Claims
- 1. A method of decreasing ion flow through a voltage-dependent sodium channel in a cell, said method comprising contacting said cell with a sodium channel-inhibiting amount of a compound comprising a pyrazolopyrimidine moiety.
- 2. The method according to claim 1, wherein said cell is in a human.
- 3. The method of claim 1, wherein said pyrazolopyrimidine moiety is a pyrazolo[1,5-a]pyrimidine moiety.
- 4. A method of decreasing ion flow through voltage-dependent sodium channels in a cell, said method comprising contacting said cell with a sodium channel-inhibiting amount of a compound of the formula: whereinR1 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heterocycloalkyl, and substituted or unsubstituted aryl(alkyl); R2 is a member selected from hydrogen and substituted or unsubstituted alkyl; R1 and R2 taken together with the nitrogen atom to which they are optionally joined to form a 4- to 8-membered heterocycloaryl ring; R3 is a member selected from hydrogen, substituted or unsubstituted alkyl, halo, amino, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl and substituted or unsubstituted heterocycloalkyl; R4 is a member selected from hydrogen, halo, substituted or unsubstituted alkyl and substituted or unsubstituted aryl; R5 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl and substituted or unsubstituted heterocycloalkyl; R6 is a member selected from hydrogen, halo, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, and substituted or unsubstituted heterocycloalkyl; and X is a member selected from O and S.
- 5. A method of treating pain through inhibition of a voltage-dependent sodium channel, wherein said pain is selected from inflammatory pain, neuropathic pain and combinations thereof, said method comprising administering to a subject in need of such treatment, an effective amount of a compound having the formula: whereinR1 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heterocycloalkyl, and substituted or unsubstituted aryl(alkyl); R2 is a member selected from hydrogen and substituted or unsubstituted alkyl; R1 and R2 taken together with the nitrogen atom to which they are optionally joined to form a 4- to 8-membered heterocycloaryl ring; R3 is a member selected from hydrogen, substituted or unsubstituted alkyl, halo, amino, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl and substituted or unsubstituted heterocycloalkyl; R4 is a member selected from hydrogen, halo, substituted or unsubstituted alkyl and substituted or unsubstituted aryl; R5 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl and substituted or unsubstituted heterocycloalkyl; R6 is a member selected from hydrogen, halo, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, and substituted or unsubstituted heterocycloalkyl; and X is a member selected from O and S.
- 6. A method of decreasing ion flow through a voltage-dependent sodium channel in a cell, wherein said cell is in a human, and said method comprises contacting said cell with a sodium channel-inhibiting amount of a compound of the formula: whereinR1 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heterocycloalkyl, and substituted or unsubstituted aryl(alkyl); R2 is a member selected from hydrogen and substituted or unsubstituted alkyl; R1 and R2 taken together with the nitrogen atom to which they are optionally joined to form a 4- to 8-membered heterocycloaryl ring; R3 is a member selected from hydrogen, substituted or unsubstituted alkyl, halo, amino, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl and substituted or unsubstituted heterocycloalkyl; R4 is a member selected from hydrogen, halo, substituted or unsubstituted alkyl and substituted or unsubstituted aryl; R5 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl and substituted or unsubstituted heterocycloalkyl; R6 is a member selected from hydrogen, halo, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, and substituted or unsubstituted heterocycloalkyl; and X is a member selected from O and S.
- 7. A method of decreasing ion flow through a voltage-dependent sodium channel in a cell, said method comprising contacting said cell with a sodium channel-inhibiting amount of a composition comprising a pharmaceutically acceptable excipient and a compound having the fonnula: whereinR1is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted arylo, substituted or unsubstituted heteroaryl, substituted or unsubstituted heterocycloalkyl, and substituted or unsubstituted aryl(alkyl); R2 is a member selected from hydrogen and substituted or unsubstituted alkyl; R1 and R2 taken together with the nitrogen atom to which they are optionally joined to form a 4- to 8-membered heterocycloaryl ring; R3 is a member selected from hydrogen, substituted or unsubstituted alkyl, halo, amino, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl and substituted or unsubstituted heterocycloalkyl; R4 is a member selected from hydrogen, halo, substituted or unsubstituted alkyl and substituted or unsubstituted aryl; R5 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl and substituted or unsubstituted heterocycloalkyl; R6 is a member selected from hydrogen, halo, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, and substituted or unsubstituted heterocycloalkyl; and X is a member selected from O and S.
- 8. A method of treating pain through inhibition of a voltage-dependent sodium channel, wherein said pain is selected from inflammatory pain, neuropathic pain and combinations thereof, said method comprising administering to a subject in need of such treatment, an effective amount of a composition comprising a pharmaceutically acceptable excipient and a compound having the formula: whereinR1 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heterocycloalkyl, and substituted or unsubstituted aryl(alkyl); R2 is a member selected from hydrogen and substituted or unsubstituted alkyl; R1 and R2 taken together with the nitrogen atom to which they are optionally joined to form a 4- to 8-membered heterocycloaryl ring; R3 is a member selected from hydrogen, substituted or unsubstituted alkyl, halo, amino, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl and substituted or unsubstituted heterocycloalkyl; R4 is a member selected from hydrogen, halo, substituted or unsubstituted alkyl and substituted or unsubstituted aryl; R5 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl and substituted or unsubstituted heterocycloalkyl; R6 is a member selected from hydrogen, halo, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, and substituted or unsubstituted heterocycloalkyl; and X is a member selected from O and S.
CROSS-REFERENCES TO RELATED APPLICATIONS
This application claims priority to U.S. Provisional Patent Application No. 60/335,874 filed Nov. 1, 2001, which is incorporated herein by reference in its entirety for all purposes.
US Referenced Citations (2)
Number |
Name |
Date |
Kind |
4178449 |
Dusza et al. |
Dec 1979 |
A |
5571813 |
Ruhter et al. |
Nov 1996 |
A |
Provisional Applications (1)
|
Number |
Date |
Country |
|
60/335874 |
Nov 2001 |
US |