Pyrazolyl guanidine F1F0-ATPase inhibitors and therapeutic uses thereof

Information

  • Patent Grant
  • 9580388
  • Patent Number
    9,580,388
  • Date Filed
    Thursday, July 16, 2015
    9 years ago
  • Date Issued
    Tuesday, February 28, 2017
    7 years ago
Abstract
The invention provides pyrazolyl guanidine compounds that inhibit F1Fo-ATPase, and methods of using pyrazolyl guanidine compounds as therapeutic agents to treat medical disorders, such as an immune disorder, inflammatory condition, or cancer.
Description
FIELD OF THE INVENTION

The invention provides inhibitors of F1F0-ATPases (e.g., mitochondrial F1F0-ATPases) and their therapeutic use. In particular, the invention provides pyrazolyl guanidine compounds that inhibit F1F0-ATPase, and methods of using pyrazolyl guanidine compounds as therapeutic agents to treat a number of medical conditions.


BACKGROUND

Multicellular organisms exert precise control over cell number. A balance between cell proliferation and cell death achieves this homeostasis. Cell death occurs in nearly every type of vertebrate cell via necrosis or through a suicidal form of cell death, known as apoptosis. Apoptosis is triggered by a variety of extracellular and intracellular signals that engage a common, genetically programmed death mechanism.


Multicellular organisms use apoptosis to instruct damaged or unnecessary cells to destroy themselves for the good of the organism. Control of the apoptotic process therefore is very important to normal development, for example, fetal development of fingers and toes requires the controlled removal, by apoptosis, of excess interconnecting tissues, as does the formation of neural synapses within the brain. Similarly, controlled apoptosis is responsible for the sloughing off of the inner lining of the uterus (the endometrium) at the start of menstruation. While apoptosis plays an important role in tissue sculpting and normal cellular maintenance, it is also a component of the primary defense against cells and invaders (e.g., viruses) which threaten the well being of the organism.


Not surprisingly many diseases are associated with dysregulation of apoptotic cell death. Experimental models have established a cause-effect relationship between aberrant apoptotic regulation and the pathagenicity of various neoplastic, autoimmune and viral diseases. For instance, in the cell-mediated immune response, effector cells (e.g., cytotoxic T lymphocytes “CTLs”) destroy virus-infected cells by inducing the infected cells to undergo apoptosis. The organism subsequently relies on the apoptotic process to destroy the effector cells when they are no longer needed. Autoimmunity is normally prevented by the CTLs inducing apoptosis in each other and even in themselves. Defects in this process are associated with a variety of immune diseases such as lupus erythematosus and rheumatoid arthritis.


Multicellular organisms also use apoptosis to instruct cells with damaged nucleic acids (e.g., DNA) to destroy themselves prior to becoming cancerous. Some cancer-causing viruses overcome this safeguard by reprogramming infected (transformed) cells to abort the normal apoptotic process. For example, several human papilloma viruses (HPVs) have been implicated in causing cervical cancer by suppressing the apoptotic removal of transformed cells by producing a protein (E6) which inactivates the p53 apoptosis promoter. Similarly, the Epstein-Barr virus (EBV), the causative agent of mononucleosis and Burkitt's lymphoma, reprograms infected cells to produce proteins that prevent normal apoptotic removal of the aberrant cells thus allowing the cancerous cells to proliferate and to spread throughout the organism.


Still other viruses destructively manipulate a cell's apoptotic machinery without directly resulting in the development of a cancer. For example, destruction of the immune system in individuals infected with the human immunodeficiency virus (HIV) is thought to progress through infected CD4+ T cells (about 1 in 100,000) instructing uninfected sister cells to undergo apoptosis.


Some cancers that arise by non-viral means have also developed mechanisms to escape destruction by apoptosis. Melanoma cells, for instance, avoid apoptosis by inhibiting the expression of the gene encoding Apaf-1. Other cancer cells, especially lung and colon cancer cells, secrete high levels of soluble decoy molecules that inhibit the initiation of CTL mediated clearance of aberrant cells. Faulty regulation of the apoptotic machinery has also been implicated in various degenerative conditions and vascular diseases.


Controlled regulation of the apoptotic process and its cellular machinery is important to the survival of multicellular organisms. Typically, the biochemical changes that occur in a cell instructed to undergo apoptosis occur in an orderly procession. However, as shown above, flawed regulation of apoptosis can cause serious deleterious effects in the organism.


The need exists for improved compositions and methods for regulating the apoptotic processes in subjects afflicted with diseases and conditions characterized by faulty regulation of these processes (e.g., viral infections, hyperproliferative autoimmune disorders, chronic inflammatory conditions, and cancers). The present invention addresses this need and provides other related advantages.


SUMMARY

The invention provides pyrazolyl guanidine compounds that inhibit F1F0-ATPase (e.g., mitochondrial F1F0-ATPase), pharmaceutical compositions comprising pyrazolyl guanidine compounds, and methods of using such compounds and pharmaceutical compositions to treat a number of medical conditions. Accordingly, one aspect of the invention provides a family of compounds represented by Formula I:




embedded image


including all stereoisomers, geometric isomers, and tautomers; or a pharmaceutically acceptable salt or solvate of any of the foregoing; wherein the variables are as defined in the detailed description.


Another aspect of the invention provides a family of compounds represented by Formula II:




embedded image


including all stereoisomers, geometric isomers, and tautomers; or a pharmaceutically acceptable salt or solvate of any of the foregoing; wherein the variables are as defined in the detailed description.


The foregoing compounds can be present in a pharmaceutical composition comprising a compound described herein and a pharmaceutically acceptable carrier.


Another aspect of the invention provides a method of treating a subject suffering from a medical disorder. The method comprises administering to the subject a therapeutically effective amount of one or more pyrazolyl guanidine compounds described herein, e.g., a compound of Formula I or II, in order to ameliorate a symptom of the disorder. A large number of disorders can be treated using the pyrazolyl guanidine compounds described herein.


For example, the compounds described herein can be used to treat an immune disorder or inflammatory disorder, such as rheumatoid arthritis, psoriasis, chronic graft-versus-host disease, acute graft-versus-host disease, Crohn's disease, inflammatory bowel disease, multiple sclerosis, systemic lupus erythematosus, Celiac Sprue, idiopathic thrombocytopenic thrombotic purpura, myasthenia gravis, Sjogren's syndrome, scleroderma, ulcerative colitis, asthma, epidermal hyperplasia, and other medical disorders described herein. The compounds described herein can also be used to treat a cardiovascular disease, myeloma, lymphoma, cancer, or bacterial infection.


Another aspect of the invention provides a method of inhibiting an F1F0-ATPase, for example, a mitochondrial F1F0-ATPase. The method comprises exposing the F1F0-ATPase to a compound described herein, such as a compound of Formula I or II, to inhibit said F1F0-ATPase.







DETAILED DESCRIPTION OF THE INVENTION

The invention provides pyrazolyl guanidine compounds that inhibit F1F0-ATPase (e.g., mitochondrial F1F0-ATPase), pharmaceutical compositions comprising the pyrazolyl guanidine compounds, and methods of using the pyrazolyl guanidine compounds and pharmaceutical compositions in therapy.


Exemplary compositions and methods of the present invention are described in more detail in the following sections: I. Modulators of F1F0-ATPase Activity; II. Pyrazolyl Guanidine Compounds; III. Therapeutic Applications of Pyrazolyl Guanidine Compounds, and IV. Pharmaceutical Compositions, Formulations, and Exemplary Administration Routes and Dosing Considerations. Aspects of the invention described in one particular section are not to be limited to any particular section.


The practice of the present invention employs, unless otherwise indicated, conventional techniques of organic chemistry, pharmacology, molecular biology (including recombinant techniques), cell biology, biochemistry, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature, such as “Comprehensive Organic Synthesis” (B. M. Trost & I. Fleming, eds., 1991-1992); “Molecular cloning: a laboratory manual” Second Edition (Sambrook et al., 1989); “Oligonucleotide synthesis” (M. J. Gait, ed., 1984); “Animal cell culture” (R. I. Freshney, ed., 1987); the series “Methods in enzymology” (Academic Press, Inc.); “Handbook of experimental immunology” (D. M. Weir & C. C. Blackwell, eds.); “Gene transfer vectors for mammalian cells” (J. M. Miller & M. P. Calos, eds., 1987); “Current protocols in molecular biology” (F. M. Ausubel et al., eds., 1987, and periodic updates); “PCR: the polymerase chain reaction” (Mullis et al., eds., 1994); and “Current protocols in immunology” (J. E. Coligan et al., eds., 1991), each of which is herein incorporated by reference in its entirety.


To facilitate an understanding of the present invention, a number of terms and phrases are defined below.


As used herein, the term “guanidine” refers to a compound having the following core structure:




embedded image



including pharmaceutically acceptable salt forms.


The term “alkyl” refers to a saturated straight or branched hydrocarbon, such as a straight or branched group of 1-12, 1-10, or 1-6 carbon atoms, referred to herein as C1-C12alkyl, C1-C10alkyl, and C1-C6alkyl, respectively. Exemplary alkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, 2-methyl-1-propyl, 2-methyl-2-propyl, 2-methyl-1-butyl, 3-methyl-1-butyl, 2-methyl-3-butyl, 2,2-dimethyl-1-propyl, 2-methyl-1-pentyl, 3-methyl-1-pentyl, 4-methyl-1-pentyl, 2-methyl-2-pentyl, 3-methyl-2-pentyl, 4-methyl-2-pentyl, 2,2-dimethyl-1-butyl, 3,3-dimethyl-1-butyl, 2-ethyl-1-butyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, heptyl, octyl, etc.


The term “alkylene” refers to a diradical of an alkyl group. Exemplary alkylene groups include —CH2— and —CH2CH2—.


The term “haloalkyl” refers to an alkyl group that is substituted with at least one halogen. For example, —CH2F, —CHF2, —CF3, —CH2CF3, —CF2CF3, and the like.


The term “hydroxyalkyl” refers to an alkyl group that is substituted with at least one hydroxyl group. In certain embodiments, the hydroxyalkyl group is an alkyl group that is substituted with one hydroxyl group.


The term “cycloalkyl” refers to a monovalent saturated cyclic, bicyclic, or bridged cyclic (e.g., adamantyl) hydrocarbon group of 3-12, 3-8, 4-8, or 4-6 carbons, referred to herein, e.g., as “C4-8cycloalkyl,” derived from a cycloalkane. Exemplary cycloalkyl groups include cyclohexyl, cyclopentyl, cyclobutyl, and cyclopropyl.


The term “cycloalkylene” refers to a divalent (i.e., diradical) saturated cyclic, bicyclic, or bridged cyclic (e.g., adamantyl) hydrocarbon group of 3-12, 3-8, 4-8, or 4-6 carbons, referred to herein, e.g., as “C4-8cycloalkylene,” derived from a cycloalkane. Unless specified otherwise, the cycloalkylene may be substituted at one or more ring positions with, for example, halogen, azide, alkyl, aralkyl, alkenyl, alkynyl, cycloalkyl, hydroxyl, alkoxyl, amino, nitro, sulfhydryl, imino, amido, carboxylic acid, —C(O)alkyl, —CO2alkyl, carbonyl, carboxyl, alkylthio, sulfonyl, sulfonamido, sulfonamide, ketone, aldehyde, ester, heterocyclyl, aryl, heteroaryl, —CF3, —CN, or the like. In certain embodiments, the cycloalkylene group is substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, hydroxyl, alkoxyl, and amino. In certain other embodiments, the cycloalkylene group is not substituted, i.e., it is unsubstituted. Exemplary cycloalkylene groups include




embedded image


The term “aralkyl” refers to an alkyl group substituted with an aryl group.


The term “heteroaralkyl” refers to an alkyl group substituted with a heteroaryl group.


The term “alkenyl” refers to an unsaturated straight or branched hydrocarbon having at least one carbon-carbon double bond, such as a straight or branched group of 2-12, 2-10, or 2-6 carbon atoms, referred to herein as C2-C12alkenyl, C2-C10alkenyl, and C2-C6alkenyl, respectively. Exemplary alkenyl groups include, but are not limited to, vinyl, allyl, butenyl, pentenyl, hexenyl, butadienyl, pentadienyl, hexadienyl, 2-ethylhexenyl, 2-propyl-2-butenyl, 4-(2-methyl-3-butene)-pentenyl, etc.


The term “alkynyl” as used herein refers to an unsaturated straight or branched hydrocarbon having at least one carbon-carbon triple bond, such as a straight or branched group of 2-12, 2-8, or 2-6 carbon atoms, referred to herein as C2-C12alkynyl, C2-C8alkynyl, and C2-C6alkynyl, respectively. Exemplary alkynyl groups include, but are not limited to, ethynyl, propynyl, butynyl, pentynyl, hexynyl, methylpropynyl, 4-methyl-1-butynyl, 4-propyl-2-pentynyl, and 4-butyl-2-hexynyl, etc.


The term “aryl” is art-recognized and refers to a carbocyclic aromatic group. Representative aryl groups include phenyl, naphthyl, anthracenyl, and the like. Unless specified otherwise, the aromatic ring may be substituted at one or more ring positions with, for example, halogen, azide, alkyl, aralkyl, alkenyl, alkynyl, cycloalkyl, hydroxyl, alkoxyl, amino, nitro, sulfhydryl, imino, amido, carboxylic acid, —C(O)alkyl, —CO2alkyl, carbonyl, carboxyl, alkylthio, sulfonyl, sulfonamido, sulfonamide, ketone, aldehyde, ester, heterocyclyl, heteroaryl, —CF3, —CN, or the like. The term “aryl” also includes polycyclic ring systems having two or more carbocyclic rings in which two or more carbons are common to two adjoining rings (the rings are “fused rings”) wherein at least one of the rings is aromatic, and the other ring(s) may be, for example, cycloalkyl, cycloalkenyl, cycloalkynyl, and/or aryl. The term “haloaryl” refers to an aryl group that is substituted with at least one halogen. In certain embodiments, the aromatic group is not substituted, i.e., it is unsubstituted.


The term “phenylene” refers to a multivalent radical (e.g., a divalent or trivalent radical) of benzene. To illustrate, a divalent valent radical of benzene is illustrated by the formula




embedded image


The terms “heterocyclyl” or “heterocyclic group” are art-recognized and refer to saturated, partially unsaturated, or aromatic 3- to 10-membered ring structures, alternatively 3- to 7-membered rings, whose ring structures include one to four heteroatoms, such as nitrogen, oxygen, and sulfur. Heterocycles may also be mono-, bi-, or other multi-cyclic ring systems. A heterocycle may be fused to one or more aryl, partially unsaturated, or saturated rings. Heterocyclyl groups include, for example, biotinyl, chromenyl, dihydrofuryl, dihydroindolyl, dihydropyranyl, dihydrothienyl, dithiazolyl, homopiperidinyl, imidazolidinyl, isoquinolyl, isothiazolidinyl, isoxazolidinyl, morpholinyl, oxolanyl, oxazolidinyl, phenoxanthenyl, piperazinyl, piperidinyl, pyranyl, pyrazolidinyl, pyrazolinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolidin-2-onyl, pyrrolinyl, tetrahydrofuryl, tetrahydroisoquinolyl, tetrahydropyranyl, tetrahydroquinolyl, thiazolidinyl, thiolanyl, thiomorpholinyl, thiopyranyl, xanthenyl, lactones, lactams such as azetidinones and pyrrolidinones, sultams, sultones, and the like. Unless specified otherwise, the heterocyclic ring is optionally substituted at one or more positions with substituents such as alkanoyl, alkoxy, alkyl, alkenyl, alkynyl, amido, amidino, amino, aryl, arylalkyl, azido, carbamate, carbonate, carboxy, cyano, cycloalkyl, ester, ether, formyl, halogen, haloalkyl, heteroaryl, heterocyclyl, hydroxyl, imino, ketone, nitro, phosphate, phosphonato, phosphinato, sulfate, sulfide, sulfonamido, sulfonyl and thiocarbonyl. In certain embodiments, the heterocyclcyl group is not substituted, i.e., it is unsubstituted.


The term “heteroaryl” is art-recognized and refers to aromatic groups that include at least one ring heteroatom. In certain instances, a heteroaryl group contains 1, 2, 3, or 4 ring heteroatoms. Representative examples of heteroaryl groups includes pyrrolyl, furanyl, thiophenyl, imidazolyl, oxazolyl, thiazolyl, triazolyl, pyrazolyl, pyridinyl, pyrazinyl, pyridazinyl and pyrimidinyl, and the like. Unless specified otherwise, the heteroaryl ring may be substituted at one or more ring positions with, for example, halogen, azide, alkyl, aralkyl, alkenyl, alkynyl, cycloalkyl, hydroxyl, alkoxyl, amino, nitro, sulfhydryl, imino, amido, carboxylic acid, —C(O)alkyl, —CO2alkyl, carbonyl, carboxyl, alkylthio, sulfonyl, sulfonamido, sulfonamide, ketone, aldehyde, ester, heterocyclyl, aryl, —CF3, —CN, or the like. The term “heteroaryl” also includes polycyclic ring systems having two or more rings in which two or more carbons are common to two adjoining rings (the rings are “fused rings”) wherein at least one of the rings is heteroaromatic, and the other ring(s) may be, for example, cycloalkyl, cycloalkenyl, cycloalkynyl, and/or aryl.


The term “heteroarylene” refers to a multi-valent (e.g., di-valent or trivalent) aromatic group that comprises at least one ring heteroatom. An exemplary “heteroarylene” is pyridinylene, which is a multi-valent radical of pyridine. For example, a divalent radical of pyridine is illustrated by the formula




embedded image


The terms ortho, meta and para are art-recognized and refer to 1,2-, 1,3- and 1,4-disubstituted benzenes, respectively. For example, the names 1,2-dimethylbenzene and ortho-dimethylbenzene are synonymous.


The terms “amine” and “amino” are art-recognized and refer to both unsubstituted and substituted amines, e.g., a moiety that may be represented by the general formula:




embedded image



wherein R50 and R51 each independently represent hydrogen, alkyl, alkenyl, or —(CH2)m—R61; or R50 and R51, taken together with the N atom to which they are attached complete a heterocycle having from 4 to 8 atoms in the ring structure; wherein R61 is aryl, cycloalkyl, cycloalkenyl, a heterocycle or a polycycle; and m is zero or an integer in the range of 1 to 8. In certain embodiments, R50 and R51 each independently represent hydrogen or alkyl.


The terms “alkoxyl” or “alkoxy” are art-recognized and refer to an alkyl group, as defined above, having an oxygen radical attached thereto. Representative alkoxyl groups include methoxy, ethoxy, propyloxy, tert-butoxy and the like. An “ether” is two hydrocarbons covalently linked by an oxygen. Accordingly, the substituent of an alkyl that renders that alkyl an ether is or resembles an alkoxyl, such as may be represented by one of —O-alkyl, —O-alkenyl, —O-alkynyl, —O—(CH2)m—R61, where m and R61 are described above.


The term “amide” or “amido” as used herein refers to a radical of the form —RaC(O)N(Rb)—, —RaC(O)N(Rb)Rc—, —C(O)NRbRc, or —C(O)NH2, wherein Ra, Rb and Rc are each independently selected from alkoxy, alkyl, alkenyl, alkynyl, amide, amino, aryl, arylalkyl, carbamate, cycloalkyl, ester, ether, formyl, halogen, haloalkyl, heteroaryl, heterocyclyl, hydrogen, hydroxyl, ketone, and nitro. The amide can be attached to another group through the carbon, the nitrogen, Rb, Rc, or Ra. The amide also may be cyclic, for example Rb and Rc, Ra and Rb, or Ra and Rc may be joined to form a 3- to 12-membered ring, such as a 3- to 10-membered ring or a 5- to 6-membered ring. The term “carboxamido” refers to the structure —C(O)NRbRc.


The term “sulfonamide” or “sulfonamido” as used herein refers to a radical having the structure —N(Rr)—S(O)2—Rs— or —S(O)2—N(Rr)Rs, where Rr, and Rs can be, for example, hydrogen, alkyl, aryl, cycloalkyl, and heterocyclyl. Exemplary sulfonamides include alkylsulfonamides (e.g., where Rs is alkyl), arylsulfonamides (e.g., where Rs is aryl), cycloalkyl sulfonamides (e.g., where Rs is cycloalkyl), and heterocyclyl sulfonamides (e.g., where Rs is heterocyclyl), etc.


The term “sulfonyl” as used herein refers to a radical having the structure RuSO2—, where Ru can be alkyl, aryl, cycloalkyl, and heterocyclyl, e.g., alkylsulfonyl. The term “alkylsulfonyl” as used herein refers to an alkyl group attached to a sulfonyl group.


The symbol “custom character” indicates a point of attachment.


The compounds of the disclosure may contain one or more chiral centers and/or double bonds and, therefore, exist as stereoisomers, such as geometric isomers, enantiomers or diastereomers. The term “stereoisomers” when used herein consist of all geometric isomers, enantiomers or diastereomers. These compounds may be designated by the symbols “R” or “S,” depending on the configuration of substituents around the stereogenic carbon atom. Stereoisomers include enantiomers and diastereomers. Mixtures of enantiomers or diastereomers may be designated “(±)” in nomenclature, but the skilled artisan will recognize that a structure may denote a chiral center implicitly. Unless indicated otherwise, generic chemical structures and graphical representations of specific compounds encompass all stereoisomers.


Individual stereoisomers of compounds of the present invention can be prepared synthetically from commercially available starting materials that contain asymmetric or stereogenic centers, or by preparation of racemic mixtures followed by resolution methods well known to those of ordinary skill in the art. These methods of resolution are exemplified by (1) attachment of a mixture of enantiomers to a chiral auxiliary, separation of the resulting mixture of diastereomers by recrystallization or chromatography and liberation of the optically pure product from the auxiliary, (2) salt formation employing an optically active resolving agent, or (3) direct separation of the mixture of optical enantiomers on chiral chromatographic columns. Stereoisomeric mixtures can also be resolved into their component stereoisomers by well known methods, such as chiral-phase gas chromatography, chiral-phase high performance liquid chromatography, crystallizing the compound as a chiral salt complex, or crystallizing the compound in a chiral solvent. Stereoisomers can also be obtained from stereomerically-pure intermediates, reagents, and catalysts by well known asymmetric synthetic methods.


Geometric isomers can also exist in the compounds of the present invention. The symbol — denotes a bond that may be a single, double or triple bond as described herein. The present invention encompasses the various geometric isomers and mixtures thereof resulting from the arrangement of substituents around a carbon-carbon double bond or arrangement of substituents around a carbocyclic ring. Substituents around a carbon-carbon double bond are designated as being in the “Z” or “E” configuration wherein the terms “Z” and “E” are used in accordance with IUPAC standards. Unless otherwise specified, structures depicting double bonds encompass both the “E” and “Z” isomers.


Substituents around a carbon-carbon double bond alternatively can be referred to as “cis” or “trans,” where “cis” represents substituents on the same side of the double bond and “trans” represents substituents on opposite sides of the double bond. The arrangement of substituents around a carbocyclic ring are designated as “cis” or “trans.” The term “cis” represents substituents on the same side of the plane of the ring and the term “trans” represents substituents on opposite sides of the plane of the ring. Mixtures of compounds wherein the substituents are disposed on both the same and opposite sides of plane of the ring are designated “cis/trans.”


Certain compounds described herein may exist as a single tautomer or as a mixture of tautomers. For example, certain guanidine compounds having a hydrogen atom attached to at least one of the guanidine nitrogen atoms can exist as a single tautomer or a mixture of tautomers. To illustrate, depending upon the substituents attached at the R1, R2 and R3 positions, the guanidine compound may exist as a single tautomer represented by A, B, or C, or as mixture of two or more of A, B, and C.




embedded image


The compounds disclosed herein can exist in solvated as well as unsolvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like, and it is intended that the invention embrace both solvated and unsolvated forms.


The invention also embraces isotopically labeled compounds of the invention which are identical to those recited herein, except that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature. Examples of isotopes that can be incorporated into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, fluorine and chlorine, such as 2H, 3H, 13C, 14C, 15N, 18O, 17O, 31P, 32P, 35S, 18F, and 36Cl, Respectively.


Certain isotopically-labeled disclosed compounds (e.g., those labeled with 3H and 14C) are useful in compound and/or substrate tissue distribution assays. Tritiated (i.e., 3H) and carbon-14 (i.e., 14C) isotopes are particularly preferred for their ease of preparation and detectability. Further, substitution with heavier isotopes such as deuterium (i.e., 2H) may afford certain therapeutic advantages resulting from greater metabolic stability (e.g., increased in vivo half-life or reduced dosage requirements) and hence may be preferred in some circumstances. Isotopically labeled compounds of the invention can generally be prepared by following procedures analogous to those disclosed in the e.g., Examples herein by substituting an isotopically labeled reagent for a non-isotopically labeled reagent.


The term “IC50” is art-recognized and refers to the concentration of a compound that is required for 50% inhibition of its target.


The term “EC50” is art-recognized and refers to the concentration of a compound at which 50% of its maximal effect is observed.


The terms “subject” and “patient” refer to organisms to be treated by the methods of the present invention. Such organisms preferably include, but are not limited to, mammals (e.g., murines, simians, equines, bovines, porcines, canines, felines, and the like), and most preferably includes humans. In the context of the invention, the terms “subject” and “patient” generally refer to an individual who will receive or who has received treatment (e.g., administration of a compound of the present invention and optionally one or more other agents) for a condition characterized by the dysregulation of apoptotic processes.


As used herein, the term “effective amount” refers to the amount of a compound sufficient to effect beneficial or desired results. An effective amount can be administered in one or more administrations, applications or dosages and is not intended to be limited to a particular formulation or administration route. As used herein, the term “treating” includes any effect, e.g., lessening, reducing, modulating, ameliorating or eliminating, that results in the improvement of the condition, disease, disorder, and the like, or ameliorating a symptom thereof.


The phrase “pathologically proliferating or growing cells” refers to a localized population of proliferating cells in an animal that is not governed by the usual limitations of normal growth.


As used herein, the term “un-activated target cell” refers to a cell that is either in the Go phase or one to which a stimulus has not been applied.


As used herein, the term “activated target lymphoid cell” refers to a lymphoid cell that has been primed with an appropriate stimulus to cause a signal transduction cascade, or alternatively, a lymphoid cell that is not in Go phase. Activated lymphoid cells may proliferate, undergo activation induced cell death, or produce one or more cytotoxins, cytokines, or other related membrane-associated proteins characteristic of the cell type (e.g., CD8+ or CD4+). They are also capable of recognizing and binding any target cell that displays a particular antigen on its surface, and subsequently releasing its effector molecules.


As used herein, the term “activated cancer cell” refers to a cancer cell that has been primed with an appropriate stimulus to cause signal transduction. An activated cancer cell may or may not be in the GO phase.


An activating agent is a stimulus that upon interaction with a target cell results in a signal transduction cascade. Examples of activating stimuli include, but are not limited to, small molecules, radiant energy, and molecules that bind to cell activation cell surface receptors. Responses induced by activation stimuli can be characterized by changes in, among others, intracellular Ca2+, superoxide, or hydroxyl radical levels; the activity of enzymes like kinases or phosphatases; or the energy state of the cell. For cancer cells, activating agents also include transforming oncogenes.


As used herein, the term “dysregulation of the process of cell death” refers to any aberration in the ability (e.g., predisposition) of a cell to undergo cell death via either necrosis or apoptosis. Dysregulation of cell death is associated with or induced by a variety of conditions, including for example, immune disorders (e.g., systemic lupus erythematosus, autoimmune disorders, rheumatoid arthritis, graft-versus-host disease, myasthenia gravis, Sjögren's syndrome, etc.), chronic inflammatory conditions (e.g., psoriasis, asthma and Crohn's disease), hyperproliferative disorders (e.g., tumors, B cell lymphomas, T cell lymphomas, etc.), viral infections (e.g., herpes, papilloma, HIV), and other conditions such as osteoarthritis and atherosclerosis.


It should be noted that when the dysregulation is induced by or associated with a viral infection, the viral infection may or may not be detectable at the time dysregulation occurs or is observed. That is, viral-induced dysregulation can occur even after the disappearance of symptoms of viral infection.


A “hyperproliferative disorder,” as used herein refers to any condition in which a localized population of proliferating cells in an animal is not governed by the usual limitations of normal growth. Examples of hyperproliferative disorders include tumors, neoplasms, lymphomas and the like. A neoplasm is said to be benign if it does not undergo invasion or metastasis and malignant if it does either of these. A metastatic cell or tissue means that the cell can invade and destroy neighboring body structures. Hyperplasia is a form of cell proliferation involving an increase in cell number in a tissue or organ, without significant alteration in structure or function. Metaplasia is a form of controlled cell growth in which one type of fully differentiated cell substitutes for another type of differentiated cell. Metaplasia can occur in epithelial or connective tissue cells. A typical metaplasia involves a somewhat disorderly metaplastic epithelium.


The pathological growth of activated lymphoid cells often results in an immune disorder or a chronic inflammatory condition. As used herein, the term “immune disorder” refers to any condition in which an organism produces antibodies or immune cells which recognize the organism's own molecules, cells or tissues. Non-limiting examples of immune disorders include autoimmune disorders, immune hemolytic anemia, immune hepatitis, Berger's disease or IgA nephropathy, Celiac Sprue, chronic fatigue syndrome, Crohn's disease, dermatomyositis, fibromyalgia, graft-versus-host disease, Grave's disease, Hashimoto's thyroiditis, idiopathic thrombocytopenia purpura, lichen planus, multiple sclerosis, myasthenia gravis, psoriasis, rheumatic fever, rheumatic arthritis, scleroderma, Sjorgren syndrome, systemic lupus erythematosus, type 1 diabetes, ulcerative colitis, vitiligo, tuberculosis, and the like.


As used herein, the term “chronic inflammatory condition” refers to a condition wherein the organism's immune cells are activated. Such a condition is characterized by a persistent inflammatory response with pathologic sequelae. This state is characterized by infiltration of mononuclear cells, proliferation of fibroblasts and small blood vessels, increased connective tissue, and tissue destruction. Examples of chronic inflammatory diseases include, but are not limited to, Crohn's disease, psoriasis, chronic obstructive pulmonary disease, inflammatory bowel disease, multiple sclerosis, and asthma. Immune diseases such as rheumatoid arthritis and systemic lupus erythematosus can also result in a chronic inflammatory state.


As used herein, the term “co-administration” refers to the administration of at least two agent(s) (e.g., a compound of the present invention) or therapies to a subject. In some embodiments, the co-administration of two or more agents/therapies is concurrent. In other embodiments, a first agent/therapy is administered prior to a second agent/therapy. Those of skill in the art understand that the formulations and/or routes of administration of the various agents/therapies used may vary. The appropriate dosage for co-administration can be readily determined by one skilled in the art. In some embodiments, when agents/therapies are co-administered, the respective agents/therapies are administered at lower dosages than appropriate for their administration alone. Thus, co-administration is especially desirable in embodiments where the co-administration of the agents/therapies lowers the requisite dosage of a known potentially harmful (e.g., toxic) agent(s).


As used herein, the term “pharmaceutical composition” refers to the combination of an active agent with a carrier, inert or active, making the composition especially suitable for diagnostic or therapeutic use in vivo or ex vivo.


As used herein, the term “pharmaceutically acceptable carrier” refers to any of the standard pharmaceutical carriers, such as a phosphate buffered saline solution, water, emulsions (e.g., such as an oil/water or water/oil emulsions), and various types of wetting agents. The compositions also can include stabilizers and preservatives. For examples of carriers, stabilizers and adjuvants. (See e.g., Martin, Remington's Pharmaceutical Sciences, 15th Ed., Mack Publ. Co., Easton, Pa. [1975]).


As used herein, the term “pharmaceutically acceptable salt” refers to any pharmaceutically acceptable salt (e.g., acid or base) of a compound of the present invention which, upon administration to a subject, is capable of providing a compound of this invention or an active metabolite or residue thereof. As is known to those of skill in the art, “salts” of the compounds of the present invention may be derived from inorganic or organic acids and bases. Examples of acids include, but are not limited to, hydrochloric, hydrobromic, sulfuric, nitric, perchloric, fumaric, maleic, phosphoric, glycolic, lactic, salicylic, succinic, toluene-p-sulfonic, tartaric, acetic, citric, methanesulfonic, ethanesulfonic, formic, benzoic, malonic, naphthalene-2-sulfonic, benzenesulfonic acid, and the like. Other acids, such as oxalic, while not in themselves pharmaceutically acceptable, may be employed in the preparation of salts useful as intermediates in obtaining the compounds of the invention and their pharmaceutically acceptable acid addition salts.


Examples of bases include, but are not limited to, alkali metals (e.g., sodium) hydroxides, alkaline earth metals (e.g., magnesium), hydroxides, ammonia, and compounds of formula NW4+, wherein W is C1-4 alkyl, and the like.


Examples of salts include, but are not limited to: acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, flucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, oxalate, palmoate, pectinate, persulfate, phenylpropionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate, tosylate, undecanoate, and the like. Other examples of salts include anions of the compounds of the present invention compounded with a suitable cation such as Na+, NH4+, and NW4+ (wherein W is a C1-4 alkyl group), and the like.


For therapeutic use, salts of the compounds of the present invention are contemplated as being pharmaceutically acceptable. However, salts of acids and bases that are non-pharmaceutically acceptable may also find use, for example, in the preparation or purification of a pharmaceutically acceptable compound.


As used herein, the term “modulate” refers to the activity of a compound (e.g., a compound of the present invention) to affect (e.g., to promote or retard) an aspect of cellular function, including, but not limited to, cell growth, proliferation, apoptosis, and the like.


Throughout the description, where compositions are described as having, including, or comprising specific components, or where processes and methods are described as having, including, or comprising specific steps, it is contemplated that, additionally, there are compositions of the present invention that consist essentially of, or consist of, the recited components, and that there are processes and methods according to the present invention that consist essentially of, or consist of, the recited processing steps.


As a general matter, compositions specifying a percentage are by weight unless otherwise specified. Further, if a variable is not accompanied by a definition, then the previous definition of the variable controls.


I. Modulators of F1F0-ATPase Activity


In some embodiments, the present invention regulates F1F0-ATPase activity (e.g., mitochondrial F1F0-ATPase activity) through the exposure of cells to compounds of the present invention. In some embodiments, the compounds inhibit ATP synthesis and ATP hydrolysis. The effect of the compounds can be measured by detecting any number of cellular changes. For example, mitochondrial F1F0-ATPase activity and/or cell death may be assayed as described herein and in the art. In some embodiments, cell lines are maintained under appropriate cell culturing conditions (e.g., gas (CO2), temperature and media) for an appropriate period of time to attain exponential proliferation without density dependent constraints. Cell number and or viability are measured using standard techniques, such as trypan blue exclusion/hemo-cytometry, or an Alamar Blue or MTT dye conversion assay. Alternatively, the cell may be analyzed for the expression of genes or gene products associated with aberrations in apoptosis or necrosis.


In some embodiments, exposing the compounds of the present invention to a cell induces apoptosis. In some embodiments, the present invention induces apoptosis or arrest of cell proliferation through interacting with the mitochondrial F1F0-ATPase. In some embodiments, the compounds of the present invention inhibit mitochondrial F1F0-ATPase activity through binding the OSCP. In some embodiments, the compounds of the present invention bind the junction between the OSCP and the F1 subunit of the mitochondrial F1F0-ATPase. In some embodiments, the compounds of the present invention bind the F1 subunit. In certain embodiments, screening assays of the present invention permit detection of binding partners of the OSCP, F1, or OSCP/F1 junction.


In some embodiments, exposing a compound of the present invention to a cell induces apoptosis. In some embodiments, the present invention causes an initial increase in cellular ROS levels (e.g., O2). In further embodiments, exposure of the compounds of the present invention to a cell causes an increase in cellular O2 levels. In still further embodiments, the increase in cellular O2 levels resulting from the compounds of the present invention is detectable with a redox-sensitive agent that reacts specifically with O2 (e.g., dihydroethidium (DHE)).


In some embodiments, the present invention causes a collapse of a cell's mitochondrial transmembrane potential (ΔΨm). In some embodiments, a collapse of a cell's mitochondrial ΔΨm resulting from the present invention is detectable with a mitochondria-selective potentiometric probe (e.g., 3,3′-Dihexyloxacarbocyanine iodide, DiOC6). In further embodiments, a collapse of a cell's mitochondrial ΔΨm resulting from the present invention occurs after an initial increase in cellular O2 levels.


In some embodiments, the present invention enables caspase activation. In other embodiments, the present invention causes the release of cytochrome c from mitochondria. In further embodiments, the present invention alters cystolic cytochrome c levels. In still other embodiments, altered cystolic cytochrome c levels resulting from the present invention are detectable by immunoblotting cytosolic fractions. In some embodiments, diminished cystolic cytochrome c levels resulting from the present invention are detectable after a period of time (e.g., 10 hours). In further preferred embodiments, diminished cystolic cytochrome c levels resulting from the present invention are detectable after 5 hours.


In other embodiments, the present invention causes the opening of the mitochondrial permeability transition pore. In some embodiments, the cellular release of cytochrome c resulting from the present invention is consistent with a collapse of mitochondrial ΔΨm. In still further preferred embodiments, the present invention causes an increase in cellular O2 levels after a mitochondrial ΔΨm collapse and a release of cytochrome c. In further preferred embodiments, a rise in cellular O2 levels is caused by a mitochondrial ΔΨm collapse and release of cytochrome c resulting from the present invention.


In other embodiments, the present invention causes cellular caspase activation. In some embodiments, caspase activation resulting from the present invention is measurable with a pan-caspase sensitive fluorescent substrate (e.g., FAM-VAD-fmk). In still further embodiments, caspase activation resulting from the present invention tracks with a collapse of mitochondrial ΔΨm. In other embodiments, the present invention causes an appearance of hypodiploid DNA. In some embodiments, an appearance of hypodiploid DNA resulting from the present invention is slightly delayed with respect to caspase activation.


In some embodiments, the molecular target for the present invention is found within mitochondria. In further embodiments, the molecular target of the present invention involves the mitochondrial ATPase. The primary sources of cellular ROS include redox enzymes and the mitochondrial respiratory chain (hereinafter MRC). In some embodiments, cytochrome c oxidase (complex IV of the MRC) inhibitors (e.g., NaN3) preclude a present invention dependent increase in cellular ROS levels. In other preferred embodiments, the ubiquinol-cytochrome c reductase component of MRC complex III inhibitors (e.g., FK506) preclude a present invention dependent increase in ROS levels.


II. Pyrazolyl Guanidine Compounds


One aspect of the invention provides a family of compounds represented by Formula I:




embedded image


including all stereoisomers, geometric isomers, and tautomers; or a pharmaceutically acceptable salt or solvate of any of the foregoing; wherein:


A1 is phenylene or a six-membered heteroarylene;


A2 is




embedded image


R1 represents independently for each occurrence halogen, haloalkyl, alkyl, cycloalkyl, heterocycloalkyl, hydroxyl, C1-C6alkoxy, cyano, —CO2R8, —C(O)R9, —S(O)R9, —SO2R9, —SO2N(R10)(R11)C(O)N(R10)(R11), N(R10)(R11), or —N(R8)C(O)(R9);


R2 is hydrogen or alkyl;


R3 is aryl, aralkyl, cycloalkyl, —(C(R8)2)m-cycloalkyl, heteroaryl, heteroaralkyl, heterocycloalkyl, —(C(R8)2)m-heterocycloalkyl, alkyl, haloalkyl, hydroxyalkyl, —(C(R8)2)m-alkoxyl, —(C(R8)2)m—O—(C(R8)2)m-alkoxyl, or —(C(R8)2)m—CN, wherein said aryl, aralkyl, cycloalkyl, heteroaryl, heteroaralkyl, and heterocycloalkyl are each optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, hydroxyl, alkyl, cycloalkyl, hydroxyalkyl, C1-C6alkoxy, cyano, and —C1-C6alkylene-CO2R8;


R4 is hydrogen, alkyl, or —C(O)R9; or R3 and R4 are taken together with the nitrogen atom to which they are attached to form a 3 to 7 membered heterocyclic ring optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, hydroxyl, alkyl, cycloalkyl, and C1-C6alkoxy;


R5 is hydrogen or alkyl;


R6 is alkyl, cycloalkyl, haloalkyl, cyano, aryl, aralkyl, heteroaryl, heteroaralkyl, —CO2R8, or —C(O)N(R10)(R11), wherein said cycloalkyl, aryl, aralkyl, heteroaryl, and heteroaralkyl are each optionally substituted with 1 or 2 substituents independently selected from the group consisting of halogen, haloalkyl, hydroxyl, alkyl, hydroxyalkyl, C1-C6alkoxy, —O-aralkyl, and cyano;


R7 is hydrogen, halogen, alkyl, or haloalkyl;


R8 represents independently for each occurrence hydrogen, alkyl, or cycloalkyl; or two occurrences of R8 attached to the same carbon atom are taken together with said carbon atom to form a saturated carbocylic ring;


R9 represents independently for each occurrence alkyl or cycloalkyl;


R10 and R11 each represent independently for each occurrence hydrogen, alkyl, or cycloalkyl; or R10 and R11 are taken together with the nitrogen atom to which they are attached to form a 3 to 7 membered heterocyclic ring optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, hydroxyl, alkyl, cycloalkyl, and C1-C6alkoxy;


n is 0, 1, 2, or 3; and


m is 1, 2, 3, 4, or 5.


Definitions of the variables in Formula I above encompass multiple chemical groups. The application contemplates embodiments where, for example, i) the definition of a variable is a single chemical group selected from those chemical groups set forth above, ii) the definition is a collection of two or more of the chemical groups selected from those set forth above, and iii) the compound is defined by a combination of variables in which the variables are defined by (i) or (ii), e.g., such as where A1 is phenylene, R1 is halogen or haloalkyl, R2 is hydrogen, and R4 is hydrogen.


In certain embodiments, A1 is phenylene. In certain embodiments, A1 is a six-membered heteroarylene, such as pyridinylene or pyrimidinylene. In certain embodiments, A1 is pyridinylene.


In certain embodiments, A2 is




embedded image



In certain embodiments, A2 is




embedded image


In certain embodiments, R1 is halogen or haloalkyl. In certain embodiments, R1 is chloro, fluoro, or trifluoromethyl.


In certain embodiments, R2 is hydrogen. In certain embodiments, R2 is alkyl, such as methyl or ethyl. In certain embodiments, R4 is hydrogen. In certain embodiments, R4 is alkyl, such as methyl or ethyl. In certain embodiments, R2 and R4 are hydrogen. In certain embodiments, R4 is —C(O)R7. In certain embodiments, R2 and R4 are hydrogen.


In certain embodiments, R3 is alkyl or cycloalkyl. In certain embodiments, R3 is —(C(R8)2)m-alkoxyl. In certain embodiments, R3 is aryl or aralkyl, each of which is optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, alkyl, and cycloalkyl. In certain embodiments, R3 is phenyl optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, alkyl, and cycloalkyl. In certain embodiments, R3 is phenyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of chloro, fluoro, trifluoromethyl, cyclopropyl, and (C1-C4)alkyl. In certain embodiments, R3 is phenyl substituted with 1 or 2 substituents independently selected from the group consisting of chloro, fluoro, and trifluoromethyl.


In certain embodiments, R3 is benzyl optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, alkyl, and cycloalkyl. In certain embodiments, R3 is benzyl substituted with 1 or 2 substituents independently selected from the group consisting of chloro, fluoro, and trifluoromethyl. In certain embodiments, R3 is benzyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of chloro, fluoro, trifluoromethyl, cyclopropyl, and (C1-C4)alkyl.


In certain embodiments, R3 is alkyl, hydroxyalkyl, or cycloalkyl, wherein said cycloalkyl is optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, and hydroxyl. In certain embodiments, R3 is alkyl or cycloalkyl, wherein said cycloalkyl is optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, hydroxyl, and alkyl. In certain embodiments, R3 is heteroaryl or heteroaralkyl, wherein said heteroaryl and heteroaralkyl are each optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, and alkyl. In certain embodiments, R3 is haloalkyl.


In certain embodiments, R5 is hydrogen. In certain embodiments, R5 is methyl.


In certain embodiments, R6 is alkyl, haloalkyl, cyano, or aryl, wherein said aryl is optionally substituted with 1 or 2 substituents independently selected from the group consisting of halogen, haloalkyl, hydroxyl, and alkyl. In certain embodiments, R6 is alkyl, haloalkyl, cyano, or aryl, wherein said aryl is optionally substituted with 1 or 2 substituents independently selected from the group consisting of halogen, haloalkyl, and alkyl. In certain embodiments, R6 is haloalkyl. In certain embodiments, R6 is trifluoromethyl. In certain embodiments, R6 is phenyl optionally substituted with 1 or 2 substituents independently selected from the group consisting of chloro, fluoro, and hydroxyl. In certain embodiments, R6 is phenyl optionally substituted with 1 or 2 substituents independently selected from the group consisting of chloro and fluoro.


In certain embodiments, R7 is hydrogen. In certain embodiments, R7 is trifluoromethyl.


In certain embodiments, R8 represents independently for each occurrence hydrogen or methyl. In certain embodiments, R8 is hydrogen.


In certain embodiments, R9 is alkyl, such as methyl or ethyl.


In certain embodiments, R10 represents independently for each occurrence hydrogen or alkyl. In certain embodiments, R11 represents independently for each occurrence hydrogen or alkyl.


In certain embodiments, n is 1 or 2. In certain embodiments, n is 1. In certain embodiments, n is 2. In certain embodiments, m is 1 or 2.


Another aspect of the invention provides a family of compounds represented by Formula I-A:




embedded image


including all stereoisomers, geometric isomers, and tautomers; or a pharmaceutically acceptable salt or solvate of any of the foregoing; wherein:


A1 is phenylene or a six-membered heteroarylene;


A2 is




embedded image


R1 represents independently for each occurrence halogen, alkyl, haloalkyl, hydroxyl, C1-C6alkoxy, or cyano;


R2 is hydrogen or alkyl;


R3 is aryl, aralkyl, cycloalkyl, —(C(R8)2)m-cycloalkyl, heteroaryl, heteroaralkyl, heterocycloalkyl, —(C(R8)2)m-heterocycloalkyl, alkyl, haloalkyl, hydroxyalkyl, —(C(R8)2)m-alkoxyl, or —(C(R8)2)m—CN, wherein said aryl, aralkyl, cycloalkyl, heteroaryl, heteroaralkyl, and heterocycloalkyl are each optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, hydroxyl, alkyl, cycloalkyl, C1-C6alkoxy, and cyano;


R4 is hydrogen, alkyl, or —C(O)R9; or R3 and R4 are taken together with the nitrogen atom to which they are attached to form a 3 to 7 membered heterocyclic ring optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, hydroxyl, alkyl, cycloalkyl, and C1-C6alkoxy;


R5 is hydrogen or alkyl;


R6 is alkyl, cycloalkyl, haloalkyl, cyano, aryl, aralkyl, heteroaryl, or heteroaralkyl, wherein said cycloalkyl, aryl, aralkyl, heteroaryl, and heteroaralkyl are each optionally substituted with 1 or 2 substituents independently selected from the group consisting of halogen, haloalkyl, hydroxyl, alkyl, C1-C6alkoxy, and cyano;


R7 is hydrogen, alkyl, or haloalkyl;


R8 represents independently for each occurrence hydrogen, alkyl, or cycloalkyl;


R9 represents independently for each occurrence alkyl or cycloalkyl;


n is 0, 1, 2, or 3; and


m is 1, 2, 3, 4, or 5.


Definitions of the variables in Formula I-A above encompass multiple chemical groups. The application contemplates embodiments where, for example, i) the definition of a variable is a single chemical group selected from those chemical groups set forth above, ii) the definition is a collection of two or more of the chemical groups selected from those set forth above, and iii) the compound is defined by a combination of variables in which the variables are defined by (i) or (ii), e.g., such as where A1 is phenylene, R1 is halogen or haloalkyl, R2 is hydrogen, and R4 is hydrogen.


In certain embodiments, the compound is a compound of Formula I-A wherein A1 is phenylene. In certain embodiments, A1 is a six-membered heteroarylene, such as pyridinylene or pyrimidinylene. In certain embodiments, A1 is pyridinylene.




embedded image


In certain embodiments, A2 is




embedded image



In certain embodiments, A2 is


In certain embodiments, R1 is halogen or haloalkyl. In certain embodiments, R1 is chloro, fluoro, or trifluoromethyl.


In certain embodiments, R2 is hydrogen. In certain embodiments, R2 is alkyl, such as methyl or ethyl. In certain embodiments, R4 is hydrogen. In certain embodiments, R4 is alkyl, such as methyl or ethyl. In certain embodiments, R2 and R4 are hydrogen. In certain embodiments, R4 is —C(O)R7. In certain embodiments, R2 and R4 are hydrogen.


In certain embodiments, R3 is aryl or aralkyl, each of which is optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, alkyl, and cycloalkyl. In certain embodiments, R3 is phenyl optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, alkyl, and cycloalkyl. In certain embodiments, R3 is phenyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of chloro, fluoro, trifluoromethyl, cyclopropyl, and (C1-C4)alkyl. In certain embodiments, R3 is phenyl substituted with 1 or 2 substituents independently selected from the group consisting of chloro, fluoro, and trifluoromethyl.


In certain embodiments, R3 is benzyl optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, alkyl, and cycloalkyl. In certain embodiments, R3 is benzyl substituted with 1 or 2 substituents independently selected from the group consisting of chloro, fluoro, and trifluoromethyl. In certain embodiments, R3 is benzyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of chloro, fluoro, trifluoromethyl, cyclopropyl, and (C1-C4)alkyl.


In certain embodiments, R3 is alkyl, hydroxyalkyl, or cycloalkyl, wherein said cycloalkyl is optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, and hydroxyl. In certain embodiments, R3 is alkyl or cycloalkyl, wherein said cycloalkyl is optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, hydroxyl, and alkyl. In certain embodiments, R3 is heteroaryl or heteroaralkyl, wherein said heteroaryl and heteroaralkyl are each optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, and alkyl. In certain embodiments, R3 is haloalkyl.


In certain embodiments, R5 is hydrogen. In certain embodiments, R5 is methyl.


In certain embodiments, R6 is alkyl, haloalkyl, cyano, or aryl, wherein said aryl is optionally substituted with 1 or 2 substituents independently selected from the group consisting of halogen, haloalkyl, and alkyl. In certain embodiments, R6 is haloalkyl. In certain embodiments, R6 is trifluoromethyl. In certain embodiments, R6 is phenyl optionally substituted with 1 or 2 substituents independently selected from the group consisting of chloro and fluoro.


In certain embodiments, R7 is hydrogen. In certain embodiments, R7 is trifluoromethyl.


In certain embodiments, R8 represents independently for each occurrence hydrogen or methyl. In certain embodiments, R8 is hydrogen.


In certain embodiments, R9 is alkyl, such as methyl or ethyl.


In certain embodiments, n is 1 or 2. In certain embodiments, n is 1. In certain embodiments, n is 2. In certain embodiments, m is 1 or 2.


Another aspect of the invention provides a family of compounds represented by Formula I-A1:




embedded image


including all stereoisomers, geometric isomers, and tautomers; or a pharmaceutically acceptable salt or solvate of any of the foregoing; wherein:


R1 and R2 each represent independently for each occurrence hydrogen, chloro, fluoro, or —CF3;


R3 is alkyl, cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, or C1-C6alkylene-C1-C6alkoxy, wherein said cycloalkyl, aryl, aralkyl, heteroaryl, and heteroaralkyl are each optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, hydroxyl, alkyl, C1-C6alkoxy, and cyano; and


R4 is alkyl, cycloalkyl, haloalkyl, cyano, aryl, aralkyl, heteroaryl, or heteroaralkyl, wherein said cycloalkyl, aryl, aralkyl, heteroaryl, and heteroaralkyl are each optionally substituted with 1 or 2 substituents independently selected from the group consisting of halogen, haloalkyl, hydroxyl, alkyl, C1-C6alkoxy, and cyano.


Definitions of the variables in Formula I-A1 above encompass multiple chemical groups. The application contemplates embodiments where, for example, i) the definition of a variable is a single chemical group selected from those chemical groups set forth above, ii) the definition is a collection of two or more of the chemical groups selected from those set forth above, and iii) the compound is defined by a combination of variables in which the variables are defined by (i) or (ii), e.g., such as where R1 is chloro or fluoro; R3 is aryl optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, and alkyl; and R4 is haloalkyl.


Accordingly, in certain embodiments, R1 and R2 are chloro or fluoro.


In certain embodiments, R3 is alkyl or cycloalkyl. In certain embodiments, R3 is C1-C6alkylene-C1-C6alkoxy. In certain embodiments, R3 is aryl, aralkyl, heteroaryl, heteroaralkyl, or C1-C6alkylene-C1-C6alkoxy, wherein said aryl, aralkyl, heteroaryl, and heteroaralkyl are each optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, hydroxyl, alkyl, C1-C6alkoxy, and cyano. In certain embodiments, R3 is aryl or aralkyl, each of which is optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, and alkyl. In certain embodiments, R3 is phenyl optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, and alkyl. In certain embodiments, R3 is phenyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of chloro, fluoro, trifluoromethyl, cyclopropyl, and (C1-C4)alkyl. In certain embodiments, R3 is phenyl substituted with 1 or 2 substituents independently selected from the group consisting of chloro, fluoro, and trifluoromethyl.


In certain embodiments, R3 is benzyl optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, and alkyl. In certain embodiments, R3 is benzyl substituted with 1 or 2 substituents independently selected from the group consisting of chloro, fluoro, and trifluoromethyl. In certain embodiments, R3 is benzyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of chloro, fluoro, trifluoromethyl, cyclopropyl, and (C1-C4)alkyl. In certain embodiments, R3 is alkyl or cycloalkyl, wherein said cycloalkyl is optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, and alkyl.


In certain embodiments, R3 is heteroaryl or heteroaralkyl, wherein said heteroaryl and heteroaralkyl are each optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, and alkyl. In certain embodiments, R3 is haloalkyl.


In certain embodiments, R4 is alkyl, haloalkyl, cyano, or aryl, wherein said aryl is optionally substituted with 1 or 2 substituents independently selected from the group consisting of halogen, haloalkyl, and alkyl. In certain embodiments, R4 is haloalkyl. In certain embodiments, R4 is trifluoromethyl. In certain embodiments, R4 is phenyl optionally substituted with 1 or 2 substituents independently selected from the group consisting of chloro, fluoro, and hydroxyl. In certain embodiments, R4 is phenyl optionally substituted with 1 or 2 substituents independently selected from the group consisting of chloro and fluoro.


Another aspect of the invention provides a family of compounds represented by Formula I-B:




embedded image


or a pharmaceutically acceptable salt thereof; wherein:


R1 and R2 each represent independently for each occurrence hydrogen, chloro, fluoro, or —CF3;


R3 is aryl, aralkyl, heteroaryl, or heteroaralkyl, wherein said aryl, aralkyl, heteroaryl, and heteroaralkyl are each optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, and alkyl; and


R4 is alkyl, cycloalkyl, haloalkyl, cyano, aryl, aralkyl, heteroaryl, or heteroaralkyl, wherein said cycloalkyl, aryl, aralkyl, heteroaryl, and heteroaralkyl are each optionally substituted with 1 or 2 substituents independently selected from the group consisting of halogen, haloalkyl, and alkyl.


Definitions of the variables in Formulae I-B above encompass multiple chemical groups. The application contemplates embodiments where, for example, i) the definition of a variable is a single chemical group selected from those chemical groups set forth above, ii) the definition is a collection of two or more of the chemical groups selected from those set forth above, and iii) the compound is defined by a combination of variables in which the variables are defined by (i) or (ii), e.g., such as where R1 is chloro or fluoro; R3 is aryl optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, and alkyl; and R4 is haloalkyl.


Accordingly, in certain embodiments, R1 and R2 are chloro or fluoro.


In certain embodiments, R3 is aryl or aralkyl, each of which is optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, and alkyl. In certain embodiments, R3 is phenyl optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, and alkyl. In certain embodiments, R3 is phenyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of chloro, fluoro, trifluoromethyl, cyclopropyl, and (C1-C4)alkyl. In certain embodiments, R3 is phenyl substituted with 1 or 2 substituents independently selected from the group consisting of chloro, fluoro, and trifluoromethyl.


In certain embodiments, R3 is benzyl optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, and alkyl. In certain embodiments, R3 is benzyl substituted with 1 or 2 substituents independently selected from the group consisting of chloro, fluoro, and trifluoromethyl. In certain embodiments, R3 is benzyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of chloro, fluoro, trifluoromethyl, cyclopropyl, and (C1-C4)alkyl. In certain embodiments, R3 is alkyl or cycloalkyl, wherein said cycloalkyl is optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, and alkyl.


In certain embodiments, R3 is heteroaryl or heteroaralkyl, wherein said heteroaryl and heteroaralkyl are each optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, and alkyl. In certain embodiments, R3 is haloalkyl.


In certain embodiments, R4 is alkyl, haloalkyl, cyano, or aryl, wherein said aryl is optionally substituted with 1 or 2 substituents independently selected from the group consisting of halogen, haloalkyl, and alkyl. In certain embodiments, R4 is haloalkyl. In certain embodiments, R4 is trifluoromethyl. In certain embodiments, R4 is phenyl optionally substituted with 1 or 2 substituents independently selected from the group consisting of chloro and fluoro.


Another aspect of the invention provides a family of compounds represented by Formula II:




embedded image


including all stereoisomers, geometric isomers, and tautomers; or a pharmaceutically acceptable salt or solvate of any of the foregoing; wherein:


A1 is phenylene or a six-membered heteroarylene;


X is —[C(R5)2]m or —[C(R5)2]p—C(O)—[C(R5)2]p;


R1 represents independently for each occurrence halogen, haloalkyl, alkyl, cycloalkyl, heterocycloalkyl, hydroxyl, C1-C6alkoxy, cyano, —CO2R6, —C(O)R7, —S(O)R7, —SO2R7, —SO2N(R8)(R9), —C(O)N(R8)(R9), —N(R8)(R9), or —N(R6)C(O)(R7);


R2 is hydrogen or alkyl;


R3 is hydrogen, aryl, aralkyl, cycloalkyl, —(C(R6)2)m-cycloalkyl, heteroaryl, heteroaralkyl, heterocycloalkyl, —(C(R6)2)m-heterocycloalkyl, alkyl, haloalkyl, hydroxyalkyl, —(C(R6)2)m-alkoxyl, —(C(R6)2)m—O—(C(R6)2)m-alkoxyl, or —(C(R6)2)m—CN, wherein said aryl, aralkyl, cycloalkyl, heteroaryl, heteroaralkyl, and heterocycloalkyl are each optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, hydroxyl, alkyl, cycloalkyl, hydroxyalkyl, C1-C6alkoxy, cyano, and —C1-C6alkylene-CO2R6; or R3 and a single occurrence of R5 are taken together with the atoms to which they are attached to form a saturated heterocyclic ring;


R4 is alkyl, cycloalkyl, haloalkyl, cyano, aryl, aralkyl, heteroaryl, heteroaralkyl, —CO2R6, or —C(O)N(R8)(R9), wherein said cycloalkyl, aryl, aralkyl, heteroaryl, and heteroaralkyl are each optionally substituted with 1 or 2 substituents independently selected from the group consisting of halogen, haloalkyl, hydroxyl, alkyl, hydroxyalkyl, C1-C6alkoxy, —O-aralkyl, and cyano;


R5 represents independently for each occurrence hydrogen or alkyl; or R3 and a single occurrence of R5 are taken together with the atoms to which they are attached to form a saturated heterocyclic ring;


R6 represents independently for each occurrence hydrogen, alkyl, or cycloalkyl; or two occurrences of R6 attached to the same carbon atom are taken together with said carbon atom to form a saturated carbocylic ring;


R7 represents independently for each occurrence alkyl or cycloalkyl;


R8 and R9 each represent independently for each occurrence hydrogen, alkyl, or cycloalkyl; or R8 and R9 are taken together with the nitrogen atom to which they are attached to form a 3 to 7 membered heterocyclic ring optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, hydroxyl, alkyl, cycloalkyl, and C1-C6alkoxy;


n is 0, 1, 2, or 3;


m represents independently for each occurrence 1, 2, 3, 4, or 5; and


p represents independently for each occurrence 0, 1, or 2.


Definitions of the variables in Formulae II above encompass multiple chemical groups. The application contemplates embodiments where, for example, i) the definition of a variable is a single chemical group selected from those chemical groups set forth above, ii) the definition is a collection of two or more of the chemical groups selected from those set forth above, and iii) the compound is defined by a combination of variables in which the variables are defined by (i) or (ii), e.g., such as where R1 is halogen or haloalkyl; R3 is aryl optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, and alkyl; and R4 is haloalkyl.


Accordingly, in certain embodiments, A1 is phenylene.


In certain embodiments, X is —[C(R5)2]m. In certain other embodiments, X is —C(O)—.


In certain embodiments, R1 is halogen.


In certain embodiments, R3 is hydrogen or aralkyl optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, hydroxyl, and alkyl.


In certain embodiments, R4 is alkyl, haloalkyl, or aryl, wherein said aryl is optionally substituted with 1 or 2 substituents independently selected from the group consisting of halogen, haloalkyl, and alkyl. In certain embodiments, R4 is trifluoromethyl. In certain embodiments, R4 is phenyl optionally substituted with 1 or 2 substituents independently selected from the group consisting of chloro and fluoro.


In certain embodiments, R5 is hydrogen.


In certain embodiments, n is 1 or 2.


In certain embodiments, m is 0.


Another aspect of the invention provides a family of compounds represented by Formula II-A:




embedded image


including all stereoisomers, geometric isomers, and tautomers; or a pharmaceutically acceptable salt or solvate of any of the foregoing; wherein:


A1 is phenylene or a six-membered heteroarylene;


X is —[C(R5)2]m or —[C(R5)2]p—C(O)—[C(R5)2]p;


R1 represents independently for each occurrence halogen, haloalkyl, alkyl, cycloalkyl, heterocycloalkyl, hydroxyl, C1-C6alkoxy, cyano, —CO2R6, —C(O)R7, —SO2R7, —SO2N(R8)(R9), —C(O)N(R8)(R9), —N(R8)(R9), or —N(R6)C(O)(R7);


R2 is hydrogen or alkyl;


R3 is hydrogen, aryl, aralkyl, cycloalkyl, —(C(R6)2)m-cycloalkyl, heteroaryl, heteroaralkyl, heterocycloalkyl, —(C(R6)2)m-heterocycloalkyl, alkyl, haloalkyl, hydroxyalkyl, —(C(R6)2)m-alkoxyl, —(C(R6)2)m—O—(C(R6)2)m-alkoxyl, or —(C(R6)2)m—CN, wherein said aryl, aralkyl, cycloalkyl, heteroaryl, heteroaralkyl, and heterocycloalkyl are each optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, hydroxyl, alkyl, cycloalkyl, hydroxyalkyl, C1-C6alkoxy, cyano, and —C1-C6alkylene-CO2R6; or R3 and a single occurrence of R5 are taken together with the atoms to which they are attached to form a saturated heterocyclic ring;


R4 is alkyl, cycloalkyl, haloalkyl, cyano, aryl, aralkyl, heteroaryl, heteroaralkyl, —CO2R6, or —C(O)N(R8)(R9), wherein said cycloalkyl, aryl, aralkyl, heteroaryl, and heteroaralkyl are each optionally substituted with 1 or 2 substituents independently selected from the group consisting of halogen, haloalkyl, hydroxyl, alkyl, hydroxyalkyl, C1-C6alkoxy, and cyano;


R5 represents independently for each occurrence hydrogen or alkyl; or R3 and a single occurrence of R5 are taken together with the atoms to which they are attached to form a saturated heterocyclic ring;


R6 represents independently for each occurrence hydrogen, alkyl, or cycloalkyl; or two occurrences of R6 attached to the same carbon atom are taken together with said carbon atom to form a saturated carbocylic ring;


R7 represents independently for each occurrence alkyl or cycloalkyl;


R8 and R9 each represent independently for each occurrence hydrogen, alkyl, or cycloalkyl; or R8 and R9 are taken together with the nitrogen atom to which they are attached to form a 3 to 7 membered heterocyclic ring optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, hydroxyl, alkyl, cycloalkyl, and C1-C6alkoxy;


n is 0, 1, 2, or 3;


m represents independently for each occurrence 1, 2, 3, 4, or 5; and


p represents independently for each occurrence 0, 1, or 2.


Definitions of the variables in Formulae II-A above encompass multiple chemical groups. The application contemplates embodiments where, for example, i) the definition of a variable is a single chemical group selected from those chemical groups set forth above, ii) the definition is a collection of two or more of the chemical groups selected from those set forth above, and iii) the compound is defined by a combination of variables in which the variables are defined by (i) or (ii), e.g., such as where R1 is halogen or haloalkyl; R3 is aryl optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, and alkyl; and R4 is haloalkyl. In certain other embodiments, variables A1, X, R1 through R9, n, m, and/or p for Formula II-A are as defined by one of the further embodiments specified above in connection with Formula II.


Further, the description above describes multiple embodiments providing definitions for variables used herein. The application specifically contemplates all combinations of such embodiments. For example, the application contemplates particular combinations of embodiments relating to Formula I-A, such as where A1 is phenylene, R1 is halogen or haloalkyl, and n is 1. Further, for example, the application contemplates particular combinations of embodiments relating to Formula I-A1, such as where R1 and R2 are independently chloro or fluoro, and R3 is phenyl substituted with 1 or 2 substituents independently selected from the group consisting of chloro, fluoro, and trifluoromethyl.


In certain embodiments, the compound is one of the compounds listed in any one of Tables 1-4 below, or a pharmaceutically acceptable salt thereof. In certain other embodiments, the compound is one of the compounds listed in Table 1 below, or a pharmaceutically acceptable salt thereof. It is understood that the foregoing compounds can be combined with a pharmaceutically acceptable carrier to produce a pharmaceutical composition.









TABLE 1









embedded image
















No.
A
X
Y
Z





I-1 
3-chlorophenyl


embedded image


H
3-chlorophenyl





I-2 
4-chlorophenyl


embedded image


H
4-chlorophenyl





I-3 
3-fluorophenyl


embedded image


H
3,5-dichlorophenyl





I-4 
4-fluorophenyl


embedded image


H
3-chloro-4-fluorophenyl





I-5 
3,4-dichlorophenyl


embedded image


H
3-chloro-5-fluorophenyl





I-6 
3,4-difluorophenyl


embedded image


H
3-trifluoromethylphenyl





I-7 
4-trifluoromethylphenyl


embedded image


H
3-cyclopropylphenyl





I-8 
3-chlorophenyl


embedded image


H
3-tert-butylphenyl





I-9 
4-chlorophenyl


embedded image


H
2-cyclopropylphenyl





I-10
3-fluorophenyl


embedded image


H
2-cyclopropyl-4- fluorophenyl





I-11
4-fluorophenyl


embedded image


H
3-chlorobenzyl





I-12
3,4-dichlorophenyl


embedded image


H
4-chlorobenzyl





I-13
3,4-difluorophenyl


embedded image


H
3-fluorobenzyl





I-14
4-trifluoromethylphenyl


embedded image


H
4-fluorobenzyl





I-15
3-chlorophenyl


embedded image


H
3-chloro-5-fluorobenzyl





I-16
4-chlorophenyl


embedded image


H
3,5-dichlorobenzyl





I-17
3-fluorophenyl


embedded image


H
3,5-difluorobenzyl





I-18
4-fluorophenyl


embedded image


H
3-cyclopropylbenzyl





I-19
3,4-dichlorophenyl


embedded image


H
3-trifluoromethylbenzyl





I-20
3,4-difluorophenyl


embedded image


H
4-trifluoromethylbenzyl





I-21
4-trifluoromethylphenyl


embedded image


H
cyclopropyl





I-22
3-chlorophenyl


embedded image


H
cyclopentyl





I-23
4-chlorophenyl


embedded image


H
cyclohexyl





I-24
3-fluorophenyl


embedded image


H
4-methylcyclohexyl





I-25
4-fluorophenyl


embedded image


H
ethyl





I-26
3,4-dichlorophenyl


embedded image


H
tert-butyl





I-27
3,4-difluorophenyl


embedded image


H
2,2,2-trifluoroethyl





I-28
4-trifluoromethylphenyl


embedded image


H
1-methylcyclobutyl





I-29
3-chlorophenyl


embedded image


H
3-chloro-4-fluorophenyl





I-30
4-chlorophenyl


embedded image


H
3-chloro-5-fluorophenyl





I-31
3-fluorophenyl


embedded image


H
3-chlorophenyl





I-32
4-fluorophenyl


embedded image


H
4-chlorophenyl





I-33
3,4-dichlorophenyl


embedded image


H
3,5-dichlorophenyl





I-34
3,4-difluorophenyl


embedded image


H
3-chloro-4-fluorophenyl





I-35
4-trifluoromethylphenyl


embedded image


H
3-chloro-5-fluorophenyl





I-36
3-chlorophenyl


embedded image


H
3-trifluoromethylphenyl





I-37
4-chlorophenyl


embedded image


H
3-chlorophenyl





I-38
3-fluorophenyl


embedded image


H
4-chlorophenyl





I-39
4-fluorophenyl


embedded image


H
3,5-dichlorophenyl





I-40
3-chlorophenyl


embedded image


—C(O)Me
3-chlorophenyl





I-41
4-chlorophenyl


embedded image


—C(O)Me
4-chlorophenyl





I-42
3-trifluorophenyl


embedded image


—C(O)Me
3-chloro-4-fluorophenyl





I-43
3-fluorophenyl


embedded image


—CH3
3-chlorophenyl





I-44
4-fluorophenyl


embedded image


—CH3
4-chlorophenyl





I-45
3-trifluorophenyl


embedded image


—CH3
3-chloro-4-fluorophenyl





I-46


embedded image




embedded image


H
4-chlorophenyl





I-47


embedded image




embedded image


H
3-chloro-4-fluorophenyl





I-48


embedded image




embedded image


H
4-chlorophenyl





I-49


embedded image




embedded image


H
3-chloro-4-fluorophenyl





I-50


embedded image




embedded image


H
4-chlorophenyl





I-51


embedded image




embedded image


H
3-chloro-4-fluorophenyl





I-52


embedded image




embedded image


H
4-chlorophenyl





I-53


embedded image




embedded image


H
3-chloro-4-fluorophenyl





I-54


embedded image




embedded image


H
4-chlorophenyl





I-55


embedded image




embedded image


H
3-chloro-4-fluorophenyl





I-56
4-trifluoromethylphenyl


embedded image


H
tert-butyl





I-57


embedded image




embedded image


H
tert-butyl





I-58


embedded image




embedded image


H
tert-butyl





I-59


embedded image




embedded image


H


embedded image







I-60


embedded image




embedded image


H
tert-butyl









In certain other embodiments, the compound is one of the compounds listed in Examples 1-18, or a pharmaceutically acceptable salt of said compounds. It is understood that the foregoing compounds can be combined with a pharmaceutically acceptable carrier to produce a pharmaceutical composition.


Exemplary methods for preparing compounds described herein are provided in the examples. Further exemplary procedures for making various compounds described herein are described in Scheme 1 below. The synthetic scheme is provided for the purpose of illustrating the invention, but not for limiting the scope or spirit of the invention. Starting materials can be obtained from commercial sources or be prepared based on procedures described in the literature.


The synthetic route in Scheme 1 involves reacting an optionally substituted benzoylchloride with potassium thiocyanate to form an acyl isothiocyanate intermediate. This acyl isothiocyanate intermediate is treated with an amino-pyrazole compound to form an acyl thiourea. The acyl thiourea is reacted with 1-ethyl-2′,2′-dimethylaminopropylcarbodiimide (EDCI) and a second amine compound (e.g., an aniline or benzylamine) to form the desired pyrazolyl guanidine compound. To the extent either the amino-pyrazole or the second amine compound contain a further functional group that may undergo reaction under the conditions illustrated in Scheme 1, standard protecting group strategies for protection and deprotection may be employed. See, for example, Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 2nd ed.; Wiley: New York, 1991. It understood that the optionally substituted benzoylchloride starting material can be replaced with a heteroaryl acid chloride (i.e., nicotinoyl chloride) to prepare pyrazolyl guanidines containing a —C(O)-heteroaryl moiety.




embedded image



III. Therapeutic Applications of Pyrazolyl Guanidine Compounds


It is contemplated that the guanidine compounds described herein, such as the guanidine compounds of Formula I, I-A, I-A1, I-B, II and II-A, provide therapeutic benefits to patients suffering from any one or more of a number of conditions, e.g., diseases characterized by dysregulation of F1F0-ATPase activity, diseases characterized by dysregulation of necrosis and/or apoptosis processes in a cell or tissue, disease characterized by aberrant cell growth and/or hyperproliferation. The compounds described herein can also be used to treat a variety of dysregulatory disorders related to cellular death as described elsewhere herein. Additionally, the compounds described herein can be used to inhibit ATP synthesis.


Accordingly, one aspect of the invention provides a method of treating a subject suffering from a medical disorder. The method comprises administering to the subject a therapeutically effective amount of one or more pyrazolyl guanidine compounds described herein, e.g., a compound of Formula I, I-A, I-A1, I-B, II, or II-A, as described in Section II above, in order to ameliorate a symptom of the disorder.


A large number of medical disorders can be treated using the guanidine compounds described herein. For example, the compounds described herein can be used to treat medical disorders characterized by dysregulation of necrosis and/or apoptosis processes in a cell or tissue, diseases characterized by aberrant cell growth and/or hyperproliferation, etc., or lupus, rheumatoid arthritis, psoriasis, graft-versus-host disease, Crohn's disease, inflammatory bowel disease, multiple sclerosis, cardiovascular disease, myeloma, lymphoma, cancer, and bacterial infection. In certain embodiments, the cancer is a solid tumor, leukemia, colon cancer, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, lung cancer, small cell lung cancer, non-small cell lung cancer, bladder cancer, stomach cancer, cervical cancer, testicular tumor, skin cancer, rectal cancer, thyroid cancer, kidney cancer, uterus cancer, espophagus cancer, liver cancer, an acoustic neuroma, oligodendroglioma, meningioma, melanoma, neuroblastoma, or retinoblastoma.


Although not wishing to be bound to a particular theory, it is believed that the compounds impart therapeutic benefit by modulating (e.g., inhibiting or promoting) the activity of the F1F0-ATPase complexes (e.g., mitochondrial F1F0-ATPase complexes) in affected cells or tissues. In some embodiments, the compositions of the present invention are used to treat immune/chronic inflammatory conditions (e.g., psoriasis, autoimmune disorders, organ-transplant rejection, and epidermal hyperplasia). In further embodiments, the compositions of the present invention are used in conjunction with stenosis therapy to treat compromised (e.g., occluded) vessels.


In certain embodiments, a composition comprising a guanidine compound is administered under conditions (e.g., timing, dose, co-administration with other agent, mode of administration, selection of subject, use of targeting agents, etc.) that maximize desired effects directed at the F1F0-ATPase.


In certain embodiments, the medical disorder is an immune disorder. In certain other embodiments, the medical disorder is an inflammatory disorder. In certain other embodiments, the medical disorder is an autoimmune disorder. In certain other embodiments, the medical disorder is rheumatoid arthritis, psoriasis, chronic graft-versus-host disease, acute graft-versus-host disease, Crohn's disease, inflammatory bowel disease, multiple sclerosis, systemic lupus erythematosus, Celiac Sprue, idiopathic thrombocytopenic thrombotic purpura, myasthenia gravis, Sjogren's syndrome, scleroderma, ulcerative colitis, asthma, uveitis, or epidermal hyperplasia.


In certain other embodiments, the medical disorder is cartilage inflammation, bone degradation, arthritis, juvenile arthritis, juvenile rheumatoid arthritis, pauciarticular juvenile rheumatoid arthritis, polyarticular juvenile rheumatoid arthritis, systemic onset juvenile rheumatoid arthritis, juvenile ankylosing spondylitis, juvenile enteropathic arthritis, juvenile reactive arthritis, juvenile Reter's Syndrome, SEA Syndrome, juvenile dermatomyositis, juvenile psoriatic arthritis, juvenile scleroderma, juvenile systemic lupus erythematosus, juvenile vasculitis, pauciarticular rheumatoid arthritis, polyarticular rheumatoid arthritis, systemic onset rheumatoid arthritis, ankylosing spondylitis, enteropathic arthritis, reactive arthritis, Reter's Syndrome, dermatomyositis, psoriatic arthritis, vasculitis, myolitis, polymyolitis, dermatomyolitis, osteoarthritis, polyarteritis nodossa, Wegener's granulomatosis, arteritis, polymyalgia rheumatica, sarcoidosis, sclerosis, primary biliary sclerosis, sclerosing cholangitis, dermatitis, atopic dermatitis, atherosclerosis, Still's disease, chronic obstructive pulmonary disease, Guillain-Barre disease, Type I diabetes mellitus, Graves' disease, Addison's disease, Raynaud's phenomenon, or autoimmune hepatitis. In certain embodiments, the psoriasis is plaque psoriasis, guttate psoriasis, inverse psoriasis, pustular psoriasis, or erythrodermic psoriasis.


In certain other embodiments, the medical disorder is Crohn's disease, inflammatory bowel disease, multiple sclerosis, graft-versus-host disease, lupus, rheumatoid arthritis, or psoriasis. In certain other embodiments, the medical disorder is cardiovascular disease, myeloma, lymphoma, or cancer. In certain other embodiments, the medical disorder is lupus, rheumatoid arthritis, psoriasis, graft-versus-host disease, myeloma, or lymphoma. In certain other embodiments, the medical disorder is cardiovascular disease or cancer. In certain other embodiments, the medical disorder is Crohn's disease, inflammatory bowel disease, or multiple sclerosis. In certain other embodiments, the medical disorder is graft-versus-host disease. In further embodiments, the medical disorder is a bacterial infection. In certain embodiments, the patient (or subject) is a human.


As indicated above, the guanidine compounds described herein can be used in the treatment of a bacterial infection. A variety of bacteria are contemplated to be susceptible to the guanidine compounds. Representative bacteria include Staphylococci species, e.g., S. aureus; Enterococci species, e.g., E. faecalis and E. faecium; Streptococci species, e.g., S. pyogenes and S. pneumoniae; Escherichia species, e.g., E. coli, including enterotoxigenic, enteropathogenic, enteroinvasive, enterohemorrhagic and enteroaggregative E. coli strains; Haemophilus species, e.g., H. influenza; and Moraxella species, e.g., M. catarrhalis. Other examples include Mycobacteria species, e.g., M. tuberculosis, M. avian-intracellulare, M. kansasii, M. Bovis, M. africanum, M. genavense, M. leprae, M. xenopi, M. simiae, M. scrofulaceum, M. malmoense, M. celatum, M. abscessus, M. chelonae, M. szulgai, M. gordonae, M. haemophilum, M. fortuni and M. marinum; Corynebacteria species, e.g., C. diphtheriae; Vibrio species, e.g., V. cholerae; Campylobacter species, e.g., C. jejuni; Helicobacter species, e.g., H. pylori; Pseudomonas species, e.g., P. aeruginosa; Legionella species, e.g., L. pneumophila; Treponema species, e.g., T. pallidum; Borrelia species, e.g., B. burgdorferi; Listeria species, e.g., L. monocytogenes; Bacillus species, e.g., B. cereus; Bordatella species, e.g., B. pertussis; Clostridium species, e.g., C. perfringens, C. tetani, C. difficile and C. botulinum; Neisseria species, e.g., N. meningitidis and N. gonorrhoeae; Chlamydia species, e.g., C. psittaci, C. pneumoniae and C. trachomatis; Rickettsia species, e.g., R. rickettsii and R. prowazekii; Shigella species, e.g., S. sonnei; Salmonella species, e.g., S. typhimurium; Yersinia species, e.g., Y. enterocolitica and Y. pseudotuberculosis; Klebsiella species, e.g., K. pneumoniae; Mycoplasma species, e.g., M. pneumoniae; and Trypanosoma brucei. In certain embodiments, the guanidine compounds described herein are used to treat a subject suffering from a bacterial infection selected from the group consisting of S. aureus, E. faecalis, E. faecium, S. pyogenes, S. pneumonia, and P. aeruginosa. In certain embodiments, the guanidine compounds described herein are used to treat a subject suffering from a Trypanosoma brucei infection.


The antibacterial activity of the compounds described herein may be evaluated using standard assays known in the art, such as the microbroth dilution minimum inhibition concentration (MIC) assay, as further described in National Committee for Clinical Laboratory


Standards. Performance Standards for Antimicrobial Susceptibility Testing; Fourteenth Informational Supplement. NCCLS document M100-S14 {ISBN 1-56238-516-X}. This assay may be used to determine the minimum concentration of a compound necessary to prevent visible bacterial growth in a solution. In general, the drug to be tested is serially diluted into wells, and aliquots of liquid bacterial culture are added. This mixture is incubated under appropriate conditions, and then tested for growth of the bacteria. Compounds with low or no antibiotic activity (a high MIC) will allow growth at high concentrations of compound, while compounds with high antibiotic activity will allow bacterial growth only at lower concentrations (a low MIC).


The assay uses stock bacterial culture conditions appropriate for the chosen strain of bacteria. Stock cultures from the permanent stock culture collection can be stored as frozen suspensions at −70° C. Cultures may be suspended in 10% skim milk (BD) prior to snap freezing in dry ice/ethanol and then placed in a −70° C. freezer. Cultures may be maintained on Tryptic Soy Agar containing 5% Sheep Blood at room temperature (20° C.), and each culture may be recovered from frozen form and transferred an additional time before MIC testing. Fresh plates are inoculated the day before testing, incubated overnight, and checked to confirm purity and identity.


The identity and purity of the cultures recovered from the stock culture can be confirmed to rule out the possibility of contamination. The identity of the strains may be confirmed by standard microbiological methods (See, e.g., Murray et al., Manual of Clinical Microbiology, Eighth Edition. ASM Press {ISBN 1-55581-255-4}). In general, cultures are streaked onto appropriate agar plates for visualization of purity, expected colony morphology, and hemolytic patterns. Gram stains can also be utilized. The identities are confirmed using a MicroScan WalkAway 40 SI Instrument (Dade Behring, West Sacramento, Calif.). This device utilizes an automated incubator, reader, and computer to assess for identification purposes the biochemical reactions carried out by each organism. The MicroScan WalkAway can also be used to determine a preliminary MIC, which may be confirmed using the method described below.


Frozen stock cultures may be used as the initial source of organisms for performing microbroth dilution minimum inhibition concentration (MIC) testing. Stock cultures are passed on their standard growth medium for at least 1 growth cycle (18-24 hours) prior to their use. Most bacteria may be prepared directly from agar plates in 10 mL aliquots of the appropriate broth medium. Bacterial cultures are adjusted to the opacity of a 0.5 McFarland Standard (optical density value of 0.28-0.33 on a Perkin-Elmer Lambda EZ150 Spectrophotometer, Wellesley, Mass., set at a wavelength of 600 nm). The adjusted cultures are then diluted 400 fold (0.25 mL inoculum+100 mL broth) in growth media to produce a starting suspension of approximately 5×105 colony forming units (CFU)/mL. Most bacterial strains may be tested in cation adjusted Mueller Hinton Broth (CAMHB).


Test compounds (“drugs”) are solubilized in a solvent suitable for the assay, such as DMSO. Drug stock solutions may be prepared on the day of testing. Microbroth dilution stock plates may be prepared in two dilution series, 64 to 0.06 μg drug/mL and 0.25 to 0.00025 μg drug/mL. For the high concentration series, 200 μL of stock solution (2 mg/mL) is added to duplicate rows of a 96-well microtiter plate. This is used as the first well in the dilution series. Serial two-fold decremental dilutions are made using a BioMek FX robot (Beckman Coulter Inc., Fullerton, Calif.) with 10 of the remaining 11 wells, each of which will contain 100 μL of the appropriate solvent/diluent. Row 12 contains solvent/diluent only and serves as the control. For the first well of the low concentration series, 200 μL of an 8 μg/mL stock are added to duplicate rows of a 96-well plate. Serial two-fold dilutions are made as described above.


Daughter 96-well plates may be spotted (3.2 μL/well) from the stock plates listed above using the BioMek FX robot and used immediately or frozen at −70° C. until use. Aerobic organisms are inoculated (100 μL volumes) into the thawed plates using the BioMek FX robot. The inoculated plates are be placed in stacks and covered with an empty plate. These plates are then incubated for 16 to 24 hours in ambient atmosphere according to CLSI guidelines (National Committee for Clinical Laboratory Standards, Methods for Dilution, Antimicrobial Tests for Bacteria that Grow Aerobically; Approved Standard-Sixth Edition. NCCLS document M7-A6 {ISBN 1-56238-486-4}).


After inoculation and incubation, the degree of bacterial growth can be estimated visually with the aid of a Test Reading Mirror (Dynex Technologies 220 16) in a darkened room with a single light shining directly through the top of the microbroth tray. The MIC is the lowest concentration of drug that prevents macroscopically visible growth under the conditions of the test.


Additionally, any one or more of the pyrazolyl guanidine compounds described herein can be used to treat a F1F0-ATP hydrolase associated disorder (e.g., myocardial infarction, ventricular hypertrophy, coronary artery disease, non-Q wave MI, congestive heart failure, cardiac arrhythmias, unstable angina, chronic stable angina, Prinzmetal's angina, high blood pressure, intermittent claudication, peripheral occlusive arterial disease, thrombotic or thromboembolic symptoms of thromboembolic stroke, venous thrombosis, arterial thrombosis, cerebral thrombosis, pulmonary embolism, cerebral embolism, thrombophilia, disseminated intravascular coagulation, restenosis, atrial fibrillation, ventricular enlargement, atherosclerotic vascular disease, atherosclerotic plaque rupture, atherosclerotic plaque formation, transplant atherosclerosis, vascular remodeling atherosclerosis, cancer, surgery, inflammation, systematic infection, artificial surfaces, interventional cardiology, immobility, medication, pregnancy and fetal loss, and diabetic complications comprising retinopathy, nephropathy and neuropathy) in a subject.


Combination Therapy


Additionally, the guanidine compounds described herein can be used in combination with at least one other therapeutic agent, such as Bz-423 (a benzodiazepine compound as described in U.S. Pat. Nos. 7,144,880 and 7,125,866, U.S. patent application Ser. Nos. 11/586,097, 11/585,492, 11/445,010, 11/324,419, 11/176,719, 11/110,228, 10/935,333, 10/886,450, 10/795,535, 10/634,114, 10/427,211, 10/217,878, and 09/767,283, and U.S. Provisional Patent Nos. 60/878,519, 60/812,270, 60/802,394, 60/732,045, 60/730,711, 60/704,102, 60/686,348, 60/641,040, 60/607,599, and 60/565,788), potassium channel openers, calcium channel blockers, sodium hydrogen exchanger inhibitors, antiarrhythmic agents, antiatherosclerotic agents, anticoagulants, antithrombotic agents, prothrombolytic agents, fibrinogen antagonists, diuretics, antihypertensive agents, ATPase inhibitors, mineralocorticoid receptor antagonists, phospodiesterase inhibitors, antidiabetic agents, anti-inflammatory agents, antioxidants, angiogenesis modulators, antiosteoporosis agents, hormone replacement therapies, hormone receptor modulators, oral contraceptives, antiobesity agents, antidepressants, antianxiety agents, antipsychotic agents, antiproliferative agents, antitumor agents, antiulcer and gastroesophageal reflux disease agents, growth hormone agents and/or growth hormone secretagogues, thyroid mimetics, anti-infective agents, antiviral agents, antibacterial agents, antifungal agents, cholesterol/lipid lowering agents and lipid profile therapies, and agents that mimic ischemic preconditioning and/or myocardial stunning, antiatherosclerotic agents, anticoagulants, antithrombotic agents, antihypertensive agents, antidiabetic agents, and antihypertensive agents selected from ACE inhibitors, AT-1 receptor antagonists, ET receptor antagonists, dual ET/AII receptor antagonists, vasopepsidase inhibitors, an antiplatelet agent selected from GPIIb/IIIa blockers, P2Y1 and P2Y12 antagonists, thromboxane receptor antagonists, or aspirin, along with a pharmaceutically-acceptable carrier or diluent in a pharmaceutical composition.


IV. Pharmaceutical Compositions, Formulations, and Exemplary Administration Routes and Dosing Considerations


Exemplary embodiments of various contemplated medicaments and pharmaceutical compositions are provided below.


A. Preparing Medicaments


Compounds of the present invention are useful in the preparation of medicaments to treat a variety of conditions, such as conditions associated with dysregulation of cell death, aberrant cell growth and hyperproliferation. One of skill in the art will appreciate that any one or more of the compounds described herein, including the many specific embodiments, are prepared by applying standard pharmaceutical manufacturing procedures. Such medicaments can be delivered to the subject by using delivery methods that are well-known in the pharmaceutical arts.


B. Exemplary Pharmaceutical Compositions and Formulation


In some embodiments of the present invention, the compositions are administered alone, while in some other embodiments, the compositions are preferably present in a pharmaceutical formulation comprising at least one active ingredient/agent, as discussed above, together with a solid support or alternatively, together with one or more pharmaceutically acceptable carriers and optionally other therapeutic agents (e.g., those described in section III hereinabove). Each carrier should be “acceptable” in the sense that it is compatible with the other ingredients of the formulation and not injurious to the subject.


Contemplated formulations include those suitable for oral, rectal, nasal, topical (including transdermal, buccal and sublingual), vaginal, parenteral (including subcutaneous, intramuscular, intravenous and intradermal) and pulmonary administration. In some embodiments, formulations are conveniently presented in unit dosage form and are prepared by any method known in the art of pharmacy. Such methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association (e.g., mixing) the active ingredient with liquid carriers or finely divided solid carriers or both, and then if necessary shaping the product.


Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets, wherein each preferably contains a predetermined amount of the active ingredient; as a powder or granules; as a solution or suspension in an aqueous or non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion. In other embodiments, the active ingredient is presented as a bolus, electuary, or paste, etc.


In some embodiments, tablets comprise at least one active ingredient and optionally one or more accessory agents/carriers are made by compressing or molding the respective agents. In some embodiments, compressed tablets are prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder (e.g., povidone, gelatin, hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (e.g., sodium starch glycolate, cross-linked povidone, cross-linked sodium carboxymethyl cellulose) surface-active or dispersing agent. Molded tablets are made by molding in a suitable machine a mixture of the powdered compound (e.g., active ingredient) moistened with an inert liquid diluent. Tablets may optionally be coated or scored and may be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile. Tablets may optionally be provided with an enteric coating, to provide release in parts of the gut other than the stomach.


Formulations suitable for topical administration in the mouth include lozenges comprising the active ingredient in a flavored basis, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable liquid carrier.


Pharmaceutical compositions for topical administration according to the present invention are optionally formulated as ointments, creams, suspensions, lotions, powders, solutions, pastes, gels, sprays, aerosols or oils. In alternative embodiments, topical formulations comprise patches or dressings such as a bandage or adhesive plasters impregnated with active ingredient(s), and optionally one or more excipients or diluents. In some embodiments, the topical formulations include a compound(s) that enhances absorption or penetration of the active agent(s) through the skin or other affected areas. Examples of such dermal penetration enhancers include dimethylsulfoxide (DMSO) and related analogues.


If desired, the aqueous phase of a cream base includes, for example, at least about 30% w/w of a polyhydric alcohol, i.e., an alcohol having two or more hydroxyl groups such as propylene glycol, butane-1,3-diol, mannitol, sorbitol, glycerol and polyethylene glycol and mixtures thereof.


In some embodiments, oily phase emulsions of this invention are constituted from known ingredients in a known manner. This phase typically comprises a lone emulsifier (otherwise known as an emulgent), it is also desirable in some embodiments for this phase to further comprise a mixture of at least one emulsifier with a fat or an oil or with both a fat and an oil.


Preferably, a hydrophilic emulsifier is included together with a lipophilic emulsifier so as to act as a stabilizer. In some embodiments it is also preferable to include both an oil and a fat. Together, the emulsifier(s) with or without stabilizer(s) make up the so-called emulsifying wax, and the wax together with the oil and/or fat make up the so-called emulsifying ointment base which forms the oily dispersed phase of the cream formulations.


Emulgents and emulsion stabilizers suitable for use in the formulation of the present invention include Tween 60, Span 80, cetostearyl alcohol, myristyl alcohol, glyceryl monostearate and sodium lauryl sulfate.


The choice of suitable oils or fats for the formulation is based on achieving the desired properties (e.g., cosmetic properties), since the solubility of the active compound/agent in most oils likely to be used in pharmaceutical emulsion formulations is very low. Thus creams should preferably be non-greasy, non-staining and washable products with suitable consistency to avoid leakage from tubes or other containers. Straight or branched chain, mono- or dibasic alkyl esters such as di-isoadipate, isocetyl stearate, propylene glycol diester of coconut fatty acids, isopropyl myristate, decyl oleate, isopropyl palmitate, butyl stearate, 2-ethylhexyl palmitate or a blend of branched chain esters known as Crodamol CAP may be used, the last three being preferred esters. These may be used alone or in combination depending on the properties required. Alternatively, high melting point lipids such as white soft paraffin and/or liquid paraffin or other mineral oils can be used.


Formulations suitable for topical administration to the eye also include eye drops wherein the active ingredient is dissolved or suspended in a suitable carrier, especially an aqueous solvent for the agent.


Formulations for rectal administration may be presented as a suppository with suitable base comprising, for example, cocoa butter or a salicylate.


Formulations suitable for vaginal administration may be presented as pessaries, creams, gels, pastes, foams or spray formulations containing in addition to the agent, such carriers as are known in the art to be appropriate.


Formulations suitable for nasal administration, wherein the carrier is a solid, include coarse powders having a particle size, for example, in the range of about 20 to about 500 microns which are administered in the manner in which snuff is taken, i.e., by rapid inhalation (e.g., forced) through the nasal passage from a container of the powder held close up to the nose. Other suitable formulations wherein the carrier is a liquid for administration include, but are not limited to, nasal sprays, drops, or aerosols by nebulizer, and include aqueous or oily solutions of the agents.


Formulations suitable for parenteral administration include aqueous and non-aqueous isotonic sterile injection solutions which may contain antioxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents, and liposomes or other microparticulate systems which are designed to target the compound to blood components or one or more organs. In some embodiments, the formulations are presented/formulated in unit-dose or multi-dose sealed containers, for example, ampoules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.


Preferred unit dosage formulations are those containing a daily dose or unit, daily subdose, as herein above-recited, or an appropriate fraction thereof, of an agent.


It should be understood that in addition to the ingredients particularly mentioned above, the formulations of this invention may include other agents conventional in the art having regard to the type of formulation in question, for example, those suitable for oral administration may include such further agents as sweeteners, thickeners and flavoring agents. It also is intended that the agents, compositions and methods of this invention be combined with other suitable compositions and therapies. Still other formulations optionally include food additives (suitable sweeteners, flavorings, colorings, etc.), phytonutrients (e.g., flax seed oil), minerals (e.g., Ca, Fe, K, etc.), vitamins, and other acceptable compositions (e.g., conjugated linoelic acid), extenders, and stabilizers, etc.


C. Exemplary Administration Routes and Dosing Considerations


Various delivery systems are known and can be used to administer therapeutic agents (e.g., exemplary compounds as described above) of the present invention, e.g., encapsulation in liposomes, microparticles, microcapsules, receptor-mediated endocytosis, and the like. Methods of delivery include, but are not limited to, intra-arterial, intra-muscular, intravenous, intranasal, and oral routes. In specific embodiments, it may be desirable to administer the pharmaceutical compositions of the invention locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion during surgery, injection, or by means of a catheter.


The agents identified can be administered to subjects or individuals susceptible to or at risk of developing pathological growth of target cells and correlated conditions. When the agent is administered to a subject such as a mouse, a rat or a human patient, the agent can be added to a pharmaceutically acceptable carrier and systemically or topically administered to the subject. To identify patients that can be beneficially treated, a tissue sample is removed from the patient and the cells are assayed for sensitivity to the agent.


Therapeutic amounts are empirically determined and vary with the pathology being treated, the subject being treated and the efficacy and toxicity of the agent. When delivered to an animal, the method is useful to further confirm efficacy of the agent. One example of an animal model is MLR/MpJ-lpr/lpr (“MLR-lpr”) (available from Jackson Laboratories, Bar Harbor, Me.). MLR-lpr mice develop systemic autoimmune disease. Alternatively, other animal models can be developed by inducing tumor growth, for example, by subcutaneously inoculating nude mice with about 105 to about 109 hyperproliferative, cancer or target cells as defined herein. When the tumor is established, the compounds described herein are administered, for example, by subcutaneous injection around the tumor. Tumor measurements to determine reduction of tumor size are made in two dimensions using venier calipers twice a week. Other animal models may also be employed as appropriate. Such animal models for the above-described diseases and conditions are well-known in the art.


In some embodiments, in vivo administration is effected in one dose, continuously or intermittently throughout the course of treatment. Methods of determining the most effective means and dosage of administration are well known to those of skill in the art and vary with the composition used for therapy, the purpose of the therapy, the target cell being treated, and the subject being treated. Single or multiple administrations are carried out with the dose level and pattern being selected by the treating physician.


Suitable dosage formulations and methods of administering the agents are readily determined by those of skill in the art. Preferably, the compounds are administered at about 0.01 mg/kg to about 200 mg/kg, more preferably at about 0.1 mg/kg to about 100 mg/kg, even more preferably at about 0.5 mg/kg to about 50 mg/kg. When the compounds described herein are co-administered with another agent (e.g., as sensitizing agents), the effective amount may be less than when the agent is used alone.


The pharmaceutical compositions can be administered orally, intranasally, parenterally or by inhalation therapy, and may take the form of tablets, lozenges, granules, capsules, pills, ampoules, suppositories or aerosol form. They may also take the form of suspensions, solutions and emulsions of the active ingredient in aqueous or non-aqueous diluents, syrups, granulates or powders. In addition to an agent of the present invention, the pharmaceutical compositions can also contain other pharmaceutically active compounds or a plurality of compounds of the invention.


More particularly, an agent of the present invention also referred to herein as the active ingredient, may be administered for therapy by any suitable route including, but not limited to, oral, rectal, nasal, topical (including, but not limited to, transdermal, aerosol, buccal and sublingual), vaginal, parental (including, but not limited to, subcutaneous, intramuscular, intravenous and intradermal) and pulmonary. It is also appreciated that the preferred route varies with the condition and age of the recipient, and the disease being treated.


Ideally, the agent should be administered to achieve peak concentrations of the active compound at sites of disease. This may be achieved, for example, by the intravenous injection of the agent, optionally in saline, or by oral administration, for example, as a tablet, capsule or syrup containing the active ingredient.


Desirable blood levels of the agent may be maintained by a continuous infusion to provide a therapeutic amount of the active ingredient within disease tissue. The use of operative combinations is contemplated to provide therapeutic combinations requiring a lower total dosage of each component than may be required when each individual therapeutic compound or drug is used alone, thereby reducing adverse effects.


D. Exemplary Co-Administration Routes and Dosing Considerations


The invention also includes methods involving co-administration of the compounds described herein with one or more additional active agents. Indeed, it is a further aspect of this invention to provide methods for enhancing prior art therapies and/or pharmaceutical compositions by co-administering a compound of this invention. In co-administration procedures, the agents may be administered concurrently or sequentially. In one embodiment, the compounds described herein are administered prior to the other active agent(s). The pharmaceutical formulations and modes of administration may be any of those described above. In addition, the two or more co-administered chemical agents, biological agents or radiation may each be administered using different modes or different formulations.


The agent or agents to be co-administered depend on the type of condition being treated. For example, when the condition being treated is cancer, the additional agent can be a chemotherapeutic agent or radiation. When the condition being treated is an immune disorder, the additional agent can be an immunosuppressant or an anti-inflammatory agent. When the condition being treated is chronic inflammation, the additional agent can be an anti-inflammatory agent. The additional agents to be co-administered, such as anticancer, immunosuppressant, anti-inflammatory, can be any of the well-known agents in the art, including, but not limited to, those that are currently in clinical use. The determination of appropriate type and dosage of radiation treatment is also within the skill in the art or can be determined with relative ease.


Treatment of the various conditions associated with abnormal apoptosis is generally limited by the following two major factors: (1) the development of drug resistance and (2) the toxicity of known therapeutic agents. In certain cancers, for example, resistance to chemicals and radiation therapy has been shown to be associated with inhibition of apoptosis. Some therapeutic agents have deleterious side effects, including non-specific lymphotoxicity, renal and bone marrow toxicity.


The methods described herein address both these problems. Drug resistance, where increasing dosages are required to achieve therapeutic benefit, is overcome by co-administering the compounds described herein with the known agent. The compounds described herein sensitize target cells to known agents (and vice versa) and, accordingly, less of these agents are needed to achieve a therapeutic benefit.


The sensitizing function of the claimed compounds also addresses the problems associated with toxic effects of known therapeutics. In instances where the known agent is toxic, it is desirable to limit the dosages administered in all cases, and particularly in those cases where drug resistance has increased the requisite dosage. When the claimed compounds are co-administered with the known agent, they reduce the dosage required which, in turn, reduces the deleterious effects.


EXAMPLES

The invention now being generally described, will be more readily understood by reference to the following examples, which are included merely for purposes of illustration of certain aspects and embodiments of the present invention, and are not intended to limit the invention.


Example 1
Preparation of Pyrazolyl Guanidine Compounds

Described below are exemplary, general synthetic procedures for making pyrazolyl guanidine compounds, along with an exemplary synthetic procedure for making the specific pyrazolyl guanidine compound (Z)-4-chloro-N-(((3,4,5-trifluorobenzyl)amino)((3-(trifluoromethyl)-1H-pyrazol-5-yl)amino)methylene)benzamide.


Part I: General Method for Making Pyrazolyl Guandine Compounds




embedded image


Guanidines can be prepared from an acid chloride, a first amine, and a second amine using a three-step procedure. First, the requisite acid chloride is combined with potassium thiocyanate in an organic solvent, and this mixture is stirred at ambient temperature for 1-4 hours. The resulting mixture is concentrated in vacuo and used immediately.


In a second step, an appropriate first amine (RNH2) is dissolved in an organic solvent, such as methylene chloride, at ambient temperature and the acyl isothiocyanate from the first step is added. The resulting mixture is stirred at ambient temperature for 8-16 hours. The solvents are evaporated in vacuo and the resulting residue treated with a warm non-polar organic solvent, then allowed to cool and collected by filtration. The collected residue is rinsed with a non-polar organic solvent and dried. The resulting residue can be used without further purification. Alternatively, the first amine in the form of a hydrochloride salt is dissolved in an organic solvent and treated with a hindered organic base such as triethylamine then stirred at ambient temperature for 1-4 hours. The acyl isothiocyanate from step 1 is then added and the reaction mixture stirred at ambient temperature for 8-16 hours. The solvents are removed in vacuo and the resulting residue is purified by chromatography.


In the third step, the acyl thiourea from step 2 and an appropriate second amine (R1—NH2) are dissolved in a polar organic solvent such as dimethylformamide at ambient temperature to form a mixture. To this mixture, 1-ethyl-2′,2′-dimethylaminopropylcarbodiimide is added and the resulting mixture is stirred until the reaction appears complete by HPLC analysis of aliquots of the reaction mixture. Typical reaction times range from 30 minutes to 12 hours, and the reaction mixture may be heated (e.g., to approximately 60° C.) to accelerate the reaction. Once the reaction appears to be complete by HPLC analysis, the reaction mixture is diluted with an organic solvent (such as ethylacetate), washed with water, washed with brine, and the organic layer is dried over an appropriate drying agent, filtered, and the solvents removed under reduced pressure. The desired product can be purified by chromatography if necessary.


Part II: Exemplary Synthetic Procedure for Preparing Pyrazolyl Compound (Z)-4-Chloro-N-(((3,4,5-trifluorobenzyl)amino)((3-(trifluoromethyl)-1H-pyrazol-5-yl)amino)methylene)benzamide
Step A: Representative Procedure for Preparing a Substituted Benzoyl Isothiocyanate in Situ and Conversion to a Thiourea



embedded image


To a suspension of potassium thiocyanate (KNCS) (1.22 g, 12.57 mmol) in dichloromethane (60 mL) was added 400 μL of PEG-400 followed by 4-chlorobenzoyl chloride (2.00 g, 11.43 mmol). The suspension was heated to 40° C. for 2 h, then cooled to room temperature and filtered into an addition funnel. This solution was added dropwise into an ice cold solution of 5-amino-3-trifluoromethylpyrazole (1.73 g, 11.43 mmol) in dichloromethane (60 mL). The reaction was stirred for 20 minutes following the complete addition, and then it was concentrated in vacuo delivering the product as a yellow solid (3.76 g, 94% yield). 1HNMR (400 MHz, DMSO-d6) δ 13.93 (bs, 1H), 12.88 (bs, 1H), 12.00 (bs, 1H), 7.97 (d, 2H, J=8.4 Hz), 7.61 (d, 2H, J=8.4 Hz), 7.16 (bs, 1H).


Step B: Representative Procedure for the Coupling of a Thiourea to an Amine



embedded image


4-Chloro-N-((3-(trifluoromethyl)-1H-pyrazol-5-yl)carbamothioyl)benzamide (500 mg, 1.43 mmol) was dissolved in methanol (5 mL) and 3,4,5-trifluorobenzylamine (462 mg, 2.87 mmol) was added followed by N1-((ethylimino)methylene)-N3,N3-dimethylpropane-1,3-diamine hydrochloride (550 mg, 2.87 mmol). The reaction was stirred at 50° C. for 30 minutes. The crude mixture was then partitioned between water and ethyl acetate. The organic layer was washed with brine, and dried over sodium sulfate, then purified by chromatography (gradient:


95:5 hexanes:EtOAc to 7:3 hexanes:EtOAc). (Z)-4-Chloro-N-(((3,4,5-trifluorobenzyl)amino)((3-(trifluoromethyl)-1H-pyrazol-5-yl)amino)methylene)benzamide was obtained as a solid (221 mg, 32% yield). MS (ES+) 475.8.


Example 2
Preparation of (Z)—N-((Tert-butylamino)(3-(trifluoromethyl)-1H-pyrazol-5-ylamino)methylene)-4-chlorobenzamide
Part I: Exemplary Procedure for Preparation of a Substituted Benzoyl Isothiocyanate in Situ and Conversion to a Thiourea



embedded image


To a suspension of potassium thiocyanate (KNCS) (611 mg, 6.29 mmol) in dichloromethane (30 mL) was added 200 μL of PEG-400 followed by 4-chlorobenzoyl chloride (1.00 g, 5.71 mmol). The suspension was heated to 40° C. for 2 h, then cooled to room temperature and filtered into an addition funnel. The solution was added dropwise into an ice cold solution of t-butylamine (418 mg, 5.71 mmol) in dichloromethane (30 mL). The reaction was stirred for 20 minutes following the complete addition, and then it was concentrated in vacuo delivering N-(tert-butylcarbamothioyl)-4-chlorobenzamide as a yellow solid (1.49 g, 96% yield). 1HNMR (400 MHz, DMSO-d6) δ 11.11 (s, 1H), 11.02 (s, 1H), 7.87 (d, 2H, J=8.8 Hz), 7.54 (d, 2H, J=8.4 Hz), 1.51 (s, 9H).


Part II: Exemplary Procedure for Coupling of a Thiourea to an Amine



embedded image


A solution of N-(tert-butylcarbamothioyl)-4-chlorobenzamide (150 mg, 0.55 mmol), 5-amino-3-trifluoromethylpyrazole (92 mg, 0.61 mmol), and N1-((ethylimino)methylene)-N3,N3-dimethylpropane-1,3-diamine hydrochloride (127 mg, 0.67 mmol) in dimethylformamide (5.5 mL) was heated to 65° C. for 30 mins, then allowed to cool to room temperature. The mixture was diluted with EtOAc and washed with water twice, then brine. The organic layer was dried over sodium sulfate and concentrated to provide the title compound in crude form. Purification of the crude by chromatography (gradient: 95:5 hexanes:EtOAc to 70:30 hexanes:EtOAc) provided (Z)—N-((tert-butylamino)(3-(trifluoromethyl)-1H-pyrazol-5-ylamino)methylene)-4-chlorobenzamide as a solid (80 mg, 37% yield). MS (ES+) 387.9.


Example 3
Preparation of (Z)—N-((2-Chloro-4-fluorobenzylamino)(3-(trifluoromethyl)-1H-pyrazol-5-ylamino)methylene)-3,4-difluorobenzamide
Part I: Preparation of N-(2-Chloro-4-fluorobenzylcarbamothioyl)-3,4-difluorobenzamide



embedded image


To a solution of 3,4-diflorobenzoyl chloride (45 mL, 358 mmol) in acetonitrile (1.43 L) was added solid potassium thiocyanate (KNCS) (38.2 g, 393 mmol). The suspension was stirred to 0° C. for 10 min and then the cooling bath was removed. The suspension was stirred at room temperature for an additional 20 min. A solution of 2-chloro-4-fluorobenzylamine (57.1 g, 358 mmol) in acetonitrile (150 mL) was added over 5 minutes. The resulting suspension was stirred at room temperature for 3 hours. The reaction mixture was diluted with water (1.4 L) and stirred for 1 hour. The suspension was filtered, rinsed with water (150 mL) and dried in vacuo at 60° C. to afford N-((2-chloro-4-fluorobenzyl)carbamothioyl)-3,4-difluorobenzamide as a yellow solid (98.3 g, 77% yield). 1HNMR (400 MHz, DMSO-d6) δ 11.56 (bs, 1H), 11.12 (t, 1H, J=5.7 Hz), 8.00 (m, 1H), 7.79 (m, 1H), 7.54 (m, 1H), 7.44 (m, 2H), 7.19 (m, 1H), 4.85 (d, 2H, J=5.7 Hz).


Part II: Preparation of (Z)—N-((2-Chloro-4-fluorobenzylamino)(3-(trifluoromethyl)-1H-pyrazol-5-ylamino)methylene)-3,4-difluorobenzamide



embedded image


N-((2-Chloro-4-fluorobenzyl)carbamothioyl)-3,4-difluorobenzamide (98.0 g, 273 mmol) and 5-amino-3-trifluoromethylpyrazole (41.3 g, 273 mmol) were dissolved in THF (546 mL). N1-((Ethylimino)methylene)-N3,N3-dimethylpropane-1,3-diamine hydrochloride (57.6 g, 300 mmol) was added and the reaction was stirred at room temperature for 1 h and then heated to 40° C. for 15 h. The crude mixture was diluted with water (500 mL) and isopropyl acetate (500 mL). The organic layer was washed with brine (500 mL), dried over sodium sulfate, and concentrated. The residue was diluted with isopropyl acetate (1.3 L) and heated to 65° C. for 1 hour. The solution was allowed to cool to room temperature, filtered and the filtrate was concentrated. The residue was heated to 70° C. in acetonitrile (900 mL) and then allowed to cool to room temperature. The resulting suspension was filtered, rinsed with acetonitrile (200 mL) and dried in vacuo at 60° C. to afford 55 g (43%) of (Z)—N-(((2-chloro-4-fluorobenzyl)amino)((3-(trifluoromethyl)-1H-pyrazol-5-yl)amino)methylene)-3,4-difluorobenzamide as a white solid. 1HNMR (400 MHz, MeOH-d4) δ 7.95 (bs, 2H), 7.50 (t, 1H, J=7.2 Hz), 7.26 (m, 2H), 7.06 (t, 1H, J=7.5 Hz), 6.56 (s, 1H), 4.84 (s, 2H).


Example 4
Alternative Procedure for Making Pyrazolyl Guanidine Compounds

Described below is an alternative exemplary general synthetic procedure for making pyrazolyl guanidine compounds, along with an exemplary synthetic procedure for making the specific pyrazolyl guanidine compound N-(((3-(4-(benzyloxy)-2-fluorophenyl)-1H-pyrazol-5-yl)amino)(cyclopentylamino)methylene)-4-(trifluoromethyl)benzamide.


Part I: Alternative General Method for Making Pyrazolyl Guandine Compounds



embedded image


Acyl guanidines can be prepared from an acid chloride, a first amine, and a second amine using a three-step, 2-pot procedure. First, the requisite acid chloride is combined with a slight molar excess of potassium thiocyanate in a polar aprotic solvent (such as acetonitrile) at a temperature in the range of from about 0° C. to room temperature. The resulting mixture is stirred for a time period ranging from 15 minutes to 2 hours to provide a reaction mixture containing the acyl isothiocyanate synthetic intermediate compound. This reaction mixture may be used directly in the next reaction or filtered to remove the potassium chloride generated during this first step.


In a second step, the acyl isothiocyanate compound is combined with a second amine (which may be dissolved in a solvent) to provide a reaction mixture that is stirred for a time period ranging from 15 minutes to 2 hours to produce an acyl thiourea product. The acyl thiourea product often precipitates from the reaction mixture and may be collected by filtration. Water may be added to the reaction mixture (typically in amount equal to the volume of organic solvent) to facilitate collection of the acyl thiourea product. The acyl thiourea product is dried in vacuo at approximately ambient temperature.


In a third step, the acyl thiourea product is combined with a coupling agent (such as N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide (EDCI)) and a second amine to produce the acyl guanidine. All starting materials for this reaction may be combined prior to heating the reaction mixture or the EDCI may be added last, once the temperature of the reaction mixture has been raised. Alternatively, the second amine may be added last after combining the thiourea and the EDCI. Once all the starting materials have been combined, the reaction mixture is generally stirred for a time period ranging from about 30 minutes to about 3 hours while the reaction mixture is heated to a temperature ranging from about 45° C. to about 70° C.


Part II: Exemplary Synthetic Procedure for Preparing Pyrazolyl Compound N-(((3-(4-(benzyloxy)-2-fluorophenyl)-1H-pyrazol-5-yl)amino)(cyclopentylamino)methylene)-4-(trifluoromethyl)benzamide
Step A: Preparation of 4-(Benzyloxy)-2-fluorobenzoyl chloride



embedded image


4-Benzyloxy-2-fluoro-benzoic acid (2 g, 8.12 mmol) was suspended in thionyl chloride (5.9 mL) and heated to reflux for 30 minutes. The reaction mixture was then concentrated under reduced pressure, and the resulting residue was dissolved in toluene and re-concentrated twice to remove residual thionyl chloride. This procedure provided the title compound in crude form, which was used in the next reaction without further purification.


Step B: Preparation of 3-(4-(Benzyloxy)-2-fluorophenyl)-3-oxopropanenitrile



embedded image


Acetonitrile (1.66 mL, 31.7 mmol) was dissolved in dry THF (40 mL) and the mixture was cooled to −78 C. Butyllithium (2.5 M, 9.5 mL, 23.8 mmol) was added dropwise, and the resulting reaction mixture was stirred for 15 minutes. A solution of 4-(benzyloxy)-2-fluorobenzoyl chloride (2.1 g, 7.93 mmol) in THF was then added dropwise to the reaction mixture, and the resulting reaction mixture was stirred at −78 C for 40 minutes. Saturated ammonium chloride solution was then added carefully to the reaction mixture, and the resulting mixture was allowed to warm to room temperature. Next, the mixture was partitioned between water and EtOAc, and the organic portion was washed further with brine, then dried over sodium sulfate, and concentrated onto silica gel and purified by chromatography (gradient: 9:1 EtOAc:hexanes to 1:1 EtOAc:hexanes to 100% ethyl acetate) to give the title compound in 79% yield.


Step C: Preparation of 3-(4-(Benzyloxy)-2-fluorophenyl)-1H-pyrazol-5-amine



embedded image


3-(4-(Benzyloxy)-2-fluorophenyl)-3-oxopropanenitrile (1.7 g, 6.3 mmol) was dissolved in ethanol (21 mL), and then hydrazine (0.22 mL, 6.9 mmol) was added. The reaction mixture was stirred at room temperature for about one hour, and the progress of the reaction was followed by thin-layer chromatography. If no progress had been made, the temperature was gradually increased until the reaction began proceeding. As soon as the reaction appeared complete by thin-layer chromatography, the crude material was concentrated in vacuo and purified by chromatography to provide the title compound 97% yield.


Step D: Preparation of N-(3-(4-(Benzyloxy)-2-fluorophenyl)-1H-pyrazol-5-ylcarbamothioyl)-4-(trifluoromethyl)benzamide



embedded image


4-Trifluoromethylbenzoyl chloride (590 mg, 2.83 mmol) was dissolved in acetonitrile (˜30 mL) and potassium thiocyanate (302 mg, 3.22 mmol) was added to provide a reaction mixture. The reaction mixture was stirred at room temperature for 30 minutes, and then 3-(4-benzyloxy-2-fluoro-phenyl)-1H-pyrazol-5-amine (801 mg, 2.83 mmol) was added to the reaction mixture. Next, the reaction mixture was stirred at room temperature overnight, then concentrated in vacuo, slurried with water, and collected by filtration. The wet solid was held under heated vacuum for 24 hours to provide the title compound in 81% yield.


Step E: Preparation of N-(((3-(4-(Benzyloxy)-2-fluorophenyl)-1H-pyrazol-5-yl)amino)(cyclopentylamino)methylene)-4-(trifluoromethyl)benzamide



embedded image


N-((3-(4-(Benzyloxy)-2-fluorophenyl)-1H-pyrazol-5-yl)carbamothioyl)-4-(trifluoromethyl)benzamide (154 mg, 0.3 mmol) and EDCI (63 mg, 0.33 mmol) were suspended in THF (4 mL) and cyclopentylamine (0.044 mL, 0.45 mmol) was added. The resulting mixture was stirred at 50° C. for 45 minutes, then concentrated onto silica gel and purified by chromatography (gradient: 9:1 hexanes:EtOAc to 6:4 hexanes:EtOAc) to provide the title compound in 53% yield.


Step F: Preparation of N-(((3-(4-(Benzyloxy)-2-fluorophenyl)-1H-pyrazol-5-yl)amino)(cyclopentylamino)methylene)-4-(trifluoromethyl)benzamide



embedded image


N-(((3-(4-(Benzyloxy)-2-fluorophenyl)-1H-pyrazol-5-yl)amino)(cyclopentylamino)methylene)-4-(trifluoromethyl)benzamide (90 mg, 0.16 mmol) was dissolved in methanol (2 mL), and nitrogen gas was bubbled through briefly. 10% Palladium on carbon (84 mg) was then added to the reaction mixture, followed by the addition of ammonium formate (50 mg, 0.8 mmol). The reaction vessel was sealed and then heated to 65° C. for 1 hour. Next, the reaction mixture was cooled, and then filtered through a plug of celite. The filtrate was concentrated onto silica gel, and the product purified by chromatography to give the title compound in 12% yield.


Example 5
Pyrazolyl Guanidine Compounds & Characterization Data

Compounds in Table 2 below were prepared based on the procedures described in Examples 1-4 and procedures described in the detailed description. Starting materials can be obtained from commercial sources (e.g., acid chloride: 4-chlorobenzoyl chloride, 3-chlorobenzoyl chloride, and 4-fluorobenzoyl chloride; first amine compound: 2-trifluoromethylaniline, 2-tert-butylaniline, 4-fluoro-2-chlorobenzylamine, cycloheptylamine, tetrahydro-2H-pyran-4-amine; and second amine: 3-(trifluoromethyl)-1H-pyrazol-5-amine, 3-methyl-1H-pyrazol-5-amine, 3-(difluoromethyl)-1H-pyrazol-5-amine) or readily prepared from commercially available materials. Furthermore, exemplary compounds were characterized by high performance liquid chromatography (HPLC), mass spectrometry (MS) and/or 1H nuclear magnetic resonance spectroscopy. Unless indicated otherwise, mass spectral data in Table 2 was collected using electrospray ionization in the positive ion mode. The symbol “(M-H)” indicates that mass spectral data was collected in the negative ion mode. The HPLC method and retention time, along with mass spectral data are provided in Table 2 below. HPLC methods used are as follows: Method A conditions were Waters C-18 column, 4.6×150 mm, 3.5 micron, 23° C., 1.0 mL/min, 1 min 25% MeCN in H2O (0.1% TFA), 10 min gradient of 25%-95% MeCN in H2O (0.1% TFA), 95% MeCN in H2O (0.1% TFA) for 5 min, and then equilibration to 25% MeCN in H2O (0.1% TFA) over 2.0 min; Method B conditions were Agilent Zorbax C-18 column, 4.6×50 mm, 1.8 micron, 23° C., 1.0 mL/min, 1 min 25% MeCN in H2O (0.1% TFA), 5 min gradient of 25%-95% MeCN in H2O (0.1% TFA), 1 min at 95% MeCN in H2O (0.1% TFA), and then equilibration to 25% MeCN in H2O (0.1% TFA) over 1.0 min; Method C conditions were Phenomenex Kinetex C18 (3.0 mm×50 mm), 2.6 micron, 58° C., 1.5 mL/min, 4 min gradient 5% MeCN (0.1% TFA) in H2O (0.1% TFA) to 100% MeCN (0.1% TFA), 100% MeCN (0.1% TFA) for 0.5 min, and then equilibration to 5% MeCN (0.1% TFA) in H2O (0.1% TFA) over 1.5 min; Method D conditions were Phenomenex Kinetex C18 (3.0 mm×50 mm), 2.6 micron, 40° C., 1.5 mL/min, 4 min gradient 5% MeCN (0.1% TFA) in H2O (0.1% TFA) to 100% MeCN (0.1% TFA), 100% MeCN (0.1% TFA) for 0.5 min, and then equilibration to 5% MeCN (0.1% TFA) in H2O (0.1% TFA) over 1.5 min; and Method E conditions were Waters Symmetry C18 (4.6 mm×150 mm), 3.5 micron, 26° C., 2.0 mL/min, 1 min 25% MeCN (0.05% TFA) in H2O (0.05% TFA), 7 min gradient of 25%-95% MeCN (0.05% TFA) in H2O (0.05% TFA), 95% MeCN (0.05% TFA) in H2O (0.05% TFA) for 2 min, and then equilibration to 25% MeCN (0.05% TFA) in H2O (0.05% TFA) over 2.0 min. The phrase “MeCN (0.05% TFA)” is art-recognized and refers to acetonitrile containing 0.05% wt/wt trifluoroacetic acid. The symbol “NA” indicates that no data was available.



1H nuclear magnetic resonance data for exemplary compounds is provided in Table 3.














TABLE 2







Calculated


HPLC


Compound

MW
MS
HPLC
Retention


No.
Chemical Structure
(g/mol)
(m/z)
Method
Time (min)




















A-1 


embedded image


447.3
447.9
A
11.27





A-2 


embedded image


523.4
523.9
B
6.98





A-3 


embedded image


492.2
491.7
B
6.96





A-4 


embedded image


387.8
387.9
B
6.59





A-5 


embedded image


413.7
413.8
B
6.33





A-6 


embedded image


399.8
399.9
B
6.17





A-7 


embedded image


425.8
425.9
B
5.85





A-8 


embedded image


491.1
492
C
2.86





A-9 


embedded image


489.1
490
C
2.81





A-10 


embedded image


489.1
490
C
2.72





A-11 


embedded image


415.1
416
C
2.65





A-12 


embedded image


389.1
390
C
2.74





A-13 


embedded image


421.3
388
C
2.66





A-14 


embedded image


461.4
461.9
B
6.46





A-15 


embedded image


413.9
413.95, 415.94
A
8.62





A-16 


embedded image


401.8
401.87, 403.87
A
11.14





A-17 


embedded image


387.9
387.94, 389.90
A
8.95





A-18 


embedded image


507.8
508
C
2.75





A-19 


embedded image


507.8
508
C
2.7





A-20 


embedded image


507.8
508
C
2.72





A-21 


embedded image


503.8
508
C
2.77





A-22 


embedded image


503.8
504
C
2.9





A-23 


embedded image


475.8
504
C
2.8





A-24 


embedded image


475.8
476
C
2.61





A-25 


embedded image


475.8
476
C
2.57





A-26 


embedded image


475.8
476
C
2.59





A-27 


embedded image


475.8
476
C
2.63





A-28 


embedded image


471.8
472
C
2.76





A-29 


embedded image


471.8
472
C
2.67





A-30 


embedded image


474.2
474
C
2.53





A-31 


embedded image


474.2
474
C
2.51





A-32 


embedded image


474.2
474
C
2.53





A-33 


embedded image


474.2
474
C
2.57





A-34 


embedded image


470.3
470
C
2.7





A-35 


embedded image


470.3
470
C
2.62





A-36 


embedded image


470.3
470
C
2.59





A-37 


embedded image


344.8
344.9
B
6.49





A-38 


embedded image


381.9
381.93, 383.89
A
12.59





A-39 


embedded image


477.3
477.8
B
6.53





A-40 


embedded image


405.78
406
B
7.04





A-41 


embedded image


429.4
NA
B
6.18





A-42 


embedded image


401.8
338.00, 401.91, 423.85
B
5.46





A-43 


embedded image


403.4
340.02, 403.93, 425.87
B
5.73





A-44 


embedded image


403.4
403.93, 425.87
B
7.58





A-45 


embedded image


407.8
407.79
B
7





A-46 


embedded image


471.8
471.84, 493.78
B
6.82





A-47 


embedded image


471.8
471.78, 493.72
B
6.82





A-48 


embedded image


507.8
507.82
B
7.07





A-49 


embedded image


447.4
447.94
B
6.29





A-50 


embedded image


447.4
447.94
B
6.8





A-51 


embedded image


435.4
372.01, 435.92, 457.86
B
6.02





A-52 


embedded image


443.76
443.76, 445.79
A
12.35





A-53 


embedded image


403.35
403.91
A
11.28





A-54 


embedded image


369.8
369.99, 372.01
A
10.43





A-55 


embedded image


355.77
355.98, 357.97
A
6.91





A-56 


embedded image


456.25
455.89, 457.86
A
9.93





A-57 


embedded image


442.22
441.93, 443.89
A
12.68





A-58 


embedded image


389.32
389.99
A
7.91





A-59 


embedded image


489.8
489.87, 491.88
A
10.9





A-60 


embedded image


475.77
475.89, 477.85
A
12.67





A-61 


embedded image


457.78
457.93, 459.95
A
10.45





A-62 


embedded image


371.33
372.04
A
10.76





A-63 


embedded image


357.31
358.03
A
7.26





A-64 


embedded image


403.35
403.9
A
10.6





A-65 


embedded image


387.79
387.83, 389.83
A
11.92





A-66 


embedded image


417.38
417.97
A
8.52





A-67 


embedded image


415.36
415.91
A
8.05





A-68 


embedded image


417.38
NA
NA
NA





A-69 


embedded image


383.82
383.92, 385.88
A
7.93





A-70 


embedded image


392.38
392.92
A
9.37





A-71 


embedded image


378.35
378.87
A
10.79





A-72 


embedded image


392.38
392.93
A
9.46





A-73 


embedded image


378.35
378.9
A
10.75





A-74 


embedded image


417.38
417.97
A
11.08





A-75 


embedded image


433.35
433.91
A
9.79





A-76 


embedded image


435.37
435.92
A
10.42





A-77 


embedded image


421.34
421.94
A
12.15





A-78 


embedded image


435.37
435.97
A
12.58





A-79 


embedded image


422.33
422.89
A
11.57





A-80 


embedded image


436.35
436.9
A
11.19





A-81 


embedded image


464.8
464.88, 466.84
A
10.9





A-82 


embedded image


464.8
464.88, 466.84
A
10.87





A-83 


embedded image


489.8
489.86, 491.82
A
10.58





A-84 


embedded image


368.36
369.03
A
5.9





A-85 


embedded image


382.38
383.03
A
6.12





A-86 


embedded image


454.81
454.87, 456.85
A
6.54





A-87 


embedded image


443.41
443.94
A
9.11





A-88 


embedded image


385.36
385.97
A
8.42





A-89 


embedded image


503.84
504
C
2.8





A-90 


embedded image


407.32
508
C
2.12





A-91 


embedded image


419.33
420
C
2.28





A-92 


embedded image


433.36
434
C
2.28





A-93 


embedded image


435.38
436
C
2.82





A-94 


embedded image


475.44
476
C
2.63





A-95 


embedded image


449.36
450
C
2.09





A-96 


embedded image


449.36
450
C
2.17





A-97 


embedded image


437.35
438
C
2.13





A-98 


embedded image


375.3
376
C
1.94





A-99 


embedded image


387.32
388
C
2.03





A-100


embedded image


401.34
402
C
2.11





A-101


embedded image


403.36
404
C
2.67





A-102


embedded image


443.42
444
C
2.51





A-103


embedded image


403.31
404
C
1.92





A-104


embedded image


417.34
418
C
1.92





A-105


embedded image


417.34
418
C
1.99





A-106


embedded image


405.33
406
C
1.95





A-107


embedded image


373.77
374
C
1.9





A-108


embedded image


385.78
386
C
1.98





A-109


embedded image


441.89
442
C
2.43





A-110


embedded image


415.81
416
C
1.93





A-111


embedded image


403.79
404
C
1.91





A-112


embedded image


449.84
450
C
1.99





A-113


embedded image


391.76
392
C
2.13





A-114


embedded image


403.77
404
C
2.23





A-115


embedded image


417.8
418.40
C
2.31





A-116


embedded image


419.81
420
C
2.89





A-117


embedded image


459.88
460
C
2.7





A-118


embedded image


433.8
434
C
2.1





A-119


embedded image


433.8
434
C
2.19





A-120


embedded image


421.79
422
C
2.24





A-121


embedded image


467.83
468
C
2.17





A-122


embedded image


399.81
400
C
2.09





A-123


embedded image


401.82
402
C
2.67





A-124


embedded image


415.81
416
C
1.9





A-125


embedded image


367.37
390 (M + Na )
E
5.84





A-126


embedded image


501.86
502
D
3.26





A-127


embedded image


390.41
391
E
4.9





A-128


embedded image


463.88
464
NA
NA





A-129


embedded image


430.33
431
D
2.71





A-130


embedded image


430.33
431
D
2.69





A-131


embedded image


430.33
431
D
2.6





A-132


embedded image


430.33
431
D
2.57





A-133


embedded image


413.88
414
D
2.49





A-134


embedded image


413.88
414
D
2.37





A-135


embedded image


413.88
414
D
2.36





A-136


embedded image


431.87
432
D
2.75





A-137


embedded image


431.87
432
D
2.72





A-138


embedded image


463.88
464
D
2.83





A-139


embedded image


459.88
460
D
2.21





A-140


embedded image


441.89
442
D
2.16





A-141


embedded image


413.88
414
D
2.77





A-142


embedded image


518.32
518
D
2.83





A-143


embedded image


500.33
500
D
2.79





A-144


embedded image


492.33
492
D
3.28





A-145


embedded image


504.29
504
D
3.31





A-146


embedded image


450.27
450
D
3.11





A-147


embedded image


464.3
464
D
3.24





A-148


embedded image


516.33
516
D
3.28





A-149


embedded image


520.75
522
D
3.42





A-150


embedded image


500.33
500
D
3.38





A-151


embedded image


501.86
502
D
3.22





A-152


embedded image


431.87
432
D
2.8





A-153


embedded image


429.44
430
D
2.68





A-154


embedded image


519.85
520
D
3.24





A-155


embedded image


381.4
382.13, 404.13
B
5.169





A-156


embedded image


395.41
396.04, 418.00
E
4.077





A-157


embedded image


409.46
410.07, 432.04
E
5.088





A-158


embedded image


439.46
440.09
B
4.777





A-159


embedded image


427.45
428.13, 450.10
B
5.66





A-160


embedded image


479.88
434.05, 436.06
B
6.57





A-161


embedded image


449.86
NA
NA
NA





A-162


embedded image


449.86
450.10, 472.06
B
7.88





A-163


embedded image


465.52
466.15, 488.05
B
4.89





A-164


embedded image


465.52
466.15, 488.11
B
4.66





A-165


embedded image


464.42
NA
NA
NA





A-166


embedded image


448.42
NA
NA
NA





A-167


embedded image


448.42
NA
NA
NA





A-168


embedded image


498.34
NA
NA
NA





A-169


embedded image


425.91
NA
NA
NA





A-170


embedded image


425.91
NA
NA
NA





A-171


embedded image


409.46
410.14
B
5.13





A-172


embedded image


409.46
NA
NA
NA





A-173


embedded image


463.39
464.07, 486.03
B
5.33





A-174


embedded image


408.47
409.16
B
4.68





A-175


embedded image


438.5
NA
NA
NA





A-176


embedded image


408.47
409.16
B
4.7





A-177


embedded image


408.47
409.16, 431.12
B
4.76





A-178


embedded image


351.81
NA
NA
NA





A-179


embedded image


391.75
NA
NA
NA





A-180


embedded image


381.83
NA
NA
NA





A-181


embedded image


351.81
NA
NA
NA





A-182


embedded image


410.44
411.11, 433.14
B
4.95





A-183


embedded image


407.31
NA
NA
NA





A-184


embedded image


397.39
NA
NA
NA





A-185


embedded image


379.38
NA
NA
NA





A-186


embedded image


375.3
NA
NA
NA





A-187


embedded image


349.38
NA
NA
NA





A-188


embedded image


347.36
NA
NA
NA





A-189


embedded image


367.37
NA
NA
NA





A-190


embedded image


353.34
NA
NA
NA





A-191


embedded image


335.35
NA
NA
NA





A-192


embedded image


335.35
NA
NA
NA





A-193


embedded image


381.38
NA
NA
NA





A-194


embedded image


461.41
NA
NA
NA





A-195


embedded image


445.41
NA
NA
NA





A-196


embedded image


425.43
NA
NA
NA





A-197


embedded image


433.36
NA
NA
NA





A-198


embedded image


417.36
NA
NA
NA





A-199


embedded image


415.37
NA
NA
NA





A-200


embedded image


443.42
NA
NA
NA





A-201


embedded image


439.46
NA
NA
NA





A-202


embedded image


381.38
NA
NA
NA





A-203


embedded image


411.45
NA
NA
NA





A-204


embedded image


441.47
NA
NA
NA





A-205


embedded image


427.45
NA
NA
NA





A-206


embedded image


397.42
420.08
B
5.09





A-207


embedded image


439.46
NA
NA
NA





A-208


embedded image


439.46
NA
NA
NA





A-209


embedded image


413.88
414.06, 436.06
B
5.3





A-210


embedded image


473.9
NA
NA
NA





A-211


embedded image


473.9
NA
NA
NA





A-212


embedded image


473.9
NA
NA
NA





A-213


embedded image


461.89
462.05
B
5.61





A-214


embedded image


461.89
462.05
B
5.56





A-215


embedded image


445.85
NA
NA
NA





A-216


embedded image


417.84
418.00, 440.03
B
5.47





A-217


embedded image


461.89
NA
NA
NA





A-218


embedded image


447.87
448.02
B
5.49





A-219


embedded image


431.87
432.03, 454.00
B
5.75





A-220


embedded image


431.87
432.03, 454.00
B
5.73





A-221


embedded image


443.88
444.05, 466 .02
B
5.79





A-222


embedded image


429.85
430.02, 451.98
B
5.64





A-223


embedded image


445.85
NA
NA
NA





A-224


embedded image


429.85
NA
NA
NA





A-225


embedded image


431.87
432.03, 454.00
B
5.65





A-226


embedded image


446.31
NA
NA
NA





A-227


embedded image


461.89
NA
NA
NA





A-228


embedded image


447.87
NA
NA
NA





A-229


embedded image


443.88
NA
NA
NA





A-230


embedded image


417.84
418.06, 440.03
B
5.27





A-231


embedded image


429.85
430.02, 451.98
B
5.37





A-232


embedded image


431.87
NA
NA
NA





A-233


embedded image


431.87
432.03, 454.06
B
5.5





A-234


embedded image


431.87
432.03, 454.06
B
5.44





A-235


embedded image


431.41
432.10, 454.06
B
5.04





A-236


embedded image


461.87
NA
NA
NA





A-237


embedded image


493.91
NA
NA
NA





A-238


embedded image


479.88
NA
NA
NA





A-239


embedded image


475.89
NA
NA
NA





A-240


embedded image


463.88
464.00, 485.97
B
5.86





A-241


embedded image


449.86
449.97, 472.00
B
5.63





A-242


embedded image


445.44
446.07, 468.03
B
5.24





A-243


embedded image


427.42
428.07, 450.03
B
5.31





A-244


embedded image


415.41
416.05, 438.08
B
5.24





A-245


embedded image


401.39
402.08, 424.11
B
4.99





A-246


embedded image


465.86
466.02, 487.98
B
5.64





A-247


embedded image


479.88
NA
NA
NA





A-248


embedded image


425.89
NA
NA
NA





A-249


embedded image


413.88
414.03, 436.06
B
5.4





A-250


embedded image


399.85
400.06, 422.03
B
5.14





A-251


embedded image


411.86
NA
NA
NA





A-252


embedded image


443.9
NA
NA
NA





A-253


embedded image


425.89
NA
NA
NA





A-254


embedded image


413.88
414.10, 436.06
B
5.33





A-255


embedded image


399.85
400.06, 422.03
B
5.08





A-256


embedded image


427.45
428.13, 450.10
B
5.18





A-257


embedded image


397.42
398.12, 420.08
B
5.16





A-258


embedded image


461.89
462.05, 484.02
B
5.66





A-259


embedded image


413.4
414.03, 436.06
B
5.27





A-260


embedded image


427.42
428.07, 451.07
B
5.44





A-261


embedded image


415.41
416.05, 438.08
B
5.37





A-262


embedded image


401.39
NA
NA
NA





A-263


embedded image


445.44
446.07, 468.03
B
5.39





A-264


embedded image


411.86
412.09, 434.05
B
5.26





A-265


embedded image


443.9
NA
NA
NA





A-266


embedded image


429.4
NA
NA
NA





A-267


embedded image


445.44
446.13
B
5.41





A-268


embedded image


445.44
446.07
B
5.43





A-269


embedded image


427.45
NA
NA
NA





A-270


embedded image


411.4
NA
NA
NA





A-271


embedded image


427.45
NA
NA
NA





A-272


embedded image


429.88
NA
NA
NA





A-273


embedded image


465.86
NA
NA
NA





A-274


embedded image


431.41
432.03, 454.06
B
5.15





A-275


embedded image


431.41
NA
NA
NA





A-276


embedded image


429.88
NA
NA
NA





A-277


embedded image


461.89
NA
NA
NA





A-278


embedded image


443.9
NA
NA
NA





A-279


embedded image


427.45
NA
NA
NA





A-280


embedded image


427.45
NA
NA
NA





A-281


embedded image


459.46
NA
NA
NA





A-282


embedded image


495.45
496.04, 518.01
B
5.6





A-283


embedded image


493.91
494.03
B
5.8





A-284


embedded image


447.84
447.95, 469.98
B
5.77





A-285


embedded image


449.86
449.97, 472.00
B
5.87





A-286


embedded image


435.83
436.00, 457.96
B
5.59





A-287


embedded image


449.86
449.97, 472.00
B
5.84





A-288


embedded image


475.89
497.99
B
7.42





A-289


embedded image


461.87
461.99
B
5.89





A-290


embedded image


449.86
472
B
7.31





A-291


embedded image


477.43
478.04, 499.94
B
5.88





A-292


embedded image


551.87
551.94, 553.89
B
7.06





A-293


embedded image


465.42
466.02, 487.92
B
5.83





A-294


embedded image


537.84
NA
NA
NA





A-295


embedded image


479.45
NA
NA
NA





A-296


embedded image


451.39
451.98, 473.95
B
5.6





A-297


embedded image


465.42
466.02, 487.98
B
5.86





A-298


embedded image


463.4
464.00, 485.90
B
5.75





A-299


embedded image


465.42
465.95, 487.98
B
7.21





A-300


embedded image


434.92
434.96
B
5.8





A-301


embedded image


464.95
464.98
B
5.44





A-302


embedded image


432.91
433.01, 454.97
B
5.55





A-303


embedded image


420.89
420.99, 442.95
B
5.5





A-304


embedded image


434.92
435.02, 456.99
B
5.83





A-305


embedded image


406.87
406.95, 428.91
B
5.24





A-306


embedded image


420.89
420.99, 442.95
B
5.53





A-307


embedded image


418.88
418.97, 440.94
B
5.42





A-308


embedded image


420.89
420.99, 442.95
B
6.85





A-309


embedded image


434.44
434.96, 456.99
B
5.51





A-310


embedded image


422.43
423.00, 444.96
B
5.46





A-311


embedded image


436.46
436.96, 459.00
B
5.61





A-312


embedded image


408.4
NA
NA
NA





A-313


embedded image


422.43
423.00, 444.96
B
6.51





A-314


embedded image


420.41
420.99, 442.95
B
5.37





A-315


embedded image


422.43
NA
NA
NA





A-316


embedded image


441.45
NA
NA
NA





A-317


embedded image


515.89
NA
NA
NA





A-318


embedded image


501.86
NA
NA
NA





A-319


embedded image


415.41
NA
B
5.42





A-320


embedded image


427.42
NA
NA
NA





A-321


embedded image


443.46
NA
NA
NA





A-322


embedded image


473.49
NA
NA
NA





A-323


embedded image


429.44
NA
B
5.65





A-324


embedded image


443.46
NA
NA
NA





A-325


embedded image


429.44
NA
NA
NA





A-326


embedded image


473.47
NA
NA
NA





A-327


embedded image


547.91
NA
NA
NA





A-328


embedded image


447.43
NA
NA
NA





A-329


embedded image


459.44
NA
NA
NA





A-330


embedded image


475.48
NA
NA
NA





A-331


embedded image


505.51
NA
NA
NA





A-332


embedded image


461.46
NA
NA
NA





A-333


embedded image


475.48
NA
NA
NA





A-334


embedded image


461.46
NA
NA
NA





A-335


embedded image


513.89
513.91, 535.88
B
7.64





A-336


embedded image


499.86
NA
NA
NA





A-337


embedded image


482.82
NA
NA
NA





A-338


embedded image


497.83
497.86, 519.83
B
6.47





A-339


embedded image


411.38
433.98
B
6.47





A-340


embedded image


427.44
428.00, 450.10
B
7.67





A-341


embedded image


394.45
NA
NA
NA





A-342


embedded image


437.47
NA
NA
NA





A-343


embedded image


458.82
NA
NA
NA





A-344


embedded image


493.91
NA
NA
NA





A-345


embedded image


516.9
NA
NA
NA





A-346


embedded image


463.88
463.94
B
6.29





A-347


embedded image


447.84
447.95, 469.92
B
5.9





A-348


embedded image


463.88
NA
NA
NA





A-349


embedded image


463.88
NA
NA
NA





A-350


embedded image


463.88
NA
NA
NA





A-351


embedded image


463.88
464.00, 485.97
B
6.33





A-352


embedded image


449.86
449.9, 471.87
B
5.98





A-353


embedded image


461.87
NA
NA
NA





A-354


embedded image


449.86
NA
NA
NA





A-355


embedded image


475.89
NA
NA
NA





A-356


embedded image


449.86
449.90, 471.93
B
6.03





A-357


embedded image


503.83
NA
NA
NA





A-358


embedded image


447.84
NA
NA
NA





A-359


embedded image


435.83
NA
NA
NA





A-360


embedded image


449.86
NA
NA
NA





A-361


embedded image


447.84
NA
NA
NA





A-362


embedded image


449.86
449.90, 471.87
B
5.83





A-363


embedded image


449.4
449.90, 471.87
B
5.2





A-364


embedded image


433.4
433.92, 455.88
B
5.39





A-365


embedded image


445.41
445.87, 467.87
B
5.45





A-366


embedded image


419.38
419.88, 441.91
B
5.14





A-367


embedded image


431.41
NA
NA
NA





A-368


embedded image


415.41
NA
NA
NA





A-369


embedded image


427.42
427.94, 449.90
B
5.2





A-370


embedded image


401.39
401.95, 423.98
B
4.84





A-371


embedded image


443.45
NA
NA
NA





A-372


embedded image


427.45
NA
NA
NA





A-373


embedded image


427.45
NA
NA
NA





A-374


embedded image


413.42
NA
NA
NA





A-375


embedded image


458.51
457.9
B
5.13





A-376


embedded image


447.87
447.95
B
5.4





A-377


embedded image


431.87
431.9
B
5.62





A-378


embedded image


443.88
443.92
B
5.68





A-379


embedded image


417.84
417.87
B
5.37





A-380


embedded image


464.32
463.87, 465.82
B
5.79





A-381


embedded image


448.32
447.89, 449.84
B
5.99





A-382


embedded image


460.33
459.85, 461.86
B
6.05





A-383


embedded image


434.29
433.85, 435.87
B
5.74





A-384


embedded image


429.88
NA
NA
NA





A-385


embedded image


425.89
425.93, 427.87
B
5.45





A-386


embedded image


399.85
399.93, 401.88
B
5.04





A-387


embedded image


427.45
NA
NA
NA





A-388


embedded image


409.43
NA
NA
NA





A-389


embedded image


413.42
NA
NA
NA





A-390


embedded image


383.39
NA
NA
NA





A-391


embedded image


399.39
NA
NA
NA





A-392


embedded image


475.49
NA
NA
NA





A-393


embedded image


459.49
NA
NA
NA





A-394


embedded image


473.5
NA
NA
NA





A-395


embedded image


457.5
NA
NA
NA





A-396


embedded image


497.44
497.86
B
6.71





A-397


embedded image


481.45
NA
NA
NA





A-398


embedded image


461.46
461.92
B
5.39





A-399


embedded image


445.46
445.94
B
5.55





A-400


embedded image


477.92
NA
NA
NA





A-401


embedded image


461.92
NA
NA
NA





A-402


embedded image


423.48
NA
NA
NA





A-403


embedded image


433.4
455.95
B
7.43





A-404


embedded image


387.33
NA
NA
NA





A-405


embedded image


413.42
NA
NA
NA





A-406


embedded image


399.34
NA
NA
NA





A-407


embedded image


387.33
NA
NA
NA





A-408


embedded image


438.33
NA
NA
NA





A-409


embedded image


387.33
NA
NA
NA





A-410


embedded image


387.33
NA
NA
NA





A-411


embedded image


412.36
NA
NA
NA





A-412


embedded image


429.37
NA
NA
NA





A-413


embedded image


399.34
NA
NA
NA





A-414


embedded image


409.34
431.9
B
8.27





A-415


embedded image


413.37
NA
NA
NA





A-416


embedded image


426.39
NA
NA
NA





A-417


embedded image


461.46
NA
NA
NA





A-418


embedded image


411.45
412.03, 434.01
A
9.71





A-419


embedded image


505.83
505.94, 527.93
B
7.9





A-420


embedded image


433.4
456.06
B
7.02





A-421


embedded image


509.45
510.16
B
6.07





A-422


embedded image


537.84
538.01, 540.02
B
8.12





A-423


embedded image


465.42
466.07, 488.05
B
7.2





A-424


embedded image


485.38
486.5
D
2.5





A-425


embedded image


417.38
418.5
D
2.05





A-426


embedded image


443.46
444.4
D
2.77





A-427


embedded image


411.45
412.3
D
2.64





A-428


embedded image


483.87
484.3
D
3.22





A-429


embedded image


457.52
NA
E
7.09





A-430


embedded image


457.52
NA
E
7.2





A-431


embedded image


425.47
426.1
D
2.82





A-432


embedded image


457.49
458.5
D
2.94





A-433


embedded image


429.44
430.3
D
2.73





A-434


embedded image


461.46
462.1
D
2.85





A-435


embedded image


397.42
398.2
D
2.58





A-436


embedded image


469.85
490.2
D
3.13





A-437


embedded image


463.88
464
D
3.04





A-438


embedded image


413.88
414
D
2.64





A-439


embedded image


463.88
464
D
3.01





A-440


embedded image


501.86
502
D
2.73





A-441


embedded image


487.84
488
D
3.25





A-442


embedded image


504.29
504
D
3.42





A-443


embedded image


533.88
534
D
2.85





A-444


embedded image


550.34
550.5
D
3.02





A-445


embedded image


550.34
550.5
D
3





A-446


embedded image


536.31
536
D
3.53





A-447


embedded image


536.31
536
D
3.5





A-448


embedded image


447.43
448
D
2.77





A-449


embedded image


533.88
534
D
2.79





A-450


embedded image


519.85
520.5
D
3.22





A-451


embedded image


413.88
414
D
2.58





A-452


embedded image


500.33
500
D
2.62





A-453


embedded image


413.88
414.5
D
2.45





A-454


embedded image


500.33
500
D
2.55





A-455


embedded image


486.3
486.5
D
3.06





A-456


embedded image


397.42
389
D
2.37





A-457


embedded image


483.87
484.5
D
2.48





A-458


embedded image


469.85
470.5
D
2.97





A-459


embedded image


397.42
NA
D
2.24





A-460


embedded image


483.87
484
D
2.36





A-461


embedded image


469.85
470.5
D
2.87





A-462


embedded image


471.91
472.5
D
2.21





A-463


embedded image


476.33
476
D
2.33





A-464


embedded image


476.33
476
D
2.31





A-465


embedded image


475.44
476
D
2.11





A-466


embedded image


457.45
458.5
D
2.08





A-467


embedded image


443.9
444.5
D
2.68





A-468


embedded image


448.32
448
D
2.91





A-469


embedded image


448.32
448
D
2.91





A-470


embedded image


427.9
428
D
2.82





A-471


embedded image


530.35
530
D
2.82





A-472


embedded image


534.77
536
D
2.92





A-473


embedded image


534.77
536
D
2.9





A-474


embedded image


514.35
514.5
D
2.83





A-475


embedded image


520.75
522
D
3.39





A-476


embedded image


513.9
514.5
D
2.54





A-477


embedded image


518.32
518
D
2.78





A-478


embedded image


518.32
518
D
2.8





A-479


embedded image


497.9
498.5
D
2.65





A-480


embedded image


499.87
500
D
3.03





A-481


embedded image


531.89
532
D
3.14





A-482


embedded image


486.3
486.5
D
3.31





A-483


embedded image


483.87
484.5
D
2.63





A-484


embedded image


465.52
466.26
A
6.49





A-485


embedded image


437.42
460.23 (M + Na + 1)+
A
7.45





A-486


embedded image


395.43
396.11
A
6.95





A-487


embedded image


449.52
448.29 (M − H)
A
7.72





A-488


embedded image


431.41
430.03 (M − H)
E
8.68





A-489


embedded image


415.41
414.07 (M − H)
E
9.62





A-490


embedded image


408.4
407.08 (M − H)
E
8.93





A-491


embedded image


473.52
427.06 (M − H)
E
8.27





A-492


embedded image


411.43
410.09 (M − H)
E
8.24





A-493


embedded image


426.44
425.08 (M − H)
E
8.5





A-494


embedded image


410.44
409.10 (M − H)
E
9.6





A-495


embedded image


426.44
425.08 (M − H)
E
8.68





A-496


embedded image


410.44
409.10 (M − H)
E
10.65





A-497


embedded image


473.52
427.06 (M − H)
A
8.36





A-498


embedded image


457.52
456.06 (M − H)
A
9.8





A-499


embedded image


457.52
456.08 (M − H)
A
9.85





A-500


embedded image


413.42
412.10 (M − H)
A
8.76





A-501


embedded image


459.44
458.04 (M − H)
A
9.27





A-502


embedded image


466.46
465.04 (M − H)
A
9.79





A-503


embedded image


489.8
489.96, 491.95
A
12.2





A-504


embedded image


434.47
433.09 (M − H)
A
9.22





A-505


embedded image


427.45
426.07 (M − H)
A
9.08





A-506


embedded image


478.52
477.11 (M − H)
A
8.04





A-507


embedded image


471.5
470.11 (M − H)
A
7.8





A-508


embedded image


404.44
403.11 (M − H)
A
7.86





A-509


embedded image


395.43
394.09 (M − H)
A
7.06





A-510


embedded image


418.42
417.02 (M − H)
A
7.55





A-511


embedded image


411.4
410.03 (M − H)
A
7.01





A-512


embedded image


383.39
382.07 (M − H)
A
7.48





A-513


embedded image


397.42
396.1 (M − H)
A
7.88





A-514


embedded image


411.45
410.07 (M − H)
A
8.24





A-515


embedded image


423.48
422.03 (M − H)
A
8.28





A-516


embedded image


423.48
422.03 (M − H)
A
8.23





A-517


embedded image


418.47
417.02 (M − H)
A
8.4





A-518


embedded image


421.47
420.01 (M − H)
A
8.07





A-519


embedded image


421.47
420.01 (M − H)
A
8





A-520


embedded image


416.45
414.98 (M − H)
A
8





A-521


embedded image


409.43
407.99 (M − H)
A
7.98





A-522


embedded image


429.44
428.00 (M − H)
A
8.73





A-523


embedded image


395.43
394.02 (M − H)
A
7.51





A-524


embedded image


395.43
394.02 (M − H)
A
7.44





A-525


embedded image


395.43
394.02 (M − H)
A
7.06





A-526


embedded image


420.44
419.10 (M − H)
A
7.66





A-527


embedded image


404.44
403.12 (M − H)
A
10.39





A-528


embedded image


420.44
419.10 (M − H)
A
7.6





A-529


embedded image


404.44
403.12 (M − H)
A
10.27





A-530


embedded image


441.47
440.16 (M − H)
A
6.98





A-531


embedded image


387.33
NA
A
6.6





A-532


embedded image


419.32
419.95
A
6.84





A-533


embedded image


413.42
414.03
A
7.26





A-534


embedded image


383.37
384.02
A
6.9





A-535


embedded image


401.36
402.01
A
7.6





A-536


embedded image


399.37
400
A
6.6





A-537


embedded image


399.37
400
A
6.74





A-538


embedded image


413.42
412.18 (M − H)
A
7.28





A-539


embedded image


409.46
410.07
A
7.83





A-540


embedded image


409.46
410.07
A
8.24





A-541


embedded image


469.82
469.92, 471.9
A
8.41





A-542


embedded image


469.82
469.92, 471.9
A
9.07





A-543


embedded image


469.82
469.92, 471.9 (M − H)
A
9.17





A-544


embedded image


353.34
352.17 (M − H)
A
8.8





A-545


embedded image


365.35
364.18 (M − H)
A
7.04





A-546


embedded image


397.37
396.17 (M − H)
A
8.08





A-547


embedded image


379.38
378.16 (M − H)
A
7.44





A-548


embedded image


383.34
382.19 (M − H)
A
7.49





A-549


embedded image


453.82
452.10, 454.11 (M − H)
A
8.91





A-550


embedded image


393.46
392.25 (M − H)
A
8.27





A-551


embedded image


453.82
452.15, 454.15 (M − H)
A
9.56





A-552


embedded image


393.46
392.26 (M − H)
A
8.4





A-553


embedded image


471.81
470.13, 472.12 (M − H)
A
10.86





A-554


embedded image


411.45
410.27 (M − H)
A
10.05





A-555


embedded image


471.81
470.10, 472.09 (M − H)
A
10.39





A-556


embedded image


411.45
410.21 (M − H)
A
9.34





A-557


embedded image


447.81
448
D
1.9





A-558


embedded image


467.8
468
D
2.5





A-559


embedded image


431.36
432
D
1.76





A-560


embedded image


463.38
464
D
1.9





A-561


embedded image


483.36
484
D
2.45





A-571


embedded image


477.45
NA
NA
NA





A-572


embedded image


493.45
NA
NA
NA





A-573


embedded image


491.48
NA
NA
NA





A-574


embedded image


489.47
NA
NA
NA





A-575


embedded image


477.45
NA
NA
NA





A-576


embedded image


441.52
NA
NA
NA





A-577


embedded image


463.43
NA
NA
NA





A-578


embedded image


479.43
NA
NA
NA





A-579


embedded image


477.45
NA
NA
NA





A-580


embedded image


475.44
NA
NA
NA





A-581


embedded image


463.43
NA
NA
NA





A-582


embedded image


463.43
NA
NA
NA





A-583


embedded image


535.85
NA
NA
NA





A-584


embedded image


477.45
NA
NA
NA





A-585


embedded image


477.45
NA
NA
NA


















TABLE 3





Compound
NMR



No.
Solvent

1H NMR Resonance Data (δ)








A-4
DMSO-d6
14.21 (bs, 0.5H), 12.82 (bs, 0.5H), 12.73




(s, 0.5H), 10.02 (s, 0.5H), 8.67 (bs, 0.5H),




8.07 (bs, 1.5H), 7.80 (d, 1H), 7.57-7.51 (m, 2H), 7.37 (s, 0.5H),




6.82 (bs, 1H), 5.83 (s, 0.5H), 1.52 (s, 6H), 1.38 (s, 3H).


A-37
DMSO-d6
13.62 (s, 1H), 12.20 (bs, 0.3H), 8.59




(m, 1H), 8.38 (bs, 1H), 8.12 (d, 1H), 7.92 (d, 1H), 7.64 (d, 1H), 7.52




(d, 1H), 1.54 (s, 5H), 1.46 (s, 4H).


A-40
DMSO-d6
13.60 (br s, 1H), 8.55 (br s, 1H), 7.88 (m, 2H), 7.68 (m, 1H), 6.77 (m,




1H), 5.85 (br s, 1H), 1.5 (s, 6H).


A-41
DMSO-d6
13.40-12.40 (br m, 1H), 10.62-10.12 (br m, 1H), 9.38-8.60 (br m,




1H), 8.00-7.40 (br m, 3H), 6.85-6.40 (br m, 1H), 4.40-3.80 (br m,




1H), 1.95 (bs, 2H), (bm, 11H).


A-44
DMSO-d6
12.68 (bs, 1H), 8.55 (bs, 1H), 7.93 (m, 2H), 7.51 (q, 1H, J = 8.4 Hz),




6.86 (s, 1H), 3.90 (s, 3H), 1.53 (s, 9H).


A-45
DMSO-d6
12.61 (s, 1H), 12.54 (s, 1H), 11.03 (s, 1H), 7.89 (m, 2H), 7.66 (s, 1H),




7.55 (m, 2H), 7.24 (d, 1H, J = 8.8 Hz), 2.24 (s, 3H).


A-48
DMSO-d6
10.86 (s, 1H), 10.22 (s, 1H), 8.04 (d, 2H, J = 8.0 Hz), 7.93 (d, 2H,




J = 8.0 Hz), 7.65 (m, 2H), 7.11 (d, 1H, J = 8.4 Hz), 6.05 (s, 1H), 3.74 (s,




3H).


A-49
DMSO-d6
8.18 (d, 2H, J = 8 Hz), 7.90-7.79 (m, 4H), 7.49 (dd, 2H, J = 8.8, 5.2),




7.17 (t, 2H, J = 8.8 Hz), 5.56 (bs, 2H), 1.45 (s, 9H).


A-50
DMSO-d6
13.25 (s, 1H), 12.84 (s, 1H), 9.01 (s, 1H), 8.28 (d, 2H, J = 8.0 Hz),




7.83 (d, 2H, J = 8.0 Hz), 7.79 (dd, 2H, J = 8.8, 5.2 Hz), 7.32 (t, 2H,




J = 8.8 Hz), 6.60 (s, 1H), 1.56 (s, 9H).


A-53
DMSO-d6
13.59 (br s, 1H), 12.72 (s, 1H), 8.87 (s, 1H), 8.27 (d, 2H), 7.84 (d,




2H), 7.16 (t, 1H), 6.50 (s, 1H), 1.54 (s, 9H).


A-54
DMSO-d6
13.57 (br s, 1H), 12.78 (br s, 1H), 8.79 (br s, 1H), 8.08 (m, 2H), 7.57




(m, 2H), 7.15 (t, 1H), 6.48 (s, 1H), 1.52 (s, 9H).


A-55
DMSO-d6
13.52 (br s, 1H), 12.58 (br s, 1H), 8.54 (br s, 1H), 8.1 (m, 2H), 7.48




(m, 2H), 7.16 (t, 1H), 6.50 (s, 1H), 4.4 (m, 1H), 1.24 (m, 6H).


A-56
DMSO-d6
13.52 (br s, 1H), 12.55 (br s, 1H), 8.94 (br s, 1H), 8.07 (m, 2H), 7.62




(m, 1H), 7.5-7.35 (m, 4H), 6.54 (s, 1H), 4.75 (br m, 2H).


A-58
DMSO-d6
13.55 (br s, 1H), 12.52 (br s, 1H), 8.6 (br s, 1H), 8.29 (m, 2H), 7.79




(m, 2H), 7.16 (t, 1H), 6.52 (s, 1H), 4.41 (m, 1H), 1.26 (m, 6H).


A-62
DMSO-d6
13.58 (br s, 1H), 12.65 (br s, 1H), 8.84 (s, 1H), 7.95 (m, 2H), 7.53 (m,




1H), 7.15 (t, 1H), 6.48 (s, 1H), 1.52 (s, 9H).


A-63
DMSO-d6
13.55 (br s, 1H), 12.46 (br s, 1H), 8.6 (br s, 1H), 8.01 (m, 2H), 7.48




(m, 1H), 7.16 (t, 1H), 6.50 (s, 1H), 4.39 (m, 1H), 1.25 (m, 6H).


A-65
DMSO-d6
13.6 (br s, 1H), 12.63 (br s, 1H), 8.86 (br s, 1H), 7.91 (m, 2H), 7.71




(m, 1H), 7.16 (t, 1H), 6.49 (s, 1H), 1.52 (s, 9H).


A-69
DMSO-d6
13.6 (br s, 1H), 12.64 (br s, 1H), 8.87 (br s, 1H), 8.10 (m, 2H), 7.48




(m, 2H), 7.16 (t, 1H), 6.51 (s, 1H), 3.44 (m, 2H), 0.96 (s, 9H).


A-125
DMSO-d6
12.59 (s, 1H), 12.45 (d, J = 1 Hz, 1H), 9.04 (s, 1H), 8.24 (d, J = 8 Hz,




2H), 7.80 (d, J = 8 Hz, 2H), 5 84 (d, J = 8 Hz, 1H), 1.51 (s, 9H).


A-127
DMSO-d6
13.24 (s, 1H), 12.59 (s, 1H), 8.82 (d, J = 6.7 Hz, 1H), 8.41 (m, 2H),




7.96 (d, J = 7.6 Hz, 1H), 7.76 (m, 2H), 7.67, (t, J = 7.6 Hz, 1H), 7.32




(t, J = 8.6 Hz, 2H), 6.61 (s, 1H), 4.44 (q, J = 6.7 Hz, 1H), 1.29 (d, J =




6.3 Hz, 6H).


A-155
DMSO-d6
12.54 (s, 1H), 12.50 (s, 1H), 9.18 (t, 1H), 8.30 (d, 2H), 7.80 (d, 2H),




5.93 (s, 1H) 3.47 (d, 2H), 2.23 (s, 3H), 0.98 (s, 3H).


A-158
DMSO-d6
13.18 (s, 1H), 12.58 (s, 1H), 8.95 (d, 1H), 8.00 (m, 2H), 7.70 (d, 2H),




7.49 (m, 1H), 7.40 (d, 2H), 6.57 (s, 1H), 5.22 (m, 1H), 4.53 (m, 3H),




2.05 (m, 2H), 1.60 (m, 6H).


A-159
DMSO-d6
13.20 (s, 1H), 12.78 (s, 1H), 9.00 (s, 1H), 7.96 (m, 2H), 7.70 (d, 2H),




7.53 (m, 1H), 7.40 (d, 2H), 6.58 (s, 1H), 5.23 (t, 1H), 4.50 (d, 2H),




1.55 (s, 9H).


A-160
DMSO-d6
13.32 (s, 1H), 12.65 (s, 1H), 8.22 (t, 1H), 8.00 (m, 2H), 7.70 (d, 2H),




7.60 (d, 2H), 7.50 (m, 1H), 3.62 (m, 2H), 3.42 (m, 5H), 1.81 (m, 2H),




1.10 (m, 3H).


A-162
DMSO-d6
13.41 (s, 1H), 13.15 (s, 1H), 8.44 (s, 1H), 7.97 (m, 2H), 7.70 (d, 2H),




7.60 (d, 2H), 7.55 (m, 1H), 1.54 (s, 9H).


A-163
DMSO-d6
13.11 (s, 1H), 12.80 (s, 1H), 8.86 (s, 1H), 8.75 (t, 1H), 8.14 (m, 1H),




7.79 (t, 2H), 7.30 (t, 2H), 6.80 (d, 1H), 6.56 (s, 1H), 3.65 (m, 4H),




3.52 (m, 4H), 3.40 (m, 2H), 1.92 (m, 1H), 0.95 (d, 6H).


A-164
DMSO-d6
13.20 (s, 1H), 12.97 (s, 1H), 8.82 (s, 1H), 8.79 (s, 1H), 8.10 (d, 1H),




7.79 (t, 2H), 7.31 (t, 2H), 6.82 (d, 1H), 6.52 (s, 1H), 3.98 (m, 1H),




3.65 (m, 4H), 3.55 (m, 4H), 1.55 (s, 9H).


A-171
DMSO-d6
13.18 (s, 1H), 12.80 (s, 1H), 8.84 (t, 1H), 7.80-7.65 (m, 4H), 7.32




(m, 3H), 7.03 (m, 1H), 6.59 (s, 1H), 3.78 (s, 3H), 3.42 (m, 2 H), 1.95




(m, 1H), 0.96 (d, 6H).


A-173
DMSO-d6
13.08 (s, 1H), 10.46 (s, 1H), 9.72 (s, 1H), 7.95 (t, 2H), 7.65 (d, 2H),




7.40 (t, 2H), 7.20 (d, 2H), 5.95 (s, 1H), 3.60 (m, 5H).


A-174
DMSO-d6
13.23 (s, 1H), 12.60 (s, 1H), 8.82 (d, 1H), 8.58 (d, 1H), 7.78 (m, 4H),




7.33 (t, 2H), 6.60 (s, 1H), 4.30 (m, 1H), 2.80 (m, 2H), 1.62 (m, 2H),




1.24 (m, 6H), 0.95 (m, 3H).


A-176
DMSO-d6
13.20 (s, 1H), 12.59 (s, 1H), 8.98 (t, 1H), 8.58 (d, 1H), 7.80 (m, 4H),




7.33 (t, 2H), 6.61 (s, 1H), 3.45 (m, 2H), 2.80 (m, 2H), 1.93 (m, 1H),




1.22 (t, 3H), 0.98 (d, 6H).


A-177
DMSO-d6
13.25 (s, 1H), 12.75 (s, 1H), 9.02 (s, 1H), 8.60 (s, 1H), 7.79 (m, 4H),




7.31 (t, 2H), 6.60 (s, 1H), 3.15 (s, 2H), 2.81 (q, 2H), 1.57 (s, 9H),




1.23 (t, 3H).


A-206
DMSO-d6
13.22 (s, 1H), 12.78 (s, 1H), 8.75 (d, 1H), 8.19 (t, 2H), 7.79 (t, 2H),




7.34 (t, 2H), 7.22 (t, 2H), 6.60 (s, 1H), 4.27 (m, 1H), 1.60 (m, 2H),




1.23 (d, 3H), 0.95 (t, 3H).


A-209
DMSO-d6
13.28 (s, 1H), 12.78 (s, 1H), 8.72 (d, 1H), 8.19 (t, 2H), 7.78 (d, 2H),




7.55 (d, 2H), 7.23 (t, 2H), 6.63 (s, 1H), 4.28 (m, 1H), 1.60 (m, 2H),




1.23 (d, 3H), 0.94 (t, 3H).


A-213
DMSO-d6
13.15 (s, 1H), 12.61 (s, 1H), 9.06 (t, 1H), 7.98 (t, 2H), 7.80 (t, 2H),




7.64 (t, 1H), 7.33 (t, 2H), 6.60 (s, 1H), 3.81 (m, 1H), 3.66 (m, 1H),




3.50 (m, 3H), 1.13 (m, 6H).


A-214
DMSO-d6
13.20 (s, 1H), 12.63 (s, 1H), 9.00 (t, 1H), 8.00 (m, 2H), 7.78 (d, 2H),




7.50 (m, 3H), 6.62 (s, 1H), 3.82 (m, 1H), 3.65 (m, 1H), 3.50 (m, 3H),




1.15 (m, 6H).


A-216
DMSO-d6
13.22 (s, 1H), 12.58 (s, 1H), 8.80 (d, 1H), 7.95 (d, 2H), 7.79 (t, 2H),




7.64 (m, 1H), 7.33 (t, 2H), 6.60 (s, 1H), 4.40 (septet, 1H), 1.27 (d,




6H).


A-218
DMSO-d6
13.22 (s, 1H), 12.61 (s, 1H), 9.00 (d, 1H), 7.97 (m, 2H), 7.78 (t, 2H),




7.65 (m, 1H), 7.30 (t, 2H), 6.60 (s, 1H), 4.55 (m, 1H), 3.46 (m, 2H),




3.30 (s, 3H), 3.12 (s, 1H), 1.22 (d, 3H).


A-219
DMSO-d6
13.22 (s, 1H), 12.60 (s, 1H), 8.80 (d, 1H), 7.94 (m, 2H), 7.80 (t, 2H),




7.63 (t, 1H), 7.32 (t, 2H), 6.60 (s, 1H), 4.27 (m, 1H), 1.60 (m, 2H),




1.22 (d, 3H), 0.93 (t, 3H).


A-220
DMSO-d6
13.20 (s, 1H), 12.59 (s, 1H), 8.95 (t, 1H), 7.95 (d, 2H), 7.80 (t, 2H),




7.65 (t, 1H), 7.32 (t, 2H), 6.60 (s, 1H), 3.23 (m, 2H), 1.92 (m, 1H),




0.97 (d, 6H).


A-221
DMSO-d6
13.21 (s, 1H), 12.57 (s, 1H), 8.96 (d, 1H), 7.97 (m, 2H), 7.80 (t, 2H),




7.64 (t, 1H), 7.32 (t, 2H), 6.60 (s, 1H), 4.54 (m, 1H), 2.05 (m, 2H),




1.60 (m, 6H).


A-222
DMSO-d6
13.22 (s, 1H), 12.52 (s, 1H), 9.02 (d, 1H), 7.96 (m, 2H), 7.80 (t, 2H),




7.65 (m, 1H), 7.33 (t, 2H), 6.60 (s, 1H), 4.62 (m, 1H), 2.40 (m, 2H),




2.00 (m, 2H), 1.75 (m, 2H).


A-225
DMSO-d6
13.30 (s, 1H), 12.62 (s, 1H), 8.77 (d, 1H), 7.99 (m, 2H), 7.73 (d, 2H),




7.50 (m, 3H), 6.62 (s, 1H), 4.28 (m, 1H), 1.60 (m, 2H), 1.23 (d, 3H),




0.94 (t, 3H).


A-230
DMSO-d6
13.40 (s, 1H), 12.75 (s, 1H), 8.62 (d, 1H), 8.11 (d, 2H), 7.49 (m, 4H),




7.27 (t, 1H), 6.75 (s, 1H), 4.40 (m, 1H), 1.27 (d, 6H).


A-231
DMSO-d6
13.40 (s, 1H), 12.70 (s, 1H), 8.86 (d, 1H), 8.13 (d, 2H), 7.50 (m, 4H),




7.28 (t, 1H), 6.78 (s, 1H), 4.62 (m, 1H), 2.40 (m, 2H), 2.00 (m, 2H),




1.75 (m, 2H).


A-233
DMSO-d6
13.38 (s, 1H), 12.78 (s, 1H), 8.80 (t, 1H), 8.10 (d, 2H), 7.50 (m, 4H),




7.29 (t, 1H), 6.77 (s, 1H), 3.43 (m, 2H), 1.93 (m, 1H), 0.96 (d, 6H).


A-234
DMSO-d6
13.40 (s, 1H), 12.79 (s, 1H), 8.65 (d, 1H), 8.10 (d, 2H), 7.50 (m, 4H),




7.29 (t, 1H), 6.78 (s, 1H), 4.27 (m, 1H), 1.60 (m, 2H), 1.22 (d, 3H),




0.93 (t, 3H).


A-235
DMSO-d6
13.15 (s, 1H), 12.61 (s, 1H), 9.00 (t, 1H), 8.00 (m, 2H), 7.80 (m, 2H),




7.47 (m, 1H), 7.32 (t, 2H), 6.60 (s, 1H), 3.78 (m, 2H), 3.60 (m, 2H),




3.48 (m, 2H), 1.12 (t, 3H).


A-240
DMSO-d6
13.26 (s, 1H), 12.64 (s, 1H), 8.93 (t, 1H), 8.30 (d, 2H), 7.80 (m, 4H),




7.57 (d, 2H), 6.65 (s, 1H), 3.46 (t, 2H), 1.93 (m, 1H), 0.98 (d, 6H).


A-241
DMSO-d6
13.30 (s, 1H), 12.63 (s, 1H), 8.78 (d, 1H), 8.29 (d, 2H), 7.78 (m, 4H),




7.55 (d, 2H), 6.63 (s, 1H), 4.42 (m, 1H), 1.30 (d, 6H).


A-242
DMSO-d6
13.33 (s, 1H), 12.81 (s, 1H), 8.82 (d, 1H), 8.18 (m, 2H), 7.52 (m, 2H),




7.25 (m, 3H), 6.75 (s, 1H), 4.52 (m, 1H), 3.51 (m, 4H), 1.28 (d, 3H),




1.13 (t, 3H).


A-243
DMSO-d6
13.38 (s, 1H), 12.78 (s, 1H), 8.80 (d, 1H), 8.20 (t, 2H), 7.50 (t, 2H),




7.22 (m, 3H), 6.75 (s, 1H), 4.52 (m, 1H), 2.03 (m, 2H), 1.60 (m, 6H).


A-244
DMSO-d6
13.33 (s, 1H), 12.80 (s, 1H), 8.78 (t, 1H), 8.18 (t, 2H), 7.52 (t, 2H),




7.22 (m, 3H), 6.77 (s, 1H), 3.43 (m, 2H), 1.91 (m, 1H), 0.97 (d, 6H).


A-245
DMSO-d6
13.38 (s, 1H), 12.80 (s, 1H), 8.60 (d, 1H), 8.18 (t, 2H), 7.50 (t, 2H),




7.25 (m, 3H), 6.74 (s, 1H), 4.40 (m, 1H), 1.27 (d, 6H).


A-246
DMSO-d6
13.40 (s, 1H), 12.69 (s, 1H), 8.88 (d, 1H), 8.00 (m, 2H), 7.72 (s, 1H),




7.62 (d, 1H), 7.47 (m, 2H), 6.78 (s, 1H), 4.55 (m, 1H), 3.48 (d, 2H),




3.30 (s, 3H), 1.25 (d, 3H).


A-249
DMSO-d6
13.19 (s, 1H), 12.71 (s, 1H), 8.89 (t, 1H), 8.11 (d, 2H), 7.80 (t, 2H),




7.48 (d, 2H), 7.32 (t, 2H), 6.60 (s, 1H), 3.42 (t, 2H), 1.92 (m, 1H),




0.98 (d, 6H).


A-250
DMSO-d6
13.21 (s, 1H), 12.70 (s, 1H), 8.72 (d, 1H), 8.12 (d, 2H), 7.78 (t, 2H),




7.47 (d, 2H), 7.31 (t, 2H), 6.60 (s, 1H), 4.40 (m, 1H), 1.27 (d, 6H).


A-254
DMSO-d6
13.24 (s, 1H), 12.75 (s, 1H), 8.83 (t, 1H), 8.19 (t, 2), 7.77(d, 2H), 7.54




(d, 2H), 7.23 (t, 2H), 6.63 (s, 1H), 3.44 (t, 2H), 1.93 (m, 1H), 0.98 (d,




6H).


A-255
DMSO-d6
13.25 (s, 1H), 12.75 (s, 1H), 8.67 (d, 1H), 8.18 (t, 2H), 7.74 (d, 2H),




7.53 (d, 2H), 7.23 (t, 2H), 6.62 (s, 1H), 4.41 (m, 1H), 1.27 (d, 6H).


A-256
DMSO-d6
13.19 (s, 1H), 12.70 (s, 1H), 8.96 (d, 1H), 7.95 (d, 1H), 7.80 (m, 3H),




7.47 (t, 1H), 7.32 (m, 3H), 6.60 (s, 1H), 4.51 (m, 1H), 3.50 (m, 4H),




1.27 (d, 3H), 1.14 (t, 3H).


A-257
DMSO-d6
13.20 (s, 1H), 12.67 (s, 1H), 8.90 (t, 1H), 7.98 (d, 1H), 7.80 (m, 3H),




7.48 (m, 1H), 7.33 (m, 3H), 6.60 (s, 1H), 3.44 (m, 2H), 1.93 (m, 1H),




0.98 (d, 6H).


A-258
DMSO-d6
13.23 (s, 1H), 12.62 (s, 1H), 8.97 (d, (1H), 8.00 (m, 2H), 7.75 (d, 2H),




7.50 (m, 3H), 6.62 (s, 1H), 4.51 (m, 1H), 3.51 (m, 4H), 1.26 (d, 3H),




1.13 (t, 3H).


A-259
DMSO-d6
13.22 (s, 1H), 12.53 (s, 1H), 9.00 (d, 1H), 8.00 (m, 2H), 7.78 (m, 2H),




7.48 (m, 1H), 7.30 (m, 2H), 6.60 (s, 1H), 4.64 (m, 1H), 2.40 (m, 2H),




2.00 (m, 2H), 1.78 (m, 2H).


A-260
DMSO-d6
13.20 (s, 1H), 12.59 (s, 1H), 8.95 (d, 1H), 8.00 (m, 2H), 7.77 (m, 2H),




7.48 (m, 1H), 7.30 (t, 2H). 6.59 (s, 1H), 4.55 (m, 1H), 2.05 (m, 2H),




1.60 (m, 6H).


A-261
DMSO-d6
13.20 (s, 1H), 12.60 (s, 1H), 8.92 (t, 1H), 7.98 (m, 2H), 7.78 (m, 2H),




7.47 (m, 1H), 7.30 (t, 2H), 6.60 (s, 1H), 3.43 (t, 2H), 1.92 (m, 1H),




0.95 (d, 6H).


A-263
DMSO-d6
13.19 (s, 1H), 12.62 (s, 1H), 8.99 (d, 1H), 8.00 (m, 2H), 7.78 (m, 2H),




7.48 (m, 1H), 7.33 (t, 2H), 6.60 (s, 1H), 4.51 (m, 1H), 3.50 (m, 4H),




1.26 (d, 3H), 1.12 (t, 3H).


A-264
DMSO-d6
13.21 (s, 1H), 12.64 (s, 1H), 8.98 (d, 1H), 8.12 (d, 2H), 7.78 (t, 2H),




7.48 (d, 2H), 7.30 (t, 2H), 6.60 (s, 1H), 4.63 (m, 1H), 2.40 (m, 2H),




2.00 (m, 2H), 1.75 (m, 2H).


A-267
DMSO-d6
13.18 (s, 1H), 12.62 (s, 1H), 8.98 (d, 1H), 8.00 (m, 2H), 7.79 (t, 2H),




7.48 (m, 1H), 7.33 (t, 2H), 6.59 (s, 1H), 4.52 (m, 1H), 3.50 (m, 4H),




1.26 (d, 3H), 1.14 (t, 3H).


A-268
DMSO-d6
13.22 (s, 1H), 12.65 (s, 1H), 8.97 (d, 1H), 8.00 (m, 2H), 7.78 (t, 2H),




7.49 (m, 1H), 7.31 (t, 2H), 6.60 (s, 1H), 4.42 (m, 1H), 3.48 (m, 2H),




3.30 (s, 3H), 1.63 (m, 2H), 0.94 (t, 3H).


A-274
DMSO-d6
13.22 (s, 1H), 12.63 (s, 1H), 8.98 (d, 1H), 7.99 (m, 2H), 7.78 (t, 2H),




7.47 (m, 1H), 7.32 (t, 2H), 6.60 (s, 1H), 4.55 (m, 1H), 3.47 (d, 2H),




3.30 (s, 3H), 1.25 (d, 3H).


A-282
DMSO-d6
13.31 (s, 1H), 12.67 (s, 1H), 8.72 (t, 1H), 8.30 (d, 2H), 7.78 (d, 2H),




7.52 (t, 2H), 7.28 (m, 1H), 6.80 (s, 1H), 3.65 (m, 2H), 3.42 (m, 4H),




1.82 (m, 2H), 1.07 (t, 3H).


A-283
DMSO-d6
13.26 (s, 1H), 12.60 (s, 1H), 8.84 (t, 1H), 8.00 (m, 2H), 7.73 (s, 1H),




7.62 (d, 1H), 7.44 (m, 2H), 6.76 (s, 1H), 3.62 (m, 2H), 3.48 (m, 3H),




1.80 (m, 2H), 1.03 (d, 6H).


A-284
DMSO-d6
13.40 (s, 1H), 12.59 (s, 1H), 8.88 (d, 1H), 8.00 (m, 2H), 7.72 (s, 1H),




7.60 (d, 1H), 7.47 (m, 2H), 6.80 (s, 1H), 4.63 (m, 1H), 2.40 (m, 2H),




2.00 (m, 2H), 1.76 (m, 2H).


A-285
DMSO-d6
13.40 (s, 1H), 12.64 (s, 1H), 8.68 (d, 1H), 7.98 (m, 2H), 7.70 (s, 1H),




7.60 (d, 1H), 7.48 (m, 2H), 6.78 (s, 1H), 4.28 (m, 1H), 1.60 (m, 2H),




1.23 (d, 3H), 0.95 (t, 3H).


A-286
DMSO-d6
13.40 (s, 1H), 12.62 (s, 1H), 8.63 (d, 1H), 7.99 (m, 2H), 7.70 (s, 1H),




7.61 (d, 1H), 7.48 (m, 2H), 6.77 (s, 1H), 4.40 (m, 1H), 1.27 (d, 6H).


A-287
DMSO-d6
13.38 (s, 1H), 12.62 (s, 1H), 8.80 (t, 1H), 8.00 (m, 2H), 7.72 (s, 1H),




7.61 (d, 1H), 7.48 (m, 2H), 6.80 (s, 1H), 3.45 (t, 2H), 1.92 (m, 1H),




0.97 (d, 6H).


A-288
DMSO-d6
13.40 (s, 1H), 12.79 (s, 1H), 8.95 (s, 1H), 7.97 (m, 2H), 7.72 (s, 1H),




7.61 (d, 1H), 7.48 (m, 2H), 6.78 (s, 1H), 2.19 (m, 2H), 1.75 (m, 6H),




1.60 (s, 3H).


A-289
DMSO-d6
13.38 (s, 1H), 12.61 (s, 1H), 8.81 (d, 1H), 8.00 (m, 2H), 7.70 (s, 1H),




7.61 (d, 1H), 7.45 (m, 2H), 6.78 (s, 1H), 4.52 (m, 1H), 2.04 (m, 2H),




1.60 (m, 6H).


A-290
DMSO-d6
13.41 (s, 1H), 12.82 (s, 1H), 8.90 (s, 1H), 7.96 (m, 2H), 7.73 (s, 1H),




7.62 (d, 1H), 7.50 (m, 2H), 6.76 (s, 1H), 4.06 (m, 1H), 3.12 (d, 3H),




1.53 (s, 9H).


A-291
DMSO-d6
13.40 (bs, 1H), 12.68 (s, 1H), 8.87 (d, 1H), 8.30 (d, 2H), 7.78 (d, 2H),




7.50 (d, 2H), 7.27 (t, 1H), 6.78 (s, 1H), 4.55 (m, 1H), 2.06 (m, 2H),




1.60 (m, 6H).


A-292
DMSO-d6
13.39 (s, 1H), 12.64 (s, 1H), 9.18 (t, 1H), 8.25 (d, 2H), 7.79 (d, 2H),




7.52 (m, 4H), 7.24 (m, 2H), 6.82 (s, 1H), 4.85 (d, 2H).


A-293
DMSO-d6
13.40 (s, 1H), 12.70 (s, 1H), 8.85 (t, 1H), 8.30 (d, 2H), 7.80 (d, 2H),




7.53 (d, 2H), 7.28 (t, 1H), 6.79 (s, 1H), 3.45 (t, 2H), 1.95 (m, 1H),




0.97 (d, 6H).


A-296
DMSO-d6
13.41 (s, 1H), 12.70 (s, 1H), 8.69 (d, 1H), 8.30 (d, 2H), 7.80 (d, 2H),




7.50 (d, 2H), 7.28 (t, 1H), 6.78 (s, 1H), 4.40 (m, 1H), 1.27 (d, 6H).


A-297
DMSO-d6
13.41 (s, 1H), 12.73 (s, 1H), 8.72 (d, 1H), 8.28 (d, 2H), 7.79 (d, 2H),




7.51 (d, 2H), 7.28 (t, 1H), 6.78 (s, 1H), 4.30 (m, 1H), 1.61 (m, 2H),




1.23 (d, 3H), 0.95 (t, 3H).


A-298
DMSO-d6
13.40 (s, 1H), 12.63 (s, 1H), 8.93 (d, 1H), 8.30 (d, 2H), 7.80 (d, 2H),




7.50 (d, 2H), 7.28 (t, 1H), 6.80 (s, 1H), 4.63 (m, 1H), 2.40 (m, 2H),




2.00 (m, 2H), 1.75 (m, 2H).


A-299
DMSO-d6
13.42 (s, 1H), 12.90 (s, 1H), 8.92 (s, 1H), 8.28 (d, 2H), 7.82 (d, 2H),




7.53 (d, 2H), 7.28 (t, 1H), 6.78 (s, 1H), 1.55 (s, 9H).


A-300
DMSO-d6
13.26 (s, 1H), 12.60 (s, 1H), 8.95 (t, 1H), 8.40 (m, 2H), 7.96 (d, 1H),




7.78 (d, 2H), 7.65 (t, 1H), 7.55 (d, 2H), 6.63 (s, 1H), 3.60 (m, 1H),




3.41 (m, 1H), 1.71 (m, 1H), 1.43 (m, 1H), 1.22 (m, 1H), 0.94 (m, 6H).


A-301
DMSO-d6
13.21 (s, 1H), 12.56 (s, 1H), 8.79 (t, 1H), 8.41 (m, 2H), 7.95 (d, 1H),




7.78 (d, 2H), 7.64 (t, 1H), 7.54 (d, 2H), 6.63 (s, 1H), 3.65 (m, 2H),




3.48 (m, 3H), 1.80 (m, 2H), 1.05 (d, 6H).


A-302
DMSO-d6
13.29 (s, 1H), 12.58 (s, 1H), 8.97 (d, 1H), 8.41 (s, 2H), 7.95 (d, 1H),




7.76 (d, 2H), 7.65 (d, 1H), 7.52 (d, 2H), 6.63 (s, 1H), 4.57 (m, 1H),




2.06 (m, 2H), 1.62 (m, 6H).


A-303
DMSO-d6
13.28 (s, 1H), 12.60 (s, 1H), 8.94 (t, 1H), 8.40 (m, 2H), 7.95 (d, 1H),




7.77 (d, 2H), 7.65 (t, 1H), 7.54 (d, 2H), 6.65 (s, 1H), 3.45 (t, 2H),




1.93 (m, 1H), 0.98 (d, 6H).


A-304
DMSO-d6
13.30 (s, 1H), 12.62 (s, 1H), 8.94 (d, 1H), 8.40 (m, 2H), 7.95 (d, 1H),




7.77 (d, 2H), 7.65 (t, 1H), 7.53 (d, 2H), 6.64 (s, 1H), 4.30 (m, 1H),




1.90 (m, 1H), 1.20 (d, 3H), 0.95 (m, 6H).


A-305
DMSO-d6
13.30 (s, 1H), 12.59 (s, 1H), 8.80 (d, 1H), 8.40 (m, 2H), 7.97 (d, 1H),




7.76 (d, 2H), 7.66 (t, 1H), 7.54 (d, 2H), 6.63 (s, 1H), 4.42 (m, 1H),




1.27 (d, 6H).


A-306
DMSO-d6
13.31 (s, 1H), 12.61 (s, 1H), 8.80 (d, 1H), 8.40 (m, 2H), 7.96 (d, 1H),




7.76 (d, 2H), 7.65 (t, 1H), 7.53 (d, 2H), 6.64 (s, 1H), 4.31 (m, 1H),




1.62 (m, 2H), 1.23 (d, 3H), 0.96 (t, 3H).


A-307
DMSO-d6
13.32 (s, 1H), 12.53 (s, 1H), 9.02 (d, 1H), 8.40 (m, 2H), 7.95 (d, 1H),




7.75 (d, 2H), 7.65 (t, 1H), 7.52 (d, 2H), 6.64 (s, 1H), 4.65 (m, 1H),




2.40 (m, 2H), 2.00 (m, 2H), 1.75 (m, 2H).


A-308
DMSO-d6
13.32 (s, 1H), 12.78 (s, 1H), 9.00 (s, 1H), 8.40 (m, 2H), 7.98 (d, 1H),




7.78 (d, 2H), 7.70 (t, 1H), 7.53 (d, 2H), 6.63 (s, 1H), 1.54 (s, 9H).


A-309
DMSO-d6
13.40 (bs, 1H), 12.62 (s, 1H), 8.89 (d, 1H), 8.40 (m, 2H), 7.95 (d,




1H), 7.66 (t, 1H), 7.50 (d, 2H), 7.28 (t, 1H), 6.78 (s, 1H), 4.58 (m,




1H), 2.05 (m, 2H), 1.60 (m, 6H).


A-310
DMSO-d6
13.39 (bs, 1H), 12.62 (s, 1H), 8.85 (t, 1H), 8.40 (m, 2H), 7.96 (d, 1H),




7.65 (t, 1H), 7.52 (d, 2H), 7.26 (t, 1H), 6.79 (s, 1H), 3.45 (t, 2H), 1.92




(m, 1H), 0.95 (d, 6H).


A-311
DMSO-d6
13.42 (s, 1H), 12.69 (s, 1H), 8.83 (d, 1H), 8.40 (m, 2H), 7.98 (d, 1H),




7.65 (d, 1H), 7.52 (d, 2H), 7.28 (t, 1H), 6.79 (s, 1H), 4.31 (m, 1H),




1.90 (m, 1H), 1.20 (d, 1H), 0.95 (m, 6H).


A-313
DMSO-d6
13.40 (s, 1H), 12.63 (s, 1H), 8.73 (d, 1H), 8.40 (m, 2H), 7.97 (d, 1H),




7.64 (t, 1H), 7.50 (d, 2H), 7.26 (t, 1H), 6.78 (s, 1H), 4.30 (m, 1H),




1.60 (m, 2H), 1.23 (d, 3H), 0.94 (t, 3H).


A-314
DMSO-d6
13.42 (bs, 1H), 12.59 (s, 1H), 8.96 (d, 1H), 8.40 (m, 2H), 7.96 (d,




1H), 7.65 (t, 1H), 7.50 (d, 2H), 7.29 (t, 1H), 6.79 (s, 1H), 4.66 (m,




1H), 2.40 (m, 2H), 2.00 (m, 2H), 1.75 (m, 2H).


A-319
DMSO-d6
13.24 (s, 1H), 12.60 (s, 1H), 8.78 (d, 1H), 8.00 (m, 2H), 7.53 (m, 3H),




7.40 (m, 1H), 6.63 (s, 1H), 4.41 (m, 1H), 3.14 (s, 2H), 2.22 (s, 3H),




1.26 (d, 6H).


A-323
DMSO-d6
13.22 (s, 1H), 12.62 (s, 1H), 8.90 (t, 1H), 8.00 (m, 2H), 7.52 (m, 3H),




7.40 (m, 1H), 6.63 (s, 1H), 3.45 (t, 2H), 2.22 (s, 3H), 1.93 (m, 1H),




0.98 (d, 6H).


A-335
DMSO-d6
12.80 (s, 1H), 12.53 (s, 1H), 8.80 (t, 1H), 8.28 (d, 2H), 7.80 (d, 2H),




7.52 (m, 2H), 7.22 (t, 1H), 4.84 (d, 2H), 1.30 (s, 9 H).


A-338
DMSO-d6
14.0 (s, 1H), 12.46 (s, 1H), 9.01 (t, 1H), 8.23 (d, 2H), 7.79 (d, 2H),




7.50 (m, 2H), 7.21 (m, 1H), 6.80 (s, 1H), 4.82 (d, 2H), 3.82 (s, 3H).


A-339
DMSO-d6
13.93 (s, 1H), 12.69 (s, 1H), 8.80 (s, 1H), 8.28 (d, 2H), 7.83 (d, 2H),




6.74 (s, 1H), 3.82 (s, 3H), 1.53 (s, 9H).


A-340
DMSO-d6
13.08 (s, 1H), 12.58 (s, 1H), 8.60 (s, 1H), 8.48 (d, 2H), 7.82 (d, 2H),




1.57 (s, 9H), 1.30 (s, 9H).


A-346
DMSO-d6
13.39 (s, 1H), 12.62 (s, 1H), 8.83 (s, 1H), 7.99 (d, 2H), 7.69 (d, 1H),




7.53 (d, 2H), 7.30 (t, 1H), 6.80 (s, 1H), 3.60 (m, 1H), 3.45 (m, 1H),




1.70 (m, 1H), 1.45 (m, 1H), 0.94 (m, 6H).


A-347
DMSO-d6
13.42 (bs, 1H), 12.59 (s, 1H), 8.94 (d, 1H), 7.99 (d, 2H), 7.66 (d, 1H),




7.53 (d, 2H), 7.28 (t, 1H), 6.80 (s, 1H), 4.65 (m, 1H), 2.40 (m, 2H),




2.00 (m, 2H), 1.78 (m, 2H).


A-351
DMSO-d6
13.42 (s, 1H), 12.70 (s, 1H), 8.82 (d, 1H), 7.98 (d, 2H), 7.69 (t, 1H),




7.52 (d, 2H), 7.30 (t, 1H), 6.79 (s, 1H), 4.30 (t, 1H), 1.90 (m, 1H),




1.20 (d, 3H), 0.99 (m, 6H).


A-352
DMSO-d6
13.38 (s, 1H), 12.62 (s, 1H), 8.84 (t, 1H), 7.95 (d, 2H), 7.65 (m, 1H),




7.53 (m, 2H), 7.28 (t, 1H), 6.79 (s, 1H), 3.44 (m, 2H), 1.92 (m, 1H),




0.96 (d, 6H).


A-356
DMSO-d6
13.41 (s, 1H), 12.63 (s, 1H), 8.71 (d, 1H), 7.95 (m, 2H), 7.66 (m, 1H),




7.52 (m, 2H), 7.28 (t, 1H), 6.78 (s, 1H), 4.28 (m, 1H), 1.60 (m, 2H),




1.22 (d, 3H), 0.98 (t, 3H).


A-362
DMSO-d6
13.41 (s, 1H), 12.63 (s, 1H), 8.70 (d, 1H), 7.94 (m, 2H), 7.65 (m, 1H),




7.52 (d, 2H), 7.28 (t, 1H), 6.77 (s, 1H), 4.28 (m, 1H), 1.60 (m, 2H),




1.22 (d, 3H), 0.93 (t, 3H).


A-363
DMSO-d6
13.40 (s, 1H), 12.69 (s, 1H), 8.88 (d, 1H), 8.00 (m, 2H), 7.50 (m, 3H),




7.28 (t, 1H), 6.75 (s, 1H), 4.55 (m, 1H), 3.47 (d, 2H), 3.30 (s, 3H),




1.26 (d, 3H).


A-364
DMSO-d6
13.38 (s, 1H), 12.64 (s, 1H), 8.81 (t, 1H), 8.00 (m, 2H), 7.52 (m, 3H),




7.28 (t, 1H), 6.78 (s, 1H), 3.45 (m, 2H), 1.92 (m, 1H), 0.97 (d, 6H).


A-365
DMSO-d6
13.40 (s, 1H), 12.63 (s, 1H), 8.82 (d, 1H), 8.00 (m, 2H), 7.50 (m, 3H),




7.28 (t, 1H), 6.75 (s, 1H), 4.53 (t, 1H), 4.07 (m, 1H), 3.14 (m, 2H),




2.06 (m, 2H), 1.61 (m, 6H).


A-366
DMSO-d6
13.40 (s, 1H), 12.63 (s, 1H), 8.66 (d, 1H), 8.00 (m, 2H), 7.50 (m, 3H),




7.28 (t, 1H), 6.74 (s, 1H), 4.40 (m, 1H), 4.07 (m, 1H), 3.14 (m, 4H),




1.25 (d, 6H).


A-369
DMSO-d6
13.40 (s, 1H), 12.72 (s, 1H), 8.81 (d, 1H), 8.00 (d, 1H), 7.80 (d, 1H),




7.50 (m, 3H), 7.30 (m, 2H), 6.76 (s, 1H), 4.53 (m, 1H), 2.04 (m, 2H),




1.60 (m, 6H).


A-370
DMSO-d6
13.40 (s, 1H), 12.74 (s, 1H), 8.65 (d, 1H), 7.98 (d, 1H), 7.80 (d, 1H),




7.50 (m, 3H), 7.30 (m, 2H), 6.78 (s, 1H), 4.40 (m, 1H), 1.30 (d, 6H).


A-375
DMSO-d6
13.24 (s, 1H), 12.84 (s, 1H), 8.98 (s, 1H), 8.21 (d, 2H), 7.83 (d, 2H),




7.80 (t, 2H), 7.30 (t, 2H), 6.60 (s, 1H), 3.13 (s, 3H), 2.89 (s, 3H), 1.55




(s, 9H).


A-376
DMSO-d6
13.30 (s, 1H), 12.63 (s, 1H), 8.94 (d, (1H), 7.98 (m, 2H), 7.74 (d, 2H),




7.50 (m, 3H), 6.62 (s, 1H), 4.55 (m, 1H), 4.05 (t, 1H), 3.47 (s, 2H),




3.30 (s, 3H), 3.12 (d, 2H), 1.23 (d, 3H).


A-377
DMSO-d6
13.27 (s, 1H), 12.59 (s, 1H), 8.89 (t, 1H), 7.99 (m, 2H), 7.77 (d, 2H),




7.50 (m, 3H), 6.63 (s, 1H), 3.45 (m, 2H), 1.90 (m, 1H), 0.95 (d, 6H).


A-378
DMSO-d6
13.28 (s, 1H), 12.59 (s, 1H), 8.91 (d, 1H), 8.00 (m, 2H), 7.75 (d, 2H),




7.49 (m, 3H), 6.62 (s, 1H), 4.52 (m, 1H), 2.05 (m, 2H), 1.60 (m, 6H).


A-379
DMSO-d6
13.28 (s, 1H), 12.59 (s, 1H), 8.75 (d, 1H), 8.00 (m, 2H), 7.75 (d, 2H),




7.50 (m, 3H), 6.62 (s, 1H), 4.40 (m, 1H), 1.25 (d, 6H).


A-380
DMSO-d6
13.30 (s, 1H), 12.61 (s, 1H), 8.98 (d, 1H), 7.96 (m, 2H), 7.76 (d, 2H),




7.65 (t, 1H), 7.52 (d, 2H), 6.62 (s, 1H), 4.55 (m, 1H), 3.46 (m, 2H),




3.30 (s, 3H), 3.12 (s, 2H), 1.24 (d, 3H).


A-381
DMSO-d6
13.24 (s, 1H), 12.58 (s, 1H), 8.92 (t, 1H), 7.95 (m, 2H), 7.76 (d, 2H),




7.65 (t, 1H), 7.54 (d, 2H), 6.65 (s, 1H), 3.43 (m, 2H), 1.92 (m, 1H),




0.95 (d, 6H).


A-382
DMSO-d6
13.27 (s, 1H), 12.56 (s, 1H), 8.95 (d, 1H), 7.96 (m, 2H), 7.74 (d, 2H),




7.62 (t, 1H), 7.53 (d, 2H), 6.62 (s, 1H), 4.52 (m, 1H), 2.03 (m, 2H),




1.60 (m, 6H).


A-383
DMSO-d6
13.28 (s, 1H), 12.58 (s, 1H), 8.78 (d, 1H), 7.96 (m, 2H), 7.74 (d, 2H),




7.64 (t, 1H), 7.53 (d, 2H), 6.62 (s, 1H), 4.40 (m, 1H), 1.26 (d, 6H).


A-385
DMSO-d6
13.28 (s, 1H), 12.62 (s, 1H), 8.89 (d, 1H), 7.99 (d, 1H), 7.80 (m, 1H),




7.75 (d, 2H), 7.52 (d, 2H), 7.47 (m, 1H), 7.32 (t, 1H), 6.62 (s, 1H),




4.53 (m, 1H), 2.07 (m, 2H), 1.60 (m, 6H).


A-386
DMSO-d6
13.28 (s, 1H), 12.65 (s, 1H), 8.72 (d, 1H), 7.95 (m, 1H), 7.80 (m, 1H),




7.75 (d, 2H), 7.55 (d, 2H), 7.48 (m, 1H), 7.32 (m, 1H), 6.62 (s, 1H),




4.40 (m, 1H), 1.27 (d, 6H).


A-396
DMSO-d6
13.18 (s, 1H), 12.43 (s, 1H), 9.19 (t, 1H), 7.86 (m, 2H), 7.78 (m, 2H),




7.28 (m, 3H), 6.98 (m, 2H), 6.82 (m, 1H), 6.60 (s, 1H), 4.78 (s, 2H),




3.70 (s, 3H).


A-398
DMSO-d6
13.14 (s, 1H), 12.64 (s, 1H), 9.11 (t, 1H), 7.96 (m, 1H), 7.80 (m, 3H),




7.45 (m, 1H), 7.28 (m, 4H), 7.00 (m, 2H), 6.82 (m, 1H), 6.61 (s, 1H),




4.78 (d, 2H), 3.69 (s, 3H).


A-399
DMSO-d6
13.15 (s, 1H), 12.69 (s, 1H), 9.05 (t, 1H), 7.98 (m, 1H), 7.80 (m, 3H),




7.47 (m, 1H), 7.32 (m, 4H), 7.19 (m, 3H), 6.61 (s, 1H), 4.81 (m, 2H),




2.37 (s, 3H).


A-403
DMSO-d6
13.28 (s, 1H), 12.62 (s, 1H), 9.03 (s, 1H), 7.80 (m, 4H), 7.30 (m, 2H),




6.60 (s, 1H), 1.71 (s, 9H).


A-418
DMSO-d6
13.19 (s, 1H), 12.92 (s, 1H), 8.90 (s, 1H), 8.14 (m, 2H), 7.70 (m, 1H),




7.60 (m, 1H), 7.25 (m, 3H), 6.51 (s, 1H), 2.24 (s, 3H), 1.55 (s, 9H).


A-420
DMSO-d6
13.42 (s, 1H), 12.85 (s, 1H), 8.90 (s, 1H), 7.97 (m, 2H), 7.52 (m, 3H),




7.29 (m, 1H), 6.73 (s, 1H), 1.52 (s, 9H).


A-421
DMSO-d6
13.44 (s, 1H), 12.70 (s, 1H), 8.97 (d, 1H), 8.35 (m, 2H), 8.15 (m, 1H),




8.07 (m, 1H), 7.91 (m, 2H), 7.74 (m, 2H), 6.82 (s, 1H), 4.59 (m, 1H),




2.09 (m, 2H), 1.62 (m, 6H).


A-423
DMSO-d6
13.45 (s, 1H), 12.82 (s, 1H), 8.97 (s, 1H), 8.13 (s, 1H), 8.03 (m, 1H),




7.96 (m, 2H), 7.70 (m, 2H), 7.52 (m, 1H), 6.79 (s, 1H), 1.52 (s, 9H).


A-429
DMSO-d6
13.2 (s, 1H), 12.6 (s, 1H), 9.0 (t, 1H), 8.6 (s, 1H), 8.4 (d, 1H), 8.0 (d,




1H), 7.8 (dd, 1H), 7.7 (dd, 2H), 7.3 (dd, 2H), 6.6 (s, 1H), 3.5 (dd,




2H), 3.2 (s, 3H), 1.9 (m, 1H), 0.99 (s, 3H), 0.98 (s, 3H).


A-430
DMSO-d6
13.3 (s, 1H), 12.6 (s, 1H), 8.8 (d, 1H), 8.6 (s, 1H), 8.4 (d, 1H), 8.0 (d,




1H), 7.8 (dd, 1H), 7.7 (dd, 2H), 7.3 (dd, 2H), 6.6 (s, 1H), 4.3 (m, 1H),




3.2 (s, 3H), 1.6 (m, 2H), 1.27 (d, 3H), 0.97 (t, 3H).


A-485
DMSO-d6
13.26 (s, 1H), 12.75 (s, 1H), 10.52 (s, 1H), 9.01 (s, 1H), 8.80 (s, 1H),




8.38 (m, 1H), 7.78 (m, 2H), 7.63 (m, 1H), 7.32 (m, 2H), 6.59 (s, 1H),




2.09 (s, 3H), 1.56 (s, 9H).


A-486
DMSO-d6
13.31 (s, 1H), 12.54 (s, 1H), 9.15 (s, 1H), 8.01 (m, 1H), 7.86 (s, 2H),




7.79 (m, 2H), 7.48 (m, 1H), 7.32 (m, 2H), 7.26 (m, 1H), 6.61 (s, 1H),




1.54 (s, 9H).


A-487
DMSO-d6
13.24 (s, 1H), 12.80 (s, 1H), 8.94 (s, 1H), 8.14 (m, 1H), 7.78 (m, 2H),




7.33 (m, 2H), 7.10 (m, 2H), 6.56 (s, 1H), 3.39 (m, 4H), 1.96 (m, 4H),




1.55 (s, 9H).


A-488
DMSO-d6
13.22 (s, 1H), 12.56 (s, 1H), 8.93 (m, 1H), 8.03 (m, 1H), 7.78 (m,




2H), 7.32 (m, 2H), 7.21 (m, 1H), 7.10 (m, 1H), 6.60 (s, 1H), 4.45 (m,




1H), 3.45 (m, 2H), 3.3 (s, 3H), 1.23 (m, 3H).


A-489
DMSO-d6
13.23 (s, 1H), 12.74 (s, 1H), 8.94 (s, 1H), 8.02 (m, 1H), 7.78 (m, 2H),




7.33 (m, 2H), 7.24 (m, 1H), 7.15 (m, 1H), 6.58 (s, 1H), 1.50 (s, 9H).


A-490
DMSO-d6
13.29 (s, 1H), 12.75 (s, 1H), 8.89 (m, 1H), 8.18 (m, 2H), 7.79 (m,




2H), 7.33 (m, 2H), 7.25 (m, 2H).


A-491
DMSO-d6
13.25 (s, 1H), 12.66 (s, 1H), 9.01 (m, 1H), 8.59 (s, 1H), 8.43 (m,




1H), 8.05 (m, 1H), 7.8 (m, 2H), 7.73 (m, 1H), 7.33 (m, 2H), 6.61 (s,




1H), 4.57 (m, 1H), 3.51 (m, 2H), 3.33 (s, 3H), 3.23 (s, 3H), 1.28 (m,




3H).


A-492
DMSO-d6
13.16 (s, 1H), 12.95 (s, 1H), 9.90 (s, 1H), 8.75 (m, 1H), 7.98 (m, 2H),




7.78 (m, 2H), 7.32 (m, 2H), 6.76 (m, 2H), 6.55 (s, 1H), 4.53 (m, 1H),




3.47 (m, 2H), 3.31 (s, 3H), 1.25 (m, 3H).


A-493
DMSO-d6
13.21 (s, 1H), 12.72 (s, 1H), 8.91 (m, 2H), 8.29 (m, 1H), 7.78 (m,




2H), 7.32 (m, 2H), 6.84 (m, 1H), 6.58 (s, 1H), 4.55 (m, 1H), 3.89 (s,




3H), 3.48 (m, 2H), 1.26 (m, 3H).


A-494
DMSO-d6
13.23 (s, 1H), 12.87 (s, 1H), 8.90 (m, 2H), 8.26 (m, 1H), 7.78 (m,




2H), 7.32 (m, 2H), 6.88 (m, 1H), 6.56 (s, 1H), 3.90 (s, 3H), 1.55 (s,




9H).


A-495
DMSO-d6
13.25 (s, 1H), 12.60 (s, 1H), 9.02 (m, 1H), 8.24 (m, 1H), 7.79 (m,




2H), 7.55 (m, 1H), 7.35 (m, 3H), 6.61 (s, 1H), 4.55 (m, 1H), 3.87 (s,




3H), 3.48 (m, 2H), 1.26 (m, 3H).


A-496
DMSO-d6
13.27 (s, 1H), 12.73 (s, 1H), 9.03 (s, 1H), 8.27 (m, 1H), 7.78 (m, 2H),




7.54 (m, 1H), 7.34 (m, 3H), 6.60 (s, 1H), 3.87 (s, 3H), 1.55 (s, 9H).


A-497
DMSO-d6
13.25 (s, 1H), 12.68 (s, 1H), 9.01 (m, 1H), 8.32 (m, 2H), 7.98 (m,




2H), 7.79 (m, 2H), 7.33 (m, 2H), 6.62 (s, 1H), 4.58 (m, 1H), 3.49 (m,




2H), 3.33 (s, 3H), 3.23 (s, 1H), 1.27 (m, 3H).


A-498
DMSO-d6
13.26 (s, 1H), 12.81 (s, 1H), 9.03 (s, 1H), 8.30 (m, 2H), 8.01 (m, 2H),




7.79 (m, 2H), 7.32 (m, 2H), 6.61 (s, 1H), 3.23 (s, 3H), 1.57 (s, 9H).


A-499
DMSO-d6
13.26 (s, 1H), 12.78 (s, 1H), 9.02 (s, 1H), 8.63 (s, 1H), 8.42 (m, 1H),




8.06 (m, 1H), 7.8 (m, 3H), 7.32 (m, 2H), 6.60 (s, 1H), 3.23 (s, 3H),




1.57 (s, 9H).


A-500
DMSO-d6
13.20 (s, 1H), 12.78 (s, 1H), 8.90 (m, 1H), 8.17 (m, 2H), 7.78 (m,




2H), 7.32 (m, 2H), 7.24 (m, 2H), 6.59 (s, 1H), 4.55 (m, 1H), 3.48 (m,




2H), 3.32 (s, 3H), 1.26 (m, 3H).


A-533
DMSO-d6
13.21 (s, 1H), 12.78 (s, 1H), 8.90 (m, 1H), 8.17 (m, 2H), 7.78 (m,




2H), 7.32 (m, 2H), 7.24 (m, 2H), 6.59 (s, 1H), 4.56 (m, 1H), 3.48 (m,




2H), 3.32 (s, 3H), 1.27 (m, 3H).


A-538
DMSO-d6
13.21 (s, 1H), 12.97 (s, 1H), 8.92 (s, 1H), 8.14 (m, 2H), 7.79 (m, 2H),




7.31 (m, 4H), 6.56 (s, 1H), 3.62 (m, 2H), 1.48 (s, 6H).


A-539
DMSO-d6
13.19 (s, 1H), 13.06 (s, 1H), 8.81 (s, 1H), 8.07 (m, 2H), 7.78 (m, 2H),




7.32 (m, 2H), 6.98 (m, 2H), 6.54 (s, 1H), 3.79 (s, 3H), 1.55 (s, 9H).


A-540
DMSO-d6
13.22 (s, 1H), 12.96 (s, 1H), 8.88 (s, 1H), 7.78 (m, 2H), 7.69 (m, 2H),




7.36 (m, 3H), 7.06 (m, 1H), 6.56 (s, 1H), 3.78 (s, 3H), 1.56 (s, 9H).


A-543
DMSO-d6
12.93 (s, 1H), 10.38 (s, 1H), 8.92 (m, 1H), 7.97 (m, 1H), 7.60 (m,




1H), 7.53 (m, 1H), 7.44 (m, 1H), 7.2 (m, 2H), 7.15 (m, 1H), 6.18 (s,




1H), 4.59 (m, 2H), 3.64 (s, 3H).


A-550
DMSO-d6
13.20 (s, 1H), 13.04 (s, 1H), 8.85 (s, 1H), 8.01 (m, 2H), 7.79 (m, 2H),




7.33 (m, 2H), 7.25 (m, 2H), 6.56 (s, 1H), 2.34 (s, 3H), 1.55 (s, 9H).


A-552
DMSO-d6
13.21 (s, 1H), 13.02 (s, 1H), 8.87 (s, 1H), 7.93 (m, 2H), 7.80 (m, 2H),




7.32 (m, 4H), 6.56 (s, 1H), 2.35 (s, 3H), 1.56 (s, 9H).


A-554
DMSO-d6
13.22 (s, 1H), 12.89 (s, 1H), 8.92 (s, 1H), 7.85-7.71 (m, 4H), 7.35 (m,




3H), 6.57 (s, 1H), 2.27 (s, 3H), 1.55 (s, 9H).


A-556
DMSO-d6
13.21 (s, 1H), 12.94 (s, 1H), 8.89 (s, 1H), 8.0 (m, 2H), 7.79 (m, 2H),




7.31 (m, 2H), 7.21 (m, 1H), 6.56 (s, 1H), 2.27 (s, 3H), 1.55 (s, 9H).









Example 6
Preparation of Exemplary Substituted Pyrazole Compounds

The substituted pyrazole compounds 3-(tert-Butyl)-4-fluoro-1H-pyrazol-5-amine and 3-(3-fluoro-4-methoxyphenyl)-1H-pyrazol-5-amine were prepared according to the procedures described in Parts I and II below, respectively.


Part I: Preparation of 3-(tert-Butyl)-4-fluoro-1H-pyrazol-5-amine

The title compound was prepared according to the procedures described below.


Step A—Synthesis of 2-Fluoro-4,4-dimethyl-3-oxopentanenitrile



embedded image


A solution of lithium hexamethyldisilazide (LHMDS) in tetrahydrofuran (THF) (1M, 33.9 mL, 2 equiv) was added dropwise to a chilled (−78° C.) solution of pivaloyl chloride (2.04 g, 1 equiv) and FCH2CN (1.00 g, 1 equiv) in THF (50 mL). The mixture was allowed to warm to room temperature and 1 N HCl was added dropwise until the solution was pH=2. The mixture was concentrated in vacuo to provide the title compound (2.40 g, 99% yield).


Step B—Synthesis of 3-(tert-Butyl)-4-fluoro-1H-pyrazol-5-amine



embedded image


Hydrazine (1.29 g, 2.4 equiv) was added to a solution of 2-fluoro-4,4-dimethyl-3-oxopentanenitrile (2.40 g, 1 equiv) in ethanol (EtOH) (50 mL), and the reaction was heated at reflux overnight. The solvent was removed under reduced pressure, and the residue was dissolved in dichloromethane (DCM) and washed with water. The organic solution was dried over sodium sulfate and concentrated in vacuo to provide the title compound (1.43 g, 54% yield) which was used in the next reaction without purification.


Part II: Preparation of 3-(3-fluoro-4-methoxyphenyl)-1H-pyrazol-5-amine



embedded image


3-(3-Fluoro-4-methoxyphenyl)-3-oxopropanenitrile (2.13 g, 11 mmol) and hydrazine (0.38 mL, 12.13 mmol) were combined in absolute ethanol and the reaction mixture was heated to reflux overnight. Then, the solvent and excess hydrazine were evaporated to provide the title compound in quantitative yield.


Example 7
Preparation of (S)-1-Ethoxypropan-2-amine

The title compound was prepared according to the procedures described below.


Part I—Synthesis of (S)-tert-Butyl (1-hydroxypropan-2-yl)carbamate



embedded image


To a chilled (0° C.) solution of (S)-2-amino-1-propanol (1.28 g) and triethylamine (2.73 mL, 1.15 equiv) in methanol (MeOH) (17 mL) was added di-tert-butyl dicarbonate (4.09 g, 1.1 equiv). The reaction was stirred at room temperature overnight and then concentrated in vacuo. The residue was diluted with DCM and washed with water. The organic phase was dried over sodium sulfate and concentrated in vacuo to provide the title compound (2.89 g, 97% yield).


Part II—Synthesis of (S)-tert-Butyl (1-ethoxypropan-2-yl)carbamate



embedded image


To a mixture of t-butyl (2-hydroxy-1-methylethyl)carbamate (2.89 g) and tetrabutylammonium hydrogen sulfate (560 mg, 0.1 equiv) in toluene (33 mL) and 50% aqueous sodium hydroxide solution (6.6 mL, 5 equiv) was added ethyl bromide (1.85 mL, 1.5 equiv) at room temperature. The mixture was stirred at room temperature for 4 days. The reaction mixture was partitioned between water and ethyl ether. The organic layer was washed with water and brine, dried over sodium sulfate, and concentrated in vacuo to provide the crude product, which was purified by silica chromatography (9:1 to 75:25 hexanes:ethyl acetate (EtOAc)) to provide the title compound (2.00 g, 60% yield).


Part III—Synthesis of (S)-1-Ethoxypropan-2-amine



embedded image


(S)-tert-Butyl (1-ethoxypropan-2-yl)carbamate (2.00 g) was dissolved in a 1:1 mixture of EtOH:4N HCl in dioxane, and the reaction mixture was stirred at room temperature for 3 days. The mixture was concentrated in vacuo to provide the title compound (987 mg (impure), 97% yield).


Example 8
Preparation of (Z)—N-((2,3-Dihydroxypropyl)amino)((3-(trifluoromethyl)-1H-pyrazol-5-yl)amino)methylene)-4-fluorobenzamide (A-562)

The title compound was prepared according to the procedures described below.


Part I—Synthesis of (Z)—N-(((2,2-Dimethyl-1,3-dioxolan-4-yl)methyl)amino)((3-(trifluoromethyl)-1H-pyrazol-5-yl)amino)methylene)-4-fluorobenzamide



embedded image


The title compound was prepared from 4-fluorobenzoyl chloride, (2,2-dimethyl-1,3-dioxolan-4-yl)methanamine, and 3-(trifluoromethyl)-1H-pyrazol-5-amine based on synthetic procedures described in Example 4.


Part II—Synthesis of (Z)—N-(((2,3-Dihydroxypropyl)amino)((3-(trifluoromethyl)-1H-pyrazol-5-yl)amino)methylene)-4-fluorobenzamide (A-562)



embedded image


To a solution of (Z)—N-(((2,2-dimethyl-1,3-dioxolan-4-yl)methyl)amino)((3-(trifluoromethyl)-1H-pyrazol-5-yl)amino)methylene)-4-fluorobenzamide (300 mg) in THF (7 mL) was added para-toluenesulfonic acid (p-TsOH) (133 mg, 1 equiv). The reaction mixture was shaken at room temperature overnight. The solution was then treated with triethylamine (100 μL), concentrated onto silica gel, and purified by silica chromatography (3:1 hexanes:EtOAc to EtOAc) to provide the title compound (115 mg (91% purity), 42% yield). MS (EI+) m/z: 389.93, 411.89; HPLC (Method B): 5.19 min


Example 9
Preparation of (Z)—N-(tert-Butylamino)((3-(2-hydroxyphenyl)-1H-pyrazol-5-yl)amino)methylene)-4-(trifluoromethyl)benzamide (A-563)

The title compound was prepared according to the procedures described below.


Part I—Synthesis of (Z)—N-(((3-(2-(Benzyloxy)phenyl)-1H-pyrazol-5-yl)amino)(tert-butylamino)methylene)-4-(trifluoromethyl)benzamide



embedded image


The title compound was prepared from 4-(trifluoromethyl)benzoyl chloride, 2-methylpropan-2-amine, and 3-(2-(benzyloxy)phenyl)-1H-pyrazol-5-amine based on synthetic procedures described in Example 4.


Part II—Synthesis of (Z)—N-((tert-Butylamino)((3-(2-hydroxyphenyl)-1H-pyrazol-5-yl)amino)methylene)-4-(trifluoromethyl)benzamide (A-563)



embedded image


(Z)—N-(((3-(2-(Benzyloxy)phenyl)-1H-pyrazol-5-yl)amino)(tert-butylamino)methylene)-4-(trifluoromethyl)benzamide (190 mg) was dissolved in methanol (10 mL) and the solution was degassed with nitrogen. To the solution was added 10% palladium on carbon (38 mg, 0.1 equiv). The resulting mixture was subjected to hydrogen gas at 30 psi pressure in a Parr shaker. The reaction was checked periodically for completion. Upon reaction completion, the mixture was filtered through celite, and the filtrate was concentrated in vacuo to provide the crude product, which was purified by silica chromatography (9:1 to 55:45 hexanes:EtOAc) to provide the title compound (69 mg, 44% yield). 1HNMR (400 MHz, DMSO-d6) δ 12.79 (bm, 2H), 10.32 (bs, 1H), 9.05 (s, 1H), 8.28 (d, 2H), 7.82 (d, 2H), 7.61 (d, 1H), 7.19 (t, 1H), 6.95 (d, 1H), 6.86 (t, 1H), 6.53 (s, 1H), 4.06 (m, 1H), 3.14 (s, 1H), 1.56 (s, 9H); MS (EI+) m/z: 446.00, 467.97; HPLC (Method B): 6.15 min


Example 10
Preparation of (Z)—N-((tert-Butylamino)((3-(3-hydroxyphenyl)-1H-pyrazol-5-yl)amino)methylene)-4-(trifluoromethyl)benzamide (A-564)

The title compound was prepared according to the procedures described below.


Part I—Synthesis of (Z)—N-(((3-(3-(Benzyloxy)phenyl)-1H-pyrazol-5-yl)amino)(tert-butylamino)methylene)-4-(trifluoromethyl)benzamide



embedded image


The title compound was prepared from 4-(trifluoromethyl)benzoyl chloride, 2-methylpropan-2-amine, and 3-(3-(benzyloxy)phenyl)-1H-pyrazol-5-amine based on synthetic procedures described in Example 4.


Part II—Synthesis of (Z)—N-((tert-Butylamino)((3-(3-hydroxyphenyl)-1H-pyrazol-5-yl)amino)methylene)-4-(trifluoromethyl)benzamide (A-564)



embedded image


(Z)—N-(((3-(3-(Benzyloxy)phenyl)-1H-pyrazol-5-yl)amino)(tert-butylamino)methylene)-4-(trifluoromethyl)benzamide (170 mg) was dissolved in methanol (10 mL) and the solution was degassed with nitrogen. To the solution was added 10% palladium on carbon (34 mg, 0.1 equiv). The mixture was then subjected to hydrogen gas at 30 psi pressure in a Parr shaker. The reaction was checked periodically for completion. Upon completion, the reaction mixture was filtered through celite, and the filtrate was concentrated in vacuo to provide the crude product, which was purified by silica chromatography (9:1 to 55:45 hexanes:EtOAc) to provide the title compound (77 mg, 54% yield). 1HNMR (400 MHz, DMSO-d6) δ 13.18 (s, 1H), 12.79 (s, 1H), 9.63 (s, 1H), 9.02 (s, 1H), 8.28 (d, 2H), 7.82 (d, 2H), 7.23 (m, 1H), 7.18 (m, 1H), 7.09 (m, 1H), 6.79 (m, 1H), 6.49 (s, 1H), 3.98 (m, 1H), 1.95 (s, 1H), 1.56 (s, 9H), 1.12 (m, 1H), 0.82 (m, 1H); MS (EI+) m/z: 445.94, 467.97; HPLC (Method B): 6.08 min.


Example 11
Preparation of (Z)—N-((tert-Butylamino)((3-(4-hydroxyphenyl)-1H-pyrazol-5-yl)amino)methylene)-4-(trifluoromethyl)benzamide

The title compound was prepared according to the procedures described below.


Part I—Synthesis of (Z)—N-(((3-(4-(Benzyloxy)phenyl)-1H-pyrazol-5-yl)amino)(tert-butylamino)methylene)-4-(trifluoromethyl)benzamide



embedded image


The title compound was prepared from 4-(trifluoromethyl)benzoyl chloride, 2-methylpropan-2-amine, and 3-(4-(benzyloxy)phenyl)-1H-pyrazol-5-amine based on synthetic procedures described in Example 4.


Part II—Synthesis of (Z)—N-((tert-Butylamino)((3-(4-hydroxyphenyl)-1H-pyrazol-5-yl)amino)methylene)-4-(trifluoromethyl)benzamide



embedded image


(Z)—N-(((3-(4-(Benzyloxy)phenyl)-1H-pyrazol-5-yl)amino)(tert-butylamino)methylene)-4-(trifluoromethyl)benzamide (150 mg) was dissolved in methanol (10 mL) and the solution was degassed with nitrogen. To the solution was added 10% palladium on carbon (30 mg, 0.1 equiv). The mixture was subjected to hydrogen gas at 60 psi pressure in a Parr shaker. The reaction was checked periodically for completion. Upon completion, the reaction mixture was filtered through celite, and the filtrate was concentrated in vacuo to provide the crude product, which was purified by silica chromatography (9:1 to 55:45 hexanes:EtOAc) to provide the title compound (85 mg, 68% yield).


Example 12
Preparation of (Z)-5-(3-(tert-Butyl)-2-(4-(trifluoromethyl)benzoyl)guanidino)-1H-pyrazole-3-carboxylic acid (A-565)

The title compound was prepared according to the procedures described below.


Part I—Synthesis of (Z)-Methyl 5-(3-(tert-butyl)-2-(4-(trifluoromethyl)benzoyl)guanidino)-1H-pyrazole-3-carboxylate



embedded image


The title compound was prepared from 4-(trifluoromethyl)benzoyl chloride, 2-methylpropan-2-amine, and methyl 5-amino-1H-pyrazole-3-carboxylate based on synthetic procedures described in Example 4.


Part II—Synthesis of (Z)-5-(3-(tert-Butyl)-2-(4-(trifluoromethyl)benzoyl)guanidino)-1H-pyrazole-3-carboxylic acid (A-565)



embedded image


To a solution of (4-methyl 5-(3-(tert-butyl)-2-(4-(trifluoromethyl)benzoyl) guanidino)-1H-pyrazole-3-carboxylate (70 mg) in ethanol (3 mL) was added aqueous 2M NaOH (200 μL). The reaction was stirred at room temperature for 2 days. The solvent was removed in vacuo, and the sample was diluted with water. To the mixture was added 1N HCl (400 μL, aqueous). The resulting solid was collected by filtration, washed with water, and concentrated in vacuo to provide the title compound (32 mg, 68% yield). 1HNMR (400 MHz, DMSO-d6) δ 13.62 (bs, 1H), 12.65 (s, 1H), 8.80 (s, 1H), 8.25 (d, 2H), 7.81 (d, 2H), 6.58 (s, 1H), 1.54 (s, 9H); MS (EI+) m/z: 396.17 (M-1); HPLC (Method B): 5.48 min.


Example 13
Preparation of (Z)—N-(((3-(4-Fluorophenyl)-1H-pyrazol-5-yl)amino)(isobutylamino)methylene)-3-(methylsulfinyl)benzamide (A-566)

The title compound was prepared according to the procedures described below.


Part I—Synthesis of (Z)—N-[[[3-(4-Fluorophenyl)-1H-pyrazol-5-yl]amino]-(isobutylamino)methylene]-3-methylsulfanyl-benzamide



embedded image


The title compound was prepared from 3-(methylthio)benzoyl chloride, 2-methylpropan-1-amine, and 3-(4-fluorophenyl)-1H-pyrazol-5-amine based on synthetic procedures described in Example 4.


Part II—Synthesis of (Z)—N-(((3-(4-Fluorophenyl)-1H-pyrazol-5-yl)amino)(isobutylamino)methylene)-3-(methylsulfinyl)benzamide (A-566)



embedded image


To an orange solution of (Z)—N-[[[3-(4-fluorophenyl)-1H-pyrazol-5-yl]amino]-(isobutylamino)methylene]-3-methylsulfanyl-benzamide (500 mg, 1.175 mmol) and ferric chloride trihydrate (9.5 mg, 0.035 mmol) in acetone:acetonitrile (1:1) was added periodic acid (295 mg, 1.3 mmol) in one portion. After stirring the resulting mixture at room temperature for ca. 21 hr, the reaction was quenched by adding aqueous sodium thiosulfate. The product was extracted with DCM, and the organic layer was washed with brine and dried over MgSO4. The drying reagent was removed by filtration, and the filtrate was concentrated onto silica gel and purified by silica chromatography (50-90% EtOAc in hexanes) to provide the title compound (77% yield). MS (EI+) m/z: 442.17.


Example 14
Preparation of (E)-N-(3-(2-chloro-4-fluorobenzyl)-4-oxo-7-(trifluoromethyl)-3,4-dihydropyrazolo[1,5-a][1,3,5]triazin-2(1H)-ylidene)-3,4-difluorobenzamide (A-567)

The title compound was prepared according to the procedures described below.


Part I—Synthesis of (Z)—N-((2-chloro-4-fluorobenzyl)amino)((3-(trifluoromethyl)-1H-pyrazol-5-yl)amino)methylene)-3,4-difluorobenzamide



embedded image


The title compound was prepared from 3,4-difluorobenzoyl chloride; (2-chloro-4-fluorophenyl)methanamine; and 3-(trifluoromethyl)-1H-pyrazol-5-amine based on synthetic procedures described in Example 4.


Part II—Synthesis of (E)-N-(3-(2-chloro-4-fluorobenzyl)-4-oxo-7-(trifluoromethyl)-3,4-dihydropyrazolo[1,5-a][1,3,5]triazin-2(1H)-ylidene)-3,4-difluorobenzamide (A-567)



embedded image


To a solution of (Z)—N-((2-chloro-4-fluorobenzyl)amino)((3-(trifluoromethyl)-1H-pyrazol-5-yl)amino)methylene)-3,4-difluorobenzamide (50 mg, 0.11 mmol) in THF (1 mL) was added 1,1′-carbonyldiimidazole (CDI) (26 mg, 0.16 mmol). The reaction mixture was stirred at room temperature for 30 minutes. Purification by silica chromatography (EtOAc:hexanes) provided the title compound (14 mg, 27% yield). HPLC (Method A): 11.1 min.


Example 15
Preparation of (Z)-4-fluoro-N-(8-(4-fluorophenyl)-4,4-dimethyl-4,5-dihydro-1H-pyrazolo[1,5-a][1,3,5]triazepin-2(3H)-ylidene)benzamide (A-568)

The title compound was prepared according to the procedures described below.


Part I—Synthesis of (Z)-4-fluoro-N-(((3-(4-fluorophenyl)-1H-pyrazol-5-yl)amino)((1-hydroxy-2-methylpropan-2-yl)amino)methylene)benzamide



embedded image


The title compound was prepared based on synthetic procedures described in Example 4.


Part II—Synthesis of (Z)-4-fluoro-N-(8-(4-fluorophenyl)-4,4-dimethyl-4,5-dihydro-1H-pyrazolo[1,5-a][1,3,5]triazepin-2(3H)-ylidene)benzamide (A-568)



embedded image


To a solution of (Z)-4-fluoro-N-(((3-(4-fluorophenyl)-1H-pyrazol-5-yl)amino)((1-hydroxy-2-methylpropan-2-yl)amino)methylene)benzamide (25 mg, 0.06 mmol) in anhydrous THF (0.5 mL) under a nitrogen atmosphere was added triphenylphosphine (19 mg, 0.07 mmol) followed by diisopropyl azodicarboxylate (DIAD) (14 μL, 0.07 mmol). The reaction mixture was stirred at room temperature for 30 minutes and purification by silica chromatography (EtOAc:hexanes) afforded the title compound (21 mg, 88% yield). LCMS (ESI). found (M-H), 394.15; 1H NMR (400 MHz, DMSO-d6) δ 12.91 (s, 1H), 9.35 (s, 1H), 8.18 (m, 2H), 7.75 (m, 2H), 7.31 (m, 4H), 7.17 (s, 1H), 3.75 (s, 2H), 1.39 (s, 6H).


Example 16
Preparation of (S,E)-4-fluoro-N-(2-(4-fluorophenyl)-8,9,9a,10-tetrahydro-4H-pyrazolo[1,5-a]pyrrolo[1,2-e][1,3,5]triazepin-5(7H)-ylidene)benzamide (A-569)

The title compound was prepared according to the procedures described below.


Part I—Synthesis of (S,E)-4-fluoro-N-(((3-(4-fluorophenyl)-1H-pyrazol-5-yl)amino)(2-(hydroxymethyl)pyrrolidin-1-yl)methylene)benzamide



embedded image


The title compound was prepared based on synthetic procedures described in Example 4.


Part II—Synthesis of (S,E)-4-fluoro-N-(2-(4-fluorophenyl)-8,9,9a,10-tetrahydro-4H-pyrazolo[1,5-a]pyrrolo[1,2-e][1,3,5]triazepin-5(7H)-ylidene)benzamide (A-569)



embedded image


To a solution of (S,E)-4-fluoro-N-(((3-(4-fluorophenyl)-1H-pyrazol-5-yl)amino)(2-(hydroxymethyl)pyrrolidin-1-yl)methylene)benzamide (30 mg, 0.07 mmol) in anhydrous THF (0.4 mL) under a nitrogen atmosphere was added triphenylphosphine (22 mg, 0.085 mmol) followed by DIAD (16 μL, 0.085 mmol). The reaction mixture was stirred at room temperature for 30 minutes and purification by silica chromatography (EtOAc:hexanes) provided the title compound (22 mg, 77% yield). LCMS (ESI). found (M-H), 406.06. HPLC (Method A): 7.11 min.


Example 17
Preparation of (Z)-3,4-Difluoro-N-(((3-(4-(hydroxymethyl)phenyl)-1H-pyrazol-5-yl)amino)(isobutylamino)methylene)benzamide (A-570)

The title compound was prepared according to the procedures described below.


Part I—Synthesis of 4-(((tert-Butyldimethylsilyl)oxy)methyl)benzoic acid



embedded image


To a solution of 4-hydroxymethylbenzoic acid (1 g) in DCM (66 mL) was added imidazole (985 mg, 2.2 equiv) followed by the addition of t-butyldimethylsilyl chloride (TBSCl) (1.09 g, 1.1 equiv). The reaction mixture was stirred at room temperature for 3 days and was diluted with DCM (50 mL) and 1 N HCl. The aqueous phase was extracted with DCM, and the combined organic extracts were dried over sodium sulfate and concentrated in vacuo to provide the title compound (1.44 g, 82% yield).


Part II—Synthesis of 4-(((tert-Butyldimethylsilyl)oxy)methyl)benzoyl chloride



embedded image


4-[[t-Butyl(dimethyl)silyl]oxymethyl]benzoic acid (1.44 g) was suspended in thionyl chloride and the mixture was heated to 80° C. for 45 minutes. The resulting solution was concentrated in vacuo. Residual thionyl chloride and HCl were removed by subsequent concentration from toluene (twice). The crude residue was carried on to the next reaction step without purification.


Part III—Synthesis of 3-(4-(((tert-Butyldimethylsilyl)oxy)methyl)phenyl)-3-oxopropanenitrile



embedded image


To a chilled (−78° C.) solution of acetonitrile (MeCN) (1.13 mL, 4 equiv) in THF (54 mL) was added butyllithium (BuLi) (1.62 mL, 10 M in hexanes, 3 equiv) dropwise, keeping the temperature under −60° C. The mixture was stirred for 15 minutes at −78° C. A solution of 4-(((tert-butyldimethylsilyl)oxy)methyl)benzoyl chloride (1.44 g) in THF (5 mL) was slowly added, and the reaction mixture was stirred at −78° C. for 45 minutes. The reaction was then quenched with aqueous ammonium chloride and diluted with EtOAc. The phases were separated and the organic phase was washed with brine, dried over sodium sulfate, and concentrated onto silica gel. Purification by silica chromatography (9:1 hexanes:EtOAc to EtOAc) provided the title compound (370 mg, 24% yield) and the de-silylated product (330 mg).


Part IV—Synthesis of 3-(4-(((tert-Butyldimethylsilyl)oxy)methyl)phenyl)-1H-pyrazol-5-amine



embedded image


4-[t-Butyldimethylsilyloxy]benzoyl acetonitrile (370 mg) and hydrazine (0.044 mL, 1.1 equiv) were dissolved in ethanol (13 mL), and the reaction was heated at reflux overnight. The solution was concentrated in vacuo and the resulting residue was purified by silica chromatography (3:1 hexanes:EtOAc to EtOAc) to provide the title compound (160 mg, 41% yield).


Part V—Synthesis of (Z)—N-(((3-(4-(((tert-Butyldimethylsilyl)oxy)methyl)phenyl)-1H-pyrazol-5-yl)amino)(isobutylamino)methylene)-3,4-difluorobenzamide



embedded image


The title compound was prepared from 3,4-difluorobenzoyl chloride; 2-methylpropan-1-amine; and 3-(4-((tert-butyldimethylsilyloxy)methyl)phenyl)-1H-pyrazol-5-amine based on synthetic procedures described in Example 4.


Part VI—Synthesis of (Z)-3,4-Difluoro-N-(((3-(4-(hydroxymethyl)phenyl)-1H-pyrazol-5-yl)amino)(isobutylamino)methylene)benzamide (A-570)



embedded image


To a solution of (Z)—N-(((3-(4-(((tert-butyldimethylsilyl)oxy)methyl)phenyl)-1H-pyrazol-5-yl)amino)(isobutylamino)methylene)-3,4-difluorobenzamide (60 mg) in THF (2 mL) was added tetrabutylammonium fluoride (TBAF) (1 M in THF, 0.122 mL, 1.1 equiv). The solution was stirred at room temperature for one hour, and partitioned between water and EtOAc. The organic phase was dried over sodium sulfate, concentrated onto silica gel, and purified by silica chromatography to provide the title compound (23 mg, 49% yield). 1HNMR (400 MHz, DMSO-d6) δ 13.18 (s, 1H), 12.60 (s, 1H), 8.96 (t, 1H), 8.00 (m, 2H), 7.70 (d, 2H), 7.48 (m, 1H), 7.40 (d, 2H), 6.60 (s, 1H), 5.23 (t, 1H), 4.50 (d, 2H), 3.43 (m, 2H), 1.92 (m, 1H), 1.00 (d, 6H); MS (EI+) m/z: 428.07; HPLC (Method B): 4.67 min.


Example 18
Preparation of (Z)-2-(4-(2-(4-Fluorobenzoyl)-3-(3-(trifluoromethyl)-1H-pyrazol-5-yl)guanidino)phenyl)acetic acid

The title compound was prepared according to the procedures described below.


Part I—Synthesis of (Z)-Methyl 2-(4-(2-(4-fluorobenzoyl)-3-(3-(trifluoromethyl)-1H-pyrazol-5-yl)guanidino)phenyl)acetate



embedded image


The title compound was prepared from 4-fluorobenzoyl chloride, methyl 2-(4-aminophenyl)acetate, and 3-(trifluoromethyl)-1H-pyrazol-5-amine based on synthetic procedures described in Example 4.


Part II—Synthesis of (Z)-2-(4-(2-(4-Fluorobenzoyl)-3-(3-(trifluoromethyl)-1H-pyrazol-5-yl)guanidino)phenyl)acetic acid



embedded image


To a solution of (4-methyl 2-(4-(2-(4-fluorobenzoyl)-3-(3-(trifluoromethyl)-1H-pyrazol-5-yl)guanidino)phenyl)acetate (400 mg) in methanol (20 mL) was added aqueous 6N NaOH (0.5 mL). The solution was held at room temperature overnight, concentrated in vacuo, and dissolved in water. The solution was acidified with 6 N HCl until precipitation appeared to be complete. The resulting precipitate was collected by filtration and dried in a vacuum oven. The crude product was purified by silica chromatography (99:1 DCM:AcOH to 84:15:1 DCM:MeOH:AcOH) to provide the title compound (5 mg, 1% yield).


Example 19

Exemplary compounds described in above Examples were tested for activity against F1F0-ATPase by measuring the ability of the compounds to inhibit ATP synthesis. In addition, the compounds were assessed for cytotoxicity in Ramos cells. Results of the biological activity tests are shown in Table 4 below. Inhibition of F1F0-ATPase activity in synthesizing ATP and cytotoxicity in Ramos cells were measured according to the procedures described in K. M. Johnson et al. Chemistry & Biology 2005, 12, 485-496. The symbol “NA” indicates that data was not available.













TABLE 4







Compound
ATP Syn
Ramos Cell



No.
IC50 (μM)
EC50 (μM)









A-1
<10
<10



A-2
<10
<10



A-3
<10
<10



A-4
<10
<10



A-5
<10
<10



A-6
<10
<10



A-7
<10
<10



A-8
<10
<10



A-9
<10
<10



A-10
<10
<10



A-11
<10
<10



A-12
<10
<10



A-13
<10
<10



A-14
<10
<10



A-15
<10
<10



A-16
<10
<10



A-17
<10
<10



A-18
<10
<10



A-19
<10
<10



A-20
<10
<10



A-21
<10
<10



A-22
<10
<10



A-23
<10
<10



A-24
<10
<10



A-25
<10
<10



A-26
<10
<10



A-27
<10
<10



A-28
<10
<10



A-29
<10
<10



A-30
<10
<10



A-31
<10
<10



A-32
<10
<10



A-33
<10
<10



A-34
<10
<10



A-35
<10
<10



A-36
<10
<10



A-37
<10
>10



A-38
<10
<10



A-39
<10
NA



A-40
<10
<10



A-41
<10
<10



A-42
<10
<10



A-43
<10
<10



A-44
>10
>10



A-45
<10
>10



A-46
<10
<10



A-47
<10
<10



A-48
<10
<10



A-49
<10
<10



A-50
<10
<10



A-51
<10
<10



A-52
<10
<10



A-53
<10
<10



A-54
<10
<10



A-55
<10
>10



A-56
<10
>10



A-57
<10
<10



A-58
<10
>10



A-59
<10
>10



A-60
<10
<10



A-61
<10
>10



A-62
<10
<10



A-63
<10
>10



A-64
<10
<10



A-65
<10
<10



A-66
<10
<10



A-67
<10
<10



A-68
<10
<10



A-69
<10
<10



A-70
<10
<10



A-71
<10
<10



A-72
<10
<10



A-73
<10
<10



A-74
<10
<10



A-75
<10
<10



A-76
<10
<10



A-77
<10
<10



A-78
<10
<10



A-79
<10
<10



A-80
<10
<10



A-81
<10
<10



A-82
<10
<10



A-83
<10
<10



A-84
<10
>10



A-85
<10
>10



A-86
<10
>10



A-87
<10
<10



A-88
<10
<10



A-89
<10
<10



A-90
<10
<10



A-91
<10
<10



A-92
<10
<10



A-93
<10
<10



A-94
<10
<10



A-95
<10
<10



A-96
<10
<10



A-97
<10
<10



A-98
<10
<10



A-99
<10
<10



A-100
<10
<10



A-101
<10
<10



A-102
<10
<10



A-103
<10
<10



A-104
<10
>10



A-105
<10
<10



A-106
<10
<10



A-107
<10
<10



A-108
<10
<10



A-109
<10
<10



A-110
<10
<10



A-111
<10
<10



A-112
<10
>10



A-113
<10
<10



A-114
<10
<10



A-115
<10
<10



A-116
<10
<10



A-117
<10
<10



A-118
<10
<10



A-119
<10
<10



A-120
<10
<10



A-121
<10
>10



A-122
<10
<10



A-123
<10
<10



A-124
<10
>10



A-125
<10
<10



A-126
>10
>10



A-127
<10
>10



A-128
<10
<10



A-129
<10
<10



A-130
<10
<10



A-131
<10
<10



A-132
<10
<10



A-133
<10
<10



A-134
<10
<10



A-135
<10
<10



A-136
<10
<10



A-137
<10
<10



A-138
<10
<10



A-139
>10
>10



A-140
>10
>10



A-141
<10
<10



A-142
<10
<10



A-143
<10
<10



A-144
<10
<10



A-145
<10
<10



A-146
<10
<10



A-147
<10
<10



A-148
>10
>10



A-149
<10
<10



A-150
<10
<10



A-151
<10
>10



A-152
<10
<10



A-153
<10
<10



A-154
<10
<10



A-155
<10
<10



A-156
>10
>10



A-157
>10
>10



A-158
>10
>10



A-159
<10
<10



A-160
<10
>10



A-161
>10
>10



A-162
<10
<10



A-163
<10
<10



A-164
<10
<10



A-165
>10
>10



A-166
<10
<10



A-167
<10
<10



A-168
<10
<10



A-169
<10
<10



A-170
<10
<10



A-171
<10
<10



A-172
<10
<10



A-173
<10
<10



A-174
<10
<10



A-175
<10
>10



A-176
<10
<10



A-177
<10
<10



A-178
<10
<10



A-179
>10
>10



A-180
<10
>10



A-181
<10
<10



A-182
<10
<10



A-183
<10
<10



A-184
>10
>10



A-185
<10
<10



A-186
>10
>10



A-187
<10
<10



A-188
<10
>10



A-189
<10
<10



A-190
>10
>10



A-191
>10
>10



A-192
<10
<10



A-193
<10
>10



A-194
NA
>10



A-195
<10
<10



A-196
<10
<10



A-197
<10
<10



A-198
<10
<10



A-199
<10
>10



A-200
<10
>10



A-201
<10
>10



A-202
<10
>10



A-203
<10
<10



A-204
<10
<10



A-205
<10
<10



A-206
<10
<10



A-207
>10
>10



A-208
>10
>10



A-209
<10
<10



A-210
<10
<10



A-211
<10
>10



A-212
<10
<10



A-213
<10
<10



A-214
<10
<10



A-215
>10
>10



A-216
<10
<10



A-217
<10
<10



A-218
<10
<10



A-219
<10
<10



A-220
<10
<10



A-221
<10
<10



A-222
<10
<10



A-223
<10
<10



A-224
<10
>10



A-225
<10
<10



A-226
<10
<10



A-227
<10
>10



A-228
<10
>10



A-229
<10
<10



A-230
<10
<10



A-231
<10
<10



A-232
<10
<10



A-233
<10
<10



A-234
<10
<10



A-235
<10
<10



A-236
<10
<10



A-237
<10
<10



A-238
<10
<10



A-239
<10
>10



A-240
<10
<10



A-241
<10
<10



A-242
<10
<10



A-243
<10
<10



A-244
<10
<10



A-245
<10
<10



A-246
<10
<10



A-247
<10
<10



A-248
<10
<10



A-249
<10
<10



A-250
<10
<10



A-251
<10
<10



A-252
<10
<10



A-253
<10
<10



A-254
<10
<10



A-255
<10
<10



A-256
<10
<10



A-257
<10
<10



A-258
<10
<10



A-259
<10
<10



A-260
<10
<10



A-261
<10
<10



A-262
<10
<10



A-263
<10
<10



A-264
<10
<10



A-265
<10
<10



A-266
<10
<10



A-267
<10
<10



A-268
<10
<10



A-269
<10
<10



A-270
<10
>10



A-271
<10
<10



A-272
<10
<10



A-273
<10
<10



A-274
<10
<10



A-275
<10
<10



A-276
<10
<10



A-277
<10
>10



A-278
<10
>10



A-279
<10
<10



A-280
<10
>10



A-281
<10
<10



A-282
<10
<10



A-283
<10
<10



A-284
<10
<10



A-285
<10
<10



A-286
<10
<10



A-287
<10
<10



A-288
<10
<10



A-289
<10
<10



A-290
<10
<10



A-291
<10
<10



A-292
<10
<10



A-293
<10
<10



A-294
<10
>10



A-295
<10
<10



A-296
<10
<10



A-297
<10
<10



A-298
<10
<10



A-299
<10
<10



A-300
<10
<10



A-301
<10
<10



A-302
<10
<10



A-303
<10
<10



A-304
<10
<10



A-305
<10
<10



A-306
<10
<10



A-307
<10
<10



A-308
<10
<10



A-309
<10
<10



A-310
<10
<10



A-311
<10
<10



A-312
<10
<10



A-313
<10
<10



A-314
<10
<10



A-315
<10
>10



A-316
<10
<10



A-317
<10
<10



A-318
>10
<10



A-319
<10
<10



A-320
<10
<10



A-321
<10
<10



A-322
<10
<10



A-323
<10
<10



A-324
<10
<10



A-325
<10
<10



A-326
<10
>10



A-327
>10
>10



A-328
<10
<10



A-329
<10
<10



A-330
>10
>10



A-331
<10
<10



A-332
<10
>10



A-333
<10
>10



A-334
<10
<10



A-335
<10
<10



A-336
<10
<10



A-337
>10
>10



A-338
<10
<10



A-339
  10
>10



A-340
<10
<10



A-341
<10
<10



A-342
<10
<10



A-343
<10
>10



A-344
<10
<10



A-345
>10
>10



A-346
<10
<10



A-347
<10
<10



A-348
<10
<10



A-349
<10
<10



A-350
<10
<10



A-351
<10
<10



A-352
<10
<10



A-354
NA
<10



A-355
NA
>10



A-356
NA
<10



A-357
NA
>10



A-358
NA
<10



A-359
<10
<10



A-360
<10
<10



A-361
<10
<10



A-362
<10
<10



A-363
<10
<10



A-364
<10
<10



A-365
<10
<10



A-366
<10
<10



A-367
<10
<10



A-368
<10
<10



A-369
<10
<10



A-370
<10
<10



A-371
>10
>10



A-372
<10
>10



A-373
<10
<10



A-374
<10
<10



A-375
<10
<10



A-376
<10
<10



A-377
<10
<10



A-378
<10
<10



A-379
<10
<10



A-380
<10
<10



A-381
<10
<10



A-382
<10
<10



A-383
<10
<10



A-384
<10
<10



A-385
<10
<10



A-386
<10
<10



A-387
<10
>10



A-388
<10
<10



A-389
<10
<10



A-390
<10
>10



A-391
>10
>10



A-392
<10
<10



A-393
<10
<10



A-394
<10
<10



A-395
<10
<10



A-396
<10
<10



A-397
<10
<10



A-398
<10
<10



A-399
<10
<10



A-400
<10
<10



A-401
<10
<10



A-402
<10
<10



A-403
<10
<10



A-404
<10
>10



A-405
<10
<10



A-406
<10
>10



A-407
<10
>10



A-408
<10
<10



A-409
<10
>10



A-410
<10
>10



A-411
<10
>10



A-412
<10
>10



A-413
<10
>10



A-414
<10
<10



A-415
<10
>10



A-416
<10
>10



A-417
<10
<10



A-418
<10
<10



A-419
<10
<10



A-420
<10
<10



A-421
<10
<10



A-422
<10
<10



A-423
<10
<10



A-424
<10
<10



A-425
<10
<10



A-426
<10
>10



A-427
<10
<10



A-428
<10
>10



A-429
<10
<10



A-430
<10
<10



A-431
<10
<10



A-432
<10
>10



A-433
<10
<10



A-434
<10
>10



A-435
<10
<10



A-436
<10
>10



A-437
<10
<10



A-438
<10
<10



A-439
<10
<10



A-440
<10
<10



A-441
<10
<10



A-442
<10
<10



A-443
<10
<10



A-444
<10
>10



A-445
<10
<10



A-446
<10
>10



A-447
<10
>10



A-448
<10
<10



A-449
<10
<10



A-450
<10
<10



A-451
<10
<10



A-452
<10
<10



A-453
<10
<10



A-454
<10
<10



A-455
<10
<10



A-456
<10
<10



A-457
<10
<10



A-458
<10
<10



A-459
<10
<10



A-460
<10
<10



A-461
<10
<10



A-462
>10
>10



A-463
<10
>10



A-464
>10
>10



A-465
>10
>10



A-466
>10
>10



A-467
<10
<10



A-468
<10
<10



A-469
<10
<10



A-470
<10
>10



A-471
<10
>10



A-472
<10
>10



A-473
<10
>10



A-474
<10
>10



A-475
<10
>10



A-476
<10
>10



A-477
<10
>10



A-478
<10
<10



A-479
<10
<10



A-480
<10
>10



A-481
<10
>10



A-482
<10
<10



A-483
<10
>10



A-484
<10
<10



A-485
>10
>10



A-486
<10
<10



A-487
<10
<10



A-488
<10
<10



A-489
<10
<10



A-490
<10
<10



A-491
<10
>10



A-492
<10
<10



A-493
<10
<10



A-494
<10
<10



A-495
<10
<10



A-496
<10
<10



A-497
<10
<10



A-498
<10
<10



A-499
<10
<10



A-500
<10
<10



A-501
<10
<10



A-502
<10
<10



A-504
<10
NA



A-505
<10
<10



A-506
<10
<10



A-507
NA
<10



A-508
NA
<10



A-509
<10
<10



A-510
<10
<10



A-511
<10
<10



A-512
<10
<10



A-513
<10
<10



A-514
<10
<10



A-515
<10
<10



A-516
<10
<10



A-517
<10
<10



A-518
<10
<10



A-519
<10
<10



A-520
<10
<10



A-521
<10
<10



A-522
<10
<10



A-523
<10
>10



A-524
<10
<10



A-525
<10
<10



A-526
<10
>10



A-527
<10
<10



A-528
<10
>10



A-529
<10
>10



A-530
>10
>10



A-531
<10
>10



A-532
<10
>10



A-533
<10
<10



A-534
<10
<10



A-535
<10
<10



A-536
<10
<10



A-537
<10
<10



A-538
<10
>10



A-539
<10
<10



A-540
<10
<10



A-541
<10
<10



A-542
<10
<10



A-543
<10
<10



A-544
<10
<10



A-545
<10
<10



A-546
<10
<10



A-547
<10
<10



A-548
<10
<10



A-549
<10
<10



A-550
<10
<10



A-551
<10
<10



A-552
<10
<10



A-553
<10
<10



A-554
<10
<10



A-555
<10
<10



A-556
<10
<10



A-557
>10
>10



A-558
<10
<10



A-559
>10
>10



A-560
<10
>10



A-561
<10
<10



A-562
>10
>10



A-563
<10
<10



A-564
<10
<10



A-565
>10
>10



A-566
<10
<10



A-567
<10
<10



A-568
<10
<10



A-569
>10
>10



A-570
>10
>10



A-571
<10
<10



A-572
<10
>10



A-573
<10
>10



A-574
<10
>10



A-575
<10
<10



A-576
<10
<10










INCORPORATION BY REFERENCE

The entire disclosure of each of the patent documents and scientific articles referred to herein is incorporated by reference for all purposes.


EQUIVALENTS

The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting the invention described herein. Scope of the invention is thus indicated by the appended claims rather than by the foregoing description, and all changes that come within the meaning and range of equivalency of the claims are intended to be embraced therein.

Claims
  • 1. A compound represented by Formula I:
  • 2. The compound of claim 1, wherein the compound is a compound of Formula I or a stereoisomer, geometric isomer, or tautomer; or a pharmaceutically acceptable salt of any of the foregoing.
  • 3. The compound of claim 2, wherein A2 is
  • 4. The compound of claim 3, wherein R1 is chloro, fluoro, or trifluoromethyl.
  • 5. The compound of claim 4, wherein R2 and R4 are hydrogen.
  • 6. The compound of claim 5, wherein R3 is aryl or aralkyl, each of which is optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, haloalkyl, alkyl, and cycloalkyl.
  • 7. The compound of claim 5, wherein R3 is phenyl substituted with 1 or 2 substituents independently selected from the group consisting of chloro, fluoro, and trifluoromethyl.
  • 8. The compound of claim 7, wherein R5 is hydrogen.
  • 9. The compound of claim 8, wherein R6 is alkyl, haloalkyl, cyano, or aryl, wherein said aryl is optionally substituted with 1 or 2 substituents independently selected from the group consisting of halogen, haloalkyl, hydroxyl, and alkyl.
  • 10. The compound of claim 5, wherein R6 is haloalkyl.
  • 11. The compound of claim 8, wherein R6 is haloalkyl.
  • 12. The compound of claim 8, wherein R6 is trifluoromethyl.
  • 13. The compound of claim 11, wherein R7 is hydrogen.
  • 14. The compound of claim 12, wherein R7 is hydrogen.
  • 15. The compound of claim 13, wherein n is 1.
  • 16. The compound of claim 14, wherein n is 1.
  • 17. A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier.
  • 18. A pharmaceutical composition comprising a compound of claim 3 and a pharmaceutically acceptable carrier.
  • 19. A pharmaceutical composition comprising a compound of claim 7 and a pharmaceutically acceptable carrier.
  • 20. A pharmaceutical composition comprising a compound of claim 12 and a pharmaceutically acceptable carrier.
  • 21. A pharmaceutical composition comprising a compound of claim 16 and a pharmaceutically acceptable carrier.
  • 22. A method of treating inflammatory bowel disease in a patient, comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 1 to treat the inflammatory bowel disease.
  • 23. A method of treating inflammatory bowel disease in a patient, comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 3 to treat the inflammatory bowel disease.
  • 24. A method of treating inflammatory bowel disease in a patient, comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 7 to treat the inflammatory bowel disease.
  • 25. A method of treating inflammatory bowel disease in a patient, comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 12 to treat the inflammatory bowel disease.
  • 26. A method of treating inflammatory bowel disease in a patient, comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 16 to treat the inflammatory bowel disease.
  • 27. A method of treating a disorder selected from the group consisting of psoriasis, chronic graft-versus-host disease, acute graft-versus-host disease, Crohn's disease, systemic lupus erythematosus, Sjogren's syndrome, ulcerative colitis, and epidermal hyperplasia, comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 1 to treat the disorder.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/992,255 filed Aug. 15, 2013, which is the national stage of International Patent Application Serial No. PCT/US2011/063950 filed Dec. 8, 2011, which claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/420,950, filed Dec. 8, 2010, the entire contents of each application are hereby incorporated by reference.

US Referenced Citations (29)
Number Name Date Kind
4977189 Tomcufcik et al. Dec 1990 A
5547953 Weichert et al. Aug 1996 A
6916813 Atwal et al. Jul 2005 B2
7276348 Glick Oct 2007 B2
8324258 Glick et al. Dec 2012 B2
8431604 Netz et al. Apr 2013 B2
8481576 Netz et al. Jul 2013 B2
8497307 Glick et al. Jul 2013 B2
9000014 Glick et al. Apr 2015 B2
9139532 Glick et al. Sep 2015 B2
9169199 Hurd et al. Oct 2015 B2
9221814 Hurd et al. Dec 2015 B2
9266839 Hurd et al. Feb 2016 B2
9370507 Glick et al. Jun 2016 B2
20040009972 Ding et al. Jan 2004 A1
20040039033 Atwal et al. Feb 2004 A1
20040132750 Kempson et al. Jul 2004 A1
20060270741 Durant et al. Nov 2006 A1
20090163545 Goldfarb Jun 2009 A1
20090275099 Glick Nov 2009 A1
20100004227 Glick Jan 2010 A1
20100222400 Glick et al. Sep 2010 A1
20130324536 Glick et al. Dec 2013 A1
20130331392 Hurd et al. Dec 2013 A1
20140051727 Glick et al. Feb 2014 A1
20150119439 Hurd et al. Apr 2015 A1
20150148373 Hurd et al. May 2015 A1
20150152063 Hurd et al. Jun 2015 A1
20160039769 Glick et al. Feb 2016 A1
Foreign Referenced Citations (24)
Number Date Country
0659748 Jun 1995 EP
1716127 Nov 2006 EP
7188197 Jul 1995 JP
WO-0047207 Aug 2000 WO
WO-0105774 Jan 2001 WO
WO-0202525 Jan 2002 WO
WO-03045901 Jun 2003 WO
WO-03050261 Jun 2003 WO
WO-03106628 Dec 2003 WO
WO-2004050610 Jun 2004 WO
WO-2005082871 Sep 2005 WO
WO-2006007532 Jan 2006 WO
WO-2006073448 Jul 2006 WO
WO-2008116156 Sep 2008 WO
WO-2009036175 Mar 2009 WO
WO-2009131384 Oct 2009 WO
WO-2010030891 Mar 2010 WO
WO-2012078867 Jun 2012 WO
WO-2012078869 Jun 2012 WO
WO-2012078874 Jun 2012 WO
WO-2013185045 Dec 2013 WO
WO-2013185046 Dec 2013 WO
WO-2013185048 Dec 2013 WO
WO-2015089149 Jun 2015 WO
Non-Patent Literature Citations (47)
Entry
AC1L8WR3—Compound Summary (CID 409375), Mar. 27, 2005, http://pubchem.ncbi.nlm.nih.gov/search/search.cgi.
Atwal et al., “N-[1-Aryl-2-(1-imidazolo)ethyl]-guanidine derivatives as potent inhibitors of the bovine mitochondrial F1F0 ATP hydrolase,” Bioorganic & Medicinal Chemistry Letters, vol. 14, (2004), pp. 1027-1030.
Bisaha et al., “A switch in enantiomer preference between mitochondrial F1F0-ATPase chemotypes,” Bioorganic & Medicinal Chemistry Letters, vol. 15, (2005), pp. 2749-2751.
Brown et al., “ATP Synthase is Responsible for Maintaining Mitochondrial Membrane Potential in Bloodstream Form Trypanosoma brucei,” Eukaryotic Cell, vol. 5, No. 1, (2006), pp. 45-53.
Comelli et al., “Downmodulation of mitochondrial F0F1 ATP synthase by diazoxide in cardiac myoblasts: a dual effect of the drug,” Am J Physiol Heart Circ Physiol, vol. 292, (2007), pp. H820-H829.
Cunha et al., “Bismuth nitrate pentahydrate: a new and environmentally benign reagent for guanidylation of N-benzoylthioureas,” Tetrahedron Letters, vol. 43 (2002), pp. 49-52.
Cunha et al., “The first bismuth(III)-catalyzed guanylation of thioureas,” Tetrahedron Letters, vol. 47, (2006), pp. 6955-6956.
Cunha et al., “The first synthesis of pyridinium N-benzoylguanidines by bismuth- and mercury-promoted guanylation of N-iminopyridinium ylide with thioureas,” Tetrahedron, vol. 61, (2005), pp. 10536-10540.
Database Registry on STN, RN 669724-32-7, RN 351226-10-3, and RN 330829-66-8, 3 pages.
Degliesposti et al., “Design and Discovery of Plasmepsin II Inhibitors Using an Automated Workflow on Large-Scale Grids,” ChemMedChem, (2009), 4(7), pp. 1164-1173, Abstract.
Extended European Search Report for European Application No. EP11846398.3, dated Feb. 28, 2014, 5 pages.
Extended European Search Report for European Application No. EP11846595.4, dated Jun. 12, 2014, 6 pages.
Grover et al., “Excessive ATP hydrolysis in ischemic myocardium by mitochondrial F1F0-ATPase: effect of selective pharmacological inhibition of mitochondrial ATPase hydrolase activity,” Am J Physiol Heart Circ Physiol, vol. 287, (2004), pp. H1747-H1755.
Hamann et al., “Benzodiazepine-based selective inhibitors of mitochondrial F1F0 ATP hydrolase,” Bioorg Med Chem Lett, (2004), vol. 14, pp. 1031-1034, Abstract.
International Preliminary Report on Patentability of the International Bureau of WIPO, for International Application No. PCT/US2011/063943, dated Feb. 25, 2014, 5 pages.
International Search Report and Written Opinion of the International Searching Authority, the Korean Intellectual Property Office, for International Application No. PCT/US2008/076021, dated Mar. 27, 2009, 8 pages.
International Search Report and Written Opinion of the International Searching Authority, the Korean Intellectual Property Office, for International Application No. PCT/US2009/056675, dated Apr. 14, 2010, 10 pages.
International Search Report and Written Opinion of the International Searching Authority, the U.S. Patent & Trademark Office, for International Application No. PCT/US2011/063943, dated Apr. 9, 2012, 7 pages.
International Search Report and Written Opinion of the International Searching Authority, the U.S. Patent & Trademark Office, for International Application No. PCT/US2011/063945, dated Apr. 18, 2012, 8 pages.
International Search Report and Written Opinion of the International Searching Authority, the U.S. Patent & Trademark Office, for International Application No. PCT/US2011/063950, dated Apr. 26, 2012, 8 pages.
International Search Report and Written Opinion of the International Searching Authority, the U.S. Patent & Trademark Office, for International Application No. PCT/US2013/044734, dated Nov. 20, 2013, 14 pages.
International Search Report and Written Opinion of the International Searching Authority, the U.S. Patent & Trademark Office, for International Application No. PCT/US2013/044736, dated Nov. 8, 2013, 13 pages.
International Search Report and Written Opinion of the International Searching Authority, the U.S. Patent & Trademark Office, for International Application No. PCT/US2013/044738, dated Nov. 20, 2013, 17 pages.
Ito et al., “A medium-term rat liver bioassay for rapid in vivo detection of carcinogenic potential of chemicals,” Cancer Sci, (2003), vol. 94, No. 1, pp. 3-8.
Kryl'skii, et al., “Arylbiguanides in Heterocyclization Reactions,” Russian Journal of General Chemistry, vol. 75, No. 2, (2005), pp. 303-310.
Lübbers et al., “Design, Synthesis, and Structure-Activity Relationship Studies of ATP Analogues as DNA Gyrase Inhibitors,” Bioorganic & Medicinal Chemistry Letters, vol. 10, (2000), pp. 821-826.
Schnaufer et al., “The F1-ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function,” The European Molecular Biology Organization Journal, vol. 24, (2005), pp. 4029-4040.
STN Search Transcript Registry/Caplus Databases, (2010) 108 pages.
STN Search Transcript Registry/Caplus Databases, (2010) 30 pages.
STN Search Transcript Registry/Caplus Databases, (2010) 85 pages.
Williams et al., “Identification of Compounds that Bind Mitochondrial F1F0 ATPase by Screening a Triazine Library for Correction of Albinism,” Chemistry & Biology, vol. 11, (2004), pp. 1251-1259.
Debray et al., “Swift and Efficient Synthesis of 4-Phenylquinazolines: Involvement of N-Heterocyclic Carbene in the Key Cyclization Step,” J. Org. Chem., vol. 75, pp. 2092-2095 (2010).
Dung Tien Le et al., “Virtual Screening of Tubercular Acetohydroxy Acid Synthase Inhibitors through Analysis of Structural Models,” Bull. Korean Chem. Soc., vol. 28, No. 6, pp. 947-952, (2007).
Petersen et al., “Synthesis and Hypotensive Activity of N-Alkyl-N″-cyano-N′-pyridylguanidines,” Journal of Medicinal Chemistry, vol. 21, No. 8, pp. 773-781, (1978).
Blatt et al., “Bz-423 Superoxide Signals Apoptosis via Selective Activation of JNK, Bak, and Bax,” Free Radical Biology & Medicine, pp. 1232-1242 (2008).
Cunha et al., “Study of N-benzoyl-activation in the HgCl2-promoted Guanylation Reaction of Thioureas. Synthesis and Structural Analysis of N-benzoyl-guanidines,” Tetrahedron, vol. 57, pp. 1671-1675, (2001).
International Search Report and Written Opinion for International Application No. PCT/US2014/069453 dated Mar. 23, 2015, 12 pages.
International Search Report and Written Opinion for International Application No. PCT/US2014/069487 dated Mar. 18, 2015, 7 pages.
International Search Report and Written Opinion for International Application No. PCT/US2014/069494, dated Feb. 5, 2015, 13 pages.
Johnson et al., “Identification and Validation of the Mitochondrial F1F0-ATPase as the Molecular Target of the Immunomodulatory Benzodiazepine Bz-423,” Chemistry & Biology, vol. 12, pp. 485-496 (2005).
STN Search Transcript Registry/Caplus Databases, (2012) 89 pages.
Wen-Li et al., “Inhibition of the Ecto-Beta Subunit of F1F0-ATPase Inhibits Proliferation and induces Apoptosis in Acute Myeloid Leukemia Cell Lines,” Journal of Experimental & Clinical Cancer Research, vol. 31, pp. 1-9 (2012).
U.S. Appl. No. 14/403,779, Indazole Guanidine F1F0-ATPase Inhibitors and Therapeutic Uses Thereof, filed Nov. 25, 2014.
U.S. Appl. No. 14/403,791, Saturated Acyl Guanidine for Inhibition of F1F0-ATPase, filed Nov. 25, 2014.
U.S. Appl. No. 15/015,403, Trifluoromethyl Pyrazolyl Guanidine F1F0-ATPase Inhibitors and Therapeutic Uses Thereof, filed Feb. 4, 2016.
U.S. Appl. No. 15/101,126, N-Substituted Pyrazolyl Guanidine F1F0-ATPase Inhibitors and Therapeutic Uses Thereof, filed Jun. 2, 2016.
U.S. Appl. No. 15/101,129, Alkylpyrazolyl Guanidine F1F0-ATPase Inhibitors and Therapeutic Uses Thereof, filed Jun. 2, 2016.
Related Publications (1)
Number Date Country
20160039769 A1 Feb 2016 US
Provisional Applications (1)
Number Date Country
61420950 Dec 2010 US
Continuations (1)
Number Date Country
Parent 13992255 US
Child 14800969 US