 (s, 1 H), 7.65 (s, 1 H), 6.89 (s, 1 H), 4.33 (m, 1 H), 3.95 (m, 2 H), 3.47 (t, J = 11.2, 2 H), 2.84 (s, 3 H), 2.21 (s, 3 H), 2.02 (m, 2 H), 1.82-1.67 (m, 2 H).

357.2



34
N2-(2-Ethyl-2H- pyrazol-3-yl)-5- fluoro-N4-methyl- pyrimidine-2,4- diamine


embedded image



1H-NMR (DMSO): δ 8.75 (s, 1 H), 7.78 (d, 1 H), 7.39 (s, 1 H), 7.30 (s, 1 H), 3.17 (s, 1 H), 3.99 (q, 2 H), 2.82 (d, 3 H), 1.26 (t, 3 H).

237.1



35
5-Fluoro-N4- methyl-N2-(2- methyl-2H- pyrazol-3-yl)- pyrimidine-2,4- diamine


embedded image



1H-NMR (DMSO): δ 8.77 (s, 1 H), 7.78 (s, 1 H), 7.37 (s, 1 H), 7.26 (s, 1 H), 6.17 (s, 1 H), 3.64 (s, 3 H), 2.82 (d, 3 H).

223.1
0.267


36
5-Fluoro-N4- methyl-N4-(2- propyl-2H- pyrazol-3-yl)- pyrimidine- 2,4-diamine


embedded image



1H-NMR (DMSO): δ 8.79 (s, 1 H), 7.78 (s, 1 H), 7.41 (s, 1 H), 7.29 (s, 1 H), 6.19 (s, 1 H), 3.94 (t, 2 H), 2.82 (d, 3 H), 1.69 (m, 2 H), 0.80 (t, 3 H).

251.0



37
N2-(2,5-Dimethyl- 2H-pyrazol-3-yl)- 5-fluoro-N4- methyl- pyrimidine- 2,4-diamine


embedded image



237.0



38
N2-(3-isopropyl-1- methyl-1H- pyrazol-5-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H-NMR (DMSO): δ 9.36 (s, 1 H), 8.14 (s, 1 H), 7.13 (d, J = 5.2, 1 H), 6.08 (s, 1 H), 3.59 (s, 3 H), 2.86 (d, J = 4.3, 3 H), 2.84-2.73 (m, 1 H), 1.17 (d, J = 6.9, 6 H).

315
0.012


39
5-Chloro-N-(3- cyclopropyl-1- methyl-1H- pyrazol-5-yl)-4- methoxy- pyrimidin- 2-amine


embedded image



1H-NMR (CDCl3): δ 8.11 (s, 1 H), 6.64 (s, 1 H), 5.94 (s, 1 H), 3.98 (s, 3 H), 3.69 (s, 3 H), 1.93-1.84 (m, 1 H), 0.94-0.84 (m, 2 H), 0.76-0.68 (m, 2 H).

280
0.059


40
N2-(3- Cyclopropyl- 1-methyl-1H- pyrazol-5-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H-NMR (DMSO): δ 9.35 (s, 1 H), 8.13 (s, 1 H), 7.13 (d, J = 5.2, 1 H), 5.94 (s, 1 H), 3.56 (s, 3 H), 2.85 (d, J = 4.3, 3 H), 1.78 (tt, J = 8.4, J = 5.0, 1 H), 0.84-0.74 (m, 2 H), 0.63-0.55 (m, 2 H).

313



41
5-Chloro-N-(3- isopropyl-1- methyl-1H- pyrazol-5-yl)-4- methoxy- pyrimidin- 2-amine


embedded image



1H-NMR (CDCl3): δ 8.12 (s, 1 H), 6.65 (s, 1 H), 6.11 (s, 1 H), 3.98 (s, 3 H), 3.72 (s, 3 H), 2.98-2.88 (m, 1 H), 1.27 (d, J = 6.9, 6 H).

282
0.070


42
5-Chloro-N2-(5- isopropyl-2- methyl-2H- pyrazol-3-yl)-N4- methyl- pyrimidine- 2,4-diamine


embedded image



1H-NMR (CDCl3): δ 7.87 (s, 1 H), 6.44 (s, 1 H), 6.13 (s, 1 H), 5.29 (s, 1 H), 3.71 (s, 3 H), 3.01 (d, J = 4.9, 3 H), 2.97-2.89 (m, 1 H), 1.27 (d, J = 6.9, 6 H).

281
0.016


43
5-Chloro-4- methoxy-N- (1,3,5- trimethyl-1H- pyrazol-4- yl)pyrimidin-2- amine


embedded image



1H-NMR (CDCl3): δ 8.04 (s, 1 H), 6.04 (s, 1 H), 3.93 (s, 3 H), 3.73 (s, 3 H), 2.13 (d, J = 5.39, 6 H).

268



44
5-Chloro-N4- methyl-N2-(1,3,5- trimethyl-1H- pyrazol-4-yl)- pyrimidine-2,4- diamine


embedded image



1H-NMR (CDCl3): δ 7.80 (s, 1 H), 5.94 (s, 1 H), 5.18 (s, 1 H), 3.72 (s, 3 H), 2.97 (d, J = 4.9, 3 H), 2.14 (d, J = 2.9, 6 H).

267



45
5-Chloro-N2-(5- cyclopropyl-2- methyl-2H- pyrazol-3-yl)-N4- methyl- pyrimidine- 2,4-diamine


embedded image



1H-NMR (CDCl3): δ 7.86 (s, 1 H), 6.41 (s, 1 H), 5.95 (s, 1 H), 5.29 (s, 1 H), 3.69 (s, 3 H), 3.01 (d, J = 4.9, 3 H), 1.92-1.85 (m, 1 H), 0.91-0.85 (m, 2 H), 0.73-0.68 (m, 2 H).

279
0.0134


46
N4-Methyl-N2-(5- methyl-1-oxetan- 3-yl-1H-pyrazol- 4-yl)-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image



1H-NMR (DMSO): δ 8.91 (s, 1 H), 8.05 (s, 1 H), 7.86 (s, 1 H), 6.94 (s, 1 H), 5.53 (m, 1 H), 4.93 (m, 2 H), 4.90- 4.83 (m, 2 H), 2.85 (s, 3 H), 2.14 (s, 3 H).

329



47
N2-(1-isopropyl- 1H-pyrazol-5-yl)- N4-methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H-NMR (DMSO): δ 9.27 (s, 1 H), 8.12 (s, 1 H), 7.38 (d, J = 1.8, 1 H), 7.11 (d, J = 5.2, 1 H), 6.17 (s, 1 H), 4.54-4.46 (m, 1 H), 2.81 (d, J = 4.3, 3 H), 1.32 (d, J = 6.6, 6 H).

301
0.112


48
5-Chloro-N-(1- ethyl-5-methyl- 1H-pyrazol-4- yl)-4-methoxy- pyrimidin- 2-amine


embedded image



1H-NMR (DMSO): δ 8.81 (s, 1 H), 8.14 (s, 1 H), 7.51 (s, 1 H), 4.02 (q, J = 7.1, 2 H), 3.91 (s, 3 H), 2.17 (s, 3 H), 1.28 (t, J = 7.1, 4 H).

268.1



49
5-Chloro-N2-(1- ethyl-5-methyl- 1H-pyrazol-4- yl)-N4-methyl- pyrimidine- 2,4-diamine


embedded image



1H-NMR (DMSO): δ 8.21 (s, 1 H), 7.76 (s, 1 H), 7.51 (s, 1 H), 6.94 (s, 1 H), 4.0 (q, J = 7.1, 2 H), 2.83 (d, J = 3.7, 3 H), 2.15 (s, 3 H), 1.27 (t, J = 7.2, 3 H).

267.1



50
N2-(1-ethyl-3- methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H-NMR (DMSO): δ 8.88 (s, 1 H), 8.07 (s, 1 H), 7.89 (s, 1 H), 6.94 (s, 1 H), 4.00 (q, J = 7.1, 2 H), 2.88 (d, J = 3.9, 3 H), 2.11 (s, 3 H), 1.32 (t, J = 7.2, 3 H).

301.1



51
5-Chloro-N2-(1- ethyl-3-methyl- 1H-pyrazol-4- yl)-N4-methyl- pyrimidine- 2,4-diamine


embedded image



1H-NMR (DMSO): δ 8.26 (s, 1 H), 7.80 (s, 2 H), 6.99 (s, 1 H), 3.98 (q, 2 H), 2.86 (s, 3 H), 2.10 (s, 3 H), 1.32 (t, 3 H).

267.1



52
5-chloro-N2-(1- isopropyl-1H- pyrazol-5-yl)-N4- methyl- pyrimidine- 2,4-diamine


embedded image







53
5-chloro-N-(1- isopropyl-1H- pyrazol-5-yl)-4- methoxy- pyrimidin- 2-amine


embedded image







54
5-chloro-4- methoxy-N-(3- methyl-1- (methylsulfonyl)- 1H-pyrazol-4- yl)pyrimidin-2- amine


embedded image



1H NMR (400 MHz, DMSO) δ 9.44 (s, 1 H), 8.41 (s, 1 H), 8.34 (s, 1 H), 4.01 (s, 3 H), 3.42 (s, 3 H), 2.32 (s, 3 H).


0.0078


55
N2-(1-ethyl-1H- pyrazol-3-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image







56
5-chloro-4- methoxy-N-(5- methyl-1-phenyl- 1H-pyrazol-4- yl)pyrimidin-2- amine


embedded image


1H NMR (400 MHz, DMSO) δ 9.17 (s, 1 H), 8.57 (s, 1 H), 8.25 (s, 1 H), 7.73 (d, J = 7.9, 2 H), 7.46 (t, J = 7.9, 2 H), 7.23 (t, J = 7.4, 1 H), 4.01 (s, 3 H), 2.26 (s, 3 H).
316.1
0.027


57
N2-(1-isopropyl- 1H-pyrazol-3-yl)- N4-methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



 0.0025



58
N4-methyl-N2-(5- methyl-1-(2,2,2- trifluoroethyl)- 1H-pyrazol-4- yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.88 (s, 1 H), 8.06 (s, 1 H), 7.74 (s, 1 H), 6.93 (s, 1 H), 5.01 (q, J = 9.2, 2 H), 2.82 (s, 3 H), 2.22 (s, 3 H).

0.0036


59
N2-(1-(2,2- dimethyl-1,3- dioxan-5-yl)-3- methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



387



60
5-chloro-4- methoxy-N-(5- methyl-1-(4- (methylsulfonyl) phenyl)-1H- pyrazol-4- yl)pyrimidin-2- amine


embedded image




0.015


61
N4-ethyl-N2-(1- methyl-1H- pyrazol-3-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image




0.0046


62
5-chloro-N-(1,5- dimethyl-1H- pyrazol-4-yl)-4- (oxetan-3- yloxy)pyrimidin- 2-amine


embedded image




0.039


63
5-chloro-4-(2,2- difluoroethoxy)- N-(1,5-dimethyl- 1H-pyrazol-4- yl)pyrimidin-2- amine


embedded image




0.024


64
5-chloro-N-(1,5- dimethyl-1H- pyrazol-4-yl)-4- (2,2,2- trifluoroethoxy) pyrimidin-2- amine


embedded image




0.0586


65
5-chloro-4- methoxy-N-(3- methyl-1- (tetrahydro-2H- pyran-4-yl)-1H- pyrazol-4- yl)pyrimidin-2- amine


embedded image


1H NMR (400 MHz, DMSO) δ 8.82 (s, 1 H), 8.14 (s, 1 H), 7.57 (s, 1 H), 4.41-4.26 (m, 1 H), 4.03-3.82 (m, 5 H), 3.47 (t, J = 11.3, 2 H), 2.20 (s, 3 H), 2.01 (qd, J = 12.4, 4.5, 2 H), 1.76 (dd, J = 12.5, 2.1, 2 H).

0.0029


66
(4-(4-(5-chloro-4- methoxy- pyrimidin- 2-ylamino)-3- methyl-1H- pyrazol-1- yl)piperidin-1- yl)(1- methylcyclo- propyl) methanone


embedded image


1H NMR (400 MHz, DMSO) δ 8.82 (s, 1 H), 8.14 (s, 1 H), 7.58 (s, 1 H), 4.36 (m, 3 H), 3.91 (s, 2 H), 3.01 (s, 2 H), 2.21 (s, 3 H), 1.87 (m, 4 H), 0.80 (m, 2 H), 0.55 (m, 2 H).

0.066


67
(4-(4-(5-chloro-4- methoxy- pyrimidin- 2-ylamino)-5- methyl-1H- pyrazol-1- yl)piperidin-1- yl)(1- methylcyclo- propyl) methanone


embedded image


1H NMR (400 MHz, DMSO) δ 8.88 (s, 1 H), 8.17 (s, 1 H), 7.89 (s, 1 H), 4.39-4.24 (m, 4 H), 2.96 (s, 2 H), 2.11 (s, 3 H), 2.01 (m, 3 H), 1.74 (m, 3 H), 1.24 (s, 4 H), 0.81 (t, J = 5.1, 2 H), 0.54 (m, 2 H).

0.089


68
4-(4-(5-chloro-4- methoxy- pyrimidin- 2-ylamino)-3- methyl-1H- pyrazol-1- yl)benzonitrile


embedded image


1H NMR (400 MHz, DMSO) δ 9.29 (s, 1 H), 8.71 (s, 1 H), 8.27 (s, 1 H), 7.98-7.86 (m, 4 H), 4.02 (s, 3 H), 2.29 (s, 3 H).

0.0024


69
5-chloro-4- methoxy-N-(3- methyl-1-(3- methylpyridin-4- yl)-1H-pyrazol-4- yl)pyrimidin-2- amine


embedded image


1H NMR (400 MHz, DMSO) δ 9.25 (s, 1 H), 8.53 (s, 1 H), 8.46 (d, J = 5.4, 1 H), 8.43 (s, 1 H), 8.26 (s, 1 H), 7.47 (d, J = 5.4, 1 H), 4.01 (s, 3 H), 2.45 (s, 3 H), 2.29 (s, 3 H).

0.055


70
5-chloro-N-(1- (cyclopropyl- sulfonyl)- 5-methyl-1H- pyrazol-4-yl)-4- methoxy- pyrimidin- 2-amine


embedded image



334.0
0.015


71
5-chloro-N-(1- (cyclopropyl- sulfonyl)- 3-methyl-1H- pyrazol-4-yl)-4- methoxy- pyrimidin- 2-amine


embedded image


1H NMR (400 MHz, DMSO) δ 9.44 (s, 1 H), 8.39 (s, 1 H), 8.34 (s, 1 H), 4.01 (s, 3 H), 3.10-2.95 (m, 1 H), 2.31 (s, 3 H), 1.17 (m, 4 H).

0.020


72
2-(4-(5-chloro-4- methoxy- pyrimidin- 2-ylamino)-5- methyl-1H- pyrazol-1-yl)-2- methylpropane- nitrile


embedded image


1H NMR (400 MHz, DMSO) δ 8.98 (s, 1 H), 7.69 (s, 1 H), 7.06 (s, 1 H), 3.91 (s, 3 H), 2.40 (s, 3 H), 1.95 (s, 6 H).

0.016


73
2-(4-(5-chloro-4- methoxy- pyrimidin- 2-ylamino)-3- methyl-1H- pyrazol-1-yl)-2- methylpropane- nitrile


embedded image


1H NMR (400 MHz, DMSO) δ 9.11 (s, 1 H), 8.14 (s, 1 H), 7.07 (s, 1 H), 3.98 (s, 3 H), 2.18 (s, 3 H), 1.93 (s, 7 H).

0.014


74
5-chloro-4- ethoxy- N-(5-methyl-1- (tetrahydro-2H- pyran-4-yl)-1H- pyrazol-4- yl)pyrimidin-2- amine


embedded image


1H NMR (400 MHz, DMSO) δ 8.84 (s, 1 H), 8.17 (s, 1 H), 7.84 (s, 1 H), 4.41 (q, J = 7.0, 2 H), 4.31-4.16 (m, 1 H), 4.06-3.84 (m, 2 H), 3.44 (td, J = 11.5, 2.7, 2 H), 2.11 (s, 3 H), 1.98- 1.77 (m, 4 H), 1.34 (t, J = 7.1, 3 H).
338.1



75
(5-Chloro-4- methoxy- pyrimidin-2- yl)-[1-(4- methanesulfonyl- phenyl)-3-methyl- 1H-pyrazol-4-yl]- amine


embedded image




0.0022


76
(5-Chloro-4- methoxy- pyrimidin-2-yl)- (3-methyl-1- phenyl-1H- pyrazol-4-yl)- amine


embedded image




0.0023


77
(4-Methoxy-5- trifluoromethyl- pyrimidin-2-yl)- (3-methyl-1- phenyl-1H- pyrazol-4-yl)- amine


embedded image




0.0016


78
(4-Methoxy-5- trifluoromethyl- pyrimidin-2-yl)- (5-methyl-1- phenyl-1H- pyrazol-4-yl)- amine


embedded image




0.0381


79
(5-Chloro-4- methoxy- pyrimidin-2-yl)- (1- methanesulfonyl- 3-methyl-1H- pyrazol-4-yl)- amine


embedded image




0.0078


80
(5-Chloro-4- methoxy- pyrimidin-2-yl)- [5-methyl-1- (tetrahydro- pyran-4-yl)-1H- pyrazol-4-yl]- amine


embedded image




0.0663


81
4-[4-(5-Chloro- 4-methoxy- pyrimidin-2- ylamino)-3- methyl-pyrazol- 1-yl]-N,N- dimethyl- benzamide


embedded image




0.0022


82
4-[4-(5-Chloro-4- methoxy- pyrimidin-2- ylamino)-5- methyl-pyrazol- 1-yl]-N,N- dimethyl- benzamide


embedded image




0.63


83
4-[4-(5-Chloro- 4-methoxy- pyrimidin-2- ylamino)-5- methyl-pyrazol- 1-yl]- benzonitrile


embedded image




0.0090


84
N2-(5-Methoxy- 1-methyl- 1H-pyrazol-4- yl)-N4-methyl- 5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0742


85
(5-Chloro-4- methoxy- pyrimidin-2-yl)- [5-chloro-1- (tetrahydro- pyran-4-yl)- 1H-pyrazol- 4-yl]-amine


embedded image




0.0066


86
(5-Chloro-4- methoxy- pyrimidin-2-yl)- {1-[1-(2-fluoro- ethyl)-piperidin- 4-yl]-3- methyl-1H- pyrazol-4-yl}- amine


embedded image




0.183


87
N2-[1-(1- [1,3]Dioxolan- 2-ylmethyl- piperidin-4-yl)- 5-methyl-1H- pyrazol-4-yl]- N4-ethyl-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0008


88
N2-[1-(1- [1,3]Dioxolan-2- ylmethyl- piperidin-4-yl)-3- methyl-1H- pyrazol-4-yl]-N4- ethyl-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0094









Example 89
5-Bromo-N2-(1,5-dimethyl-1H-pyrazol-4-yl)-N4-methylpyrimidine-2,4-diamine



embedded image


To a mixture of 5-bromo-2-chloro-N-methylpyrimidin-4-amine (0.201 g, 0.903 mmol) and 1,5-dimethyl-1H-pyrazol-4-amine (0.12 g, 1.08 mmol) in 2-methoxyethanol (2 mL) was added TFA (0.070 mL, 0.9 mmol). The reaction was stirred in a sealed tube at 100° C. for 90 minutes. The resulting precipitate was collected by filtration. The isolated solid was further purified by reverse phase HPLC to give 5-bromo-N2-(1,5-dimethyl-1H-pyrazol-4-yl)-N4-methylpyrimidine-2,4-diamine (46 mg, 17%). LCMS (Method A): [MH+]=297.0 at 2.57 min. 1H-NMR (DMSO): δ 8.28 (s, 1H), 7.84 (s, 1H), 7.49 (s, 1H), 6.79 (d, J=3.4, 1H), 3.67 (s, 3H), 2.82 (d, J=3.6, 3H), 2.14 (s, 3H). Ki=0.017 uM.


Compounds made using the above procedure are shown in Table 8 below, together with low resolution mass spectrometry (M+H), proton NMR, and LRRK2 Ki (micromolar) data for selected compounds determined from the assay described below.














TABLE 8






Name
Structure

1H NMR

M + H+
KI







 90
N2-(1,3-Dimethyl- 1H-pyrazol-4-yl)- 5-iodo-N4-methyl- pyrimidine-2,4- diamine


embedded image



1H-NMR (DMSO): δ 8.24 (s, 1 H), 7.98 (s, 1 H), 7.73 (s, 1 H), 6.46 (d, J = 4.3, 1 H), 3.70 (s, 3 H), 2.85 (d, J = 4.6, 3 H), 2.08 (s, 3 H).

345.0






 91
N4-methyl-N2-(5- methyl-1-(1-(2,2,2- trifluoroethyl) piperidin-4-yl)-1H- pyrazol-4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



438.2
0.0041





 92
N4-methyl-N2-(3- methyl-1-(1-(2,2,2- trifluoroethyl) piperidin-4-yl)-1H- pyrazol-4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



438.2
0.046





 93
5-bromo-N4- methyl-N2-(5- methyl-1-(1-(2,2,2- trifluoroethyl) piperidin-4-yl)-1H- pyrazol-4- yl)pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.22 (s, 1 H), 7.84 (s, 1 H), 7.56 (s, 1 H), 6.76 (d, J = 4.6, 1 H), 4.12-4.00 (m, 1 H), 3.22 (q, J = 10.2, 2 H), 3.00 (d, J = 11.9, 2 H), 2.82 (d, J = 4.5, 3 H), 2.56 (d, J = 11.9, 2 H), 2.01 (qd, J = 12.3, 3.7, 2 H), 1.75 (d, J = 13.4, 2 H).

0.0014





 94
5-bromo-N4- methyl-N2-(3- methyl-1-(1-(2,2,2- trifluoroethyl) piperidin-4-yl)-1H- pyrazol-4- yl)pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.28 (s, 1 H), 7.86 (d, J = 13.2, 2 H), 6.80 (d, J = 4.6, 1 H), 4.05-3.93 (m, 1 H), 3.21 (dd, J = 20.6, 10.3, 5 H), 2.98 (d, J = 12.0, 2 H), 2.86 (d, J = 4.6, 3 H), 2.00- 1.80 (m, 5 H).

0.013





 95
5-bromo-N4- methyl-N2-(3- methyl-1-(2,2,2- trifluoroethyl)-1H- pyrazol-4- yl)pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.45 (s, 1 H), 7.98 (s, 1 H), 7.91 (s, 1 H), 6.86 (d, J = 4.4, 1 H), 4.96 (q, J = 9.2, 2 H), 2.87 (d, J = 4.6, 3 H), 2.15 (s, 3 H).

0.0012





 96
5-bromo-N4- methyl-N2-(5- methyl-1-(2,2,2- trifluoroethyl)-1H- pyrazol-4- yl)pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.35 (s, 1 H), 7.86 (s, 1 H), 7.68 (s, 1 H), 6.80 (d, J = 4.5, 1 H), 4.99 (q, J = 9.2, 2 H), 2.81 (d, J = 4.5, 3 H), 2.20 (s, 3 H).

0.0011





 97
N4-ethyl-N2-(3- methyl-1-(oxetan- 3-yl)-1H-pyrazol- 4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.06* (br s, 1 H), 8.69† (br s, 1 H), 8.33† (s, 1 H), 8.13* (s, 1 H), 8.09* (br s, 1 H), 7.94† (br s, 1 H), 7.09* (br s, 1 H), 6.95† (br s, 1 H), 5.47 (p, J = 7.0, 1 H), 4.92-4.85 (m, 4 H), 3.68-3.30 (m, 2 H), 2.21 (s, 3 H), 1.17 (t, J = 7.0, 3 H). [* and † denote rotameric peaks.]
343
0.0016





 98
5-chloro-N4-ethyl- N2-(3-methyl-1- (oxetan-3-yl)-1H- pyrazol-4- yl)pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.44 (br s, 1 H), 8.01 (s, 1 H), 7.87 (s, 1 H), 7.10 (s, 1 H), 5.46 (t, J = 7.0, 1 H), 4.89 (dt, J = 22.1, 6.7, 4 H), 3.44 (p, J = 6.7, 2 H), 2.20 (s, 3 H), 1.18 (t, J = 7.1, 3 H).
309
0.0031





 99
5-bromo-N4- methyl-N2-(1- methyl-1H- pyrazol-5- yl)pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.04 (s, 1 H), 8.29 (s, 1 H), 7.99 (s, 1 H), 7.32 (d, J = 2.0, 1 H), 7.05 (q, J = 4.7, 1 H), 6.23 (d, J = 2.0, 1 H), 3.68 (s, 3 H), 2.86 (d, J = 4.7, 3 H). Note: formic acid salt.
283
0.0054





100
2-methyl-1-(5- methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)propan-2-ol


embedded image


1H NMR (400 MHz, CDCl3) δ 8.08 (s, 1 H), 7.76 (br s, 1 H), 6.69 (br s, 1 H), 5.15 (s, 1 H), 4.49 (s, 1 H), 3.97 (s, 2 H), 2.98 (d, J = 4.6, 3 H), 2.21 (s, 3 H), 1.18 (s, 6 H).
345
0.0085





101
5-chloro-N4- methyl-N2-(3- methyl-1- (methylsulfonyl)- 1H-pyrazol-4- yl)pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.88 (s, 1 H), 8.43 (s, 1 H), 7.95 (s, 1 H), 7.22 (d, J = 4.3, 1 H), 3.38 (s, 3 H), 2.91 (d, J = 4.6, 3 H), 2.31 (s, 3 H).

0.0088





102
N4-methyl-N2-(3- methyl-1- (methylsulfonyl)- 1H-pyrazol-4-yl)- 5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.35 (s, 1 H), 8.47 (s, 1 H), 8.20 (s, 1 H), 7.17 (s, 1 H), 3.41 (s, 3 H), 2.93 (d, J = 4.4, 3 H), 2.32 (s, 3 H).

0.0029





103
N4-methyl-N2-(3- methyl-1H- pyrazol-4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 12.20 (d, J = 43.0, 1 H), 8.81 (s, 1 H), 8.06 (s, 1 H), 7.79 (d, J = 67.1, 1 H), 6.90 (s, 1 H), 2.86 (s, 3 H), 2.15 (s, 3 H).

0.0090





104
5-bromo-N4-ethyl- N2-(3-methyl-1- (oxetan-3-yl)-1H- pyrazol-4- yl)pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.46 (br s, 1 H), 8.00 (s, 1 H), 7.94 (s, 1 H), 6.90 (s, 1 H), 5.47-5.45 (m, 1 H), 4.89 (dt, J = 22.8, 6.7, 4 H), 3.44 (p, J = 6.7, 2 H), 2.20 (s, 3 H), 1.18 (t, J = 7.1, 3 H).
353
0.0014





105
N2-(1- (difluoromethyl)-3- methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.04 (s, 1 H), 8.09 (s, 1 H), 7.98 (s, 1 H), 7.71 (t, J = 58.1, 1 H), 7.01 (s, 1 H), 2.84 (s, 3 H), 2.34 (s, 3 H).

0.0055





106
N2-(1- (difluoromethyl)-5- methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.20 (s, 1 H), 8.31 (s, 1 H), 8.15 (s, 1 H), 7.66 (t, J = 59.5, 1 H), 7.15 (s, 1 H), 2.91 (d, J = 4.4, 3 H), 2.24 (s, 3 H).

0.0019





107
5-bromo-N4-ethyl- N2-(1-ethyl-5- methyl-1H- pyrazol-4- yl)pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.20 (s, 1 H), 7.85 (s, 1 H), 7.49 (s, 1 H), 6.72 (t, J = 5.5, 1 H), 4.00 (q, J = 7.2, 2 H), 3.35 (p, J = 6.9, 2 H), 2.15 (s, 3 H), 1.27 (t, J = 7.2, 3 H), 1.10 (t, J = 7.1, 3 H).

0.00043





108
5-bromo-N2-(1-(4- fluorophenyl)-3- methyl-1H- pyrazol-4-yl)-N4- methylpyrimidine- 2,4-diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.47 (s, 1 H), 7.88 (m, 2 H), 7.60-7.49 (m, 2 H), 7.34 (t, J = 8.4, 2 H), 6.84 (s, 1 H), 2.86 (d, J = 3.8, 3 H), 2.23 (s, 3 H).

0.0003





109
5-bromo-N4- methyl-N2-(3- methyl-1-phenyl- 1H-pyrazol-4- yl)pyrimidine-2,4- diamine


embedded image



360
0.0084





110
5-bromo-N4- methyl-N2-(5- methyl-1-phenyl- 1H-pyrazol-4- yl)pyrimidine-2,4- diamine


embedded image



360






111
5-bromo-N4- methyl-N2-(1- methyl-1H- pyrazol-4- yl)pyrimidine-2,4- diamine


embedded image










112
N4-methyl-N2-(3- methyl-1-(1- (methylsulfonyl) azetidin-3-yl)-1H- pyrazol-4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H NMR (300MHz, CD3OD) δ 8.12 (s, 1 H), 7.93 (s, 1 H), 5.22-5.13 (m, 1 H), 4.35-4.30 (m, 4 H), , 3.31 (s, 3 H), 3.31 (s, 3 H), 2.24 (s, 3 H)








113
5-bromo-N4- methyl-N2-(3- methyl-1-propyl- 1H-pyrazol-4- yl)pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.22 (s, 1 H), 7.84 (s, 1 H), 7.51 (s, 1 H), 6.75 (d, J = 4.0, 1 H), 3.92 (t, J = 7.0, 2 H), 2.81 (d, J = 4.3, 3 H), 2.15 (s, 3 H), 1.70 (h, J = 7.2, 2 H), 0.83 (t, J = 7.4, 3 H).

0.012





114
5-chloro-N4- methyl-N2-(3- methyl-1-((3- methyloxetan-3- yl)methyl)-1H- pyrazol-4- yl)pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.36 (s, 1 H), 7.84 (s, 1 H), 7.82 (s, 1 H), 7.04 (q, J = 4.7, 1 H), 4.57 (d, J = 5.8, 2 H), 4.20 (d, J = 6.0, 3 H), 3.44 (br s, 2 H), 2.86 (d, J = 4.6, 3 H), 2.11 (s, 2 H), 1.14 (s, 3 H).
323
0.019





115
5-bromo-N2-(1- (3,5- difluorophenyl)-5- methyl-1H- pyrazol-4-yl)-N4- methylpyrimidine- 2,4-diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.67 (s, 1 H), 8.61 (s, 1 H), 7.96 (s, 1 H), 7.45 (d, J = 8.2, 2 H), 7.06 (t, J = 9.2, 1 H), 6.93 (d, J = 4.3, 1 H), 2.91 (d, J = 4.5, 3 H), 2.25 (s, 3 H).

0.031





116
5-bromo-N2-(1- (3,5- difluorophenyl)-3- methyl-1H- pyrazol-4-yl)-N4- methylpyrimidine- 2,4-diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.55 (s, 1 H), 7.96 (s, 1 H), 7.90 (s, 1 H), 7.40-7.20 (m, 3 H), 6.86 (d, J = 4.4, 1 H), 2.86 (d, J = 4.5, 3 H), 2.34 (s, 3 H).

0.0003





117
N4-methyl-N2-(3- methyl-1-(pyridin- 2-yl)-1H-pyrazol- 4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.20 (s, 2 H), 8.40 (d, J = 4.7, 1 H), 8.18 (s, 1 H), 7.91 (t, J = 7.8, 1 H), 7.83 (d, J = 8.2, 1 H), 7.29-7.19 (m, 1 H), 7.08 (s, 1 H), 2.96 (d, J = 3.9, 3 H), 2.32 (s, 3 H).

0.0067





118
N4-methyl-N2-(3- methyl-1-((3- methyloxetan-3- yl)methyl)-1H- pyrazol-4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, CDCl3) δ 8.12 (s, 1 H), 7.83 (s, 1 H), 6.59 (br s, 1 H), 5.18 (br s, 1 H), 4.69 (d, J = 6.1, 2 H), 4.39 (d, J = 6.1, 2 H), 4.24 (s, 2 H), 3.05 (d, J = 4.7, 3 H), 2.24 (s, 3 H), 1.28 (s, 3 H).
357
0.0072





119
N4-methyl-N2-(5- methyl-1-propyl- 1H-pyrazol-4-yl)- 5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.86 (s, 1 H), 8.07 (s, 1 H), 7.85 (s, 1 H), 6.93 (s, 1 H), 3.92 (t, J = 6.8, 2 H), 2.87 (d, J = 4.0, 3 H), 2.11 (s, 3 H), 1.73 (h, J = 7.1, 2 H), 0.82 (t, J = 7.3, 3 H).

0.0056





120
N4-methyl-N2-(3- methyl-1-propyl- 1H-pyrazol-4-yl)- 5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.80 (s, 1 H), 8.04 (s, 1 H), 7.61 (s, 1 H), 6.88 (s, 1 H), 3.94 (t, J = 7.0, 2 H), 2.82 (s, 3 H), 2.12 (d, J = 39.3, 3 H), 1.71 (h, J = 7.3, 2 H), 0.84 (t, J = 7.3, 3 H).

0.0006





121
5-bromo-N2-(1- isopropyl-3- methyl-1H- pyrazol-4-yl)-N4- methylpyrimidine- 2,4-diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.28 (s, 1 H), 7.88 (s, 1 H), 7.83 (s, 1 H), 6.80 (d, J = 4.3, 1 H), 4.39-4.26 (m, 1 H), 2.86 (d, J = 4.6, 3 H), 2.10 (s, 3 H), 1.36 (d, J = 6.7, 6 H).

0.0031





122
5-bromo-N2-(1-(4- chlorophenyl)-5- methyl-1H- pyrazol-4-yl)-N4- methylpyrimidine- 2,4-diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.64 (s, 1 H), 8.55 (s, 1 H), 7.95 (s, 1 H), 7.72 (d, J = 8.9, 2 H), 7.49 (d, J = 8.9, 2 H), 6.92 (d, J = 4.4, 1 H), 2.91 (d, J = 4.5, 3 H), 2.25 (s, 3 H).

0.014





123
N2-(1-(4- chlorophenyl)-5- methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.03 (s, 1 H), 8.05 (d, J = 33.8, 2 H), 7.57 (s, 4 H), 6.76 (d, J = 171.5, 2 H), 2.88 (d, J = 3.9, 3 H), 2.28 (s, 3 H).

0.0003





124
N4-methyl-N2-(3- methyl-1-(4- (methylsulfonyl) phenyl)-1H- pyrazol-4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.12 (s, 1 H), 8.07 (t, J = 13.9, 3 H), 7.84 (d, J = 11.0, 2 H), 7.00 (s, 1 H), 3.28 (s, 3 H), 2.88 (d, J = 4.0, 3 H), 2.37 (s, 3 H).

0.0003





125
N4-methyl-N2-(5- methyl-1-(4- (methylsulfonyl) phenyl)-1H- pyrazol-4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.24 (s, 1 H), 8.75 (s, 1 H), 8.16 (s, 1 H), 8.02-7.91 (m, 4 H), 7.09 (s, 1 H), 3.23 (s, 3 H), 2.95 (d, J = 4.3, 3 H), 2.31 (s, 3 H).

0.0047





126
N2-(1-((1S,5S)-8- oxabicyclo[3.2.1] octan-3-yl)-3- methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H NMR (300 MHz, CD3OD) δ 8.05 (s, 2 H), 4.37-4.46 (m, 3 H), 3.00 (s, 3 H), 2.45-2.42 (m, 4 H), 2.25 (s, 3 H), 1.79- 1.77 (m, 4 H)


0.113





127
N2-(1-butyl-5- methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



329.2
0.0003





128
N4-methyl-N2-(3- methyl-1- (pyrimidin-2-yl)- 1H-pyrazol-4-yl)- 5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.28 (s, 1 H), 8.96 (s, 1 H), 8.78 (d, J = 4.8, 2 H), 8.19 (s, 1 H), 7.35 (t, J = 4.8, 1 H), 7.11 (s, 1 H), 2.97 (d, J = 4.0, 3 H), 2.33 (s, 3 H).

0.0114





129
N2-(1-(4- chlorophenyl)-3- methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.16 (s, 1 H), 8.60 (s, 1 H), 8.14 (s, 1 H), 7.74 (d, J = 8.8, 2 H), 7.50 (d, J = 8.9, 2 H), 7.05 (s, 1 H), 2.93 (d, J = 4.4, 3 H), 2.26 (s, 3 H).

0.028





130
N2-(1-(2- fluoroethyl)-3- methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.97 (s, 1 H), 8.08 (s, 1 H), 7.93 (s, 1 H), 7.25-6.91 (m, 1 H), 4.77 (t, J = 4.7, 1 H), 4.65 (t, J = 4.7, 1 H), 4.33 (t, J = 4.7, 1 H), 4.26 (t, J = 4.7, 1 H), 2.88 (d, J = 4.3, 3 H), 2.13 (s, 3 H).

0.0011





131
N4-methyl-N2-(3- methyl-1-(1- (oxetan-3- yl)piperidin-4-yl)- 1H-pyrazol-4-yl)- 5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.90 (s, 1 H), 8.07 (s, 1 H), 7.93 (s, 1 H), 6.95 (s, 1 H), 4.54 (t, J = 6.5, 2 H), 4.43 (t, J = 6.1, 2 H), 4.00 (s, 1 H), 3.49-3.38 (m, 1 H), 2.88 (d, J = 4.4, 3 H), 2.76 (d, J = 9.5, 2 H), 2.12 (s, 3 H), 2.04-1.72 (m, 6 H).

0.0374





132
N4-methyl-N2-(5- methyl-1-(1- (oxetan-3- yl)piperidin-4-yl)- 1H-pyrazol-4-yl)- 5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.84 (s, 1 H), 8.04 (s, 1 H), 7.71 (s, 1 H), 6.89 (s, 1 H), 4.55 (t, J = 6.3, 2 H), 4.45 (t, J = 5.5, 2 H), 4.07 (s, 1 H), 3.54-3.37 (m, 1 H), 2.84 (t, J = 19.1, 5 H), 2.19 (s, 3 H), 1.99 (td, J = 23.4, 11.5, 4 H), 1.80 (d, J = 11.5, 2 H).







133
N2-(1-(2- fluoroethyl)-5- methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.87 (s, 1 H), 8.05 (s, 1 H), 7.69 (s, 1 H), 6.91 (s, 1 H), 4.77 (t, J = 4.8, 1 H), 4.66 (t, J = 4.8, 1 H), 4.35 (t, J = 4.8, 1 H), 4.28 (t, J = 4.8, 1 H), 2.84 (s, 3 H), 2.18 (s, 3 H).

0.0018





134
1-(4-(4-(4- (ethylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-3- methyl-1H- pyrazol-1- yl)piperidin-1- yl)ethanone


embedded image


1H NMR (400 MHz, DMSO) δ 8.78 (s, 1 H), 8.05 (s, 1 H), 7.61 (s, 1 H), 6.87 (s, 1 H), 4.47 (d, J = 13.6, 1 H), 4.42- 4.25 (m, 1 H), 3.92 (d, J = 13.6, 1 H), 3.38 (m, 2 H), 3.20 (t, J = 11.5, 1 H), 2.70 (m, 1 H), 2.27 (d, J = 46.8, 3 H), 1.83 (m, 4 H), 1.08 (m, 3 H).

0.0022





135
cyclopropyl(4-(5- methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)piperidin-1- yl)methanone


embedded image


1H NMR (400 MHz, DMSO) δ 8.85 (s, 1 H), 8.05 (s, 1 H), 7.71 (s, 1 H), 6.89 (s, 1 H), 4.55-4.23 (m, 3 H), 2.84 (s, 4 H), 2.22 (s, 3 H), 1.91 (m, 5 H), 0.79-0.62 (m, 4 H).

0.0010





136
cyclopropyl(4-(3- methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)piperidin-1- yl)methanone


embedded image


1H NMR (400 MHz, DMSO) δ 8.90 (s, 1 H), 8.10 (s, 1 H), 7.95 (s, 1 H), 6.95 (s, 1 H), 4.35 (m, 3 H), 3.24 (m, 1 H), 2.88 (d, J = 4.3, 3 H), 2.74 (m, 1 H), 2.04 (m, 6 H), 1.75 (m, 2 H), 0.72 (m, 4 H).

0.0093





137
1-(4-(4-(4- (ethylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-5- methyl-1H- pyrazol-1- yl)piperidin-1- yl)ethanone


embedded image


1H NMR (400 MHz, DMSO) δ 8.78 (s, 1 H), 8.05 (s, 1 H), 7.61 (s, 1 H), 6.87 (s, 1 H), 4.47 (d, J = 13.6, 1 H), 4.42- 4.25 (m, 1 H), 3.92 (d, J = 13.6, 1 H), 3.38 (m, 2 H), 3.20 (t, J = 11.5, 1 H), 2.70 (m, 1 H), 2.27 (d, J = 46.8, 3 H), 1.83 (m, 4 H), 1.08 (m, 3 H).

0.0004





138
N2-(5-chloro-1- isopropyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.98 (br s, 1 H), 8.12 (s, 1 H), 7.85 (s, 1 H), 7.05 (s, 1 H), 4.65 (p, J = 6.6, 1 H), 2.86 (s, 3 H), 1.42 (d, J = 6.6, 6 H).
335
0.0011





139
N2-(5-chloro-1- ethyl-1H-pyrazol- 4-yl)-N4-methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, CDCl3) δ 8.13 (s, 1 H), 8.08 (s, 1 H), 6.68 (br s, 1 H), 5.21 (s, 1 H), 4.18 (q, J = 7.3, 2 H), 3.07 (d, J = 4.7, 3 H), 1.44 (t, J = 7.3, 3 H).
321
0.0020





140
N4-methyl-N2-(3- methyl-1- (pyrimidin-5-yl)- 1H-pyrazol-4-yl)- 5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.19 (m, 3 H), 9.06 (s, 1 H), 8.76 (s, 1 H), 8.16 (s, 1 H), 7.10 (s, 1 H), 2.96 (d, J = 4.3, 3 H), 2.31 (s, 3 H).

0.0061





141
N4-methyl-N2-(4- methyl-1-(1- methylpiperidin-4- yl)-1H-pyrazol-3- yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



370.2
0.041





142
N4-methyl-N2-(5- methyl-1-(2- methylpyridin-4- yl)-1H-pyrazol-4- yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.11 (s, 1 H), 8.52 (d, J = 5.5, 1 H), 8.10 (s, 2 H), 7.50 (s, 1 H), 7.43 (dd, J = 5.5, 1.9, 1 H), 6.99 (s, 1 H), 2.87 (d, J = 3.5, 3 H), 2.54 (s, 3 H), 2.40 (s, 3 H).

0.0003





143
N4-methyl-N2-(3- methyl-1-(2- methylpyridin-4- yl)-1H-pyrazol-4- yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.19 (s, 1 H), 8.72 (s, 1 H), 8.42 (d, J = 5.6, 1 H), 8.16 (s, 1 H), 7.59 (s, 1 H), 7.49 (d, J = 4.7, 1 H), 7.09 (s, 1 H), 2.95 (d, J = 4.3, 3 H), 2.29 (s, 3 H).

0.0069





144
N4-ethyl-N2-(3- methyl-1-((3- methyloxetan-3- yl)methyl)-1H- pyrazol-4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, CDCl3) δ 8.12 (s, 1 H), 7.79 (s, 1 H), 6.58 (br s, 1 H), 5.10 (br s, 1 H), 4.69 (d, J = 6.0, 2 H), 4.39 (d, J = 6.0, 2 H), 4.24 (s, 2 H), 3.52 (p, J = 6.6, 2 H), 2.23 (s, 3 H), 1.28 (s, 3 H), 1.28 (t, J = 6.6, 3 H).
371
0.0009





145
N2-(5-chloro-1- cyclopropyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, CDCl3) δ 8.13 (s, 1 H), 8.04 (s, 1 H), 6.76 (br s, 1 H), 5.21 (s, 1 H), 3.48-3.42 (m, 1 H), 3.06 (d, J = 4.7, 3 H), 1.23-1.19 (m, 2 H), 1.10-1.04 (m, 2 H).
333
0.0017





146
N2-(5-chloro-1- (cyclopropyl- methyl)-1H- pyrazol-4- yl)-N4-methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, CDCl3) δ 8.13 (s, 1 H), 8.10 (s, 1 H), 6.72 (br s, 1 H), 5.21 (s, 1 H), 4.00 (d, J = 7.0, 2 H), 3.07 (d, J = 4.7, 3 H), 1.34-1.25 (m, 1 H), 0.62-0.56 (m, 2 H), 0.44- 0.39 (m, 2 H).
347
0.0003





147
4-(5-methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)benzonitrile


embedded image


1H NMR (400 MHz, DMSO) δ 9.20 (s, 1 H), 8.73 (s, 1 H), 8.16 (s, 1 H), 7.91 (s, 4 H), 7.09 (s, 1 H), 2.94 (d, J = 4.3, 3 H), 2.29 (s, 3 H).

0.017





148
4-(3-methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)benzonitrile


embedded image


1H NMR (400 MHz, DMSO) δ 9.07 (s, 1 H), 8.10 (s, 1 H), 7.98 (d, J = 8.6, 2 H), 7.78 (d, J = 8.6, 1 H), 6.99 (s, 1 H), 2.88 (d, J = 3.8, 2 H), 2.36 (s, 2 H).

0.0003





149
N4-methyl-N2-(3- methyl-1- (tetrahydrofuran-3- yl)-1H-pyrazol-4- yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.95 (s, 1 H), 8.08 (s, 1 H), 7.99 (s, 1 H), 6.96 (s, 1 H), 4.88 (m, 1 H), 3.99-3.74 (m, 4 H), 2.89 (d, J = 4.4, 3 H), 2.33 (m, 1 H), 2.13 (m, 4 H).

0.0068





150
N4-methyl-N2-(5- methyl-1- (tetrahydrofuran-3- yl)-1H-pyrazol-4- yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.87 (s, 1 H), 8.05 (s, 1 H), 7.61 (d, J = 92.3, 1 H), 6.90 (s, 1 H), 5.10-4.58 (m, 1 H), 4.19-3.69 (m, 4 H), 2.84 (m, 3 H), 2.42-2.04 (m, 5 H).

0.0051





151
5-(4-(4- (ethylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-5- methyl-1H- pyrazol-1-yl)-1- methylpiperidin-2- one


embedded image


1H NMR (400 MHz, DMSO) δ 8.84 (s, 1 H), 8.05 (s, 1 H), 7.66 (s, 1 H), 6.89 (s, 1 H), 4.81-4.63 (m, 1 H), 3.61 (m, 1 H), 3.50 (m, 1 H), 3.38 (m, 2 H), 2.82 (m, 3 H), 2.49- 2.09 (m, 6 H), 1.99 (m, 1 H), 1.08 (m, 3 H).

0.0011





152
5-(4-(4- (ethylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-3- methyl-1H- pyrazol-1-yl)-1- methylpiperidin-2- one


embedded image


1H NMR (400 MHz, DMSO) δ 8.90 (s, 1 H), 8.08 (s, 1 H), 7.90 (s, 1 H), 6.95 (s, 1 H), 4.58 (m, 1 H), 3.68-3.53 (m, 2 H), 3.42 (m, 2 H), 2.82 (m, 3 H), 2.45-2.18 (m, 3 H), 2.13 (m, 4 H), 1.12 (m, 3 H).

0.0073





153
5-(3-methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)piperidin-2- one


embedded image


1H NMR (400 MHz, DMSO) δ 8.95 (s, 1 H), 8.05 (d, J = 23.6, 2 H), 7.50 (s, 1 H), 6.97 (s, 1 H), 4.49 (m, 1 H), 3.47 (m, 2 H), 2.88 (d, J = 4.3, 3 H), 2.39- 1.97 (m, 7 H).

0.0097





154
5-(5-methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)piperidin-2-one


embedded image


1H NMR (400 MHz, DMSO) δ 8.87 (s, 1 H), 8.05 (s, 1 H), 7.62 (d, J = 96.3, 2 H), 6.90 (s, 1 H), 4.59 (m, 1 H), 3.55- 3.42 (m, 1 H), 3.36 (m, 1 H), 2.84 (m, 3 H), 2.30 (m, 6 H), 1.99 (m, 1 H).

0.0022





155
N2-(1-isopropyl-5- methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (500 MHz, DMSO) δ 8.08 (s, 1 H), 7.88 (s, 1 H), 6.80 (s, 1 H), 5.15 (s, 1 H), 4.39-4.44 (m, 1 H), 3.01 (d, J = 5, 3 H), 2.22 (s, 3 H), 1.49 (d, J = 6.5, 6 H).
315
0.0025





156
N,N-dimethyl-4- (5-methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)benzamide


embedded image


1H NMR (400 MHz, DMSO) δ 9.07 (s, 1 H), 8.10 (s, 1 H), 7.57 (q, J = 8.5, 4 H), 6.98 (s, 1 H), 2.99 (s, 6 H), 2.88 (d, J = 4.0, 3 H), 2.31 (s, 3 H).

0.0003





157
4-(4-(4- (ethylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-5- methyl-1H- pyrazol-1-yl)-N,N- dimethylbenzamide


embedded image


1H NMR (400 MHz, DMSO) δ 9.00 (s, 1 H), 8.24-7.78 (m, 2 H), 7.57 (q, J = 8.5, 4 H), 6.95 (s, 1 H), 3.43 (s, 2 H), 2.99 (s, 6 H), 2.31 (s, 3 H), 1.12 (t, J = 6.7, 3 H).

0.0003





58
N4-ethyl-N2-(5- methyl-1- (tetrahydro-2H- pyran-4-yl)-1H- pyrazol-4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.80 (s, 1 H), 8.05 (s, 1 H), 7.63 (s, 1 H), 6.87 (s, 1 H), 4.41-4.24 (m, 1 H), 3.95 (dd, J = 11.2, 4.0, 2 H), 3.47 (t, J = 11.2, 2 H), 3.38 (s, 2 H), 2.20 (s, 3 H), 2.01 (qd, J = 12.4, 4.5, 2 H), 1.85-1.64 (m, 2 H), 1.08 (s, 3 H).

0.0003





159
N4-ethyl-N2-(3- methyl-1- (tetrahydro-2H- pyran-4-yl)-1H- pyrazol-4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.88 (s, 1 H), 8.08 (s, 1 H), 7.87 (s, 1 H), 6.98 (s, 1 H), 4.42-4.15 (m, 1 H), 3.94 (d, J = 11.0, 2 H), 3.44 (t, J = 11.0, 3 H), 2.12 (s, 2 H), 1.89 (s, 3 H), 1.21-1.00 (m, 2 H).

0.0039





160
N4-ethyl-N2-(3- methyl-1- (methylsulfonyl)- 1H-pyrazol-4-yl)- 5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.38 (s, 1 H), 8.44 (s, 1 H), 8.20 (s, 1 H), 7.24 (s, 1 H), 3.47 (p, J = 6.8, 2 H), 3.40 (s, 3 H), 2.32 (s, 3 H), 1.21-1.09 (m, 3 H).

0.0003





161
N2-(1-(4- (cyclopropyl- sulfonyl)phenyl)- 3-methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.12 (s, 1 H), 8.11 (s, 1 H), 8.02 (d, J = 8.6, 3 H), 7.84 (d, J = 8.6, 2 H), 7.00 (s, 1 H), 3.01-2.82 (m, 4 H), 2.37 (s, 3 H), 1.22-1.14 (m, 2 H), 1.14-0.94 (m, 2 H).

0.0003





162
4-(4-(4- (ethylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-5- methyl-1H- pyrazol-1- yl)benzonitrile


embedded image


1H NMR (400 MHz, DMSO) δ 9.06 (s, 1 H), 8.10 (s, 1 H), 7.99 (d, J = 8.6, 2 H), 7.78 (d, J = 8.6, 2 H), 6.97 (s, 1 H), 3.43 (s, 2 H), 2.36 (s, 3 H), 1.12 (t, J = 6.8, 3 H).

0.0003





163
N4-ethyl-N2-(5- methyl-1-(4- (methylsulfonyl) phenyl)-1H- pyrazol-4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.09 (s, 1 H), 8.15-8.02 (m, 3 H), 7.84 (d, J = 8.7, 2 H), 6.97 (s, 1 H), 3.43 (s, 2 H), 2.37 (s, 3 H), 1.12 (t, J = 7.0, 3 H).

0.0003





164
N,N-dimethyl-4- (3-methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)benzamide


embedded image


1H NMR (400 MHz, DMSO) δ 9.17 (s, 1 H), 8.65 (s, 1 H), 8.14 (s, 1 H), 7.76 (d, J = 8.5, 2 H), 7.50 (d, J = 8.6, 2 H), 7.06 (s, 1 H), 3.06-2.86 (m, 9 H), 2.28 (s, 3 H).

0.0057





165
N2-(1- (cyclopropyl- methyl)-5-methyl- 1H-pyrazol-4-yl)- N4-methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H NMR (500 MHz, DMSO) δ 8.41 (d, J = 16.0, 1 H), 8.04 (s, 1 H), 6.59 (s, 1 H), 6.59 (s, 1 H), 3.89 (m, J = 11.0, 2 H), 3.85 (d, J = 7.5, 3 H), 2.17 (s, 1 H), 1.13-1.18 (m, 1 H), 0.44- 0.50 (m, 2 H), 0.28-0.32 (s, 2 H).

327
0.0012





166
N2-(1- (cyclopropyl- methyl)-3-methyl- 1H-pyrazol-4-yl)- N4-methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H NMR (500 MHz, DMSO) δ 8.46 (d, J = 2.0, 1 H), 8.14 (s, 1 H), 8.04 (s, 1 H), 6.65 (s, 1 H), 3.82-3.84 (m, 2 H), 2.90 (d, J = 7.5, 3 H), 1.89 (s, 1 H), 1.15-1.20 (m, 1 H), 0.47-0.53 (m, 2 H), 0.28-0.33 (s, 2 H).


0.0045





167
N2-(1-(4- (cyclopropyl- sulfonyl)phenyl)- 5-methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.24 (s, 1 H), 8.75 (s, 1 H), 8.16 (s, 1 H), 8.02-7.87 (m, 4 H), 7.09 (s, 1 H), 2.96 (d, J = 4.3, 3 H), 2.92-2.81 (m, 1 H), 2.31 (s, 3 H), 1.21- 1.11 (m, 2 H), 1.10-0.97 (m, 2 H).

0.0188





168
N2-(5-chloro-1- (oxetan-3-yl)-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, CDCl3) δ 8.25 (s, 1 H), 8.13 (s, 1 H), 6.89 (br s, 1 H), 5.56 (p, J = 7.1, 1 H), 5.25 (s, 1 H), 5.19 (t, J = 6.6, 2 H), 5.00 (t, J = 7.2, 2 H), 3.08 (d, J = 4.7, 3 H).
349
0.0095





169
N4-ethyl-N2-(5- methyl-1-((3- methyloxetan-3- yl)methyl)-1H- pyrazol-4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, CDCl3) δ 8.09 (s, 1 H), 7.70 (br s, 1 H), 6.41 (br s, 1 H), 5.04 (s, 1 H), 4.78 (d, J = 6.1, 2 H), 4.40 (d, J = 6.1, 2 H), 4.22 (s, 2 H), 3.46 (p, J = 6.6, 2 H), 2.20 (s, 3 H), 1.25 (s, 3 H), 1.21 (t, J = 7.0, 3 H).
371
0.0022





170
N2-(1- (cyclopropyl- sulfonyl)-3-methyl- 1H-pyrazol-4-yl)- N4-methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.36 (s, 1 H), 8.44 (s, 1 H), 8.19 (s, 1 H), 7.18 (s, 1 H), 3.07-2.96 (m, 1 H), 2.92 (d, J = 4.4, 3 H), 2.32 (s, 3 H), 1.24-1.07 (m, 4 H).

0.002





171
N2-(1- (cyclopropyl- sulfonyl)-3-methyl- 1H-pyrazol-4-yl)- N4-ethyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.36 (s, 1 H), 8.41 (s, 1 H), 8.19 (s, 1 H), 7.23 (s, 1 H), 3.47 (m, 2 H), 2.99 (m, 1 H), 2.32 (s, 3 H), 1.23-1.04 (m, 7 H).

0.0009





172
5-chloro-N4-(2,2- difluoroethyl)-N2- (1,5-dimethyl-1H- pyrazol-4- yl)pyrimidine-2,4- diamine


embedded image




0.0070





173
5-chloro-4-methyl- N-(3-methyl-1-(4- (methylsulfonyl) phenyl)-1H-pyrazol- 4-yl)pyrimidin-2- amine


embedded image


1H NMR (400 MHz, DMSO) δ 9.10 (s, 1 H), 8.31 (s, 1 H), 8.06 (d, J = 8.6, 2 H), 7.93 (s, 1 H), 7.85 (d, J = 8.6, 2 H), 3.28 (s, 6 H), 2.40 (s, 3 H), 2.34 (s, 3 H).

0.484





174
N2-(1-(4- (cyclopropyl- sulfonyl)phenyl)- 5-methyl-1H- pyrazol-4-yl)-N4- ethyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.21 (s, 1 H), 8.68 (s, 1 H), 8.17 (s, 1 H), 7.95 (q, J = 9.0, 4 H), 7.09 (s, 1 H), 3.58-3.43 (m, 2 H), 2.95-2.79 (m, 1 H), 2.31 (s, 3 H), 1.12 (ddd, J = 34.8, 14.3, 8.6, 7 H).

0.0011





175
2-methyl-1-(4-(5- methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)piperidin-1- yl)propan-1-one


embedded image



426
0.0068





176
N4-ethyl-N2-(1- methyl-1H- pyrazol-5-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image




0.011





177
N2-(3-cyclopropyl- 1-methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image




0.0067





178
N2-(5-cyclopropyl- 1-methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image




0.012





179
N4-methyl-N2-(5- methyl-1-((3- methyloxetan-3- yl)methyl)-1H- pyrazol-4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, CDCl3) δ 8.09 (s, 1 H), 7.73 (br s, 1 H), 6.50 (br s, 1 H), 5.13 (s, 1 H), 4.78 (d, J = 6.1, 2 H), 4.40 (d, J = 6.1, 2 H), 4.22 (s, 2 H), 2.99 (d, J = 4.7, 3 H), 2.20 (s, 3 H), 1.25 (s, 3 H).
357
0.0090





180
N2-(5-chloro-1- ((3-methyloxetan- 3-yl)methyl)-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, CDCl3) δ 8.13 (s, 1 H), 8.11 (s, 1 H), 6.68 (br s, 1 H), 5.22 (s, 1 H), 4.78 (d, J = 6.2, 2 H), 4.40 (d, J = 6.2, 2 H), 4.33 (s, 2 H), 3.06 (d, J = 4.7, 3 H), 1.28 (s, 3 H).
377
0.0056





181
l-(4-(4-(4- (ethylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-5- methyl-1H- pyrazol-1- yl)piperidin-1-yl)- 2-methylpropan-1- one


embedded image


1H NMR (400 MHz, DMSO) δ 8.78 (s, 1 H), 8.05 (s, 1 H), 7.62 (s, 1 H), 6.88 (s, 1 H), 4.51 (d, J = 11.9, 1 H), 4.45- 4.30 (m, 1 H), 4.06 (d, J = 12.8, 1 H), 3.37 (s, 2 H), 3.20 (m, 1 H), 2.92 (m, 1 H), 2.80-2.60 (m, 1 H), 2.21 (s, 3 H), 1.88 (m, 4 H), 1.02 (m, 8 H).

0.00082





182
N4-ethyl-N2-(3- methyl-1-(1- (oxetan-3- yl)azetidin-3-yl)- 1H-pyrazol-4-yl)- 5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.83 (s, 1 H), 8.05 (s, 1 H), 7.73 (s, 1 H), 6.87 (s, 1 H), 4.98 (p, J = 7.2, 1 H), 4.60 (t, J = 6.6, 2 H), 4.43 (t, J = 5.8, 2 H), 3.88-3.77 (m, 1 H), 3.70 (t, J = 7.3, 2 H), 3.56 (t, J = 7.3, 2 H), 3.39 (s, 2 H), 2.16 (s, 3 H), 1.09 (s, 3 H).

0.0015





183
cyclopropyl(4-(4- (4-(ethylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-3- methyl-1H- pyrazol-1- yl)piperidin-1- yl)methanone


embedded image



438.3
0.0006





184
cyclopropyl(4-(4- (4-(ethylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-5- methyl-1H- pyrazol-1- yl)piperidin-1- yl)methanone


embedded image



438.3
0.0047





185
1-(5-chloro-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1-yl)-2- methylpropan-2-ol


embedded image


1H NMR (400 MHz, CDCl3) δ 8.16 (s, 1 H), 8.13 (s, 1 H), 6.81 (br s, 1 H), 5.23 (s, 1 H), 4.09 (s, 2 H), 3.99 (s, 1 H), 3.06 (d, J = 4.7, 3 H), 1.19 (s, 6 H).
365
0.0069





186
N4-ethyl-N2-(1- ethyl-1H-pyrazol- 3-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.66 (s, 1 H), 8.10 (s, 1 H), 7.58 (d, J = 2.0, 1 H), 7.02 (s, 0 H), 7.00 (s, 1 H), 6.54 (d, J = 2.0, 1 H), 4.02 (q, J = 7.2, 2 H), 3.57-3.37 (m, 2 H), 1.35 (t, J = 7.2, 3 H), 1.15 (t, J = 7.1, 3 H).

0.0019





187
(S)-N2-(1-(2- methoxypropyl)-5- methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



345
0.0188





188
N2-(1-(2- methoxycyclo- pentyl)-3-methyl- 1H-pyrazol-4-yl)- N4-methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H NMR (500 MHz, DMSO) δ 8.49 (s, 1 H), 8.07 (s, 1 H), 6.68 (d, J = 2.5, 1 H), 4.41 (m, 1 H), 3.95 (m, 1 H), 3.18 (s, 1 H), 2.91 (d, J = 8.0, 3 H), 2.09 (s, 3 H), 1.64-192 (m, 6 H).


0.012





189
(S)-N2-(1-(2- methoxypropyl)-3- methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H NMR (500 MHz, DMSO) δ 8.11 (s, 1 H), 7.90 (s, 1 H), 6.71 (s, 1 H), 5.20 (s, 1 H), 3.00-4.07 (m, 2 H), 3.68-3.74 (m, 1 H), 3.32 (s, 3 H), 3.00-3.06 (t, J = 3 Hz, 3 H), 2.25 (d, J = 3 Hz, 3 H), 1.14-1.18 (m, 3 H).


0.0118





190
N2-(1-(1-methoxy- 2-methylpropan-2- yl)-3-methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H NMR (500 MHz, MeOD) δ 8.01 (s, 1 H), 7.79 (s, 1 H), 3.58 (s, 2 H), 3.27 (s, 3 H), 2.99 (s, 3 H), 2.22 (s, 3 H), 1.55 (s, 6 H).


0.0069





191
N2-(1-(2,6- dimethyltetrahydro- 2H-pyran-4-yl)-3- methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H NMR (500 MHz, CDCl3) δ 8.54 (s, 1 H), 8.08 (s, 1 H), 7.98 (s, 1 H), 6.70 (s, 1 H), 4.47 (s, 1 H), 3.70-3.80 (m, 2 H), 2.90 (d, J = 7.5, 3 H), 2.13-2.24 (m, 5 H), 1.56-1.66 (m, 2 H), 1.16 (d, J = 6.5, 6 H).


0.0846





192
(R)-N2-(1-(2- methoxypropyl)-5- methyl-1H-pyrazol- 4-yl)-N4-methyl- 5-(trifluoromethyl) pyrimidine-2,4- diamine


embedded image



345
0.0063





193
N2-(1-(3- methoxycyclo- pentyl)-3-methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H-NMR (500 MHz, DMSO) δ 8.46 (br s, 1 H), 8.04 (s, 1 H), 7.85 (s, 1 H), 6.85 (br s, 1 H), 4.48-4.54 (m, 1 H), 3.80-3.84 (m, 1 H), 3.20 (s, 3 H), 2.89 (d, J = 7.0, 3 H), 2.35-2.45 (m, 1 H), 2.10 (s, 3 H), 1.84-2.08 (m, 3 H), 1.74-1.81 (m, 2 H).


0.019





194
N4-methyl-N2-(1- methyl-5- (methylamino)-1H- pyrazol-4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.75-8.24 (m, 1 H), 8.06 (s, 1 H), 7.56-7.06 (m, 1 H), 7.01- 6.82 (m, 1 H), 4.89-4.66 (m, 1 H), 3.59 (s, 3 H), 2.87 (br s, 3 H), 2.68 (d, J = 5.1, 3 H).
302
0.0522





195
N4-methyl-N2-(5- methyl-1- (methylsulfonyl)- 1H-pyrazol-4-yl)- 5-(trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.43 (s, 1 H), 8.47 (s, 1 H), 8.20 (s, 1 H), 7.20 (s, 1 H), 3.41 (s, 3 H), 2.93 (d, J = 4.4, 3 H), 2.32 (s, 3 H).

0.010





196
N4-methyl-N2-(5- methyl-1- (tetrahydro-2H- 1,1-dioxo- thiopyran-4-yl)- 1H-pyrazol-4-yl)- 5-(trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (500 MHz, DMSO) δ 8.45 (d, J = 12, 1 H), 8.01 (d, J = 7.5, 1 H), 7.59 (s, 1 H), 6.59-6.64 (m, 1 H), 4.49-4.56 (m, 1 H), 3.26-3.35 (t, J = 20.5, 2 H), 3.16 (d, J = 20.5, 2 H), 2.82 (d, J = 6.0, 3 H), 2.34-2.45 (m, 2 H), 2.11-2.17 (m, 5 H).

0.047





197
2-methyl-1-(4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-5- (trifluoromethyl)- 1H-pyrazol-1- yl)propan-2-ol


embedded image



399.1
0.026





198
2-methyl-1-(4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-3- (trifluoromethyl)- 1H-pyrazol-1- yl)propan-2-ol


embedded image



399.1
0.027





199
N2-(1-(3-fluoro-1- (oxetan-3- yl)piperidin-4-yl)- 3-methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



430.2
0.0022





200
(R)-N2-(1-(1- methoxypropan-2- yl)-3-methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



345
0.0128





201
1-(3-tert-butyl-4- (4-(ethylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1-yl)-2- methylpropan-2-ol


embedded image



401.2
0.42





202
N4-methyl-N2-(3- methyl-1-(1-(2,2,2- trifluoroethyl) azetidin-3-yl)-1H- pyrazol-4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.01 (s, 1 H), 8.13 (d, J = 36.8, 2 H), 7.01 (s, 2 H), 4.93 (p, J = 6.9, 1 H), 3.82 (t, J = 7.6, 2 H), 3.58 (d, J = 6.9, 2 H), 2.90 (d, J = 4.4, 3 H), 2.15 (s, 4 H).

0.034





203
N2-(1-(1-methoxy- 2-methylpropan-2- yl)-5-methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H NMR (500 MHz, MeOD) δ 7.97 (s, 1 H), 7.49 (s, 1 H), 3.67 (s, 2 H), 3.31 (s, 3 H), 2.96 (s, 3 H), 2.36 (s, 3 H), 1.65 (s, 6 H).


0.042





204
(R)-N4-methyl- N2-(3-methyl-1-(1- (oxetan-3- yl)pyrrolidin-3-yl)- 1H-pyrazol-4-yl)- 5-(trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H NMR (500 MHz, DMSO) δ 9.01 (s, 1 H), 8.12 (d, J = 19.5 Hz, 2 H), 7.04 (s, 1 H), 4.75-4.80 (m, 1 H), 4.55-4.59 (m, 2 H), 4.42-4.47 (m, 2 H), 3.61 (t, J = 6.0 Hz, 1 H), 2.92 (s, 3 H), 2.75 (s, 3 H), 2.32- 2.42 (m, 2 H), 1.97-2.14 (m, 4 H).


0.029





205
(R)-N2-(1-(1- methoxypropan-2- yl)-5-methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H-NMR (Bruker, 500 MHz, MeOD) δ 7.98 (s, 1 H), 4.54- 4.58 (m, 1 H), 3.60-3.72 (m, 2 H), 3.342 (s, 3 H), 2.96 (s, 3 H), 2.23 (s, 3 H), 1.45 (d, J = 6.5, 3 H).


0.019





206
N4-methyl-N2-(4- methyl-1H- pyrazol-5-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, CDCl3) δ 8.18 (s, 1 H), 7.33 (s, 1 H), 5.33 (s, 1 H), 3.08 (d, J = 4.8, 3 H), 2.05 (s, 3 H).
273
0.2324





207
N4-ethyl-N2-(5- methyl-1-(1- methylpiperidin-4- yl)-1H-pyrazol-4- yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.80 (s, 1 H), 8.04 (s, 1 H), 7.61 (s, 1 H), 6.90 (s, 1 H), 4.02 (m, 1 H), 3.39 (m, 2 H), 2.93-2.76 (m, 2 H), 2.20 (m, 6 H), 2.10-1.93 (m, 4 H), 1.75 (m, 2 H), 1.07 (m, 3 H).

0.0026





208
N4-ethyl-N2-(3- methyl-1-(1- methylpiperidin-4- yl)-1H-pyrazol-4- yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.90 (s, 1 H), 8.08 (s, 1 H), 7.88 (s, 1 H), 7.02 (s, 1 H), 4.01-3.83 (m, 1 H), 3.43 (s, 2 H), 2.82 (d, J = 11.6, 2 H), 2.16-1.76 (m, 9 H), 1.12 (t, J = 7.0, 3 H).

0.0102





209
N4-methyl-N2-(3- methyl-1-(1- methylpiperidin-4- yl)-1H-pyrazol-4- yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



370.2
0.041





210
N4-methyl-N2-(5- methyl-1-(1- methylpiperidin-4- yl)-1H-pyrazol-4- yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



370.2
0.0071





211
(R)-N4-methyl- N2-(5-methyl-1-(1- (oxetan-3- yl)pyrrolidin-3-yl)- 1H-pyrazol-4-yl)- 5-(trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H NMR (500 MHz, DMSO) δ 9.00 (s, 1 H), 8.12 (d, J = 18, 1 H), 7.85 (s, 1 H), 7.05 (s, 1 H), 4.77-4.80 (m, 1 H), 4.46- 4.59 (m, 2 H), 4.43-4.48 (m, 2 H), 3.62 (t, J = 5.5, 1 H), 2.93 (s, 3 H), 2.76 (s, 3 H), 2.44 (s, 1 H), 2.36 (t, J = 2, 1 H), 1.99-2.15 (m, 4 H).


0.0033





212
N4-methyl-N2-(5- methyl-1-(pyridin- 2-ylmethyl)-1H- pyrazol-4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H NMR (500 MHz, DMSO) δ 8.57 (d, J = 5, 8.11 (s, 1 H), 7.97 (s, 1 H), 7.62-7.66 (m, 1 H), 7.21 (t, J = 1.5, 1 H), 7.04 (d, J = 8, 1 H), 6.62 (s, 1 H), 5.37 (s, 2 H), 5.16 (d, J = 4.5, 1 H), 2.98 (s, 3 H), 2.29 (s, 3 H).


0.0029





213
N4-methyl-N2-(3- methyl-1-(pyridin- 2-ylmethyl)-1H- pyrazol-4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H NMR (500 MHz, DMSO) δ 8.56 (d, J = 4.5 Hz), 8.09 (s, 1 H), 7.82-7.85 (m, 1 H), 7.60- 7.64 (m, 1 H), 7.19-7.21 (m, 1 H), 7.89 (3, 1 H), 6.62 (s, 1 H), 5.42 (s, 2 H), 5.14 (s, 1 H), 2.98 (d, J = 4, 3 H), 2.18 (s, 3 H).


0.0029





214
N2-(1-(1- isopropylazetidin- 3-yl)-3-methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.91 (s, 1 H), 8.05 (s, 1 H), 7.78 (s, 1 H), 6.93 (s, 1 H), 4.82 (dd, J = 14.4, 7.2, 1 H), 3.64 (t, J = 7.2, 2 H), 2.84 (s, 2 H), 2.36 (dt, J = 12.4, 6.2, 1 H), 2.16 (s, 3 H).

0.064





215
1-methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazole-5- carbonitrile


embedded image


1H NMR (400 MHz, CDCl3) δ 8.18 (s, 1 H), 8.14 (s, 1 H), 7.20 (br s, 1 H), 5.29 (s, 1 H), 4.01 (s, 3 H), 3.09 (d, J = 4.7, 3 H).
298
0.0032





216
N4-ethyl-N2-(1- (isopropylsulfonyl)- 3-methyl-1H- pyrazol-4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.41 (s, 1 H), 8.44 (s, 1 H), 8.19 (s, 1 H), 7.26 (s, 1 H), 3.76 (m, 1 H), 3.54-3.39 (m, 2 H), 2.31 (s, 3 H), 1.24-1.10 (m, 10 H).

0.0039





217
N2-(1- (isopropylsulfonyl)- 3-methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.39 (s, 1 H), 8.47 (s, 1 H), 8.20 (s, 1 H), 7.20 (s, 1 H), 3.77 (dq, J = 13.6, 6.8, 1 H), 2.90 (d, J = 4.4, 3 H), 2.31 (s, 3 H), 1.19 (d, J = 6.8, 6 H).

0.0099





218
N2-(1- (isopropylsulfonyl)- 5-methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.08 (s, 1 H), 8.14 (d, J = 21.1, 2 H), 7.06 (s, 1 H), 3.85-3.74 (m, 1 H), 2.82 (s, 3 H), 2.39 (s, 3 H), 1.20 (d, J = 6.8, 6 H).

0.0081





219
N2-(1-(sec- butylsulfonyl)-5- methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.08 (s, 1 H), 8.13 (d, J = 14.5, 2 H), 7.06 (s, 1 H), 3.70-3.57 (m, 1 H), 2.82 (s, 3 H), 1.84-1.69 (m, 1 H), 1.56- 1.41 (m, 1 H), 1.16 (d, J = 6.8, 3 H), 0.93 (t, J = 7.5, 3 H).

0.0067





220
N2-(1-(sec- butylsulfonyl)-3- methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.39 (s, 1 H), 8.47 (s, 1 H), 8.19 (s, 1 H), 7.20 (s, 1 H), 3.60 (dq, J = 13.7, 6.9, 1 H), 2.90 (d, J = 4.3, 3 H), 2.31 (s, 3 H), 1.87-1.70 (m, 1 H), 1.45 (dt, J = 14.0, 7.7, 1 H), 1.16 (d, J = 6.9, 3 H), 0.92 (t, J = 7.5, 3 H).

0.0117





221
1-(4-(4- (ethylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-3- isopropyl-1H- pyrazol-l-yl)-2- methylpropan-2-ol


embedded image




0.0061





222
N2-(1-(3-fluoro-1- methylpiperidin-4- yl)-3-methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.88 (s, 1 H), 8.05 (s, 1 H), 7.78 (s, 1 H), 6.93 (s, 1 H), 4.91 (m, 1 H), 4.77 (m, 1 H), 4.35-4.05 (m, 1 H), 3.26- 3.10 (m, 1 H), 2.83 (s, 4 H), 2.28 (m, 3 H), 2.26-2.00 (m, 5 H), 1.86 (m, 1 H).

0.0016





223
N2-(5-isopropyl-1- methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



315.1
0.014





224
N4-methyl-N2-(3- methyl-1-(1- (pyridin-2- yl)ethyl)-1H- pyrazol-4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H-NMR (500 MHz, CDCl3) δ 8.54 (d, J = 4.0, 1 H), 7.97- 8.12 (m, 2 H), 7.78-7.81 (m, 1 H), 7.32-7.35 (m, 1 H), 7.12 (d, J = 7.5, 1 H), 5.53-5.57 (m, 1 H), 5.90-5.91 (m, 3 H), 2.23 (s, 3 H), 1.91 (d, J = 7.0, 3 H).

0.0024





225
N4-methyl-N2-(5- methyl-1-(1- (pyridin-2- yl)ethyl)-1H- pyrazol-4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H-NMR (500 MHz, CDCl3) δ 8.53 (t, J = 4.0, 1 H), 7.98 (s, 1 H), 7.72-7.78 (m, 2 H), 7.31-7.34 (m, 1 H), 6.96 (s, 1 H), 5.62-5.67 (m, 1 H), 2.86- 2.96 (m, 3 H), 2.15 (s, 3 H), 1.95 (d, J = 7.5, 3 H).

0.0038





226
N2-(5-chloro-1- (tetrahydro-2H- pyran-4-yl)-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.91 (s, 1 H), 8.08 (s, 1 H), 7.82 (s, 1 H), 7.00 (s, 1 H), 4.50 (tt, J = 11.4, 4.3, 1 H), 3.97 (dd, J = 11.3, 4.0, 2 H), 3.49 (t, J = 11.4, 2 H), 2.83 (s, 3 H), 2.01 (qd, J = 12.4, 4.6, 2 H), 1.81 (dd, J = 12.8, 2.4, 2 H).

0.0007





227
N2-(3-isopropyl-1- methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



315.1
0.069





228
N2-(3-cyclobutyl- 1-methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



327.1
0.0034





229
N2-(5-cyclobutyl- 1-methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, CDCl3) δ 8.21-7.98 (s, 1 H), 7.82- 7.34 (s, 1 H), 6.58- 6.18 (s, 1 H), 5.22-5.01 (s, 1 H), 3.82-3.70 (s, 3 H), 3.67-3.50 (m, 1 H), 3.06- 2.94 (d, J = 4.7 Hz, 3 H), 2.54- 2.26 (m, 4 H), 2.16-1.99 (m, 1 H), 1.97- 1.81 (m, 1 H)
327.1
0.011





230
N4-methyl-N2-(3- methyl-1- (tetrahydro-2H- pyran-3-yl)-1H- pyrazol-4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.95 (s, 1 H), 8.08 (s, 2 H), 6.98 (s, 1 H), 4.22-4.07 (m, 1 H), 3.92 (dd, J = 10.9, 3.6, 1 H), 3.77 (d, J = 11.1, 1 H), 3.55 (t, J = 9.8, 1 H), 3.41 (t, J = 9.7, 1 H), 2.89 (d, J = 4.4, 3 H), 2.21-1.92 (m, 5 H), 1.79-1.53 (m, 2 H).

0.0096





231
N4-methyl-N2-(5- methyl-1- (tetrahydro-2H- pyran-3-yl)-1H- pyrazol-4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.89 (s, 1 H), 8.05 (s, 1 H), 7.73 (s, 1 H), 6.92 (s, 1 H), 4.26-4.11 (m, 1 H), 3.86 (dd, J = 10.7, 2.4, 2 H), 3.51 (t, J = 10.6, 1 H), 2.83 (s, 3 H), 2.21 (s, 3 H), 2.12-1.94 (m, 2 H), 1.85-1.58 (m, 2 H).

0.0018





232
N2-(1,5-dimethyl- 1H-pyrazol-4-yl)- N4-((tetrahydro- 2H-pyran-4-yl) methyl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image




0.0096





233
(R)-N4-methyl- N2-(3-methyl-1-(1- methylpyrrolidin- 3-yl)-1H-pyrazol- 4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image



1H NMR (500 MHz, DMSO) δ 9.00 (s, 1 H), 8.13 (s, 1 H), 8.08 (s, 1H ), 7.03 (s, 1 H), 4.74 (m, 1 H), 2.90 (d, J = 4.5 Hz, 3 H), 2.75-2.80 (m, 3 H), 2.30 (m, 5 H), 2.14 (s, 3 H), 1.96 (s, 2 H).


0.061





234
1-(5-chloro-4-(4- (ethylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1-yl)-2- methylpropan-2-ol


embedded image


1H NMR (400 MHz, CDCl3) δ 8.06 (s, 1 H), 8.02 (s, 1 H), 6.81 (br s, 1 H), 5.62 (br s, 1 H), 4.10 (s, 2 H), 3.84 (s, 1 H), 3.59 (p, J = 6.6, 2 H), 1.31 (t, J = 7.2, 3 H), 1.19 (s, 6 H).
379
0.0031





235
1-(3-cyclopropyl- 4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1-yl)-2- methylpropan-2-ol


embedded image


1H NMR (400 MHz, CDCl3) δ 8.18-8.09 (s, 1 H), 7.93- 7.82 (s, 1 H), 3.98-3.92 (s, 2 H), 3.10-3.01 (d, J = 4.7 Hz, 3 H), 1.80-1.68 (td, J = 8.3, 4.2 Hz, 1 H), 1.19-1.09 (s, 6 H), 0.98-0.77 (m, 4 H)
371.2
0.0051





236
1-(3-cyclopropyl- 4-(4-(ethylamino)- 5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1-yl)-2- methylpropan-2-ol


embedded image


1H NMR (400 MHz, CDCl3) δ 8.15-8.10 (s, 1 H), 7.86- 7.81 (s, 1 H), 3.95-3.92 (s, 2 H), 3.59-3.49 (m, 2 H), 1.77-1.67 (td, J = 8.3, 4.1 Hz, 1 H), 1.32-1.23 (t, J = 7.2 Hz, 3 H), 1.18-1.12 (s, 6 H), 0.95-0.75 (m, 4 H)
385.2
0.0015





237
2-(5-chloro-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1-yl)-N,2- dimethylpropan- amide


embedded image


1H NMR (400 MHz, DMSO) δ 8.90 (s, 1 H), 8.09 (s, 1 H), 7.85 (s, 1 H), 7.67 (d, J = 4.4, 1 H), 7.02 (s, 1 H), 2.84 (d, J = 3.8, 3 H), 2.60 (d, J = 4.5, 3 H), 1.66 (s, 6 H).

0.045





238
N2-(1-(1-(2- methoxyethyl) piperidin-4-yl)-3- methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.92 (s, 1 H), 8.07 (s, 1 H), 7.94 (s, 1 H), 6.97 (s, 1 H), 3.95 (dt, J = 15.5, 5.6, 1 H), 3.43 (t, J = 5.8, 2 H), 3.24 (s, 3 H), 2.93 (d, J = 11.8, 2 H), 2.88 (d, J = 4.4, 3 H), 2.10 (d, J = 11.8, 5 H), 2.02-1.72 (m, 4 H).

0.016





239
N2-(1-(1-(2- methoxyethyl) piperidin-4-yl)-5- methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.86 (s, 1 H), 8.04 (s, 1 H), 7.71 (s, 1 H), 6.91 (s, 1 H), 4.12-3.88 (m, 1 H), 3.44 (t, J = 5.9, 2 H), 3.24 (s, 3 H), 2.96 (d, J = 11.6, 2 H), 2.84 (s, 3 H), 2.15 (dd, J = 22.8, 10.9, 4 H), 1.98 (qd, J = 12.2, 3.4, 2 H), 1.75 (d, J = 12.3, 2 H).

0.006





240
(R)-N4-methyl- N2-(5-methyl-1-(1- methylpyrrolidin- 3-yl)-1H-pyrazol- 4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image










241
N2-(5-chloro-1-(3- fluoro-1- methylpiperidin-4- yl)-1H-pyrazol-4- yl)-N4-methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.94 (s, 1 H), 8.08 (s, 1 H), 7.85 (s, 1 H), 7.00 (s, 1 H), 4.87 (dtd, J = 49.9, 9.8, 5.1, 1 H), 4.34 (qd, J = 11.2, 4.9, 1 H), 3.27-3.15 (m, 1 H), 2.82 (s, 4 H), 2.22-2.04 (m, 3 H), 1.91 (s, 1 H).

0.0018





242
N2-(5-chloro-1-(1- ethyl-3- fluoropiperidin-4- yl)-1H-pyrazol-4- yl)-N4-methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.95 (s, 1 H), 8.08 (s, 1 H), 7.87 (s, 1 H), 7.00 (s, 1 H), 4.86 (m, 1 H), 4.36 (m, 1 H), 3.08-2.71 (m, 4 H), 2.25- 1.81 (m, 5 H), 1.03 (t, J = 7.1, 3 H).

0.0021





243
N4-ethyl-N2-(1- (ethylsulfonyl)-3- methyl-1H- pyrazol-4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.40 (s, 1 H), 8.45 (s, 1 H), 8.20 (s, 1 H), 7.28 (s, 1 H), 3.58 (q, J = 7.3, 2 H), 3.53- 3.37 (m, 2 H), 2.31 (s, 3 H), 1.16 (t, J = 7.0, 3 H), 1.07 (t, J = 7.3, 3 H).

0.0005





244
N4-ethyl-N2-(1- (ethylsulfonyl)-5- methyl-1H- pyrazol-4-yl)-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.07 (s, 1 H), 8.11 (s, 2 H), 7.05 (s, 1 H), 3.62 (q, J = 7.3, 2 H), 3.37 (s, 2 H), 2.39 (s, 3 H), 1.09 (t, J = 7.3, 6 H).

0.0047





245
N4-methyl-N2-(3- methyl-1-(2- methyl-2- morpholinopropyl)- 1H-pyrazol-4-yl)- 5-(trifluoromethyl) pyrimidine-2,4- diamine


embedded image



414.2






246
N2-(1-(1-ethyl-3- fluoropiperidin-4- yl)-3-methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.92 (s, 1 H), 8.05 (s, 1 H), 7.79 (s, 1 H), 6.95 (s, 1 H), 5.22-4.55 (m, 1 H), 4.22 (dd, J = 21.0, 11.1, 1 H), 2.85 (d, J = 21.1, 3 H), 2.33-1.97 (m, 5 H), 1.03 (t, J = 7.1, 3 H).
402.2






247
N2-(5- (dimethylamino)- 1-methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, CDCl3) δ 8.10 (s, 1 H), 7.74 (br s, 1 H), 6.52 (br s, 1 H), 5.13 (s, 1 H), 3.74 (s, 3 H), 3.02 (d, J = 4.7, 3 H), 2.80 (s, 6 H).
316
0.0779





248
2-(5-chloro-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1-yl)-2- methylpropan-1-ol


embedded image


1H NMR (400 MHz, DMSO) δ 8.75 (s, 1 H), 8.08 (s, 1 H), 7.73 (s, 1 H), 6.99 (s, 1 H), 4.92 (t, J = 5.7, 1 H), 3.77 (d, J = 5.6, 2 H), 2.83 (d, J = 3.0, 3 H), 1.57 (s, 6 H).
365.1






249
N2-(1- (ethylsulfonyl)-3- methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.41 (s, 1 H), 8.48 (s, 1 H), 8.20 (s, 1 H), 7.20 (s, 1 H), 3.58 (q, J = 7.3, 2 H), 2.91 (d, J = 4.4, 3 H), 2.31 (s, 3 H), 1.08 (t, J = 7.3, 3 H).
365.1
0.0033





250
2-Methyl-1-[3- methyl-4-(4- methylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-pyrazol- 1-yl]-propan-2-ol


embedded image




0.0122





251
N2-[1-(2-Methoxy- ethyl)-3-methyl- 1H-pyrazol-4-yl]- N4-methyl-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0026





252
N2-[1-(2-Methoxy- ethyl)-5-methyl- 1H-pyrazol-4-yl]- N4-methyl-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0061





253
5-Bromo-N2-(1- ethyl-3-methyl-1H- pyrazol-4-yl)-N4- methyl-pyrimidine- 2,4-diamine


embedded image




0.0022





254
N4-Methyl-N2-[3- methyl-1-(2,2,2- trifluoro-ethyl)- 1H-pyrazol-4-yl]- 5-trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0077





255
5-Bromo-N2-(1- difluoromethyl-5- methyl-1H- pyrazol-4-yl)-N4- methyl-pyrimidine- 2,4-diamine


embedded image




0.0007





256
5-Bromo-N2-(1- difluoromethyl-3- methyl-1H- pyrazol-4-yl)-N4- methyl-pyrimidine- 2,4-diamine


embedded image




0.0022





257
5-Bromo-N2-(1,5- dimethyl-1H- pyrazol-4-yl)-N4- ethyl-pyrimidine- 2,4-diamine


embedded image




0.0015





258
5-Bromo-N2-[1-(4- fluoro-phenyl)-5- methyl-1H- pyrazol-4-yl]-N4- methyl-pyrimidine- 2,4-diamine


embedded image










259
5-Bromo-N4- methyl-N2-(5- methyl-1-propyl- 1H-pyrazol-4-yl)- pyrimidine-2,4- diamine


embedded image




0.0057





260
5-Bromo-N2-[1-(4- chloro-phenyl)-3- methyl-1H- pyrazol-4-yl]-N4- methyl-pyrimidine- 2,4-diamine


embedded image




0.0003





261
N2-(1,5-Dimethyl- 1H-pyrazol-4-yl)- N4-ethyl-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0013





262
5-[4-(4- Ethylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-3- methyl-pyrazol-1- yl]-piperidin-2-one


embedded image




0.0013





263
4-[4-(4- Ethylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-3- methyl-pyrazol-1- yl]-N,N-dimethyl- benzamide


embedded image




0.0018





264
N2-[1-(4- Cyclopropane- sulfonyl-phenyl)-3- methyl-1H- pyrazol-4-yl]-N4- ethyl-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0032





265
4-[4-(4- Ethylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-3- methyl-pyrazol-1- yl]-benzonitrile


embedded image




0.0048





266
N4-Ethyl-N2-[1- (4- methanesulfonyl- phenyl)-3-methyl- 1H-pyrazol-4-yl]- 5-trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0021





267
1-{4-[4-(4- Ethylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-5- methyl-pyrazol-1- yl]-piperidin-1-yl}- 2-methyl-propan- 1-one


embedded image




0.0008





268
1-{4-[4-(4- Ethylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-3- methyl-pyrazol-1- yl]-piperidin-1-yl}- 2-methyl-propan- 1-one


embedded image




0.0077





269
N4-Methyl-N2-[3- methyl-1-(3- methyl-pyridin-4- yl)-1H-pyrazol-4- yl]-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0091





270
N2-[1-((R)-2- Methoxy-propyl)- 3-methyl-1H- pyrazol-4-yl]-N4- methyl-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.017





272
N2-[1-(2,6- Dimethyl- tetrahydro-pyran- 4-yl)-5-methyl-1H- pyrazol-4-yl]-N4- methyl-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0051





273
N2-[1-(1,1-Dioxo- hexahydro- 1$1%6&- thiopyran-4-yl)-3- methyl-1H- pyrazol-4-yl]-N4- mcthyl-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.037





274
N2-[1-((R)-2- Methoxy-1- methyl-ethyl)-5- methyl-1H- pyrazol-4-yl]-N4- methyl-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0185





275
N2-[1-((S)-2- Methoxy-1- methyl-ethyl)-3- methyl-1H- pyrazol-4-yl]-N4- methyl-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0089





276
N4-Methyl-N2-[3- methyl-1-((S)-1- oxetan-3-yl- pyrrolidin-3-yl)- 1H-pyrazol-4-yl]- 5-trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0039





277
N4-Methyl-N2-[5- methyl-1-((S)-1- oxetan-3-yl- pyrrolidin-3-yl)- 1H-pyrazol-4-yl]- 5-trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.058





278
N2-[1-(1- Isopropyl-azetidin- 3-yl)-5-methyl-1H- pyrazol-4-yl]-N4- methyl-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0012





279
N4-Ethyl-N2-[5- methyl-1-(propane- 2-sulfonyl)-1H- pyrazol-4-yl]-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0047





280
N2-(5-Cyclobutyl- 1-methyl-1H- pyrazol-4-yl)-N4- ethyl-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0036





281
N2-(3-Cyclobutyl- 1-methyl-1H- pyrazol-4-yl)-N4- ethyl-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0013





282
N4-Ethyl-N2-{1- [1-(2-methoxy- ethyl)-piperidin-4- yl]-3-methyl-1H- pyrazol-4-yl}-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0054





283
N4-Ethyl-N2-{1- [1-(2-methoxy- ethyl)-piperidin-4- yl]-5-methyl-1H- pyrazol-4-yl}-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.002





284
N2-{1-[1-(2- Fluoro-ethyl)- piperidin-4-yl]-5- methyl-1H- pyrazol-4-yl}-N4- methyl-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0042





285
N2-{1-[1-(2- Fluoro-ethyl)- piperidin-4-yl]-3- methyl-1H- pyrazol-4-yl}-N4- methyl-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0283





286
N2-[5-Chloro-1-(3- fluoro-1-methyl- piperidin-4-yl)-1H- pyrazol-4-yl]-N4- methyl-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.95 (s, 1 H), 8.08 (s, 1 H), 7.88 (s, 1 H), 7.00 (s, 1 H), 4.87 (dtd, J = 49.9, 9.8, 5.1, 1 H), 4.34 (qd, J = 11.3, 4.9, 1 H), 3.29-3.13 (m, 1 H), 2.82 (s, 4 H), 2.28 (s, 3 H), 2.25-1.99 (m, 3 H), 1.92 (d, J = 6.8, 1 H).

0.0018





287
N2-(1- Ethanesulfonyl-5- methyl-1H- pyrazol-4-yl)-N4- methyl-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0072





288
N4-Methyl-N2-[5- methyl-1-(2- methyl-2- morpholin-4-yl- propyl)-1H- pyrazol-4-yl]-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0077





289
N4-Methyl-N2-(3- methyl-1-pyridin- 3-ylmethyl-1H- pyrazol-4-yl)-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.025





290
N2-(1- Cyclopropane- sulfonyl-3- cyclopropyl- 1H-pyrazol-4-yl)- N4-methyl-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image










291
N4-Methyl-N2-(5- methyl-1-pyridin- 3-ylmethyl-1H- pyrazol-4-yl)-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image










292
(5-Chloro-4- methoxy- pyrimidin-2-yl)-{1- [1-(2-fluoro-ethyl)- piperidin-4-yl]-5- methyl-1H- pyrazol-4-yl}- amine


embedded image




0.0042





293
N4-Methyl-N2-[3- methyl-1-(6- methyl-pyridin-2- ylmethyl)-1H- pyrazol-4-yl]-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0006





294
N4-Ethyl-N2-[1- (2-methoxy-ethyl)- 3-methyl-1H- pyrazol-4-yl]-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0011





295
N4-Ethyl-N2-[1- (2-methoxy-ethyl)- 5-methyl-1H- pyrazol-4-yl]-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0004





296
1-[4-(4- Ethylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-5- methyl-pyrazol-1- yl]-2-methyl- propan-2-ol


embedded image


1H NMR (400 MHz, DMSO) δ 8.75 (s, 1 H), 8.05 (s, 1 H), 7.57 (s, 1 H), 6.86 (s, 1 H), 4.63 (s, 1 H), 3.90 (s, 2 H), 3.36 (s, 2 H), 2.19 (s, 3 H), 1.08 (s, 7 H).

0.0023





297
1-[4-(4- Ethylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-3- methyl-pyrazol-1- yl]-2-methyl- propan-2-ol


embedded image


1H NMR (400 MHz, DMSO) δ 8.83 (s, 1 H), 8.07 (s, 1 H), 7.85 (s, 1 H), 6.91 (s, 1 H), 4.60 (s, 1 H), 3.79 (d, J = 64.3, 2 H), 3.42 (s, 2 H), 2.27-1.82 (m, 3 H), 1.35-1.05 (m, 3 H), 0.97 (d, J = 63.4, 6 H).

0.0021





298
N2-[1-(1,1- Dimethyl-2- morpholin-4-yl- ethyl)-3-methyl- 1H-pyrazol-4-yl]- N4-ethyl-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0506





299
N2-[1-(1,1- Dimethyl-2- morpholin-4-yl- ethyl)-3-methyl- 1H-pyrazol-4-yl]- N4-methyl-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0228





300
N4-Cyclopropyl- N2-(1- methanesulfonyl-3- methyl-1H- pyrazol-4-yl)-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.55 (s, 1 H), 8.83 (s, 1 H), 8.22 (s, 1 H), 7.27 (s, 1 H), 3.39 (s, 3 H), 2.79 (s, 1 H), 2.34 (s, 3 H), 0.95-0.58 (m, 4 H).

0.0004





301
N4-Cyclopropyl- N2-(1- methanesulfonyl-5- methyl-1H- pyrazol-4-yl)-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 9.25 (s, 1 H), 8.40 (s, 1 H), 8.14 (s, 1 H), 7.04 (s, 1 H), 3.46 (s, 3 H), 2.79 (s, 1 H), 2.43 (s, 3 H), 0.68 (dd, J = 13.9, 9.3, 4 H).

0.0021





302
1-[3-Chloro-4-(4- methylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-pyrazol- 1-yl]-2-methyl- propan-2-ol


embedded image




0.016





303
2-[4-(4- Ethylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-3- methyl-pyrazol-1- yl]-N-methyl- isobutyramide


embedded image




0.0013





304
N4-Methyl-N2-(3- methyl-1- pyrimidin-2- ylmethyl-1H- pyrazol-4-yl)-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0051





305
N2-[5-Chloro-1-(3- fluoro-1-oxetan-3- yl-piperidin-4-yl)- 1H-pyrazol-4-yl]- N4-methyl-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.91 (s, 1 H), 8.08 (s, 1 H), 7.86 (s, 1 H), 7.00 (s, 1 H), 4.97 (td, J = 9.8, 5.0, 0 H), 4.90-4.74 (m, 1 H), 4.63- 4.52 (m, 2 H), 4.46 (dt, J = 21.3, 7.5, 3 H), 3.71-3.53 (m, 1 H), 3.26-3.11 (m, 1 H), 2.94-2.71 (m, 4 H), 2.16- 1.85 (m, 4 H).

0.0022





306
N2-[5-Chloro-1-(3- fluoro-1-oxetan-3- yl-piperidin-4-yl)- 1H-pyrazol-4-yl]- N4-ethyl-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.84 (s, 1 H), 8.08 (s, 1 H), 7.80 (s, 1 H), 6.98 (s, 1 H), 5.02-4.79 (m, 1 H), 4.56 (t, J = 6.5, 3 H), 4.46 (dt, J = 20.4, 7.0, 4 H), 3.65-3.53 (m, 2 H), 3.24-3.15 (m, 1 H), 2.77 (s, 1 H), 2.20-1.85 (m, 5 H), 1.05 (s, 4 H).

0.0006





307
N4-Ethyl-N2-[5- methyl-1-((S)-1- oxetan-3-yl- piperidin-3-yl)-1H- pyrazol-4-yl]-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0003





308
N4-Ethyl-N2-[3- methyl-1-((S)-1- oxetan-3-yl- piperidin-3-yl)-1H- pyrazol-4-yl]-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0085





309
N4-Methyl-N2-(5- methyl-1- pyridazin-3- ylmethyl-1H- pyrazol-4-yl)-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0028





310
N4-Methyl-N2-(3- methyl-1- pyridazin-3- ylmethyl-1H- pyrazol-4-yl)-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0093





311
N4-Ethyl-N2-[5- methyl-1-((S)-1- methyl-piperidin- 3-yl)-1H-pyrazol- 4-yl]-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0012





312
N4-Ethyl-N2-[3- methyl-1-((S)-1- methyl-piperidin- 3-yl)-1H-pyrazol- 4-yl]-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0156





313
3-[5-Chloro-4-(4- methylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-pyrazol- 1-yl]-2,2-dimethyl- propionitrile


embedded image


1H NMR (400 MHz, DMSO) δ 8.92 (s, 1 H), 8.09 (s, 1 H), 7.86 (s, 1 H), 7.00 (s, 1 H), 4.29 (s, 2 H), 2.82 (s, 3 H), 1.38 (s, 6 H).

0.0017





314
N4-Methyl-N2-[5- methyl-1-(6- methyl-pyridin-2- ylmethyl)-1H- pyrazol-4-yl]-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0015





315
N4-Methyl-N2-(5- methyl-1- pyrimidin-2- ylmethyl-1H- pyrazol-4-yl)-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0014





316
N4-Methyl-N2-(5- methyl-1-pyrazin- 2-ylmethyl-1H- pyrazol-4-yl)-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0026





317
N4-Methyl-N2-(3- methyl-1-pyrazin- 2-ylmethyl-1H- pyrazol-4-yl)-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0012





318
3-[5-Chloro-4-(4- ethylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-pyrazol- 1-yl]-2,2-dimethyl- propionitrile


embedded image


1H NMR (400 MHz, DMSO) δ 8.87 (s, 1 H), 8.09 (s, 1 H), 7.80 (s, 1 H), 6.98 (s, 1 H), 4.30 (s, 2 H), 3.35 (s, 2 H), 1.38 (s, 6 H), 1.05 (s, 3 H).

0.0007





319
N4-Ethyl-N2-[1- (3-fluoro-1-oxetan- 3-yl-piperidin-4- yl)-3-methyl-1H- pyrazol-4-yl]-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 8.79 (s, 1 H), 8.05 (s, 1 H), 7.67 (s, 1 H), 6.87 (s, 1 H), 5.06-4.73 (m, 1 H), 4.56 (td, J = 6.5, 2.5, 2 H), 4.46 (dt, J = 12.0, 6.1, 2 H), 4.26 (dd, J = 21.1, 11.2, 1 H), 3.58 (p, J = 6.3, 1 H), 3.38 (s, 2 H), 3.22- 3.07 (m, 1 H), 2.77 (d, J = 9.0, 1 H), 2.26 -1.99 (m, 6 H), 1.90 (s, 1 H), 1.08 (s, 3 H).

0.0003





320
3-Methyl-1-[5- methyl-4-(4- methylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-pyrazol- 1-yl]-butan-2-ol


embedded image


1H NMR (400 MHz, DMSO) δ 8.82 (s, 1 H), 8.04 (s, 1 H), 7.65 (s, 1 H), 6.88 (s, 1 H), 4.71 (d, J = 5.2, 1 H), 3.93 (ddd, J = 21.6, 14.0, 6.1, 2 H), 3.59 (dd, J = 7.4, 4.5, 1 H), 2.83 (s, 3 H), 2.19 (s, 3 H), 1.58 (dd, J = 12.0, 6.5, 1 H), 0.90 (t, J = 7.0, 6 H).

0.0030





321
3-Methyl-1-[3- methyl-4-(4- methylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-pyrazol- 1-yl]-butan-2-ol


embedded image




0.0108





322
N2-[1-(1- [1,3]Dioxolan-2- ylmethyl- pyrrolidin-3-yl)-3- methyl-1H- pyrazol-4-yl]-N4- ethyl-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0049





323
N4-Methyl-N2-(5- methyl-1- pyrimidin-4- ylmethyl-1H- pyrazol-4-yl)-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0022





324
N4-Methyl-N2-[5- methyl-1-(1- methyl-1H- pyrazol-3- ylmethyl)-1H- pyrazol-4-yl]-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0006





325
N4-Methyl-N2-[3- methyl-1-(1- methyl-1H- pyrazol-3- ylmethyl)-1H- pyrazol-4-yl]-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0038





326
3-[3-Chloro-4-(4- methylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-pyrazol- 1-yl]-2,2-dimethyl- propionitrile


embedded image




0.0082





327
N4-Ethyl-N2-{3- methyl-1-[1- methyl-1-(4H- [1,2,4]triazol-3-yl)- ethyl]-1H-pyrazol- 4-yl}-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0005





328
N2-[1-(1- [1,3]Dioxolan-2- ylmethyl- pyrrolidin-3-yl)-5- methyl-1H- pyrazol-4-yl]-N4- ethyl-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0004





329
N4-Methyl-N2-(3- methyl-1- pyrimidin-4- ylmethyl-1H- pyrazol-4-yl)-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0052





330
N2-(5- Fluoromethyl-1- methyl-1H- pyrazol-4-yl)-N4- methyl-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0245





331
N4-Ethyl-N2-{3- methyl-1-[1- methyl-1-(5- methyl-4H- [1,2,4]triazol-3-yl)- ethyl]-1H-pyrazol- 4-yl}-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image


1H NMR (400 MHz, DMSO) δ 13.49 (d, J = 53.3, 1 H), 8.89 (s, 1 H), 8.07 (s, 1 H), 7.78 (s, 1 H), 6.96 (s, 1H ), 2.31 (s, 3 H), 2.13 (s, 3 H), 1.83 (s, 6 H), 1.06 (s, 3 H).

0.0008





332
N4-Methyl-N2-{3- methyl-1-[1- methyl-1-(4H- [1,2,4]triazol-3-yl)- ethyl]-1H-pyrazol- 4-yl}-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0023





333
N4-Ethyl-N2-[1- (3-fluoro- piperidin-4-yl)-3- methyl-1H- pyrazol-4-yl]-5- trifluoromethyl- pyrimidine-2,4- diamine


embedded image




0.0007





334
2-[5-Methyl-4-(4- methylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-pyrazol- 1-yl]- cyclopentanol


embedded image




0.0063





335
2-[3-Methyl-4-(4- methylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-pyrazol- 1-yl]- cyclopentanol


embedded image




0.0033





336
N4-ethyl-N2-(3- methyl-1-(2-(5- methyl-1,3,4- oxadiazol-2- yl)propan-2-yl)- 1H-pyrazol-4-yl)- 5-(trifluorometliyl) pyrimidine-2,4- diamine


embedded image




0.0012





337
N4-ethyl-N2-(3- methyl-1-(2-(4- methyl-4H-1,2,4- triazol-3- yl)propan-2-yl)- 1H-pyrazol-4-yl)- 5-(trifluoromethyl) pyrimidine-2,4- diamine


embedded image




0.0076





338
N4-ethyl-N2-(3- methyl-1-(2-(1- methyl-1H-1,2,4- triazol-3- yl)propan-2-yl)- 1H-pyrazol-4-yl)- 5-(trifluoromethyl) pyrimidine-2,4- diamine


embedded image




0.0003





339
N4-methyl-N2-(3- methyl-1-(2-(5- methyl-1,3,4- oxadiazol-2- yl)propan-2-yl)- 1H-pyrazol-4-yl)- 5-(trifluoromethyl) pyrimidine-2,4- diamine


embedded image




0.0117





340
N4-methyl-N2-(3- methyl-1-(2-(1- methyl-1H- pyrazol-4- yl)propan-2-yl)- 1H-pyrazol-4-yl)- 5-(trifluoromethyl) pyrimidine-2,4- diamine


embedded image




0.0003





341
N4-methyl-N2-(5- methyl-1-(2-(1- methyl-1H- pyrazol-4- yl)propan-2-yl)- 1H-pyrazol-4-yl)- 5-(trifluoromethyl) pyrimidine-2,4- diamine


embedded image




0.0061





342
N4-ethyl-N2-(3- methyl-1-(2-(1- methyl-1H- pyrazol-3- yl)propan-2-yl)- 1H-pyrazol-4-yl)- 5-(trifluoromethyl) pyrimidine-2,4- diamine


embedded image




0.0217





343
N4-ethyl-N2-(3- methyl-1-(2-(1- methyl-1H- pyrazol-5- yl)propan-2-yl)- 1H-pyrazol-4-yl)- 5-(trifluoromethyl) pyrimidine-2,4- diamine


embedded image




0.0003





344
N4-methyl-N2-(3- methyl-1-(2-(1- methyl-1H- pyrazol-5- yl)propan-2-yl)- 1H-pyrazol-4-yl)- 5-(trifluoromethyl) pyrimidine-2,4- diamine


embedded image




0.0014





345
N4-methyl-N2-(3- methyl-1-(2-(1- methyl-1H- pyrazol-3- yl)propan-2-yl)- 1H-pyrazol-4-yl)- 5-(trifluoromethyl) pyrimidine-2,4- diamine


embedded image




0.115





346
N2-(1′,5-dimethyl- 1′H-1,4′-bipyrazol- 4-yl)-N4-methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image










347
N2-(1′,3-dimethyl- 1′H-1,4′-bipyrazol- 4-yl)-N4-methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image










348
N2-(1-(2-(4H- 1,2,4-triazol-3- yl)propan-2-yl)-3- methyl-1H- pyrazol-4-yl)-N4- methyl-5- (trifluoromethyl) pyrimidine-2,4- diamine


embedded image











Example 349
2-(1,5-Dimethyl-1H-pyrazol-4-ylamino)-4-(methylamino)pyrimidine-5-carbonitrile



embedded image


To a mixture of 5-bromo-N2-(1,5-dimethyl-1H-pyrazol-4-yl)-N4-methylpyrimidine-2,4-diamine (95 mg, 0.32 mmol), zinc cyanide (70 mg, 0.60 mmol), Pd2(dba)3 (11 mg, 0.012 mmol), DPPF (13 mg, 0.023 mmol) was added DMF (3.5 mL). The reaction was then heated in a sealed tube at 105° C. for 18 h. The reaction mixture was filtered and concentrated. The crude product was purified by reverse phase HPLC to give 2-(1,5-dimethyl-1H-pyrazol-4-ylamino)-4-(methylamino)pyrimidine-5-carbonitrile (19 mg, 25%). LCMS (Method A): [MH+]=244.1 at 2.53 min. 1H-NMR (DMSO): δ 8.96 (m, 1H), 8.21 (m, 1H), 7.49 (m, 2H), 3.69 (s, 3H), 2.84 (m, 3H), 2.14 (m, 3H). K1=0.025.


Compounds made using the above procedure are shown in Table 9 below, together with low resolution mass spectrometry (M+H), proton NMR, and LRRK2 Ki (micromolar) data for selected compounds determined from the assay described below.














TABLE 9






Name
Structure

1H NMR

M + H+
KI




















350
2-(1,3-Dimethyl- 1H-pyrazol-4- ylamino)-4- methylamino- pyrimidine-5- carbonitrile


embedded image



1H-NMR (DMSO): δ 9.15 (s, 1H), 8.23 (s, 1H), 7.84 (s, 1H), 7.53 (s, 1H), 3.72 (s, 3H), 2.86 (d, J = 4.4, 3H), 2.12 (s, 3H).

244.1
0.029





351
2-(1-ethyl-5- methyl-1H- pyrazol-4- ylamino)-4- (methylamino) pyrimidine-5- carbonitrile


embedded image


1H NMR (400 MHz, DMSO) δ 9.12 (s, 1H), 8.21 (s, 1H), 7.73-7.27 (m, 2H), 4.01 (q, J = 7.2, 2H), 2.80 (m, 3H), 2.20 (m, 3H), 1.27 (t, J = 7.2, 3H).

0.0097





352
2-(1-isopropyl-3- methyl-1H- pyrazol-4- ylamino)-4- (methylamino) pyrimidine-5- carbonitrile


embedded image


1H NMR (400 MHz, DMSO) δ 9.18 (s, 1H), 8.23 (s, 1H), 7.95 (s, 1H), 7.55 (s, 1H), 4.35 (m, 1H), 2.86 (d, J = 4.5, 3H), 2.14 (m, 3H), 1.36 (d, J = 6.6, 6H).

0.048





353
2-(1-ethyl-3- methyl-1H- pyrazol-4- ylamino)-4- (methylamino) pyrimidine-5- carbonitrile


embedded image


1H NMR (400 MHz, DMSO) δ 8.10 (s, 0H), 7.58 (d, J = 2.1, 0H), 7.01 (d, J = 3.6, 0H), 6.60 (s, 0H), 4.02 (q, J = 7.2, 1H), 2.91 (d, J = 4.4, 1H), 1.35 (t, J = 7.2, 1H).

0.036





354
2-(3-methyl-1- phenyl-1H- pyrazol-4- ylamino)-4- (methylamino) pyrimidine-5- carbonitrile


embedded image


1H NMR (400 MHz, DMSO) δ 9.43 (s, 1H), 8.62 (s, 1H), 8.30 (s, 1H), 7.71 (d, J = 8.0, 2H), 7.46 (t, J = 7.9, 2H), 7.24 (t, J = 7.4, 1H), 2.92 (d, J = 3.5, 3H), 2.27 (s, 3H).

0.12





355
2-(3-methyl-1-(1- (2,2,2- trifluoroethyl) piperidin-4-yl)-1H- pyrazol-4- ylamino)-4- (methylamino) pyrimidine-5- carbonitrile


embedded image




0.299





356
2-(5-methyl-1-(1- (2,2,2- trifluoroethyl) piperidin-4-yl)-1H- pyrazol-4- ylamino)-4- (methylamino) pyrimidine-5- carbonitrile


embedded image




0.0225





357
2-(1-methyl-1H- pyrazol-4- ylamino)-4- (methylamino) pyrimidine-5- carbonitrile


embedded image










358
2-(5-methyl-1- (2,2,2- trifluoroethyl)-1H- pyrazol-4- ylamino)-4- (methylamino) pyrimidine-5- carbonitrile


embedded image


1H NMR (400 MHz, DMSO) δ 9.18 (s, 1H), 8.23 (s, 1H), 7.78 (s, 1H), 7.53 (s, 1H), 5.02 (q, J = 9.2, 2H), 2.79 (s, 3H), 2.23 (s, 3H).

0.032





359
2-(3-methyl-1- (2,2,2- trifluoroethyl)-1H- pyrazol-4- ylamino)-4- (methylamino) pyrimidine-5- carbonitrile


embedded image


1H NMR (400 MHz, DMSO) δ 9.28 (s, 1H), 8.26 (s, 1H), 8.06 (s, 1H), 7.59 (s, 1H), 5.00 (q, J = 9.0, 2H), 2.86 (d, J = 4.0, 3H), 2.17 (s, 3H).

0.053





360
2-(5-methyl-1- phenyl-1H- pyrazol-4- ylamino)-4- (methylamino) pyrimidine-5- carbonitrile


embedded image


1H NMR (400 MHz, DMSO) δ 9.32 (s, 1H), 8.26 (s, 1H), 7.84 (d, J = 116.0, 1H), 7.46 (d, J = 37.7, 6H), 2.86 (s, 3H), 2.28 (s, 3H).

0.0013





361
2-(5-methyl-1- (tetrahydro-2H- pyran-4-yl)-1H- pyrazol-4- ylamino)-4- (methylamino) pyrimidine-5- carbonitrile


embedded image


1H NMR (400 MHz, DMSO) δ 8.96 (d, J = 136.9, 1H), 8.20 (d, J = 5.4, 1H), 7.73 (s, 1H), 7.44 (d, J = 34.8, 1H), 4.41-4.24 (m, 1H), 3.95 (dd, J = 11.3, 3.8, 2H), 3.47 (t, J = 11.4, 2H), 2.81 (s, 3H), 2.19 (d, J = 30.4, 3H), 2.07-1.93 (m, 2H), 1.75 (d, J = 12.7, 2H).

0.0087





362
2-(3-methyl-1- (tetrahydro-2H- pyran-4-yl)-1H- pyrazol-4- ylamino)-4- (methylamino) pyrimidine-5- carbonitrile


embedded image



314.1
0.086





363
2-(1-ethyl-5- methyl-1H- pyrazol-4- ylamino)-4- (ethylamino) pyrimidine-5- carbonitrile


embedded image


1H NMR (400 MHz, DMSO) δ 9.08 (m, 1H), 8.21 (m, 1H), 7.70-7.28 (m, 2H), 4.01 (q, J = 7.2, 2H), 3.33 (m, 2H), 2.19 (m, 3H), 1.27 (t, J = 7.2, 3H), 1.08 (m, 3H).

0.0060





364
2-(1-(4- fluorophenyl)-3- methyl-1H pyrazol-4- ylamino)-4- (ethylamino) pyrimidine-5- carbonitrile


embedded image


1H NMR (400 MHz, DMSO) δ 9.17 (d, J = 125.4, 1H), 8.12 (d, J = 107.0, 2H), 7.55 (s, 3H), 7.35 (t, J = 8.7, 2H), 2.86 (s, 3H), 2.26 (s, 3H).

0.0019





365
2-(1- (difluoromethyl)-3- methyl-1H- pyrazol-4- ylamino)-4- (methylamino) pyrimidine-5- carbonitrile


embedded image



280.1
0.035





366
2-(5-methyl-1- propyl-1H-pyrazol- 4-ylamino)-4- (methylamino) pyrimidine-5- carbonitrile


embedded image



272.2
0.0054





367
2-(1-(3,5- difluorophenyl)-3- methyl-1H- pyrazol-4- ylamino)-4- (methylamino) pyrimidine-5- carbonitrile


embedded image



342.2
0.0018





368
2-(1-(4- chlorophenyl)-3- methyl-1H- pyrazol-4- ylamino)-4- (methylamino) pyrimidine-5- carbonitrile


embedded image


1H NMR (400 MHz, DMSO) δ 9.45 (s, 1H), 8.62 (s, 1H), 8.30 (s, 1H), 7.75 (d, J = 8.6, 2H), 7.67 (s, 1H), 7.50 (d, J = 8.9, 2H), 2.91 (d, J = 4.4, 3H), 2.26 (s, 3H).

0.082





369
2-(1-(4- chlorophenyl)-5- methyl-H- pyrazol-4- ylamino)-4- (methylamino) pyrimidine-5- carbonitrile


embedded image



340.1
0.0025





370
2-(3-methyl-1- (pyridin-2-yl)-1H- pyrazol-4- ylamino)-4- (methylamino) pyrimidine-5- carbonitrile


embedded image


1H NMR (400 MHz, DMSO) δ 9.51 (s, 1H), 8.94 (s, 1H), 8.53-8.24 (m, 2H), 7.92 (t, J = 7.7, 1H), 7.84 (t, J = 6.7, 1H), 7.69 (s, 1H), 7.32-7.21 (m, 1H), 2.93 (s, 3H), 2.31 (s, 3H).

0.0415





371
4-(ethylamino)-2- (5-methyl-1- (tetrahydro-2H- pyran-4-yl)-1H- pyrazol-4- ylamino) pyrimidine-5- carbonitrile


embedded image


1H NMR (400 MHz, DMSO) δ 8.92 (d, J = 137.5, 1H), 8.21 (s, 1H), 7.77- 7.30 (m, 2H), 4.41-4.27 (m, 1H), 3.95 (dd, J = 11.2, 4.0, 2H), 3.47 (t, J = 11.3, 2H), 2.23 (s, 3H), 2.00 (qd, J = 12.4, 4.5, 2H), 1.75 (dd, J = 12.6, 2.2, 2H), 1.08 (s, 3H).

0.0052





372
4-(ethylamino)-2- (3-methyl-1- (tetrahydro-2H- pyran-4-yl)-1H- pyrazol-4- ylamino) pyrimidine-5- carbonitrile


embedded image


1H NMR (400 MHz, DMSO) δ 8.97 (d, J = 158.8, 1H), 8.24 (s, 1H), 7.84 (d, J = 58.8, 1H), 7.52 (d, J = 79.5, 1H), 4.31-4.17 (m, 1H), 4.01-3.86 (m, 2H), 3.43 (dd, J = 23.6, 12.1, 4H), 2.10 (d, J = 27.9, 3H), 1.89 (dt, J = 20.4, 11.9, 4H), 1.13 (t, J = 7.1, 3H).

0.024





373
4-(ethylamino)-2- (3-methyl-1- (oxetan-3-yl)-1H- pyrazol-4- ylamino) pyrimidine-5- carbonitrile


embedded image


1H NMR (400 MHz, DMSO) δ 9.32* (s, 1H), 8.94† (s, 1H), 8.29 (s, 1H), 8.10* (s, 1H), 7.89† (s, 1H), 7.71* (s, 1H), 7.54† (s, 1H), 5.48 (p, J = 7.0, 1H), 4.90- 4.87 (m, 4H), 3.43 (br s, 2H), 2.28-2.11 (m, 3H), 1.17 (t, J = 7.1, 3H). [* and denote rotameric peaks.]
300
0.0228





374
2-(1-isopropyl-5- methyl-1H- pyrazol-4- ylamino)-4- (methylamino) pyrimidine-5- carbonitrile


embedded image



1H NMR (500 MHz, DMSO) δ 8.68 (s, 1H), 8.15 (s, 1H), 7.54 (s, 1H), 7.17-7.19 (m, 1H), 4.40-4.47 (m, 1H), 2.84 (d, J = 7.5, 3H), 2.16 (s, 3H), 1.29-1.36 (m, 6H).


0.0158





375
2-(1,5-dimethyl- 1H-pyrazol-4- ylamino)-4- methoxy- pyrimidine-5- carbonitrile


embedded image




0.145





376
2-(1,5-dimethyl- 1H-pyrazol-4- ylamino)-4-(2,2,2- trifluoroethylamino) pyrimidine-5- carbonitrile


embedded image



312
0.0275





377
2-(1-ethyl-5- methyl-1H- pyrazol-4- ylamino)-4- methoxypyrimidine- 5-carbonitrile


embedded image



259
0.075





378
4-(2,2- difluoroethylamino)- 2-(1,5-dimethyl- 1H-pyrazol-4- ylamino)pyrimidine- 5-carbonitrile


embedded image



294
0.033





378
2-(1,5-dimethyl- 1H-pyrazol-4- ylamino)-4-(2,2,2- trifluoroethoxy) pyrimidine-5- carbonitrile


embedded image




0.54





380
2-(1- (cyclopropylmethyl)- 3-methyl-1H- ylamino)-4- (methylamino) pyrimidine-5- carbonitrile


embedded image


H NMR (500 MHz, DMSO) δ 8.74 (s, 1H), 8.21 (s, 1H), 7.85 (s, 1H), 7.23 (s, 1H), 3.90 (d, J = 11.5, 2H), 2.89 (d, J = 7.5, 2H), 2.17 (s, 3H), 1.14-1.22 (m, 1H), 0.48-0.54 (m, 2H), 0.28-0.33 (m, 2H).

0.045





381
2-(1-(4,4- difluorocyclohexyl)- 5-methyl-1H- pyrazol-4- ylamino)-4- (methylamino) pyrimidine-5- carbonitrile


embedded image



1H NMR (500 MHz, DMSO) δ 8.71 (m, 1H), 8.32 (s, 1H), 7.58 (s, 1H), 7.19 (m, 1H), 4.33 (m, 1H), 2.83 (d, J = 8.0, 3H), 1.90-2.19 (m, 11H).


0.011





382
2-(3-methyl-1- (oxetan-3-yl)-1H- pyrazol-4- ylamino)-4-(2,2,2- trifluoroethylamino) pyrimidine-5- carbonitrile


embedded image



354.1
0.066





383
2-(5-chloro-1- (tetrahydro-2H- pyran-4-yl)-1H- pyrazol-4- ylamino)-4- (methylamino) pyrimidine-5- carbonitrile


embedded image


1H NMR (400 MHz, DMSO) δ 9.12 (m, 1H), 8.25 (s, 1H), 7.73 (m, 2H), 4.59- 4.41 (m, 1H), 3.96 (m, 2H), 3.49 (m, 2H), 2.80 (s, 3H), 2.13-1.92 (m, 2H), 1.81 (m, 2H).

0.0096





384
2-(1- Difluoromethyl-5- methyl-1H- pyrazol-4- ylamino)-4- methylamino- pyrimidine-5- carbonitrile


embedded image




0.0191





385
2-(1,5-Dimethyl- 1H-pyrazol-4- ylamino)-4- ethylamino- pyrimidine-5- carbonitrile


embedded image




0.0127





386
2-[1-(4-Fluoro- phenyl)-5-methyl- 1H-pyrazol-4- ylamino]-4- methylamino- pyrimidine-5- carbonitrile


embedded image




0.0959





387
4-Methylamino-2- (3-methyl-1- propyl-1H-pyrazol- 4-ylamino)- pyrimidine-5- carbonitrile


embedded image




0.0054





388
4-Methylamino-2- (5-methyl-1- oxetan-3-yl-1H- pyrazol-4- ylamino)- pyrimidine-5- carbonitrile


embedded image




0.0322





389
4-Methylamino-2- (3-methyl-1- oxetan-3-yl-1H- pyrazol-4- ylamino)- pyrimidine-5- carbonitrile


embedded image




0.0372





390
2-[1-(3,5-Difluoro- phenyl)-5-methyl- 1H-pyrazol-4- ylamino]-4- methylamino- pyrimidine-5- carbonitrile


embedded image




0.241





391
4-(2,2-Difluoro- ethoxy)-2-(1,5- dimethyl-1H- pyrazol-4- ylamino)- pyrimidine-5- carbonitrile


embedded image




0.211





392
2-[1-(4,4-Difluoro- cyclohexyl)-3- methyl-1H- pyrazol-4- ylamino]-4- methylamino- pyrimidine-5- carbonitrile


embedded image




0.266







text missing or illegible when filed








Example 393
(5-(5-chloro-4-(methylamino)pyrimidin-2-ylamino)-1-methyl-1H-pyrazol-3-yl)(morpholino)methanone



embedded image


Step 1 Methyl 5-(5-chloro-4-(methylamino)pyrimidin-2-ylamino)-1-methyl-1H-pyrazole-3-carboxylate

To a 30 mL microwave vial was added 0.98 g of 2,5-dichloro-N-methylpyrimidin-4-amine, 0.78 g of methyl 5-amino-1-methyl-1H-pyrazole-3-carboxylate, 10 mL of 1-butanol and 0.13 mL of 4M hydrogen chloride in dioxane. The vial was capped and the reaction was heated in a microwave for 30 minutes at 130° C. As the reaction cooled, a precipitate fell out. Filter the precipitate and rinse with a small amount of n-butanol. Drying the cake yielded 0.964 g of methyl 5-(5-chloro-4-(methylamino)pyrimidin-2-ylamino)-1-methyl-1H-pyrazole-3-carboxylate which was used without further purification.


Step 2 5-(5-Chloro-4-(methylamino)pyrimidin-2-ylamino)-1-methyl-1H-pyrazole-3-carboxylic acid

To a 100 mL round bottom flask equipped with a stir bar was added 0.964 g of methyl 5-(5-chloro-4-(methylamino)pyrimidin-2-ylamino)-1-methyl-1H-pyrazole-3-carboxylate, 0.28 g of LiOH, 15 mL of tetrahydrofuran and 10 mL of water. The reaction was stirred at room temperature for 18 hours. The tetrahydrofuran was removed in vacuo and the aqueous layer was acidified to pH 5 with 1N HCl. The aqueous layer was partitioned with ethyl acetate and the organic layer washed with brine, dried over MgSO4, filtered and concentrated to give 0.58 g of 5-(5-chloro-4-(methylamino)pyrimidin-2-ylamino)-1-methyl-1H-pyrazole-3-carboxylic acid which was used without further purification.


Step 3 (5-(5-chloro-4-(methylamino)pyrimidin-2-ylamino)-1-methyl-1H-pyrazol-3-yl)(morpholino)methanone

To a 100 mL round bottom flask equipped with a stir bar was added 0.116 g of 5-(5-chloro-4-(methylamino)pyrimidin-2-ylamino)-1-methyl-1H-pyrazole-3-carboxylic acid, 0.19 g of o-benzotriazol-1-yl-tetramethyluronium hexafluorophosphate, 0.14 mL of diisopropylethylamine and 2 mL of dimethylformamide. After pre-activating for 10 minutes, 0.05 mL of morpholine was added and the reaction stirred at room temperature for 2 hours. The reaction was concentrated and purified by preparative reverse phase HPLC to yield 53.2 mg of (5-(5-chloro-4-(methylamino)pyrimidin-2-ylamino)-1-methyl-1H-pyrazol-3-yl)(morpholino)methanone. LCMS (Method A): [MH+]=352.0 at 2.80 min. 1H-NMR (DMSO): δ 9.47 (s, 1H), 7.86 (s, 1H), 7.15 (s, 1H), 6.78 (s, 1H), 3.74 (s, 3H), 3.61 (m, 8H), 2.88 (d, 3H). K1=0.16.


Example 394
2-methyl-2-(3-methyl-4-(4-(methylamino)-5-(trifluoromethyl)pyrimidin-2-ylamino)-1H-pyrazol-1-yl)propanenitrile



embedded image


Step 1: 2-methyl-2-(3-methyl-4-nitro-1H-pyrazol-1-yl)propanamide

To a solution of 2-methyl-2-(3-methyl-4-nitro-1H-pyrazol-1-yl)propanoic acid (2.5 g, 11.7 mmol) in CH2Cl2 (50 mL) was added dropwise of oxalyl chloride (2.97 g, 23.4 mmol). The reaction was stirred at ambient temperature for about 2 hours, then concentrated under reduced pressure to remove the solvent, the remained solid was dissolved in THF (30 mL) and was added dropwise into NH4OH (50 mL), the reaction was stirred at ambient temperature for 1 hour. The solution was concentrated under reduced pressure and portioned between EtOAc (50 mL) and water (100 mL), the aqueous phase was extracted with EtOAc, and the combined organic was washed with sat. NH4Cl (50 mL), dried over anhydrous Na2SO4, filleted and concentrated to give crude 2-methyl-2-(3-methyl-4-nitro-1H-pyrazol-1-yl)propanamide (2.5 g, 100%) as white solid which was used in the next step without further purification.


Step 2: 2-(4-amino-3-methyl-1H-pyrazol-1-yl)-2-methylpropanamide

To a solution of 2-methyl-2-(3-methyl-4-nitro-1H-pyrazol-1-yl)propanamide (2.5 g, 11.7 mmol) in MeOH (50 mL) was added Pd/C (1 g), exchanged with nitrogen for three times then with hydrogen, and the reaction was stirred at hydrogen atmosphere (1 atm) for 1 h at ambient temperature. The solution was filtered and the filtrate was concentrated under reduced pressure to give crude 2-(4-amino-3-methyl-1H-pyrazol-1-yl)-2-methylpropanamide (2.0 g, 93%) which was used in the next step without further purification.


Step 3: 2-methyl-2-(3-methyl-4-(4-(methylamino)-5-(trifluoromethyl)pyrimidin-2-ylamino)-1H-pyrazol-1-yl)propanamide

To a solution of 2-(4-amino-3-methyl-1H-pyrazol-1-yl)-2-methylpropanamide (250 mg, 1.37 mmol) in 2-methoxyethanol (5 mL) was added 2-chloro-N-methyl-5-(trifluoromethyl)pyrimidin-4-amine (290 mg, 1.37 mmol) and trifluoroaceticacid (156 mg, 1.37 mmol), the reaction was stirred at 70° C. for about 0.5 h. The reaction mixture was cooled to ambient temperature followed with the addition of water (10 mL) and the pH of solution was adjusted to 8 with sat. Na2CO3 The aqueous phase was extracted with ethyl acetate (10 mL×3), the combined organic phase was dried over anhydrous sodium sulfate, filtered and concentrated to dry to give a residue which was purified by column chromatography on silica gel (CH2Cl2:MeOH=20:1) to give 2-methyl-2-(3-methyl-4-(4-(methylamino)-5-(trifluoromethyl)pyrimidin-2-ylamino)-1H-pyrazol-1-yl)propanamide (250 mg, 51%) as white solid. LCMS (m/z) ES+358 (m+H).


Step 4: 2-methyl-2-(3-methyl-4-(4-(methylamino)-5-(trifluoromethyl)pyrimidin-2-ylamino)-1H-pyrazol-1-yl)propanenitrile

A stirred solution of 2-methyl-2-(3-methyl-4-(4-(methylamino)-5-(trifluoromethyl)pyrimidin-2-ylamino)-1H-pyrazol-1-yl)propanamide (250 mg, 0.7 mmol) in POCl3 (5 mL) was stirred at 90° C. for 1 hour. POCl3 was removed by evaporation, the mixture was added into ice/H2O (10 ml) and the pH of the solution was adjusted to 8 with sat.Na2CO3, the aqueous phase was extracted with ethyl acetate (5 mL×3). The combined organic phase was washed with sat. sodium chloride (10 mL), dried over anhydrous sodium sulfate, filtered and concentrated to dry to give a residue which was purified by recrystallization to give 2-methyl-2-(3-methyl-4-(4-(methylamino)-5-(trifluoromethyl)pyrimidin-2-ylamino)-1H-pyrazol-1-yl)propanenitrile (100 mg, 42%) as a white solid. 1H-NMR (300 MHz, DMSO-d6) δ ppm 9.18 (s, 1H), 8.29 (s, 1H), 8.14 (s, 1H), 7.10 (s, 1H), 2.91 (d, 3H), 2.22 (s, 3H), 1.94 (s, 2H). LCMS (m/z) ES+340 (m+1). Purity, 99.3% (HPLC at 214 nm); Ki=0.0005.


Compounds made using the above procedure are shown in Table 10 below, together with low resolution mass spectrometry (M+H), proton NMR, and LRRK2 Ki (micromolar) data for selected compounds determined from the assay described below.














TABLE 10






Name
Structure

1H NMR

M + H+
KI




















395
N,N-dimethyl-2- (5-methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidim-2- ylamino)-1H- pyrazol-1- yl)acetamide


embedded image



1H NMR (300 MHz, CD3OD) δ ppm 8.08 (s, 1H), 7.79 (br s, 1H), 5.24 (br s, 1H), 4.92 (s, 2H), 3.12 (s, 3H), 3.04 (s, 3H), 3.00 (s, 3H), 2.24 (s, 3 H)


0.015





396
N,N-dimethyl-2- (3-methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)acetamide


embedded image



1H NMR (300 MHz, CD3OD) δ ppm 8.11 (s, 1H), 7.96 (s, 1H), 5.23 (b rs, 1H), 4.90 (s, 2H), 3.08 (s, 3H), 3.07 (s, 3H), 2.99 (s, 3H), 2.27 (s, 3 H)


0.004





397
N-methyl-2-(3- methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)acetamide


embedded image



1H NMR (300 MHz, CD3OD) δ ppm 8.14 (s, 1H), 7.94 (s, 1 H), 6.19 (brs, 1 H), 5.26 (brs, 1 H), 4.73 (s, 2 H), 3.07 (d, J = 4.8 Hz, 3 H), 2.81 (d, J = 4.8 Hz, 3 H), 2.32 (s, 3 H)


0.0095





398
N-methyl-2-(5- methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)acetamide


embedded image



1H NMR (300 MHz, CDCl3) δ 8.14 (s, 2H), 6.17 (s, 1H), 5.26 (s, 1H), 3.07 (d, J = 4.6 Hz, 3H), 2.73 (d, J = 4.8 Hz, 3H), 2.32 (s, 3H), 1.84 (s, 6H)


0.003





399
N,N,2-trimethyl-2- (5-methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)propanamide


embedded image


1H NMR (400 MHz, DMSO) δ 8.79 (s, 1H), 8.06 (s, 1H), 7.68 (s, 1H), 6.85 (s, 1H), 2.84 (s, 6H), 2.38 (s, 3H), 2.02 (s, 3H), 1.67 (s, 6H).

0.314





400
2-methyl-2-(5- methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1-yl)-1- (pyrrolidin-1- yl)propan-1-one


embedded image


1H NMR (400 MHz, DMSO) δ 8.77 (s, 1H), 8.04 (s, 1H), 7.69 (s, 1H), 6.92 (s, 1H), 3.35 (t, J = 6.6, 2H), 2.81 (s, 3H), 2.53 (s, 1H), 2.03 (s, 3H).

0.404





401
2-methyl-2-(5- methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)propanenitrile


embedded image



1H-NMR (300 MHz, DMSO- d6) δ ppm 9.18 (s, 1H), 8.29 (s, 1H), 8.14 (s, 1H), 7.10 (s, 1H), 2.91 (d, 3H), 2.22 (s, 3H), 1.94 (s, 2H)


0.0007





402
1-(3-methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)cyclopropane- carbonitrile


embedded image


1H NMR (400 MHz, DMSO) δ 9.09 (s, 1H), 8.12 (s, 2H), 7.03 (s, 1H), 2.91 (d, J = 4.4, 3H), 2.16 (s, 3H), 1.87-1.78 (m, 2H), 1.78-1.70 (m, 2H).

0.0037





403
(R)-2-(3-methyl-4- (4-(methylamino)- 5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1-yl)-1- (pyrrolidin-l- yl)propan-1-one


embedded image



398
0.016





404
(R)-N,N-dimethyl- 2-(3-methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)propanamide


embedded image



1H-NMR (500 MHz, DMSO) δ 9.04 (s, 1H), 8.09 (s, 1H), 8.01 (s, 1H), 7.04 (s, 1H), 5.39 (q, J = 6.5 Hz, 1H), 2.97 (s, 3H), 2.87 (s, 3H), 2.82 (s, 3H), 2.14 (s, 3H), 1.45 (d, J = 6.5 Hz, 3H).


0.018





405
(S)-2-(3-methyl-4 (4-(methylamino)- 5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1-yl)-1- (pyrrolidin-1- yl)propan-1-one


embedded image



1H NMR (500 MHz, DMSO) δ 9.08 (s, 1H), 8.09 (s, 1H), 8.04 (s, 1H), 7.02 (s, 1H), 5.16-5.20 (m, 1H), 3.53-3.57 (m, 1H), 3.23-3.31 (m, 3H), 2.88 (d, J = 4.0, 3H), 2.13 (s, 3H), 1.83- 1.88 (m, 2H), 1.67-1.79 (m, 2H), 1.48 (d, J = 6.5, 3H).


0.022





406
3-(5-methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)propanenitrile


embedded image



1H NMR (500 MHz, MeOD) δ 7.96 (s, 1H), 7.67 (s, 1H), 4.34-4.37 (m, 2H), 2.96-2.99 (m, 2H), 2.91 (s, 3H), 2.27 (s, 3H).


0.0073





407
3-(3-methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)propanenitrile


embedded image



1H NMR (500 MHz, CDCl3) δ 8.12 (s, 1H), 7.97 (s, 1H), 4.30-4.33 (m, 2H), 3.07 (s, 3H), 2.90-2.93 (m, 2H), 2.26 (s, 3H), 1.64 (s, 2H).


0.0054





408
methyl 2-methyl- 2-(3-methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)propanoate


embedded image


1H NMR (400 MHz, DMSO) δ 9.02 (s, 1H), 8.14 (s, 1H), 8.10 (s, 1H), 7.03 (s, 1H), 3.61 (s, 3H), 2.89 (d, J = 4.4, 3H), 2.14 (s, 3H), 1.71 (s, 6H).

0.0047





409
methyl 2-methyl- 2-(5-methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)propanoate


embedded image


1H NMR (400 MHz, DMSO) δ 8.86 (s, 1H), 8.06 (s, 1H), 7.69 (s, 1H), 6.94 (s, 1H), 3.70 (s, 3H), 2.83 (s, 3H), 2.05 (s, 3H), 1.71 (s, 6H).

0.0076





410
2-(3-ethyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1-yl)-2- methylpropanenitrile


embedded image


1H NMR (400 MHz, DMSO) δ 8.93 (s, 1H), 8.07 (s, 1H), 7.80 (s, 1H), 6.98 (s, 1H), 2.97 (s, 2H), 2.84 (s, 3H), 1.95 (s, 6H), 1.13 (t, J = 7.4, 3H).

0.010





411
(R)-2-(5-methyl-4- (4-(methylamino)- 5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1-yl)-1- (pyrrolidin-1- yl)propan-1-one


embedded image



1H-NMR (500 MHz, MeOD) δ 7.88 (s, 1H), 7.53 (s, 1H), 7.49-5.19 (m, 1H), 3.35-3.39 (m, 1H), 2.77-2.81 (m, 3H), 2.69-2.71 (m, 1H), 2.13 (s, 3H), 1.75-1.84 (m, 3H), 1.66- 1.71 (m, 1H), 1.50 (d, J = 7.0, 1H).


0.039





412
(R)-N,N-dimethyl- 2-(5-methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)propanamide


embedded image



1H-NMR (500 MHz, DMSO) δ 8.88 (s, 1H), 8.06 (s, 1H), 7.67 (s, 1H), 6.95 (s, 1H), 5.37 (q, J = 6.0 Hz, 1H), 2.79 (s, 6H), 2.74 (s, 3H), 2.15 (s, 3H), 1.43 (d, J = 6.0 Hz, 3H).


0.0284





413
(S)-2-(5-methyl-4- (4-(methylamino)- 5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1-yl)-1- (pyrrolidin-1- yl)propan-1-one


embedded image



1H NMR (500 MHz, DMSO) δ 8.08 (s, 1H), 7.79 (d, J = 10.0, 1H), 6.56-6.52 (m, 1H), 5.15 (s, 1H), 5.08-5.12 (m, 1H), 3.48-3.56 (m, 2H), 3.27-3.32 (m, 1H), 2.99 (d, J = 4.5, 3H), 2.84 (d, J = 4.0, 1H), 2.21 (t, J = 9.5, 3H), 1.81-1.88 (m, 4H), 1.74-1.79 (m, 3H).


0.040





414
(S)-N,N-dimethyl- 2-(5-methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)propanamide


embedded image



1H NMR (500 MHz, DMSO) δ 8.48 (s, 1H), 8.06 (s, 1H), 7.57 (s, 1H), 6.64-6.66 (m, 1H), 5.33-5.36 (m, 1H), 2.77- 2.85 (m, 9H), 2.16 (s, 3H), 1.48-1.51 (m, 3H).


0.030





415
(S)-2-(5-methyl-4- (4-(methylamino)- 5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)propanenitrile


embedded image



1H NMR (500 MHz, DMSO) δ 8.60 (s, 1H), 8.06 (s, 1H), 7.75 (s, 1H), 6.71 (s, 1H), 5.73-5.75 (m, 1H), 2.87-2.98 (m, 3H), 2.26 (s, 3H), 1.75- 1.78 (s, 3H).


0.0095





416
(S)-2-(3-methyl-4- (4-(methylamino)- 5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)propanenitrile


embedded image



1H NMR (500 MHz, DMSO) δ 8.25-8.26 (m, 1H), 8.10 (s, 1H), 8.03 (s, 1H), 6.75 (s, 1H), 5.68-5.69 (m, 1H), 2.92-2.93 (m, 3H), 2.19 (s, 3H), 1.76- 1.78 (m, 3H).


0.0019





417
2-(4-(5-chloro-4- (methylamino) pyrimidin-2-ylamino)- 3-methyl-1H- pyrazol-1-yl)-2- methylpropanenitrile


embedded image


1H NMR (400 MHz, DMSO) δ 8.53 (s, 1H), 8.15 (s, 1H), 7.85 (s, 1H), 7.09 (d, J = 4.5, 1H), 2.89 (d, J = 4.6, 3H), 2.18 (s, 3H), 1.91 (s, 6H).

0.0021





418
2-(5-chloro-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1-yl)-2- methylpropanenitrile


embedded image


1H NMR (400 MHz, DMSO) δ 9.05 (s, 1H), 8.11 (s, 1H), 7.92 (s, 1H), 7.06 (s, 1H), 2.83 (s, 3H), 2.01 (s, 6H).

0.0019





419
2-(3-cyclopropyl- 4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1-yl)-2- methylpropanenitrile


embedded image


1H NMR (400 MHz, DMSO) δ 9.19 (s, 1H), 8.22 (s, 1H), 8.12 (s, 1H), 7.05 (s, 1H), 2.91 (d, J = 4.4, 3H), 2.12 (s, 1H), 1.89 (s, 6H), 0.92-0.80 (m, 2H), 0.80-0.64 (m, 2H).

0.0010





420
2,2-dimethyl-3-(3- methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)propanenitrile


embedded image



1H-NMR (500 MHz, CDCl3) δ 8.03 (s, 2H), 7.05 (br, s, 1H), 5.20 (d, J = 1.5 Hz, 1H), 4.08 (s, 2H), 3.01 (s, 3H), 2.18 (s, 3H), 1.40 (m, 6H)


0.0028





421
2,2-dimethyl-3-(5- methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)propanenitrile


embedded image



1H-NMR (500 MHz, CDCl3) δ 8.01 (s, 1H), 7.73 (br, s, 1H), 5.10 (s, 1H), 4.09 (s, 2H), 2.93 J = 4.5 Hz, 3H), 2.27 (s, 3H), 1.40 (s, 6H)


0.0068





422
1-(5-chloro-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)cyclopropane- carbonitrile


embedded image


1H NMR (400 MHz, DMSO) δ 9.12 (s, 1H), 8.11 (s, 1H), 7.94 (s, 1H), 7.06 (t, J = 6.9, 1H), 2.84 (s, 2H), 2.10-1.98 (m, 1H), 1.89-1.76 (m, 1H).

0.0023





423
N-tert-butyl-2- methyl-2-(3- methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)propanamide


embedded image


1H-NMR (500 MHz, DMSO) δ 9.101 (s, 1H) 8.081-8.143 (m, 2H), 7.025-7.049 (m, 1H), 6.348 (s, 1H), 2.877 (d, J = 4.0, 3H), 2.193 (s, 3H), 1.644 (s, 6H), 1.177 (s, 9H).

0.073





424
2-methyl-2-(3- methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1-yl)-N- trifluoroethyl) propanamide


embedded image




0.0063





425
2-(5-chloro-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1-yl)-N- ethyl-2-methyl propanamide


embedded image


1H NMR (400 MHz, DMSO) δ 8.35 (d, J = 9.1, 1H), 8.22 (s, 1H), 8.16 (s, 1H), 7.34 (d, J = 8.5, 2H), 6.32 (t, J = 9.5, 1H), 3.54 (s, 3H), 2.94 (d, J = 4.4, 3H).

0.0355





426
N- (cyclopropylmethyl)- 2-methyl-2-(5- methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)propanamide


embedded image


1H-NMR (500 MHz, MeOD) δ 7.50-8.10 (m, 2H), 3.05 (d, J = 7.0 Hz, 3H), 2.97 (s, 3H), 2.16 (s, 3H), 1.76 (s, 6H), 0.99-1.23 (m, 1H), 0.43-0.47 (m, 2H), 0.19-0.22 (m, 2H).

0.009





427
N- (cyclopropylmethyl)- 2-methyl-2-(3- methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)propanamide


embedded image


1H-NMR (500 MHz, MeOD) δ 7.82-8.20 (m, 2H), 3.03 (d, J = 6.5 Hz, 3H), 2.98 (s, 3H), 2.20 (s, 3H), 1.76 (s, 6H), 0.93-0.94 (m, 1H), 0.39-0.44 (m, 2H), 0.13-0.18 (m, 2H).

0.052





428
N-ethyl-1-(3- methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- yl)cyclobutane- carboxamide


embedded image



398.2
0.024





429
N-isopropyl-2- methyl-2-(5- methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)propanamide


embedded image










430
1-(3-methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)cyclobutane- carbonitrile


embedded image



352.1






431
2-(4-(4- (cyclopropylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-3- methyl-1H- pyrazol-1-yl)-2- methylpropanenitrile


embedded image










432
N,2-dimethyl-2-(3- methyl-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)propanamide


embedded image


1H NMR (400 MHz, DMSO) δ 9.04 (s, 1H), 8.13 (s, 1H), 8.10 (s, 1H), 7.17 (s, 1H), 7.01 (s, 1H), 2.93 (d, 3H), 2.55 (d, 3H), 2.17 (s, 3H). 1.64 (s, 6H).
372.1
0.0184





433
1-(5-chloro-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1- yl)cyclopropane- carbonitrile


embedded image



358.1






434
2-[4-(5-Chloro-4- methoxy- pyrimidin-2- ylamino)-5- methyl-pyrazol-1- yl]-2-methyl- propionic acid methyl ester


embedded image




0.0122





435
2-[4-(5-Chloro-4- methoxy- pyrimidin-2- ylamino)-3- methyl-pyrazol-1- yl]-2-methyl- propionic acid methyl ester


embedded image




0.0355





436
(S)-N,N-Dimethyl- 2-[3-methyl-4-(4- methylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-pyrazol- 1-yl]- propionamide


embedded image




0.0303





437
R)-2-[3-Methyl-4- (4-methylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-pyrazol- 1-yl]-propionitrile


embedded image




0.0065





438
2-[4-(5-Chloro-4- methoxy- pyrimidin-2- ylamino)-3- cyclopropyl- pyrazol-1-yl]-2- methyl- propionitrile


embedded image




0.0058





439
(R)-2-[5-Methyl-4- (4-methylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-pyrazol- 1-yl]-propionitrile


embedded image




0.0016





440
N-Ethyl-2-[3- methyl-4-(4- methylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-pyrazol- 1-yl]- isobutyramide


embedded image




0.0095





441
N-Ethyl-2-[5- ethyl-4-(4- methylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-pyrazol- 1-yl]- isobutyramide


embedded image




0.0237





442
1-[5-Methyl-4-(4- methylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-pyrazol- 1-yl]- cyclobutane- carboxylic acid ethylamide


embedded image




0.0156





443
2-[5-Methyl-4-(4- methylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-pyrazol- 1-yl]-N-(2,2,2- trifluoro-ethyl)- isobutyramide


embedded image




0.0666





444
N-Isopropyl-2-[3- ethyl-4-(4- methylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-pyrazol- 1-yl]- isobutyramide


embedded image




0.0246





445
N-Methyl-2-[5- ethyl-4-(4- methylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-pyrazol- 1-yl]- isobutyramide


embedded image




0.0926





446
1-[5-Methyl-4-(4- methylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-pyrazol- 1-yl]- cyclobutane- carbonitrile


embedded image




0.0024





447
N-tert-Butyl-2-[5- methyl-4-(4- methylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-pyrazol- 1-yl]- isobutyramide


embedded image




0.067





448
2-[4-(4- Ethylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-5- methyl-pyrazol-1- yl]-N-methyl- isobutyramide


embedded image




0.0153





449
2-[4-(4- Cyclopropylamino- 5-trifluoromethyl- pyrimidin-2- ylamino)-3- methyl-pyrazol-1- yl]-N-methyl- isobutyramide


embedded image


1H NMR (400 MHz, DMSO) δ 9.10 (s, 1H), 8.22 (s, 1H), 8.13 (s, 1H), 7.21 (d, J = 4.1, 1H), 6.98 (s, 1H), 2.83 (s, 1H), 2.54 (d, J = 4.3, 3H), 2.20 (s, 3H), 1.61 (s, 6H), 0.69 (dd, J = 35.4, 4.3, 4H).

0.0013





450
2-[4-(4- Cyclopropylamino- 5-trifluoromethyl- pyrimidin-2- ylamino)-5- methyl-pyrazol-1- yl]-N-methyl- isobutyramide


embedded image




0.0071





451
2-[4-(4- Ethylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-3- methyl-pyrazol-1- yl]-2-methyl- propionitrile


embedded image


1H NMR (400 MHz, DMSO) δ 9.07 (s, 1H), 8.15 (d, J = 26.9, 2H), 7.05 (s, 1H), 3.51- 3.42 (m, 2H), 2.19 (s, 3H), 1.92 (s, 6H), 1.13 (t, J = 7.1, 3H).

0.0003





452
2-(3-chloro-4-(4- (methylamino)-5- (trifluoromethyl) pyrimidin-2- ylamino)-1H- pyrazol-1-yl)-2- methylpropanenitrile


embedded image










453
2-[4-(4- Ethylamino-5- trifluoromethyl- pyrimidin-2- ylamino)-3- methyl-pyrazol-1- yl]-N-methyl- isobutyramide


embedded image




0.0092









Example 454
In Vitro LRRK2 Lanthascreen Binding Assay

This assay was used to determine a compound's potency in inhibiting activity of LRRK2 by determining, Kiapp, IC50, or percent inhibition values. In 384 well proxiplates F black, shallow well plates LRRK2, Eu-anti-GST-antibody, Alexa Fluor® Kinase tracer 236 and test compound were incubated together.


Binding of the Alexa Fluor® “tracer” to a kinase is detected by addition of a Eu-labeled anti-GST antibody. Binding of the tracer and antibody to a kinase results in a high degree of FRET, whereas displacement of the tracer with a kinase inhibitor results in a loss of FRET.


Assay conditions and materials used were as follows:


Final Assay Conditions:



















GST-LRRK2 G2019S
10
nM



Eu-anti-GST-antibody
2
nM



Kinase tracer 236
8.5
nM



Kinase reaction time:
1
hour










Temperature:
ambient











Total volume:
15
μl










DMSO
1%










Materials:















384 well proxiplates F black
Perkin Elmer cat# 6008260


shallow well


Kinase: LRRK2G2019S,
Invitrogen cat # PV4882



(LOT 567054A).


Eu-labeled anti-GST antibody
Invitrogen cat # PV5594


Alexa Fluor ® Kinase tracer 236
Invitrogen cat #PV5592


TRIS- HCl
Sigma cat # T3253


EGTA
Sigma cat # E3889


Brij-35:
Sigma cat # B4184(30% w/v)


DMSO:
Sigma cat # D8418


MgCl2
Sigma cat # M9272


Reaction Buffer:
H2O/50 mM Tris, pH 7.4/10 mM



MgCl2/1 mM EGTA/0.01% Brij 35









Compound Plate Preparation:

Serially dilute test compounds (10 mM stock) 1:3.16 (20 ul+43.2 ul) in 100% DMSO. 12 pt curve. Dilute each concentration 1:33.3 (3 ul+97 ul) in reaction buffer. Stamp 5 ul to assay plate. Final top test concentration 100 uM


Total and Blank Preparation:

In Reaction Buffer, 5 ul of DMSO (3%) was added to total and blank wells and 5 ul of Eu-labeled anti-GST antibody (6 nM) was added to blank wells. Add 5 ul LRRK2 (30 nM)/Eu-labeled anti-GST antibody (6 nM) mix to compound and total wells.


Assay Procedure:

Add 5 ul kinase tracer (25.5 nM) to all wells. Incubate plates at room temperature for 1 hour on a plate shaker (gentle shaking). Read on Perkin Elmer EnVision reader HTRF protocol


Data Handling:

Calculate ratio: (665/620)*10000. Substract mean background values from all data points. Calculate % of control for each test value. Plot % of control vs Compound concentration. Calculate Ki Value (xlfit curve fitting—Morrison equation). Results expressed as a Ki in μM. Equation for Ki:






Y=V0*(1−((x+Ki*(1+S/Km)+Et)/(2*Et)−(((x+Ki*(1+S/Km)+Et)̂2−(4*Et*x))̂0.5)/(2*Et)))


Where Et=4 nM
kd (Tracer)=8.5 nM

Tracer concentration (S)=8.5 nM


Example 455
In Vitro LRRK2 Assay

This assay was used to determine a compound's potency in inhibiting activity of LRRK2 by determining, Kiapp, IC50, or percent inhibition values. In a polypropylene plate, LRRK2, fluorescently-labeled peptide substrate, ATP and test compound were incubated together. Using a LabChip 3000 (Caliper Life Sciences), after the reaction the substrate was separated by capillary electrophoresis into two populations: phosphorylated and unphosphorylated. The relative amounts of each were quantitated by fluorescence intensity. LRRK2 Ki was determined according to the equation:






Y=V0*(1−(x+Ki*(1+S/Km)+Et)/(2*Et)−(((x+Ki*(1+S/Km)+Et)̂2−(4*Et*x))̂0.5)/(2*Et))).


Ki values in Table 4 and elsewhere herein are shown in μM.


Assay conditions and materials used were as follows:


Final Assay Conditions:















LRRK2 G2019S in 5 mM MgCl2:
5.2 nM (Invitrogen lot # 567054A)


LRRK2 G2019S in 1 mM MnCl2:
11 nM (Invitrogen lot # 567054A)


LRRK2 Wild type in 5 mM MgCl2:
15 nM (Invitrogen lot # 500607F)


LRRK2 I2020T in 5 mM MgCl2:
25 nM (Invitrogen lot # 43594)


Substrate:
1 μM


ATP:
130 μM


Kinase reaction time:
2 hours


Temperature:
ambient


Total volume:
20 μl









ATPapp Kms:



















G2019S in 5 mM MgCl2:
130
μM



G2019S in 1 mM MnCl2:
1
μM



Wild type in 5 mM MgCl2:
80
μM



I2020T in 5 mM MgCl2:
14
μM










Materials:















Solid Support:
Black 50 μL volume polypropylene 384 well



plate (MatriCal cat # MP101-1-PP)


Kinase:
LRRK2 G2019S (Invitrogen cat # PV4882).



LRRK2 Wild type (Invitrogen cat # PV4874).


Substrate:
5FAM-GAGRLGRDKYKTLRQIRQ-CONH2


Non-binding plate:
384 well clear V-bottom polypropylene plates



(Greiner cat # 781280).


ATP:
10 mM ATP (Cell Signaling cat # 9804).


Triton X-100:
Triton X-100.


Brij-35:
Brij-35 (Pierce cat # 20150).


Coating Reagent #3:
Coating Reagent #3 (Caliper).


DMSO:
DMSO (Sigma cat # 34869-100ML).


Complete Reaction
H2O/25 mM Tris, pH 8.0/5 mM


Buffer:
MgCl2/2 mM DTT/0.01% Triton X-100.


Stop Solution:
H2O/100 mM HEPES, pH 7.2/0.015%



Brij-35/0.2% Coating Reagent #3/20 mM EDTA.


Separation Buffer:
H2O/100 mM HEPES, pH 7.2/0.015%



Brij-35/0.1% Coating Reagent #3/1:200 Coating



Reagent #8/10 mM EDTA/5% DMSO.









Compound Plate Preparation:

For serial dilutions, 34.6 μl DMSO was added to columns 3-24. For the assay controls, 37.5 μl DMSO was added to columns 1 and 2 of rows A and P. a, d and 50 μl 25 μM G-028831 (Staurosporine) was added to columns 1 and 2, row B. For the samples: to start at 100 μM, 37.5 μl DMSO was to columns 1 and 2, then 12.5 μl 10 mM compound; to start at 10 μM, 78 μl DMSO was added to columns 1 & 2, then 2 μl 10 mM compound; and to start at 1 μM, 25 μM compound (2 μl 10 mM cmpd+798 μl DMSO) was added to empty columns 1 and 2. A Precision instrument was used to perform 1:3.16 serial dilutions (“PLK_BM_serial_halflog”).


ATP Preparation:

ATP was diluted to 282.1 μM in Complete Kinase Buffer (final concentration was 130 μM).


Total and Blank Preparation:

In Complete Reaction Buffer, substrate was diluted to 4 μM. Equal volumes of Complete Reaction Buffer and 4 μM substrate were combined to obtain the blank. Equal volumes of Complete Reaction Buffer and 4 μM substrate were combined and to the combined solution was added 2× final LRRK2 concentration.


Assay Procedure:

To a 50 μl polypropylene plate, 5 μl/well buffer/substrate was added by hand to Blank wells. A Biomek FX was used to start the kinase reaction (“PLK SAR 23 ATP”). The following were added to the appropriate wells:


2 μl compound+23 μl ATP;


5 μl/well compound/ATP in Assay Plate;


5 μl/well kinase/substrate in Assay Plate;


The plate was incubated for 2 hours in the dark. Biomek FX was used to stop the kinase reaction (“PLK Stop”), and 10 μl/well Stop solution was added to the Assay Plate. Results were read on the LabChip 3000.


Lab Chip 3000 Protocol:

The LabChip 3000 was run using the job “LRRK2 IC50” with the following job settings:



















Pressure:
−1.4
psi



Downstream voltage:
−500
V



Upstream voltage:
−2350
V



Post sample buffer sip time:
75
seconds



Post dye buffer sip time:
75
seconds



Final delay time:
200
seconds










Example 456
Parkinson's Disease Mouse Model

Parkinson's disease can be replicated in mice and in primates by administration of 1-methyl-4-phenyul tetrahydropyridine (MPTP), a selective nigrostriatal dopaminergic neurotoxin that produces a loss of striatal dopamine (DA) nerve terminal markers. Compounds of the invention may be evaluated for effectiveness in treatment of Parkinson's disease using MPTP induced neurodegeneration following generally the protocol described by Saporito et al., J. Pharmacology (1999) Vol. 288, pp. 421-427.


Briefly, MPTP is dissolved in PBS at concentrations of 2-4 mg/ml, and mice (male C57 weighing 20-25 g) are given a subcutaneous injection of 20 to 40 mg/kg. Compounds of the invention are solubilized with polyethylene glycol hydroxystearate and dissolved in PBS. Mice are administered 10 ml/kg of compound solution by subcutaneous injection 4 to 6 h before MPTP administration, and then daily for 7 days. On the day of the last injection, mice are sacrificed and the midbrain blocked and postfixed in paraformaldehyde. Striata are dissected free, weighed, and stored at −70° C.


The striata thus collected are evaluated for content of dopamine and its metabolites dihydroxyphenylacetic acid and homovanillic acid, by HPLC with electrochemical detection as described by Sonsalla et al., J. Pharmacol. Exp. Ther. (1987) Vol. 242, pp. 850-857. The striata may also be evaluated using the tyrosine hydroxylase assay of Okunu et al., Anal Biochem (1987) Vol. 129, pp. 405-411 by measuring 14CO2 evolution associated with tyrosine hydroxylase-mediated conversion of labeled tyrosine to L-dopa. The striata may further be evaluated using the Monoamine oxidase-B assay as described by White et al., Life Sci. (1984), Vol. 35, pp. 827-833, and by monitoring dopamine uptake as described by Saporito et al., (1992) Vol. 260, pp. 1400-1409.


While the present invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective spirit and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto.

Claims
  • 1. A compound of the formula I:
  • 2. The compound of claim 1, wherein X is —NH— or —O—.
  • 3. The compound of claim 1, wherein R1 is: C1-6alkyl; halo-C1-6alkyl; C1-6alkoxy-C1-6alkyl; amino-C1-6alkyl; C1-6alkylsulfonyl-C1-6alkyl; C3-6cycloalkyl; or C3-6cycloalkyl-C1-6alkyl.
  • 4. The compound of claim 1, wherein R1 is C1-6alkyl.
  • 5. The compound of claim 1, wherein R2 is: halo; C1-6alkoxy; halo-C1-6alkyl; halo-C1-6alkoxy; C3-6cycloalkyl wherein the C3-6cycloalkyl portion is optionally substituted with C1-6alkyl; C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted with C1-6alkyl; tetrahydrofuranyl; tetrahydrofuranyl-C1-6alkyl; oxetanyl; or oxetan-C1-6alkyl.
  • 6. The compound of claim 1, wherein R2 is: halo; halo-C1-6alkyl or cyano.
  • 7. The compound of claim 1, wherein R2 is: fluoro; bromo; chloro; iodo; trifluoromethyl; or cyano.
  • 8. The compound of claim 1, wherein R3 is: C1-6alkyl; halo-C1-6alkyl; hydroxy-C1-6alkyl; C1-6alkoxy-C1-6alkyl; C3-6cycloalkyl optionally one or more times with R6; C3-6cycloalkyl-C1-6alkyl wherein the C3-6cycloalkyl portion is optionally substituted one or more times with R6; heterocyclyl optionally substituted one or more times with R7; heterocyclyl-C1-6alkyl wherein the heterocyclyl portion is optionally substituted one or more times with R7; or —C(O)—Rd.
  • 9. The compound of claim 1, wherein R3 is: C1-6alkyl; hydroxy-C1-6alkyl; C1-6alkoxy-C1-6alkyl; heterocyclyl optionally substituted one or more times with R7; or heterocyclyl-C1-6alkyl wherein the heterocyclyl portion is optionally substituted one or more times with R7.
  • 10. The compound of claim 1, wherein R3 is: methyl; ethyl; propyl; isopropyl; butyl; cyclopropyl; cyclopropylmethyl; cyclobutyl; methanesulfonyl; ethylsulfonyl; cyclopropylsulfonyl; sec-butylsulfonyl; morpholin-4-yl-ethyl; oxetan-3-yl; 2-methoxyethyl; 2-hydroxy-2-methyl-propyl; 3-hydroxy-2-methyl-propan-2-yl; 2-methoxy-propyl; tetrahydro-2H-pyran-4-yl; tetrahydrofuran-3-yl; 2,6-dimethyltetrahydro-2H-pyran-4-yl; tetrahydro-2H-pyran-3-yl); phenyl; 4-(methylsulfonyl)phenyl); 4-cyano-phenyl; 4-fluoro-phenyl; 4-chloro-phenyl; 3,5-difluorophenyl; 4-(dimethylamino-carbonyl)-phenyl); 4-(cyclopropylsulfonyl)phenyl; 2,2,2-trifluoroethyl; 2-fluoroethyl; difluoromethyl; 2-dimethyl-1,3-dioxan-5-yl; 1-methyl-cyclopropyl-carbonyl; 3-methylpyridin-4-yl; 2-methylpyridin-4-yl; pyridin-2-yl; pyrimidin-2-yl; pyrimidin-5-yl; pyridin-2-ylmethyl; 1-(pyridin-2-yl)ethyl; cyclopropylsulfonyl; 1-cyano-1-methyl-ethyl; 2-cyano-ethyl; 1-cyano-ethyl; 2-cyano-2-methyl-propyl; 1-(2,2,2-trifluoroethyl)piperidin-4-yl; 1-(methylsulfonyl)azetidin-3-yl; (3-methyloxetan-3-yl)methyl; (1S,5S)-8-oxabicyclo[3.2.1]octan-3-yl; 1-(oxetan-3-yl)piperidin-4-yl; 1-acetyl-piperidin-4-yl; 1-(cyclopropyl-carbonyl)-piperidin-4-yl; 1-methyl-piperidin-4-yl; 1-methyl-2-oxo-piperidin-5-yl; 2-oxo-piperidin-5-yl; 1-(isopropyl-carbonyl)-piperidin-4-yl; 1-(oxetan-3-yl)azetidin-3-yl; 1-(cyclopropyl-carbonyl)-piperidin-4-yl; 2-methoxycyclopentyl; 3-methoxycyclopentyl; 1-methoxy-2-methylpropan-2-yl; tetrahydro-2H-1,1-dioxo-thiopyran-4-yl; 3-fluoro-1-(oxetan-3-yl)piperidin-4-yl; 1-methoxypropan-2-yl; 1-(2,2,2-trifluoroethyl)azetidin-3-yl); 1-(oxetan-3-yl)pyrrolidin-3-yl; 1-isopropylazetidin-3-yl; 3-fluoro-1-methylpiperidin-4-yl; 1-ethyl-3-fluoropiperidin-4-yl; 1-methylpyrrolidin-3-yl; 2-methoxyethyl)piperidin-4-yl); 1-methyl-1-(methylamino-carbonyl)-ethyl; 2-methyl-2-morpholino-propyl; 4,4-difluorocyclohexyl; morpholin-4-yl-carbonyl; dimethylamino-carbonyl-methyl; methylamino-carbonyl-methyl; 1-methyl-1-(dimethylamino-carbonyl)-ethyl; pyrrolidin-′-yl-carbonyl; 1-cyamo-cyclopropyl; 1-(pyrrolidin-′-yl-carbonyl)-ethyl; 1-(dimethylamino-carbonyl)-ethyl; 1-(methoxy-carbonyl)-ethyl; 1-(tert-butylamino-carbonyl)-1-methyl-ethyl; 1-(2,2,2-trifluoroethyllamino-carbonyl)-1-methyl-ethyl; 1-(ethylamino-carbonyl)-1-methyl-ethyl; 1-(cyclopropylmethylamino-carbonyl)-1-methyl-ethyl; 1-(ethylamino-carbonyl)-cyclobutyl; 1-(isopropylamino-carbonyl)-1-methyl-ethyl; 1-cyano-cyclobutyl; 2-methoxy-1-methyl-ethyl; 1-methyl-1-(methoxy-carbonyl)-ethyl; 2-methoxy-2-methyl-propan-1-yl; 1-(oxetan-3-yl)-pyrrolidin-3-yl; isopropylsulfonyl; butane-2-sulfonyl; 1-(2-fluoroethyl)-piperidin-4-yl; 3-fluoro-1-methyl-piperidin-4-yl; 1-ethyl-3-fluoro-piperidin-4-yl; pyridin-3-ylmethyl; 6-methyl-pyridin-2-ylmethyl; 2-(morpholin-1-yl)-1,1,dimethyl-ethyl; pyrimdin-2-yl-methyl; 3-fluoro-1-(oxetan-3-yl)-piperidin-4-yl; 1-(oxetan-3-yl)-piperidin-3-yl; 1-([1,3]Dioxolan-2-ylmethyl)-piperidin-4-yl; pyridazin-3-ylmethyl; piperidin-3-yl; pyrazin-2-ylmethyl; 2-hydroxy-3-methyl-butan-1-yl; 1-([1,3]Dioxolan-2-ylmethyl)-pyrrolidin-3-yl; pyrimidin-4-ylmethyl; 1-methyl-1H-pyrazol-3-ylmethyl; 1-methyl-1-(4H-[1,2,4]triazol-3-yl)-ethyl; 1-methyl-1-(5-methyl-4H-[1,2,4]triazol-3-yl)-ethyl; 3-fluoro-piperidin-4-yl; 2-hydroxy-cyclopentyl; dimethyl-[1,3]dioxan-5-yl; 2-(5-methyl-1,3,4-oxadiazol-2-yl)propan-2-yl; 2-(4-methyl-4H-1,2,4-triazol-3-yl)propan-2-yl; 2-(1-methyl-1H-1,2,4-triazol-3-yl)propan-2-yl; 2-(1-methyl-1H-pyrazol-4-yl)propan-2-yl; 2-(1-methyl-1H-pyrazol-3-yl)propan-2-yl; 2-(1-methyl-1H-pyrazol-5-yl; 2-(4H-1,2,4-triazol-3-yl)propan-2-yl; or 1-methyl-1H-pyrazole-4-yl.
  • 11. The compound of claim 1, wherein R4 is hydrogen; C1-6alkyl; halo; or C3-6cycloalkyl optionally substituted with C1-6alkyl.
  • 12. The compound of claim 1, wherein R4 is hydrogen or C1-6alkyl.
  • 13. The compound of claim 1, wherein R4 is chloro or methyl.
  • 14. The compound of claim 1, wherein R5 is C1-6alkyl.
  • 15. The compound of claim 1, wherein R5 is hydrogen or methyl.
  • 16. The compound of claim 1, wherein said compounds are of formula II
  • 17. The compound of claim 1, wherein said compound is of formula III
  • 18. The compound of claim 1, wherein said compound is of formula IV
  • 19. The compound of claim 1, wherein said compound is of formula V
  • 20. A composition comprising: (a) a pharmaceutically acceptable carrier; and(b) a compound of claim 1.
  • 21. A method for treating Parkinson's disease, said method comprising administering to a subject in need thereof an effective amount of a compound of claim 1.
Provisional Applications (2)
Number Date Country
61546613 Oct 2011 US
61412273 Nov 2010 US