Pyridyl substituted B-lactam compounds

Abstract
Pyridyl substituted .beta.-lactam compounds used in preparing taxane derivatives having a 3' pyridyl substituted C13 side chain.
Description

BACKGROUND OF THE INVENTION
The present invention is directed to novel taxanes which have utility as antileukemia and antitumor agents.
The taxane family of terpenes, of which taxol is a member, has attracted considerable interest in both the biological and chemical arts. Taxol is a promising cancer chemotherapeutic agent with broad spectrum of antileukemia and tumor-inhibiting activity. Taxol has a 2'R, 3'S configuration and the following structural formula: ##STR1## wherein Ac is acetyl. Because of this promising activity, taxol is currently undergoing clinical trials in both France and the United States.
Colin et al. reported in U.S. Pat. No. 4,814,470 that taxol derivatives having structural formula (2) below, have an activity significantly greater than that of taxol (1). ##STR2## R' represents hydrogen or acetyl and one of R" and R'" represents hydroxy and the other represents tert-butoxy-carbonylamino and their stereoisomeric forms, and mixtures thereof. The compound of formula (2) in which R' is hydrogen, R" is hydroxy, R'" is tert-butoxycarbonylamino having the 2'R, 3'S configuration is commonly referred to as taxotere.
Although taxol and taxotere are promising chemotherapeutic agents, they are not universally effective. Accordingly, a need remains for additional chemotherapeutic agents.
SUMMARY OF THE INVENTION
Among the objects of the present invention, therefore, is the provision of novel taxane derivatives which are valuable antileukemia and antitumor agents.
Briefly, therefore, the present invention is directed to taxane derivatives having a C13 side chain which includes a pyridyl substituent. In a preferred embodiment, the taxane derivative has a tricyclic or tetracyclic core and corresponds to the formula: ##STR3## wherein X.sub.1 is --OX.sub.6, --SX.sub.7, or --NX.sub.8 X.sub.9 ;
X.sub.2 is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heteroaryl;
X.sub.3 is hydrogen;
X.sub.4 is pyridyl;
X.sub.5 is --COX.sub.10, --COOX.sub.10, --COSX.sub.10, --CONX.sub.8 X.sub.10, or --SO.sub.2 X.sub.11 ;
X.sub.6 is hydrogen, alkyl, alkenyl, alkynyl aryl, heteroaryl, hydroxy protecting group, or a functional group which increases the water solubility of the taxane derivative;
X.sub.7 is alkyl; alkenyl, alkynyl, aryl, heteroaryl, or sulfhydryl protecting group;
X.sub.8 is hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, or heterosubstituted alkyl, alkenyl, alkynyl, aryl or heteroaryl;
X.sub.9 is an amino protecting group;
X.sub.10 is alkyl, alkenyl, alkynyl, aryl, heteroaryl, or heterosubstituted alkyl, alkenyl alkynyl, aryl or heteroaryl;
X.sub.11 is alkyl, alkenyl, alkynyl, aryl, heteroaryl --OX.sub.10, or --NX.sub.8 X.sub.14 ;
X.sub.14 is hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl,
R.sub.1 is hydrogen, hydroxy, protected hydroxy, or together with R.sub.14 forms a carbonate;
R.sub.2 is hydrogen, hydroxy, --OCOR.sub.31 or together with R.sub.2a forms an oxo;
R.sub.2a is hydrogen or taken together with R.sub.2 forms an oxo or;
R.sub.4 is hydrogen, together with R.sub.4a forms an oxo, oxirane or methylene, or together with R.sub.5a and the carbon atoms to which they are attached form an oxetane ring;
R.sub.4a is hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cyano, hydroxy, --OCOR.sub.30, or together with R.sub.4 forms an oxo; oxirane or methylene;
R.sub.5 is hydrogen or together with R.sub.5a forms an oxo,
R.sub.5a is hydrogen, hydroxy, protected hydroxy, acyloxy, together with R.sub.5 forms an oxo, or together with R.sub.4 and the carbon atoms to which they are attached form an oxetane ring.
R.sub.6 is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heteroaryl, hydroxy, protected hydroxy or together with R.sub.6a forms an oxo;
R.sub.6a is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heteroaryl, hydroxy, protected hydroxy or together with R.sub.6 forms an oxo;
R.sub.7 is hydrogen or together with R.sub.7a forms an oxo,
R.sub.7a is hydrogen, halogen, protected hydroxy, --OR.sub.28, or together with R.sub.7 forms an oxo;
R.sub.9 is hydrogen or together with R.sub.9a forms an oxo,
R.sub.9a is hydrogen; hydroxy, protected hydroxy, acyloxy, or together with R.sub.9 forms an oxo;
R.sub.10 is hydrogen or together with R.sub.10a forms an oxo,
R.sub.10a is hydrogen, --OCOR.sub.29, hydroxy, or protected hydroxy, or together with R.sub.10 forms an oxo;
R.sub.14 is hydrogen alkyl, alkenyl, alkynyl, aryl, or heteroaryl, hydroxy, protected hydroxy or together with R.sub.1 forms a carbonate;
R.sub.14a is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heteroaryl;
R.sub.28 is hydrogen, acyl, hydroxy protecting group or a functional group which increases the solubility of the taxane derivative; and
R.sub.29, R.sub.30, and R.sub.31 are independently hydrogen, alkyl, alkenyl, alkynyl, monocyclic aryl or monocyclic heteroaryl.
Other objects and features of this invention will be in part apparent and in part pointed out hereinafter.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
As used herein "Ar" means aryl; "Ph" means phenyl; "Ac" means acetyl; "Et" means ethyl; "R" means alkyl unless otherwise defined; "Bu" means butyl; "Pr" means propyl, "TES" means triethylsilyl; "TMS" mean trimethylsilyl; "MOP" means 2-methoxypropyl, "DMAP" means p-dimethylamino pyridine, "DMF" means dimethylformamide; "TPAP" means tetrapropylammonium perruthenate, "LDA" means lithium diisopropylamide; "LHMDS" means lithium hexamethyldisilazide; "LAH" means lithium aluminum hydride; "Red-Al" means sodium bis(2-methoxyethoxy) aluminum hydride; "AIBN" means azo-(bis)-isobutyronitrile; "10-DAB" means 10-desacetylbaccatin III; FAR means 2-chloro-1,1,2-trifluorotriethylamine; protected hydroxy means --OR wherein R is a hydroxy protecting group; sulfhydryl protecting group" includes, but is not limited to, hemithioacetals such as 1-ethoxyethyl and methoxymethyl, thioesters, or thiocarbonates; "amine protecting group" includes; but is not limited to, carbamates for example, 2,2,2-trichloroethyl-carbamate or tertbutylcarbamate; and "hydroxy protecting group" includes, but is not limited to, ethers such as methyl, t-butyl, benzyl, p-methoxybenzyl, p-nitrobenzyl, allyl, trityl, methoxymethyl, ethoxyethyl, methoxyethoxymethyl, 2-methoxypropyl, tetrahydrothiopyranyl, tetrahydropyranyl, and trialkylsilyl ethers such as trimethylsilyl ether, triethylsilyl ether, dimethylarylsilyl ether triisopropyl-silyl ether and t-butyldimethylsilyl ether; esters such as benzoyl, acetyl phenylacetyl, formyl, mono-, di-, and trihaloacetyl such as chloroacetyl, dichloroacetyl, trichloroacetyl, trifluoroacetyl; and carbonates including but not limited to alky carbonates having from one to six carbon atoms such as methyl, ethyl; n-propyl, isopropyl, n-butyl, t-butyl; isobutyl, and n-pentyl; alkyl carbonates having from one to six carbon atoms and substituted with one or more halogen atoms such as 2,2,2-trichloroethoxymethyl and 2,2,2-trichloro-ethyl; alkenyl carbonates having from two to six carbon atoms such as vinyl and allyl; cycloalkyl carbonates having from three to six carbon atoms such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl; and phenyl or benzyl carbonates optionally substituted on the ring with one or more C.sub.1-6 alkoxy, or nitro. Other hydroxyl, sulfhydryl and amine protecting groups may be found in "Protective Groups in Organic Synthesis" by T. W. Greene, John Wiley and Sons, 1981.
The alkyl groups described herein, either alone or with the various substituents defined herein are preferably lower alkyl containing from one to six carbon atoms in the principal chain and up to 15 carbon atoms. They may be substituted, straight, branched chain or cyclic and include methyl, ethyl, propyl, isopropyl, butyl, hexyl, cyclopropyl, cyclopentyl, cyclohexyl and the like.
The alkenyl groups described herein, either alone or with the various substituents defined herein are preferably lower alkenyl containing from two to six carbon atoms in the principal chain and up to 15 carbon atoms. They may be substituted, straight or branched chain and include ethenyl, propenyl, isopropenyl, butenyl, isobutenyl, hexenyl, and the like.
The alkynyl groups described herein, either alone or with the various substituents defined herein are preferably lower alkynyl containing from two to six carbon atoms in the principal chain and up to 15 carbon atoms. They may be substituted, straight or branched chain and include ethynyl, propynyl, butynyl, isobutynyl, hexynyl, and the like.
The aryl moieties described herein, either alone or with various substituents, contain from 6 to 15 carbon atoms and include phenyl. Substituents include alkanoxy, protected hydroxy, halogen, alkyl, aryl, alkenyl acyl, acyloxy, nitro, amino, amido, etc. Phenyl is the more preferred aryl.
The heteroaryl moieties described herein, either alone or with various substituents, contain from 5 to 15 atoms and include, furyl, thienyl, pyridyl and the like. Substituents include alkanoxy, protected hydroxy, halogen, alkyl, aryl, alkenyl, acyl, acyloxy, nitro, amino, and amido.
The acyloxy groups described herein contain alkyl, alkenyl, alkynyl, aryl or heteroaryl groups.
The substituents of the substituted alkyl, alkenyl, alkynyl, aryl, and heteroaryl groups and moieties described herein, may be alkyl, alkenyl, alkynyl, aryl, heteroaryl and/or may contain nitrogen, oxygen, sulfur, halogens and include, for example, lower alkoxy such as methoxy, ethoxy, butoxy, halogen such as chloro or fluoro, nitro, amino, and keto.
In accordance with the present invention, it has been discovered that compounds corresponding to structural formula 3 show remarkable properties, in vitro, and are valuable antileukemia and antitumor agents. Their biological activity has been determined in vitro, using tubulin assays according to the method of Parness et al., J. Cell Biology, 91: 479-487 (1981) and human cancer cell lines, and is comparable to that exhibited by taxol and taxotere.
In one embodiment of the present invention, the substituents of the cyclic nucleus of the taxane (other than the C13 substituent) correspond to the substituents present on baccatin III or 10-DAB. That is, R.sub.14 and R.sub.14a are hydrogen, R.sub.10 is hydrogen, R.sub.10a is hydroxy or acetoxy, R.sub.9 and R.sub.9a together form an oxo, R.sub.7 is hydrogen, R.sub.7a is hydroxy, R.sub.5 is hydrogen, R.sub.5a and R.sub.4 and the carbons to which they are attached form an oxetane ring, R.sub.4a is acetoxy, R.sub.2 is hydrogen, R.sub.2a is benzoyloxy and R.sub.1 is hydroxy In other embodiments, the taxane has a structure which differs from that of taxol or taxotere with respect to the C13 side chain and at least one other substituent. For example, R.sub.14 may be hydroxy, R.sub.2 may be hydroxy or --OCOR.sub.31 wherein R.sub.31 is hydrogen, alkyl or selected from the group comprising ##STR4## and Z is alkyl, hydroxy, alkoxy, halogen, or trifluoromethyl. R.sub.9a may be hydrogen and R.sub.9 may be hydrogen or hydroxy, R.sub.7a may be hydrogen and R.sub.7 may be acetoxy or other acyloxy or halogen, or R.sub.10 and R.sub.10a may each be hydrogen or together form an oxo.
With respect to the C13 side-chain, in a preferred embodiment X.sub.1 is --OH, X.sub.2 is hydrogen, X.sub.3 is hydrogen, X.sub.4 is pyridyl, X.sub.5 is --COX.sub.10 or --COOX.sub.10, and X.sub.10 is alkyl, alkenyl, alkynyl, aryl, furyl thienyl or other heteroaryl and the taxane has the 2'R, 3'S configuration. In a particularly preferred embodiment, X.sub.4 is pyridyl, X.sub.5 --COX.sub.10 or --COOX.sub.10 and X.sub.10 is furyl, thienyl, alkyl substituted furyl or thienyl, pyridyl, tert-, iso- or n-butyl, ethyl, iso- or n-propyl, cyclopropyl, cyclohexyl, allyl, crotyl, 1,3-diethoxy-2-propyl, 2-methoxyethyl, amyl, neopentyl, PhCH.sub.2 O--, --NPh.sub.2, --NHnPr, --NHPh, or --NHEt.
Taxanes having the general formula 3 may be obtained by reacting a .beta.-lactam with alkoxides having the taxane tricyclic or tetracyclic nucleus and a C-13 metallic oxide substituent to form compounds having a .beta.-amido ester substituent at C-13. The .beta.-lactams have the following structural formula: ##STR5## wherein X.sub.1 -X.sub.5 are as defined above.
The .beta.-lactams can be prepared from readily available materials, as is illustrated in schemes A and B below: ##STR6## reagents: (a) triethylamine, CH.sub.2 Cl.sub.2, 25.degree. C., 18 h; (b) 4 equiv ceric ammonmium nitrate, CH.sub.3 CN, -10.degree. C., 10 min; (c) KOH, THF, H.sub.2 O, 0.degree. C., 30 min, or pyrolidine, pyridine, 25.degree. C., 3 h, (d) TESCl, pyridine, 25.degree. C., 30 min or 2-methoxypropene toluene sulfonic acid (cat.), THF, 0.degree. C., 2 h; (e) n-butyllithium, THF, -78.degree. C., 30 min; and an acyl chloride or chloroformate (X.sub.5 =--COX.sub.10), sulfonyl chloride (X.sub.5 =--COSX.sub.10) or isocyanate (X.sub.5 =--CONX.sub.8 X.sub.10); (f) lithium diisopropyl amide, THF -78.degree. C. to -50.degree. C.; (g) lithium hexamethyldisilazide. THF -78.degree. C. to 0.degree. C.; (h) THF, -78.degree. C. to 25.degree. C. 12 h
The starting materials are readily available. In scheme A, .alpha.-acetoxy acetyl chloride is prepared from glycolic acid, and, in the presence of a tertiary amine, it cyclocondenses with imines prepared from aldehydes and p-methoxyaniline to give 1-p-methoxyphenyl-3-acyloxy-4-arylazetidin-2-ones. The p-methoxyphenyl group can be readily removed through oxidation with ceric ammonium nitrate, and the acyloxy group can be hydrolyzed under standard conditions familiar to those experienced in the art to provide 3-hydroxy-4-arylazetidin-2-ones. In Scheme B, ethyl-.alpha.-triethylsilyloxyacetate is readily prepared from glycolic acid.
In Schemes A and B, X.sub.1 is preferably --OX.sub.6 and X.sub.6 is a hydroxy protecting group. Protecting groups such as 2-methoxypropyl ("MOP") 1-ethoxyethyl ("EE") are preferred, but a variety of other standard protecting groups such as the triethyisilyl group or other trialkyl (or aryl) silyl groups may be used. As noted above, additional hydroxy protecting groups and the synthesis thereof may be found in "Protective groups in Organic Synthesis" by T. W. Greene, John Wiley & Sons, 1981.
The racemic .beta.-lactams may be resolved into the pure enantiomers prior to protection by recrystallization of the corresponding 2-methoxy-2-(trifluoromethyl) phenylacetic esters. However, the reaction described hereinbelow in which the .beta.-amido ester side chain is attached has the advantage of being highly diastereoselectlve, thus permitting the use of a racemic mixture of side chain precursor.
The alkoxides having the or tricyclic or tetracyclic taxane nucleus and a C-13 metallic oxide or ammonium oxide substituent have the following structural formula: ##STR7## wherein R.sub.1 -R.sub.14a are as previously defined and M comprises ammonium or is a metal optionally selected from the group comprising Group IA, Group IIA and transition metals, and preferably, Li, Mg, Na, K or Ti. Most preferably, the alkoxide has the tetracyclic taxane nucleus and corresponds to the structural formula: ##STR8## wherein M, R.sub.2, R.sub.4a, R.sub.7, R.sub.7a, R.sub.9, R.sub.9a, R.sub.10, and R.sub.10a are as previously defined.
The alkoxides can be prepared by reacting an alcohol having the taxane nucleus and a C-13 hydroxyl group with an organometallic compound in a suitable solvent. Most preferably, the alcohol is a protected baccatin III, in particular, 7-O-triethylsilyl baccatin III (which can be obtained as described by Greene, et al. in JACS 110: 5917 (1988) or by other routes) or 7,10-bis-O-triethylsilyl baccatin III.
As reported in Greene et al., 10-deacetyl baccatin III is converted to 7-O-trietylsilyl-10-deacetyl baccatin III according to the following reaction scheme: ##STR9## Under what is reported to be carefully optimized conditions, 10-deacetyl baccatin III is reacted with 20 equivalents of (C.sub.2 H.sub.5).sub.3 SiCl at 23.degree. C. under an argon atmosphere for 20 hours in the presence of 5 ml of pyridine/mmol of 10-deacetyl baccatin III to provide 7-triethylsilyl-10-deacetyl baccatin III (4a) as a reaction product in 84-86% yield after purification. The reaction product may then optionally be acetylated with 5 equivalents of CH.sub.3 COCl and 25 mL of pyridine/mmol of 4a at 0.degree. C. under an argon atmosphere for 48 hours to provide 86% yield of 7-O-triethylsilyl baccatin III (4b). Greene, et al. in JACS 110, 5917 at 5918 (1988).
The 7-protected baccatin III (4b) is reacted with an organometallic compound such as LHMDS in a solvent such as tetrahydrofuran (THF), to form the metal alkoxide 13-O-lithium-7-O-triethylsilyl baccatin III as shown in the following reaction scheme: ##STR10##
As shown in the following reaction scheme, 13-O-lithium-7-O-triethylsilyl baccatin III reacts with a .beta.-lactam in which X.sub.1 is preferably --OX.sub.6, (X.sub.6 being a hydroxy protecting group) and X.sub.2 -X.sub.5 are as previously defined to provide an intermediate in which the C-7 and C-2' hydroxyl groups are protected. The protecting groups are then hydrolyzed under mild conditions so as not to disturb the ester linkage or the taxane substituents. ##STR11##
Both the conversion of the alcohols to the alkoxide and the ultimate synthesis of the taxane derivative can take place in the same reaction vessel. Preferably, the .beta.-lactam is added to the reaction vessel after formation therein of the alkoxide.
Compounds of formula 3 of the instant invention are useful for inhibiting tumor growth in animals including humans and are preferably administered in the form of a pharmaceutical composition comprising an effective antitumor amount of compound of the instant invention in combination with a pharmaceutically acceptable carrier or diluent.
Antitumor compositions herein may be made up in any suitable form appropriate for desired use; e.g., oral parenteral or topical administration. Examples of parenteral administration are intramuscular, intravenous, intraperitoneal, rectal and subcutaneous administration.
The diluent or carrier ingredients should not be such as to diminish the therapeutic effects of the antitumor compounds.
Suitable dosage forms for oral use include tablets, dispersible powders, granules, capsules, suspensions, syrups, and elixirs. Inert diluents and carriers for tablets include, for example, calcium carbonate, sodium carbonate, lactose and talc. Tablets may also contain granulating and disintegrating agents such as starch and alginic acid, binding agents such as starch, gelatin and acacia, and lubricating agents such as magnesium stearate, stearic acid and talc. Tablets may be uncoated or may be coated by unknown techniques; e.g. to delay disintegration and absorption. Inert dienes and carriers which may be used in capsules include, for example calcium carbonate, calcium phosphate and kaolin. Suspensions, syrups and elixirs may contain conventional excipients, for example, methyl cellulose, tragacanth, sodium alginate; wetting agents, such as lecithin and polyoxyethylene stearate; and preservatives, e.g., ethyl-p-hydroxybenzoate.
Dosage forms suitable for parenteral administration include solutions, suspensions, dispersions, emulsions and the like. They may also be manufactured in the form of sterile solid compositions which an be dissolved or suspended in sterile injectable medium immediately before use. They may contain suspending or dispersing agents known in the art.
The water solubility of compounds of formula (3) may be improved by modification of the C2' and or C7 substituents. For instance, water solubility may be increased if X.sub.1 is --OX.sub.6 and R.sub.7a is --OR.sub.28, and X.sub.6 and R.sub.28 are independently hydrogen or --COGCOR.sup.1 wherein
G is ethylene, propylene, --CH=CH--, 1,2-cyclohexane, or 1,2-phenylene,
R.sup.1 =OH base, NR.sup.2 R.sup.3, OR.sup.3, SR.sup.3, OCH.sub.2 CONR.sup.4 R.sup.5, OH
R.sup.2 =hydrogen, methyl
R.sup.3 =(CH.sub.2).sub.n NR.sup.6 R.sup.7 ; (CH.sub.2).sub.n N.sup..sym. R.sup.6 R.sup.7 R.sup.8 X.sup..crclbar.
n=1 to 3
R.sup.4 =hydrogen, lower alkyl containing 1 to 4 carbons
R.sup.5 =hydrogen, lower alkyl containing 1 to 4 carbons, benzyl, hydroxyethyl, CH.sub.2 CO.sub.2 H, dimethylaminoethyl
R.sup.6 R.sup.7 =lower alkyl containing 1 or 2 carbons, benzyl or R.sub.6 and
R.sup.7 together with the nitrogen atom of NR.sup.6 R.sup.7 form the following rings ##STR12## R.sup.8 =lower alkyl containing 1 or 2 carbons, benzyl X.sup..crclbar. =halide
base=NH.sub.3, (HOC.sub.2 H.sub.4).sub.3 N, N(CH.sub.3).sub.3, CH.sub.3 N(C.sub.2 H.sub.4 OH).sub.2,
NH.sub.2, (CH.sub.2).sub.6 NH.sub.2, N-methylglucamine NaOH, KOH. The preparation of compounds in which X.sub.1 or Y.sub.2 is --COGCOR.sup.1 is set forth in Haugwitz U.S. Pat. No. 4,942,184 which is incorporated herein by reference.
Alternatively, solubility may be increased when X.sub.1 is --OX.sub.6 and X.sub.6 is a radical having the formula --COCX.dbd.CHX or --COX--CHX--CHX--SO.sub.2 O--M wherein X is hydrogen, alkyl or aryl and M is hydrogen, alkaline metal or an ammonia group as described in Kingston et al., U.S. Pat. No. 5,059,699 (incorporated herein by reference).
Taxanes having alternative C9 keto substituent may be prepared by selectively reducing the C.sub.9 keto substituent to yield the corresponding C9 .beta.-hydroxy derivative. The reducing agent is preferably a borohydride and, most preferably, tetrabutylammoniumborohydride (Bu.sub.4 NBH.sub.4) or triacetoxyborohydride.
As illustrated in Reaction Scheme 1, the reaction of baccatin III with Bu.sub.4 NBH.sub.4 in methylene chloride yields 9-desoxo-9.beta.-hydroxybaccatin III 5. After the C7 hydroxy group is protected with the triethylsilyl protecting group, for example, a suitable side chain may be attached to 7-protected-9.beta.-hydroxy derivative 6 as elsewhere described herein. Removal of the remaining protecting groups thus yields 9.beta.-hydroxy-desoxo taxol or other 9.beta.hydroxytetracylic taxane having a C13 said chain. ##STR13##
Alternatively, the C13 hydroxy group of 7-protected-9.beta.-hydroxy derivative 6 may be protected with trimethylsilyl or other protecting group which can be selectively removed relative to the C7 hydroxy protecting group as illustrated in Reaction Scheme 2, to enable further selective manipulation of the various substituents of the taxane. For example, reaction of 7 ,13-protected-9.beta.-hydroxy derivative 7 with KH causes the acetate group to migrate from C10 to C9 and the hydroxy group to migrate from C9 to C10, thereby yielding 10-deacetyl derivative 8. Protection of the C10 hydroxy group of 10-deacetyl derivative 8 with triethylsilyl yields derivative 9. Selective removal of the C13 hydroxy protecting group from derivative 9 yields derivative 10 to which a suitable side chain may be attached as described above. ##STR14##
As shown in Reaction Scheme 3, 10-oxo derivative 11 can be provided by oxidation of 10-deacetyl derivative 8. Thereafter, C13 hyroxy protecting group can be selectively removed followed by attachment of a side chain as described above to yield 9-acetoxy-10-oxo-taxol or other 9-acetoxy-10-oxotetracylic taxanes having a C13 side chain Alternatively, the C9 acetate group can be selectively removed by reduction of 10-oxo derivative 11 with a reducing agent such as samarium diiodide to yield 9-desoxo-10-oxo derivative 12 from which the C13 hydroxy protecting group can be selectively removed followed by attachment of a side chain as described above to yield 9-desoxo-10-oxo-taxol or other 9-desoxo-10-oxotetracylic taxanes having a C13 side chain. ##STR15##
Reaction Scheme 4 illustrates a reaction in which 10-DAB is reduced to yield pentanol 13. The C7 and C10 hydroxyl groups of pentanol 13 can then be selectively protected with the triethylsilyl or another protecting group to produce triol 14 to which a C13 side chain can be attached as described above or, alternatively, after further modification of the tetracyclic substituents. ##STR16##
Taxanes having C9 and/or C10 acyloxy substituents other than acetate can be prepared using 10-DAB as a starting material as illustrated in Reaction Scheme 5. Reaction of 10-DAB with triethylsilyl chloride in pyridine yields 7-protected 10-DAB 15. The C10 hydroxy substituent of 7-protected 10-DAB 15 may then be readily acylated with any standard acylating agent to yield derivative 16 having a new C10 acyloxy substituent. Selective reduction of the C9 keto substituent of derivative 16 yields 9.beta.-hydroxy derivative 17 to which a C13 side chain may be attached. Alternatively, the C10 and C9 groups can be caused to migrate as set forth in Reaction Scheme 2, above. ##STR17##
Taxanes having alternative C2 and/or C4 esters can be prepared using baccatin III and 10-DAB as starting materials. The C2 and/or C4 esters of baccatin III and 10-DAB can be selectively reduced to the corresponding alcohol(s) using reducing agents such as LAH or Red-Al, and new esters can thereafter be substituted using standard acylating agents such as anhydrides and acid chlorides in combination with an amine such as pyridine, triethylamine, DMAP, or diisopropyl ethyl amine. Alternatively, the C2 and/or C4 alcohols may be converted to new C2 and/or C4 esters through formation of the corresponding alkoxide by treatment of the alcohol with a suitable base such as LDA followed by an acylating agent such as an acid chloride.
Baccatin III and 10-DAB analogs having different substituents at C2 and/or C4 can be prepared as set forth in Reaction Schemes 6-10. To simplify the description, 10-DAB is used as the starting material. It should be understood, however, that baccatin III derivatives or analogs may be produced using the same series of reactions (except for the protection of the C10 hydroxy group) by simply replacing 10-DAB with baccatin III as the starting material. 9-desoxo derivatives of the baccatin III and 10-DAB analogs having different substituents at C2 and/or C4 can then be prepared by reducing the C9 keto substituent of these analogs and carrying out the other reactions described above.
In Reaction Scheme 6, protected 10-DAB 3 is converted to the triol 18 with lithium aluminum hydride. Triol 18 is then converted to the corresponding C4 ester using Cl.sub.2 CO in pyridine followed by a nucleophilic agent (e.g., Grignard reagents or alkyllithium reagents. ##STR18##
Deprotonation of triol 18 with LDA followed by introduction of an acid chloride selectively gives the C4 ester. For example, when acetyl chloride was used, triol 18 was converted to 1,2 diol 4 as set forth in Reaction Scheme 7.
Triol 18 can also readily be converted to the 1,2 carbonate 19. Acetylation of carbonate 19 under vigorous standard conditions provides carbonate 21 as described in Reaction Scheme 8; addition of alkyllithium or Grignard reagents to carbonate 19 provides the C2 ester having a free hydroxyl group at C4 as set forth in Reaction Scheme 6. ##STR19##
As set forth in Reaction Scheme 9, other C4 substituents can be provided by reacting carbonate 19 with an acid chloride and a tertiary amine to yield carbonate 22 which is then reacted with alkyllithium or Grignard reagents to provide 10-DAB derivatives having new substituents at C2. ##STR20##
Alternatively; baccatin III may be used as a starting material and reacted as shown in Reaction Scheme 10 . After being protected at C7 and C13, baccatin III is reduced with LAH to produce 1,2,4,10 tetraol 24. Tetraol 24 is converted to carbonate 25 using Cl.sub.2 CO and pyridine, and carbonate 25 is acylated at C10 with an acid chloride and pyridine to produce carbonate 26 (as shown) or with acetic anhydride and pyridine (not shown). Acetylation of carbonate 26 under vigorous standard conditions provides carbonate 27 which is then reacted with alkyl lithiums to provide the baccatin III derivatives having new substituents at C2 and C10 ##STR21##
10-desacetoxy derivatives of baccatin III and 10-desoxy derivatives of 10-DAB may be prepared by reacting baccatin III or 10-DAB (or their derivatives) with samarium diiodide. Reaction between the tetracyclic taxane having a C10 leaving group and samarium diiodide may be carried out at 0.degree. C. in a solvent such as tetrahydrofuran. Advantageously, the samarium diiodide selectively abstracts the C10 leaving group; C13 side chains and other substituents on the tetracyclic nucleus remain undisturbed. Thereafter, the C9 keto substituent may be reduced to provide the corresponding 9-desoxo-9.beta.-hydroxy-10-desacetyoxy or 10-desoxy derivatives as otherwise described herein.
C7 dihydro and other C7 substituted taxanes can be prepared as set forth in Reaction Schemes 11, 12 and 12a. ##STR22##
As shown in Reaction Scheme 12, Baccatin III may be converted into 7-fluoro baccatin III by treatment with FAR at room temperature in THF solution. Other baccatin derivatives with a free C7 hydroxyl group behave similarly. Alternatively, 7-chloro baccatin III can be prepared by treatment of baccatin III with methane sulfuryl chloride and triethylamine in methylene chloride solution containing an excess of triethylamine hydrochloride.
Taxanes having C7 acyloxy substituents can be prepared as set forth in Reaction Scheme 12a, 7,13-protected 10-oxo-derivative 11 is converted to its corresponding C13 alkoxide by selectively removing the C13 protecting group and replacing it with a metal such as lithium. The alkoxide is then reacted with a .beta.-lactam or other side chain precursor. Subsequent hydrolysis of the C7 protecting groups causes a migration of the C7 hydroxy substituent to C10, migration of the C10oxo substituent to C9, and migration of the C9 acyloxy 7 substituent C7.
A wide variety of tricyclic taxanes are naturally occurring, and through manipulations and analogous to those described herein, an appropriate side chain can be attached to the C13 oxygen of these substances. Alternatively, as shown in Reaction Scheme 13, 7-O-triethylsilyl baccatin III can be converted to a tricyclic taxane through the action of trimethyloxonium tetrafluoroborate in methylene chloride solution. The product diol then reacts with lead tetraacetate to provide the corresponding C4 ketone. ##STR23##
Recently a hydroxylated taxane (14-hydroxy-10-deacetylbaccatin III) has been discovered in an extract of yew needles (C&EN, p 36-37 Apr. 12, 1993 Derivatives of this hydroxylated taxane having the various C2, C4, etc. functional groups described above may also prepared by using this hydroxylated taxane. In addition, the C14 hydroxy group together with the C1 hydroxy group of 10-DAB can be converted to a 1,2-carbonate as described in C&EN or it may be converted to a variety of esters or other functional groups as otherwise described herein in connection with the C2, C4, C9 and C10 substituents.





The following examples are provided to more fully illustrate the invention.
EXAMPLE 1 ##STR24##
Preparation of 3'-desphenyl-3'-(4-pyridyl)-N-debenzoyl-N-(t-butoxycarbonyl) taxol.
To a solution of 7-triethylsilyl baccatin III (100 mg, 0.143 mmol) in 1 mL of THF at -45.degree. C. was added dropwise 0.157 mL of a 1M solution of LHMDS in THF. After 0.5 h at -45.degree. C., a solution of cis-1-(t-butoxycarbonyl)-3-triethylsilyloxy-4-(4-pyridyl)azetidin-2-one (270 mg, 0.715 mmol) in 1 mL of THF was added dropwise to the mixture. The solution was warmed to 0.degree. C. and kept at that temperature for 1 h before 1 mL of a 10% solution of AcOH in THF was added. The mixture was partitioned between saturated aqueous NaHCO.sub.3 and 60/40 ethyl acetate/hexane. Evaporation of the organic layer gave a residue which was purified by filtration through silica gel to give 154 mg of a mixture containing 2'R, 3'S)-2', 7-(bis)triethylsilyl-3'-desphenyl-3'-(4-pyridyl)-N-debenzoyl-N-(t-butoxycarbonyl) taxol and a small amount of the (2'S, 3'R) isomer.
To a solution of 154 mg (0.0143 mmol) of the mixture obtained from the previous reaction in 6 mL of acetonitrile and 0.3 mL of pyridine at 0.degree. C. was added 0.9 mL of 48% aqueous HF. The mixture was stirred at 0.degree. C. for 3 h, then at 25.degree. C. for 13 h, and partitioned between saturated aqueous sodium bicarbonate and ethyl acetate. Evaporation of the ethyl acetate solution gave 122 mg of material which was purified by flash chromatography to give 115 mg (94%) of 3'-desphenyl-3'-(4-pyridyl)-N-debenezoyl-N-(t-butoxycarbonyl) taxol, which was recrystallized from methylene chloride/hexane.
m.p.134.degree.-136.degree. C.; �.alpha.!.sup.25 Na -65.8.degree. (c 0.00205, CHCl.sub.3).
.sup.1 H NMR (CDCl.sub.3,300 MHz) .delta. 8.64 (br,2H, 2-pyridyl), 8.10 (d, J=7.1 Hz, 2H, benzoate ortho), 7.63-7.31 (m, 5H, aromatic), 6.27 (br, 2H, H10 & H13), 5.66 (d, J=7.1 Hz,1H, H2.beta.)), 5.45 (d,1H,H3'), 5.30 (d, J=9.3 Hz, 1H,NH), 4.94 (dd,1H, H5), 4.68 (br s,1H, H2'), 4.40 (m, 1H, H7), 4.30 (d, J=8.2 Hz, 1H, H20.alpha.), 4.17 (d, J=8.2 Hz, 1H, H20.beta.), 3.80 (d, J=7.1 Hz, 1H, H3), 3.60 (br, 1H 2' OH), 2.53 (m, 1H, H6.alpha.), 2.37 (s, 3H, 4 Ac), 2.31 (m, 2H, H14), 2.24 (s, 3H, 10 Ac), 1.85 (br s, 3H, Me18), 1.67 (s, 3H, Me19), 1.32 (br s, 9H, t-butyl), 1.24 (s, 3H, Me17), 1.15 (s, 3H, Me16).
EXAMPLE 2 ##STR25##
Preparation of 3'-desphenyl-3'-(2-pyridyl)-N-debenzoyl-N-(t-butoxycarbonyl) taxol.
To a solution of 7-triethylsilyl baccatin III (100 mg, 0.143 mmol) in 1 mL of THF at -45.degree. C. was added dropwise 0.157 mL of a 1M solution of LHMDS in THF. After 0.5 h at -45.degree. C., a solution of cis-1-(t-butoxycarbonyl)-3-triethylsilyloxy-4-(2-pyridyl) azetidin-2-one (270 mg, 0.715 mmol) in 1 mL of THF was added dropwise to the mixture. The solution was warmed to 0.degree. C. and kept at that temperature for 1 h before 1 mL of a 10% solution of AcOH in THF was added. The mixture was partitioned between saturated aqueous NaHCO.sub.3 and 60/40 ethyl acetate/hexane. Evaporation of the organic layer gave a residue which was purified by filtration through silica gel to give 154 mg of a mixture containing (2'R,3'S)-2',7-(bis)triethylsilyl-3'-desphenyl-3'-(2-pyridyl)-N-debenzoyl-N-(t-butoxycarbonyl) taxol and a small amount of the (2'S,3'R) isomer.
To a solution of 154 mg (0.143 mmol) of the mixture obtained from the previous reaction in 6 mL of acetonitrile and 0.3 mL of pyridine at 0.degree. C. was added 0.9 mL of 48% aqueous HF. The mixture was stirred 0.degree. C. for 3 h, then at 25.degree. C. for 13 h, and partitioned between saturated aqueous sodium bicarbonate and easy, acetate. Evaporation of the ethyl acetate solution gave 122 mg of material which was purified by flash chromatography to give 105 mg (86%) of 3'-desphenyl-3'-(2-pyridyl)-N-debenzoyl-N-(t-butoxycarbonyl) taxol, which was recrystallized from methylene chloride/hexane.
m.p.144.degree.-147.degree. C.; �.alpha.!.sup.25 Na -72.4.degree. (c 0.0025, CHCl.sub.3).
.sup.1 H NMR (CDCl.sub.3, 300 MHz) .delta. 8.50 (d, J=4.9 Hz, 1H, 2-pyridyl), 8.12 (d, J=7Hz, 2H, benzoate ortho), 7.76(m, 1H, 2-pyridyl), 7.63-7.23 (m, 5H, aromatic) 6.29 (s, 1H, H10), 6.18(m, 1H, H13), 5.83 (d, 1H, H2.beta.)), 5.66 (d, 1H, H3'), 5.36 (d, J=10.4 Hz, 1H,NH), 5.10 (d, 1H, 7OH), 4.97 (dd,1H, H5), 4.79 (br,1H, H2'), 4.44 (m, 1H, H7), 4.30 (d, J=8.2 Hz, 1H, H20.alpha.), 4.16 (d, J=8.2 Hz, 1H, H20.beta.), 3.82 (d, J=6.6 Hz, 1H, H3), 2.53 (m, 1H, H6.alpha.), 2.45 (s, 3H, 4Ac), 2.31 (m, 2H, H14), 2.23 (s, 3H, 10Ac), 1.90-1.85 (m, 1H, H6.beta.), 1.83 (br s, 3H, Me18), 1.67 (s, 3H, Me19), 1.42 (br s, 9H, t-butyl), 1.22 (s, 3H, Me17), 1.13 (s, 3H, Me16).
EXAMPLE 3 ##STR26##
Preparation of 3'-desphenyl-3'-(3pyridyl)-N-desbenzoyl-N-(t-butoxycarbonyl) taxol.
To a solution of 7-O-triethylsilyl baccatin III (100 mg; 0.143 mmol) in 1 mL of THF at -45.degree. C. was added dropwise 0.157 mL of a 1M solution of LHMDS in THF. After 0.5 h at -45.degree. C., a solution of cis-1-(t-butoxycarbonyryl)-3-triecthylsilyloxy-4-(3-pyridyl)azetidin-2-one (270 mg, 0.715 mmol) in 1 mL of THF was added dropwise to the mixture. The solution was warmed to 0.degree. C. and kept at that temperature for 1 h before 1 mL of a 10% solution of AcOH in THF was added. The mixture was partitioned between saturated aqueous NaHCO.sub.3 and 60/40 ethyl acetate/hexane. Evaporation of the organic layer gave a residue which was purified by filtration through silica gel to give 154 mg of a mixture containing (2'R,3'S)-2', 7-(bis)-O-triethylsilyl-3'-desphenyl-3'-(3-pyridyl)-N-desbenzoyl-N-(t-butoxycarbonyl) taxol and a small amount of the (2'S,3'R) isomer.
To a solution of 154 mg (0.143 mmol) of the mixture obtained from the previous reaction In 6 mL of acetonitrile and 0.3 mL of pyridine at 0.degree. C. was added 0.9 mL of 48% aqueous HF. The mixture was stirred at 0.degree. C. for 3 h, then a 25.degree. C. for 13 h, and partitioned between saturated aqueous sodium bicarbonate and ethyl acetate. Evaporation of the ethyl acetate solution gave 122 mg of material which was purified by flash chromatograph to give 115 mg (94%) of 3'-desphenyl-3'-(3-pyridyl)-N-desbenzoyl-N-(t-butoxy-carbonyl) taxol, which was recrystallized from methylene chloride/hexane.
m.p.139.degree.-142.degree. C.; �.alpha.!.sup.25 Na-69.1.degree. (c 0.00205, CHCl.sub.3).
.sup.1 H NMR (CDCl.sub.3, 300 MHz) .delta. 8.61 (br, 2H, 3-pyridyl), 8.12 (d, J=7.1 Hz, 2H, benzoate ortho), 7.77 (d, 1H, 3-pyridyl), 7.64-7.47 (m, 3H, aromatic benzoate), 7.33 (M, 1H, 3-pyridyl), 6.29 (s, 1H, H10), 6.28-6.24 (m, 1H, H13), 5.67 (d, J=7.1 Hz,1H, H2.beta.), 5.43 (d, 1H,H3'), 5.29 (d, 1H, NH), 4.96 (dd,1H, H5), 4.62 (br s,1H, H2') 4.44 (m, 1H, H7), 4.31 (d, J=8.2 Hz, 1H, H20.alpha.), 4.17 (d, J=8.2 Hz, 1H, H20.beta.), 3.80 (d, J=7.1 Hz, 1H, H3), 3.58 (br, 1H, 2' OH), 2.53 (m, 1H, H6.alpha.), 2.40 (s, 3H, 4Ac), 2.31 (m, 2H, H14), 2.24 (s, 3H, 10Ac), 1.90-1.85 (m, 1H, H6.beta.), 1.83 (br s, 3H, Me18), 1.67 (s, 3H, Me19), 1.35 (br s, 9H, t-butyl), 1.25 (s, 3H, Me17), 1.15 (s, 3H, Me16).
EXAMPLE 4
The taxane derivatives of the preceding examples were evaluated in vitro cytotoxicity activity against human colon carcinoma cells HCT-116. Cytotoxicity was assessed in HCT116 human colon carcinoma cells by XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl-)-5-�(phenylamino)carbonyl!-2H-tetrazolium hydroxide) assay (Scudiero et al, "Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines", Cancer Res. 48:4827-4833, 1988). Cells were plated at 4000 cells/well in 96 well microtiter plates and 24 hours later drugs were added and serial diluted. The cells were incubated at 37.degree. C. for 72 at which time the tetrazolium dye, XTT, was added. A dehydrogenase enzyme in live cells reduces the XTT to a form that absorbs light at 450 nm which can be quantitated spectrophotometrically. The greater the absorbance the greater the number of live cells. The results are expressed as an IC.sub.50 which is the drug concentration required to inhibit cell proliferation (i.e. absorbance a 450 nm to 50% of that of untreated control cells.
All compounds had an IC.sub.50 of less than 0.1, indicating that they are cytotoxically active.
Claims
  • 1. A .beta.-lactam of the formula ##STR27## wherein X.sub.1 is --OX.sub.6, --SX.sub.7, or --NTX.sub.8 X.sub.9 ;
  • X.sub.2 is hydrogen, alkyl, alkenyl, alkenyl, aryl, or heteroaryl;
  • X.sub.3 is hydrogen;
  • X.sub.4 is pyridyl;
  • X.sub.5 is --COX.sub.10, --COOX.sub.10, --COSX.sub.10, --CONX.sub.8 X.sub.10, or --SO.sub.2 X.sub.11 ;
  • X.sub.6 is hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, hydroxy protecting group, or a functional group which increases the water solubility of the taxane derivative;
  • X.sub.7 is alkyl, akykenyl, alkynyl, aryl, heteroaryl, or sulfhydryl protecting group;
  • X.sub.8 is hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, or heterosubstituted alkyl, alkenyl, alkynyl, aryl or heteroaryl;
  • X.sub.9 is an amino protecting group;
  • X.sub.10 is alkyl, alkenyl, alkynyl, aryl, heteroaryl, or heterosubstituted alkyl, alkenyl, alkynyl, aryl or heteroaryl;
  • X.sub.11 is alkyl, alkenyl, alkynyl, aryl, heteroaryl, --OX.sub.10, or --NX.sub.8 X.sub.14 ; and
  • X.sub.14 is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heteroaryl.
  • 2. The .beta.-lactam of claim 1 wherein X.sub.1 is --OX.sub.6 and X.sub.5 is --COX.sub.10 or --COOX.sub.10.
  • 3. The .beta.-lactam of claim 1 wherein X.sub.1 is --OX.sub.6, X.sub.2 is hydrogen, X.sub.4 is 2-pyridyl, 3-pyridyl or 4-pyridyl, X.sub.5 is --COX.sub.10 or --COOX.sub.10, and X.sub.6 is hydrogen or a hydroxy protecting group.
  • 4. A .beta.-lactam of the formula: ##STR28## wherein X.sub.1 is a protected hydroxy group, X.sub.3 is 2-pyridyl, 3-pyridyl or 4-pyridyl, X.sub.5 is --COX.sub.10 or --COOX.sub.10, and X.sub.10 is phenyl or tert-butyl.
  • 5. The .beta.-lactam of claim 3 wherein X.sub.10 is alkyl, alkenyl, alkynyl, aryl, heteroaryl, or substituted alkyl, alkenyl, alkynyl, aryl or heteroaryl.
  • 6. The .beta.-lactam of claim 5 wherein X.sub.10 is alkyl, alkenyl, alkynyl, aryl, or heteroaryl.
  • 7. The .beta.-lactam of claim 5 wherein X.sub.10 is substituted or unsubstituted alkyl, aryl or heteroaryl, or heterosubstituted alkyl or aryl.
REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. Ser. No. 08/516,299, filed Aug. 17, 1995 now abandoned, which is a divisional of U.S. Ser. No. 08/095,085, filed Jul. 20, 1993, now U.S. Pat. No. 5,489,601, which is a continuation-in-part of U.S. Ser. No. 08/034,247 filed Mar. 22, 1993, now U.S. Pat. No. 5,430,160 which is a continuation-in-part of U.S. Ser. No. 07/949,107 filed Sep. 22, 1992, now abandoned, which is a continuation-in-part of U.S. Ser. No. 07/863,849 filed Apr. 6, 1992, now abandoned, which is a continuation-in-part of U.S. Ser. No. 07/862,955 filed Apr. 3, 1992, now abandoned, which is a continuation-in-part of U.S. Ser. No. 07/763,805 filed Sep. 23, 1991, now abandoned.

Government Interests

This invention was made with Government support under NIH Grant #CA 42031 and NIH Grant #CA 55131 awarded by the National Institutes of Health. The Government has certain rights in the invention.

US Referenced Citations (33)
Number Name Date Kind
4680391 Firestone et al. Jul 1987
4814470 Colin et al. Mar 1989
4857653 Colin et al. Aug 1989
4876399 Holton et al. Oct 1989
4924011 Denis et al. May 1990
4924012 Colin et al. May 1990
4942184 Haugwitz et al. Jul 1990
4960790 Stella et al. Oct 1990
5015744 Holton May 1991
5059699 Kingston et al. Oct 1991
5136060 Holton Aug 1992
5175315 Holton Dec 1992
5227400 Holton et al. Jul 1993
5229526 Holton Jul 1993
5243045 Holton et al. Sep 1993
5250683 Holton et al. Oct 1993
5254703 Holton Oct 1993
5264591 Bombardelli et al. Nov 1993
5274124 Holton Dec 1993
5283253 Holton et al. Feb 1994
5284864 Holton et al. Feb 1994
5284865 Holton et al. Feb 1994
5336785 Holton Aug 1994
5338872 Holton et al. Aug 1994
5350866 Holton et al. Sep 1994
5384399 Holton Jan 1995
5399726 Holton et al. Mar 1995
5405972 Holton et al. Apr 1995
5430160 Holton Jul 1995
5466834 Holton Nov 1995
5489601 Holton et al. Feb 1996
5532363 Holton Jul 1996
5539103 Holton Jul 1996
Foreign Referenced Citations (13)
Number Date Country
0 253 738 Jan 1988 EPX
0 253 739 Jan 1988 EPX
0 336 840 Oct 1989 EPX
0 336 841 Oct 1989 EPX
0 247 378 Sep 1990 EPX
0 400 971 Dec 1990 EPX
0 428 376 May 1991 EPX
0 534 707 Mar 1993 EPX
0 534 708 Mar 1993 EPX
0 534 709 Mar 1993 EPX
919224 Nov 1991 ZAX
WO 9209589 Jun 1992 WOX
WO 9302065 Feb 1993 WOX
Non-Patent Literature Citations (22)
Entry
Bartholomew et al., "A Novel Rearrangement Reaction Conversion of 3-(chloromethyl)azetidin-2-ones to Azetidine-3-carboxylic Acid Esters", Tetrahedron Letters, vol. 32, No. 36 (1991) pp. 4795-4798.
Borman "New Family of Taxol, Taxotere Analogs Developed" Science & Technology, Chemical & Engineering News, Apr. 12, 1993.
Chen et al., "Taxol Structure-Activity Relationships: Synthesis and Biological Evaluation of 2-Deoxytaxol" Tetrahedron Letters, vol. 34, No. 20 (1993) pp. 3205-3206.
Denis et al. "A Highly Efficient, Practical Approach to Natural Taxol", Journal of American Chemical Soc., vol. 110, (1988) pp. 5917-5919.
Deutsch et al. "Synthesis of Congeners and Prodrugs. 3. Water-Soluble Prodrugs of Taxol With Potent Antitumour Activity", Journal of Medicinal Chem., vol. 32, No. 4 (Apr. 1989) pp. 788-792.
Farina et al. "The Chemistry of Taxanes: Unexpected Rearrangement of Baccatin III During Chemoselective Debenzoylation With Bu.sub.3 SnOMe/LiCl", Tetrahedron Letters, vol. 33, No. 28 (1992) pp. 3979-3982.
Georg et al. "Novel Biologically Active Taxol Analogues: Baccatin III 13-(N-(p-Chlorobenzoyl)-(2'R, 3'S)-3'-phenylisoserinate) and Baccatin III 13-(N-Benzoyl-(2'R,3'S)-3'-(p-chlorophenyl) isoserinate)" Bioorganic & Medicinal Chemistry Letters, vol. 2, No. 4 (1992) pp. 295-298.
Holton "Synthesis of the Taxane Ring System" Journal of American Chemical Soc., vol. 106 (1984) pp. 5731-5732.
Holton et al. "A Synthesis of Taxusin", Journal of American Chemical Soc., vol. 110 (1988) pp. 6558-6560.
Kaiser et al. "Synthesis of Esters of Acid-Unstable Alcohols by Means of n-butyllithium" Journal of Organic Chemistry, vol. 35 (1970) p. 1198.
Kingston et al. "Progress in the Chemistry of Organic Natural Products" Springer-Verlag, New York (1993) pp. 1-206.
Klein "Synthesis of 9-Dihydrotaxol: A Novel Bioactive Taxane" Tetrahedron Letters, vol. 34, No. 13 (1993) pp. 2047-2050.
Magri et al. "Modified Taxols, 4. Synthesis and Biological Activity of Taxols Modified in the Side Chain" Journal of Natural Products, vol. 51, No. 2 (1988) pp. 298-306.
Miller et al. "Antileukemic Alkaloids From Taxus Wallichiana Zucc." Jour. of Organic Chem., vol. 46 (1981) pp. 1469-1474.
Mukerjee et al. ".beta.-Lactams: Retrospect and Prospect" Tetrahedron Letters, vol. 34, No. 52 (1978) pp. 1731-1767.
Ojima et al. "New and Efficient Approaches to the Semisynthesis of Taxol and its C-13 Side Chain Analogs by Means of .beta.-Lactam Synthon Method" Tetrahedron Letters, vol. 48, No. 34 (1992) pp. 6985-7012.
Samaranayake et al. "Modified Taxols. 5.1 Reaction of Taxol with Electrophilic Reagents and Preparation of a Rearranged Taxol Derivative with Tubulin Assembly Activity3." Journal of Organic Chemistry, vol. 56, No. 17 (1991) pp. 5114-5119.
Schultz et al "Synthesis of New N-radicals of Tetrazan-1-yl" Chemical Abstracts, vol. 108, No. 37298C (1988) p. 581.
Senilh et al. "Hemisynthese de nouveaux analogues du taxol. Etude de leur interaction avec la tubuline", C.R. Acad. Sc. Paris, Serie II, vol. 229, No. 15 (Nov. 21, 1984) pp. 1039-1043.
Wani et al., "Plant Antitumor Agents. VI. The Isolation and Structure of Taxol, a Novel Antileukemic and Antitumor Agent From Taxus Brevifolia" Jurnal of American Chemical Soc., vol. 93, No. 9 (May 5, 1971) pp. 2325-2327.
Witherup et al., "High Performance Liquid Chromatographic Separation of Taxol and Related Compounds From Taxus Brevifolia" Journal of Liquid Chromatography, vol. 12, No. 11 (1989) pp. 2117-2132.
M. Hepperle et al. "104. The Remarkable Potency of Hetero-aromatic Taxol Analogues" 207th ACS National Meeting, American Chemical Society, San Diego, CA (Mar. 13-17, 1994) (University of Kansas).
Divisions (1)
Number Date Country
Parent 95085 Jul 1993
Continuations (1)
Number Date Country
Parent 516299 Aug 1995
Continuation in Parts (5)
Number Date Country
Parent 34247 Mar 1993
Parent 949107 Sep 1992
Parent 863849 Apr 1992
Parent 862955 Apr 1992
Parent 763805 Sep 1991