Pyrimidinone derivatives and their use in the treatment of atherosclerosis

Information

  • Patent Grant
  • 7462620
  • Patent Number
    7,462,620
  • Date Filed
    Friday, July 7, 2006
    18 years ago
  • Date Issued
    Tuesday, December 9, 2008
    15 years ago
Abstract
Compounds of formula (I):
Description

The present invention relates to certain novel pyrimidinone compounds, processes for their preparation, intermediates useful in their preparation, pharmaceutical compositions containing them and their use in therapy, in particular in the treatment of atherosclerosis. WO 95/00649 (SmithKline Beecham plc) describes the phospholipase A2 enzyme Lipoprotein Associated Phospholipase A2 (Lp-PLA2), the sequence, isolation and purification thereof, isolated nucleic acids encoding the enzyme, and recombinant host cells transformed with DNA encoding the enzyme. Suggested therapeutic uses for inhibitors of the enzyme included atherosclerosis, diabetes, rheumatoid arthritis, stroke, myocardial infarction, reperfusion injury and acute and chronic inflammation. A subsequent publication from the same group further describes this enzyme (Tew D et al, Arterioscler Thromb Vas Biol 1996:16;591-9) wherein it is referred to as LDL-PLA2. A later patent application (WO 95/09921, Icos Corporation) and a related publication in Nature (Tjoelker et al, vol 374, 6 Apr. 1995, 549) describe the enzyme PAF-AH which has essentially the same sequence as Lp-PLA2 and suggest that it may have potential as a therapeutic protein for regulating pathological inflammatory events.


It has been shown that Lp-PLA2 is responsible for the conversion of phosphatidylcholine to lysophosphatidylcholine, during the conversion of low density lipoprotein (LDL) to its oxidised form. The enzyme is known to hydrolyse the sn-2 ester of the oxidised phosphatidylcholine to give lysophosphatidylcholine and an oxidatively modified fatty acid. Both products of Lp-PLA2 action are biologically active with lysophosphatidylcholine in particular having several pro-atherogenic activities ascribed to it, including monocyte chemotaxis and induction of endothelial dysfunction, both of which facilitate monocyte-derived macrophage accumulation within the artery wall. Inhibition of the Lp-PLA2 enzyme would therefore be expected to stop the build up of these macrophage enriched lesions (by inhibition of the formation of lysophosphatidylcholine and oxidised free fatty acids) and so be useful in the treatment of atherosclerosis.


A recently published study (WOSCOPS—Packard et al, N. Engl. J. Med. 343 (2000) 1148-1155) has shown that the level of the enzyme Lp-PLA2 is an independent risk factor in coronary artery disease.


The increased lysophosphatidylcholine content of oxidatively modified LDL is also thought to be responsible for the endothelial dysfunction observed in patients with atherosclerosis. Inhibitors of Lp-PLA2 could therefore prove beneficial in the treatment of this phenomenon. An Lp-PLA2 inhibitor could also find utility in other disease states that exhibit endothelial dysfunction including diabetes, hypertension, angina pectoris and after ischaemia and reperfusion.


In addition, Lp-PLA2 inhibitors may also have a general application in any disorder that involves activated monocytes, macrophages or lymphocytes, as all of these cell types express Lp-PLA2. Examples of such disorders include psoriasis.


Furthermore, Lp-PLA2 inhibitors may also have a general application in any disorder that involves lipid oxidation in conjunction with Lp-PLA2 activity to produce the two injurious products, lysophosphatidylcholine and oxidatively modified fatty acids. Such conditions include the aforementioned conditions atherosclerosis, diabetes, rheumatoid arthritis, stroke, myocardial infarction, ischaemia, reperfusion injury and acute and chronic inflammation.


Patent applications WO 96/12963, WO 96/13484, WO96/19451, WO 97/02242, WO97/217675, WO 97/217676, WO 96/41098, and WO 97/41099 (SmithKline Beecham plc) disclose inter alia various series of 4-thionyl/sulfinyl/sulfonyl azetidinone compounds which are inhibitors of the enzyme Lp-PLA2. These are irreversible, acylating inhibitors (Tew et al, Biochemistry, 37, 10087, 1998).


A further class of compounds has now been identified which are non-acylating inhibitors of the enzyme Lp-PLA2. Thus, WO 99/24420, WO 00/10980, WO 00/66566, WO 00/66567 and WO 00/68208 (SmithKline Beecham plc) disclose a class of pyrimidone compounds which are exemplified by an optionally substituted 2-benzylthio or 2-benzyloxy substituent. We have now found that this may be replaced by a carbon linker, to give compounds having good activity as inhibitors of the enzyme Lp-PLA2.


Accordingly, the present invention provides a compound of formula (I):




embedded image


in which:

    • R1 is an aryl group, optionally substituted by 1, 2, 3 or 4 substituents which may be the same or different selected from C(1-6)alkyl, C(1-6)alkoxy, C(1-6)alkylthio, hydroxy, halogen, CN, and mono to perfluoro-C(1-4)alkyl;
    • R2 is halogen, C(1-3)alkyl, C(1-3)alkoxy, hydroxyC(1-3)alkyl, C(1-3)alkylthio, C(1-3)alkylsulphinyl, aminoC(1-3)alkyl, mono- or di-C(1-3)alkylaminoC(1-3)alkyl, C(1-3)alkylcarbonylaminoC(1-3)alkyl, C(1-3)alkoxyC(1-3)alkylcarbonylaminoC(1-3)alkyl, C(1-3)alkylsulphonylaminoC(1-3)alkyl, C(1-3)alkylcarboxy, C(1-3)alkylcarboxyC(1-3)alkyl, and
    • R3 is hydrogen, halogen, C(1-3)alkyl, or hydroxyC(1-3)alkyl; or
    • R2 and R3 together with the pyrimidone ring carbon atoms to which they are attached form a fused 5-or 6-membered carbocyclic ring; or
    • R2 and R3 together with the pyrimidone ring carbon atoms to which they are attached form a fused benzo or heteroaryl ring ring optionally substituted by 1, 2, 3 or 4 substituents which may be the same or different selected from halogen, C(1-4)alkyl, cyano, C(1-6)alkoxy, C(1-6)alkylthio or mono to perfluoro-C(1-4)alkyl;
    • R4 is hydrogen, C(1-6)alkyl which may be unsubstituted or substituted by 1, 2 or 3 substituents selected from hydroxy, halogen, OR7, COR7, carboxy, COOR7, CONR9R10, NR9R10, NR7COR8, mono- or di-(hydroxyC(1-6)alkyl)amino and N-hydroxyC(1-6)alkyl-N—C(1-6)alkylamino; or
    • R4 is Het-C(0-4)alkyl in which Het is a 5- to 7-membered heterocyclyl ring comprising N and optionally O or S, and in which N may be substituted by COR7, COOR7, CONR9R10, or C(1-6)alkyl optionally substituted by 1, 2 or 3 substituents selected from hydroxy, halogen, OR7, COR7, carboxy, COOR7, CONR9R10 or NR9R10, for instance, piperidin-4-yl, pyrrolidin-3-yl;
    • R5 is an aryl or a heteroaryl ring optionally substituted by 1, 2, 3 or 4 substituents which may be the same or different selected from C(1-6)alkyl, C(1-6)alkoxy, C(1-6)alkylthio, arylC(1-6)alkoxy, hydroxy, halogen, CN, COR7, carboxy, COOR7, NR7COR8, CONR9R10, SO2NR9R10, NR7SO2R8, NR9R10, mono to perfluoro-C(1-4)alkyl and mono to perfluoro-C(1-4)alkoxy;
    • R6 is an aryl or a heteroaryl ring which is further optionally substituted by 1, 2, 3 or 4 substituents which may be the same or different selected from C(1-18)alkyl, C(1-18)alkoxy, C(1-6)alkylthio, C(1-6)alkylsulfonyl, arylC(1-6)alkoxy, hydroxy, halogen, CN, COR7, carboxy, COOR7, CONR9R10, NR7COR8, SO2NR9R10, NR7SO2R8, NR9R10, mono to perfluoro-C(1-4)alkyl and mono to perfluoro-C(1-4)alkoxy, or C(5-10)alkyl;
    • R7 is hydrogen or C(1-12)alkyl, for instance C(1-4)alkyl (e.g. methyl or ethyl);
    • R8 is hydrogen, OC(1-6)alkyl, or C(1-12)alkyl, for instance C(1-4)alkyl (e.g. methyl or ethyl);
    • R9 and R10 which may be the same or different is each selected from hydrogen, or C(1-12)alkyl, or R9 and R10 together with the nitrogen to which they are attached form a 5- to 7 membered ring optionally containing one or more further heteroatoms selected from oxygen, nitrogen and sulphur, and optionally substituted by one or two substituents selected from hydroxy, oxo, C(1-4)alkyl, C(1-4)alkylcarboxy, aryl, e.g. phenyl, or aralkyl, e.g benzyl, for instance morpholine or piperazine; and
    • X is C(2-4)alkylene, optionally substituted by 1,2 or 3 substituents selected from methyl and ethyl, or CH═CH.


Representative examples of R1 when an aryl group include phenyl and naphthyl. Preferably, R1 is phenyl optionally substituted by halogen, C(1-6)alkyl, trifluoromethyl, C(1-6)alkoxy, preferably, from 1 to 3 fluoro, more preferably, 2,3-difluoro.


Further representative examples of R1 include phenyl substituted by trifluoromethoxy or cyano.


Representative examples of R2 include methyl, ethyl, and trifluoroethyl when R3 is hydrogen. Representative examples of R3 include methyl when R2 is methyl.


Preferably R2 is ethyl when R3 is hydrogen.


Further representative examples of R2 and R3 include when R2 and R3 together with the pyrimidine ring carbon atoms to which they are attached form a fused 5-membered carbocyclic (cyclopentenyl) ring, or a fused benzo, pyrido, pyrazolo or thieno ring.


Further representative examples of R2 and R3 include when R2 and R3, together with the pyrimidine ring carbon atoms to which they are attached, form a fused benzo ring substituted by C(1-4)alkyl, trifluoromethyl, or 1 or 2 halogen atoms; and when R2 and R3, together with the pyrimidine ring carbon atoms to which they are attached, form a fused thieno ring substituted by methyl.


Preferably, R2 and R3 together with the pyrimidine ring carbon atoms to which they are attached form a fused 5-membered carbocyclic (cyclopentenyl) ring or a fused benzo, pyrido, thieno or pyrazolo ring.


Representative examples of R4 include hydrogen, methyl, 2-(diethylamino)ethyl, 2-(piperidin-1-yl)ethyl, 2-(pyrrolidin-1-yl)ethyl, 3-(morpholin-4-yl)propyl, 1-ethyl-piperidin-4-yl and 1-ethyl-pyrrolidin-2-ylmethyl. Preferably R4 is 2-(diethylamino)ethyl or 1-ethyl-piperidin-4-yl.


Further representative examples of R4 include piperidin-4-yl substituted at the 1-position by methyl, 2-methoxyethyl, isopropyl, 1-ethoxycarbonylmethyl or t-butoxycarbonyl; ethyl substituted at the 2-position by ethylamino, t-butylamino or morpholin-4-yl; 2-methylpropyl substituted in the 2-position by dimethylamino, ethylamino, (morpholin-4-yl), (piperidin-1-yl), isopropylamino, diethylamino, dimethylamino, pyrrolidin-1-ylmethyl or pyrrolidin-1-yl; propyl substituted at the 3-position by piperidin-1-yl, pyrrolidin-1-yl, diethylamino; butyl substituted at the 4-position by pyrrolidin-1-yl; 1-ethylpiperidin-4-ylmethyl; 2-methoxyethyl; t-butoxycarbonylmethyl; 2-hydroxyethyl; hydroxycarbonylmethyl; and piperidin-4-yl. Preferably R4 is 1-methylpiperidin-4-yl or 1-(2-methoxyethyl)piperidin-4-yl.


Representative examples of R5 include phenyl and pyridyl. Preferably, R5 is phenyl.


Further representative examples of R5 include thienyl, pyrimidyl and furyl. Preferably, R5 is thienyl.


Representative examples of R6 include phenyl optionally substituted by halogen, or trifluoromethyl, preferably at the 4-position and hexyl. Preferably, R6 is phenyl substituted by trifluoromethyl at the 4-position.


Further representative examples of R6 include phenyl substituted by methylthio, C(1-6)alkyl, cyano, methylsulfonyl, piperidin-1-ylsulfonyl or pentafluoroethyl; and thienyl optionally substituted by halogen or trifluoromethyl. Preferably, R6 is thien-2-yl substituted by trifluoromethyl in the 5-position.


Preferably, R5 and R6 together form a 4-(phenyl)phenyl or a 2-(phenyl)pyridinyl substituent in which the remote phenyl ring may be optionally substituted by halogen or trifluoromethyl, preferably at the 4-position.


In a further aspect the present invention provides a compound of formula (I) in which:


R7 and R8 are independently hydrogen or C(1-12)alkyl, for instance C(1-4)alkyl (e.g. methyl or ethyl).


Representative examples of X include (CH2)3, vinyl, (CH2)2 and (CH2)2 substituted by one or more methyl.


Preferably X is C(2-4)alkylene, more preferably C(2-3)alkylene, most preferably, (CH2)2.


It will be appreciated that within the compounds of formula (I) there is a sub-group of compounds (group A) in which:


R1 is phenyl substituted by 1 to 3 fluoro;


R2 is ethyl when R3 is hydrogen;


R4 is 2-(diethylamino)ethyl, 1-ethyl-piperidin-4-yl, 1-methylpiperidin-4-yl or 1-(2-methoxyethyl)piperidin-4-yl;


R5 is phenyl, thienyl or pyridyl;


R6 is phenyl substituted by trifluoromethyl at the 4-position, or thien-2-yl substituted by trifluoromethyl in the 5-position; and


X is (CH2)2.


It will be appreciated that within the compounds of formula (I) there is a further sub-group of compounds (group B) in which:


R1 is phenyl substituted by 2,3 difluoro;


R2 and R3, together with the pyrimidine ring carbon atoms to which they are attached, form a fused 5-membered carbocyclic (cyclopentenyl) ring or a fused benzo, pyrido, thieno or pyrazolo ring;


R4 is 2-(diethylamino)ethyl, 1-ethyl-piperidin-4-yl, 1-methylpiperidin-4-yl or 1-(2-methoxyethyl)piperidin-4-yl;


R5 is phenyl, thienyl or pyridyl;


R6 is phenyl substituted by trifluoromethyl at the 4-position, or thien-2-yl substituted by trifluoromethyl in the 5-position; and


X is (CH2)2.


It will be appreciated that within the compounds of formula (I) there is a further sub-group of compounds (group C) in which:


R1 is phenyl substituted by 2,3 difluoro;


R2 and R3, together with the pyrimidine ring carbon atoms to which they are attached, form a fused pyrido ring;


R4 is 1-methylpiperidin-4-yl or 1-(2-methoxyethyl)piperidin-4-yl;


R5 and R6 together form a 4-(phenyl)phenyl in which the remote phenyl ring is substituted by trifluoromethyl, preferably at the 4-position; and


X is (CH2)2.


It will be appreciated that compounds of the present invention may comprise one or more chiral centres so that stereoisomers may be formed. The present invention covers all such stereosiomers, including individual diastereoisomers and enantiomers, and mixtures thereof.


It will be appreciated that in some instances, compounds of the present invention may include a basic function such as an amino group as a substituent. Such basic functions may be used to form acid addition salts, in particular pharmaceutically acceptable salts. Pharmaceutically acceptable salts include those described by Berge, Bighley, and Monkhouse, J. Pharm. Sci., 1977, 66, 1-19. Such salts may be formed from inorganic and organic acids. Representative examples thereof include maleic, fumaric, benzoic, ascorbic, pamoic, succinic, bismethylenesalicylic, methanesulfonic, ethanedisulfonic, acetic, propionic, tartaric, salicylic, citric, gluconic, aspartic, stearic, palmitic, itaconic, glycolic, p-aminobenzoic, glutamic, taurocholic acid, benzenesulfonic, p-toluenesulfonic, hydrochloric, hydrobromic, sulfuric, cyclohexylsulfamic, phosphoric and nitric acids.


It will be appreciated that in some instances, compounds of the present invention may include a carboxy group as a substituent. Such carboxy groups may be used to form salts, in particular pharmaceutically acceptable salts. Pharmaceutically acceptable salts include those described by Berge, Bighley, and Monkhouse, J. Pharm. Sci., 1977, 66, 1-19. Preferred salts include alkali metal salts such as the sodium and potassium salts.


When used herein, the term “alkyl” and similar terms such as “alkoxy” includes all straight chain and branched isomers. Representative examples thereof include methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, t-butyl, n-pentyl and n-hexyl.


When used herein, the term “aryl” refers to, unless otherwise defined, a mono- or bicyclic aromatic ring system containing up to 10 carbon atoms in the ring system, for instance phenyl or naphthyl.


When used herein, the term “heteroaryl” refers to a mono- or bicyclic heteroaromatic ring system comprising up to four, preferably 1 or 2, heteroatoms each selected from oxygen, nitrogen and sulphur. Each ring may have from 4 to 7, preferably 5 or 6, ring atoms. A bicyclic heteroaromatic ring system may include a carbocyclic ring.


When used herein, the terms “halogen” and “halo” include fluorine, chlorine, bromine and iodine and fluoro, chloro, bromo and iodo, respectively.


Most preferred compounds of formula (I) are:

  • N-(1-Methylpiperidin-4-yl)-(2-(2-(2,3-difluorophenyl)ethyl)-4-oxo-4H-pyrido[2,3-d]pyrimidin-1-yl)-N-(4-(4-trifluoromethylphenyl)phenyl)methylacetamide;
  • N-(1-(2-Methoxyethyl)piperidin-4-yl)-(2-(2-(2,3-difluorophenyl)ethyl)-4-oxo-4H-pyrido[2,3-d]pyrimidin-1-yl)-N-(4-(4-trifluoromethylphenyl)phenyl)methylacetamide;


    or a pharmaceutically acceptable salt thereof, in particular the bitartrate salt.


Since the compounds of the present invention, in particular compounds of formula (I), are intended for use in pharmaceutical compositions, it will be understood that they are each provided in substantially pure form, for example at least 50% pure, more suitably at least 75% pure and preferably at least 95% pure (% are on a wt/wt basis). Impure preparations of the compounds of formula (I) may be used for preparing the more pure forms used in the pharmaceutical compositions. Although the purity of intermediate compounds of the present invention is less critical, it will be readily understood that the substantially pure form is preferred as for the compounds of formula (I). Preferably, whenever possible, the compounds of the present invention are obtained in crystalline form.


When some of the compounds of this invention are allowed to crystallise or are re-crystallised from organic solvents, solvent of crystallisation may be present in the crystalline product. This invention includes within its scope such solvates. Similarly, some of the compounds of this invention may be crystallised or re-crystallised from solvents containing water. In such cases water of hydration may be formed. This invention includes within its scope stoichiometric hydrates as well as compounds containing variable amounts of water that may be produced by processes such as lyophilisation. In addition, different crystallisation conditions may lead to the formation of different polymorphic forms of crystalline products. This invention includes within its scope all polymorphic forms of the compounds of formula (I).


Compounds of the present invention are inhibitors of the enzyme lipoprotein associated phospholipase A2 (Lp-PLA2) and as such are expected to be of use in therapy, in particular in the treatment of atherosclerosis. In a further aspect therefore the present invention provides a compound of formula (I) for use in therapy.


The compounds of formula (I) are inhibitors of lysophosphatidylcholine production by Lp-PLA2 and may therefore also have a general application in any disorder that involves endothelial dysfunction, for example atherosclerosis, diabetes, hypertension, angina pectoris and after ischaemia and reperfusion. In addition, compounds of formula (I) may have a general application in any disorder that involves lipid oxidation in conjunction with enzyme activity, for example in addition to conditions such as atherosclerosis and diabetes, other conditions such as rheumatoid arthritis, stroke, inflammatory conditions of the brain such as Alzheimer's Disease, myocardial infarction, reperfusion injury, sepsis, and acute and chronic inflammation.


Further applications include any disorder that involves activated monocytes, macrophages or lymphocytes, as all of these cell types express Lp-PLA2. Examples of such disorders include psoriasis.


Accordingly, in a further aspect, the present invention provides for a method of treating a disease state associated with activity of the enzyme Lp-PLA2 which method involves treating a patient in need thereof with a therapeutically effective amount of an inhibitor of the enzyme. The disease state may be associated with the increased involvement of monocytes, macrophages or lymphocytes; with the formation of lysophosphatidylcholine and oxidised free fatty acids; with lipid oxidation in conjunction with Lp PLA2 activity; with ischemia and reperfusion; or with endothelial dysfunction.


Compounds of the present invention may also be of use in treating the above mentioned disease states in combination with an anti-hyperlipidaemic, anti-atherosclerotic, anti-diabetic, anti-anginal, anti-inflammatory, or anti-hypertension agent or an agent for lowering Lp(a). Examples of the above include cholesterol synthesis inhibitors such as statins, anti-oxidants such as probucol, insulin sensitisers, calcium channel antagonists, and anti-inflammatory drugs such as NSAIDs. Examples of agents for lowering Lp(a) include the aminophosphonates described in WO 97/02037, WO 98/28310, WO 98/28311 and WO 98/28312 (Symphar SA and SmithKline Beecham).


A preferred combination therapy will be the use of a compound of the present invention and a statin. The statins are a well known class of cholesterol lowering agents and include atorvastatin, simvarstatin, pravastatin, cerivastatin, fluvastatin, lovastatin and rosuvastatin (also referred to as S-4522 or ZD 4522, Astra Zeneca). The two agents may be administered at substantially the same time or at different times, according to the discretion of the physician.


A further preferred combination therapy will be the use of a compound of the present invention and an anti-diabetic agent or an insulin sensitiser, as coronary heart disease is a major cause of death for diabetics. Within this class, preferred compounds for use with a compound of the present invention include the PPARgamma activators, for instance GI262570 (GlaxoSmithKline) and the glitazone class of compounds such as rosiglitazone (Avandia, GlaxoSmithKline), troglitazone and pioglitazone.


In therapeutic use, the compounds of the present invention are usually administered in a standard pharmaceutical composition. The present invention therefore provides, in a further aspect, a pharmaceutical composition comprising a compound of formula (I) and a pharmaceutically acceptable carrier.


Suitable pharmaceutical compositions include those which are adapted for oral or parenteral administration or as a suppository.


Suitable pharmaceutical compositions include those which are adapted for oral or parenteral administration or as a suppository. Compounds of formula (I) which are active when given orally can be formulated as liquids, for example syrups, suspensions or emulsions, tablets, capsules and lozenges. A liquid formulation will generally consist of a suspension or solution of the compound or pharmaceutically acceptable salt in a suitable liquid carrier(s) for example, ethanol, glycerine, non-aqueous solvent, for example polyethylene glycol, oils, or water with a suspending agent, preservative, flavouring or colouring agent. A composition in the form of a tablet can be prepared using any suitable pharmaceutical carrier(s) routinely used for preparing solid formulations. Examples of such carriers include magnesium stearate, starch, lactose, sucrose and cellulose. A composition in the form of a capsule can be prepared using routine encapsulation procedures. For example, pellets containing the active ingredient can be prepared using standard carriers and then filled into a hard gelatin capsule; alternatively, a dispersion or suspension can be prepared using any suitable pharmaceutical carrier(s), for example aqueous gums, celluloses, silicates or oils and the dispersion or suspension then filled into a soft gelatin capsule. Typical parenteral compositions consist of a solution or suspension of the compound of formula (I) in a sterile aqueous carrier or parenterally acceptable oil, for example polyethylene glycol, polyvinyl pyrrolidone, lecithin, arachis oil or sesame oil. Alternatively, the solution can be lyophilised and then reconstituted with a suitable solvent just prior to administration. A typical suppository formulation comprises a compound of formula (I) which is active when administered in this way, with a binding and/or lubricating agent such as polymeric glycols, gelatins or cocoa butter or other low melting vegetable or synthetic waxes or fats.


Preferably the composition is in unit dose form such as a tablet or capsule. Each dosage unit for oral administration contains preferably from 1 to 500 mg (and for parenteral administration contains preferably from 0. 1 to 25 mg) of a compound of the formula (I). The daily dosage regimen for an adult patient may be, for example, an oral dose of between 1 mg and 1000 mg, preferably between 1 mg and 500 mg, or an intravenous, subcutaneous, or intramuscular dose of between 0.1 mg and 100 mg, preferably between 0.1 mg and 25 mg, of the compound of the formula (I), the compound being administered 1 to 4 times per day. Suitably the compounds will be administered for a period of continuous therapy, for example for a week or more.


A compound of formula (I) may be prepared by reacting an acid compound of formula (II):




embedded image


in which X, R1, R2 and R3 are as hereinbefore defined,


with an amine compound of formula (III):

R6—R5—CH2NHR4  (III)


in which R4, R5 and R6 are as hereinbefore defined; under amide forming conditions.


Suitable amide forming conditions are well known in the art and include treating the acid of formula (II) with the amine of formula (III) in the presence of a coupling agent such as 1-(3-dimethyl-aminopropyl)-3-ethylcarbodiimide (DEC), or O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU), preferably in the presence of di-isopropylethylamine.


A compound of formula (II) may be readily prepared from a corresponding unsubstituted pyrimidone compound of formula (IV):




embedded image


in which X, R1, R2 and R3 are as hereinbefore defined,


by reaction with a compound of formula (V):

LCH2CO2R11  (V)


in which L is a leaving group such as halo, for example, iodo, and R11 is C(1-6)alkyl, for example t-butyl, in the presence of a base such as a tertiary amine, for example di-isopropylethylamine; to form an intermediate ester (VI),




embedded image


in which X, R1, R2, R3 and R11 are as hereinbefore defined,


and thereafter,


removing R11, by treating with a de-esterifying agent, for instance, for t-butyl, trifluoroacetic acid.


It will be appreciated that removal of R11 may be carried out as a separate step, so that an acid of formula (II) is isolated or, alternatively, that the acid of formula (II) is formed from the intermediate ester (VI) as a preliminary first step, prior to reaction with an amine of formula (III).


The pyrimidone of formula (IV) may be readily prepared by adapting a standard pyrimidone synthesis involving an amidine and a 1,3-dicarbonyl compound, by reacting an amidine of formula (VII):




embedded image


in which R1 and X are as hereinbefore defined,


preferably as a salt thereof, for instance the hydrochloride salt,


with a compound of formula (VIII):




embedded image


in which R2 and R3 are as hereinbefore defined.


It will be appreciated that in the compound of formula (IV), when R3 is hydrogen, the compound of formula (VIII) is a 1,3-aldehyde ester and further, that in the compound of formula (IV), when R3 is other than hydrogen, the compound of formula (VIII) is a 1,3-keto ester.


For compounds of formula (II) in which R2 and R3 together with the pyrimidone ring carbon atoms to which they are attached form a fused benzo or heteroaryl ring optionally substituted by halogen, C(1-6)alkyl, cyano, mono to perfluoro-C(1-4)alkyl, it is found more convenient to adopt a slightly different strategy whereby the amidine of formula (VII) is reacted with a compound of the formula (IX):




embedded image


in which R2 and R3 together with the pyrimidone ring carbon atoms to which they are attached form a fused benzo or heteroaryl ring optionally substituted by halogen, C(1-6)alkyl, cyano, mono to perfluoro-C(1-4)alkyl, and R11 is as hereinbefore defined, for example ethyl, under standard pyrimidone ring forming conditions, in the presence of a base such as pyridine, to give an intermediate ester (VI) which can then be converted into a compound of formula (II), for instance by treatment with aqueous sodium hydroxide.


Alternatively, for compounds of formula (II) in which R2 and R3 together with the pyrimidone ring carbon atoms to which they are attached form a fused benzo or heteroaryl ring optionally substituted by halogen, C(1-6)alkyl, cyano, mono to perfluoro-C(1-4)alkyl, the pyrimidone ring may be formed by reacting a compound of formula (X):




embedded image


in which R2 and R3 together with the pyrimidone ring carbon atoms to which they are attached form a fused benzo or heteroaryl ring optionally substituted by halogen, C(1-6)alkyl, cyano, mono to perfluoro-C(1-4)alkyl, and R11 is as hereinbefore defined, for example ethyl, with an acyl chloride compound of the formula (XI):




embedded image


in which R1 and X are as hereinbefore defined;


under standard pyrimidone ring forming conditions, in a solvent such as benzene, or via a two step procedure by treatment with pyridine, followed by a suitable base e.g. NaH in DMF, followed by treatment of the intermediate so formed with an acid e.g. p-toluene sulfonic acid in refluxing toluene;


to give an intermediate ester (VI) which can then be converted into a compound of formula (II), for instance by treatment with aqueous sodium hydroxide.


It will be appreciated by those skilled in the art that all other starting materials and intermediates are either known compounds or may be prepared by literature methods, such as those described in “Comprehensive Organic Transformations: a guide to functional group preparations” by Richard Larock (VCH, 1989), incorporated herein by reference.


The present invention will now be illustrated by the following examples.







EXAMPLES

The structure and purity of the intermediates and examples was confirmed by 1H-NMR and (in nearly all cases) mass spectroscopy, even where not explicitly indicated below.


Intermediate A1
3-(2,3-Difluorophenyl)propionic acid



embedded image


A solution of 2,3-difluorocinnamic acid (9.14 g) in ethanol (250 ml) with 10% palladium/carbon catalyst was hydrogenated for 5 h at room temperature and atmospheric pressure. The reaction mixture was filtered through celite and concentrated in vacuo to give the title compound as a colourless solid (9.05 g, quant.) 1H-NMR (CDCl3) δ 2.70 (2H, t), 3.02 (2H, t) and 7.01 (3H, m).


Intermediate A2
3-(2,3-Difluorophenyl)propanenitrile



embedded image


To a solution of 3-(2,3-difluorophenyl)-propionic acid (A1) (6.83 g, 36 mmol) in anhydrous dichloromethane (50 ml) containing a few drops of DMF was added oxalyl chloride (6.4 ml, 73 mmol) at 0° C. under argon. The solution was stirred at ambient temperature for 2 h and the solvent removed in vacuo. The residue was dissolved in sulfolane (30 ml) and added to sulfamide (4.23 g, 44 mmol) and the mixture heated at 120° C. for 3 h. The brown solution was cooled, poured into 2M sodium hydroxide solution (300 ml) and extracted with ether. The combined extracts were washed with water, dried (MgSO4) and evaporated to give the title compound as a brown oil (6.04 g, 98%). 1H-NMR (CDCl3) δ 2.68 (2H, t), 3.04 (2H, t), 7.01-7.15 (3H, m).


Intermediate A3
3-(2,3-Difluorophenyl)propionamidine hydrochloride



embedded image


A solution of 3-(2,3-difluorophenyl)-propionitrile (Int A2) (6.04 g) in saturated ethanolic hydrogen chloride (30 ml) was stirred at ambient temperature overnight then concentrated to a brown solid. The residue was triturated with ether, dissolved in ethanol (50 ml) and the solution saturated with ammonia gas. The mixture was stirred at room temperature overnight, concentrated and the residue triturated with ether to give the title compound as a white solid (7.02 g, 88%). 1H-NMR (DMSO) δ 2.72 (2H, t), 3.06 (2H, t), 7.16-7.36 (3H, m), 8.77 (2H, s), 9.16 (2H, s).


Intermediate A4
4-(4-Fluorophenyl)-butyramide



embedded image


To a solution of 4-(4-fluorophenyl)-butyric acid (6.7 g) in chloroform (15 ml) at 0° C. was added 0.1 ml DMF followed by the addition of oxalyl chloride (3.35 ml) over 20 min. The solution was stirred for 2 h then concentrated. The crude acid chloride was dissolved in chloroform (150 ml) and cooled to 0° C., whereupon concentrated ammonia solution (6 ml) was added over 15 min and the resulting solution stirred for 2 h. The reaction mixture was washed with water and the organic phase dried (MgSO4) and concentrated in vacuo. The crude product was chromatographed over silica using a gradient elution from ether to 2:1 acetone/ether to yield the title compound (2.86 g, 43%). 1H-NMR (CDCl3) δ 1.96 (2H, app q), 2.21 (2H, t), 2.65 (2H, t), 5.41 (2H, br s), 6.96 (2H, m), 7.14 (2H, m). MS (APCI+) M+1=182, C10H12FNO requires 181.


Intermediate A5
4-(4-Fluorophenyl)-butyronitrile



embedded image


4-(4-Fluorophenyl)-butyramide (Int. A4) (2.63 g) was dissolved in trifluoroacetic anhydride (10 ml) and stirred for 2 h. The solution was concentrated and then dissolved in dichloromethane and washed with 2N sodium hydroxide solution. The organics extracts were isolated, dried (MgSO4) and concentrated to yield the product (2.3 g, 100%) which contained ˜5% starting amide as an impurity. 1H-NMR (CDCl3) δ 1.96 (2H, app q), 2.31 (2H, t), 2.75 (2H, t), 6.98 (2H, m), 7.14 (2H, m). MS (APCI+) M+1=164, C10H10FN requires 163.


Intermediate A6
Benzyl (E)-3-(3-cyano-4-fluorophenyl)-acrylate



embedded image


To a solution of 3-cyano-4-fluorobenzaldehyde (2.00 g, 13.4 mmol) in dichloromethane (50 ml) was added benzyl triphenylphosphoanylidene acetate (5.51 g, 13.4 mmol) portionwise over 15 min. The reaction mixture was stirred for 2 h, concentrated and the residues chromatographed over silica with a gradient elution using 1:1 hexane/dichloromethane to dichloromethane to yield product as a white solid (3.27 g, 87%). 1H-NMR (CDCl3) δ 5.26 (2H, s), 6.08 (1H, d), 7.2-7.5 (6H, m), 7.6 (1H, d), 7.75 (2H, d).


Intermediate A7
3-(3-Cyano-4-fluorophenyl)-propionic acid



embedded image


Benzyl (E)-3-(3-cyano-4-fluorophenyl)-acrylate (Int. A6) (1.72 g, 6.1 mmol) was dissolved in 1:1 dichloromethane/ethanol (50 ml) and 10% palladium on charcoal (0.5 g) added. The mixture was hydrogenated for 2 h at ambient pressure, filtered and concentrated to provide the title compound as a white solid (1.2 g, 100%). 1H-NMR (CDCl3) δ 2.69 (2H, t), 2.97 (2H, t), 7.11 (1H, m), 7.43 (3H, m).


Intermediate A8
3-(3-Cyano-4-fluorophenyl)-propionyl chloride



embedded image


3-(3-Cyano-4-fluorophenyl)-propionic acid (Int. A7) was dissolved in dichloromethane (30 ml) containing 0.1 ml DMF and oxalyl chloride (0.79 g, 6.2 mmol) added dropwise over 5 min. The reaction mixture was stirred for 2 h then concentrated in vacuo to yield the title compound as an oil (1.3 g, 100%). 1H-NMR (CDCl3) δ 3.02 (2H, t), 3.21 (2H, t), 7.13 (1H, t), 7.45 (2H, m).


Intermediate A9
E-3-(4-Fluorophenyl)acrylonitrile



embedded image


A suspension of 3-(4-fluorophenyl)acrylic acid (2.5 g, 15 mmol) in dry dichloromethane (50 ml) was treated with DMF (2 drops), oxalyl chloride (2.6 ml, 30 mmol) and the reaction was stirred at room temperature under argon for 3 h. The reaction mixture was evaporated to dryness and azeotroped with dichloromethane (25 ml×2) and evaporated to dryness giving a yellow oil. The acid chloride was mixed with sulfolane (15 ml) and treated with sulfamide (1.73 g, 0.018 moles) (A. Hulkenberg and J. J. Troost, Tetrahedron Letters Vol.23, No. 14, 1505-1508, 1982) and the reaction mixture was heated to 120° C. for 3 h. The reaction mixture was cooled, poured into 1N NaOH (100 ml) and extracted with 1:1 diethyl ether:hexane (3×75 ml). The organic extracts were combined, washed with water (3×50 ml), dried (MgSO4) and evaporated to dryness. Purification by flash column chromatography eluted with 2:1 hexane:ethyl acetate gave E-3-(4-fluorophenyl)acrylonitrile as a cream solid (2.12 g, 96%); 1H-NMR (CDCl3) 5.77, 5.83 (1H, d), 7.16 (2H, m), 7.26, 7.40 (1H, d), 7.45 (2H, m). MS (APCI+) M+1=148, C9H6FN requires 147.


Intermediate A10
E-3-(4-Fluorophenyl)acrylamidine hydrochloride



embedded image


E-3-(4-fluorophenyl)acrylonitrile (Int. A9) (1.0 g,6.8 mmol) in dry ethanol (35 ml) was cooled in an ice-bath and HCl (gas) was bubbled into the solution for 10 minutes. The mixture was allowed to stand at room temperature for 133 h. The reaction mixture was evaporated to dryness and the residue was suspended in diethyl ether (20 ml) and the yellow solid was collected by filtration and dried to give E-3-(4-fluorophenyl)acrylimidic acid ethyl ester hydrochloride (0.86 g, 55%); 1H-NMR (d6-DMSO) 1.45 (3H, t,), 4.52 (2H, q), 6.94, 7.00 (1H, d), 7.36 (2H, m), 7.81 (2H, m), 7.92, 7.99 (1H, d), 11.5 (1H, bs); MS (APCI+) M+1=194, C11H12FNO requires 193.


A solution of E-3-(4-fluorophenyl)acrylimidic acid ethyl ester hyrochloride (0.86 g, 0.00374 moles) in dry methanol (20 ml) was treated with a solution of ammonia (0.064 g, 3.8 mmol) in dry methanol (0.51 ml) and the resulting solution was allowed to stand at room temperature for 48 h. The reaction mixture was evaporated to dryness, mixed with diethyl ether and evaporated to give E-3-(4-fluorophenyl)acrylamidine hydrochloride as a solid (0.75 g, 100%); 1H-NMR (d6-DMSO) 6.72, 6.79 (1H, d) 7.35 (2H, m), 7.67 (2H, m), 7.87, 7.94 (1H, d), 8.8, 9.15 (2×bs). MS (APCI+) M+1=165, C9H9FN2 requires 164.


Intermediate A14
(E/Z)-3-(2-(trifluoromethyl)-4-fluorophenyl)-acrylonitrile



embedded image


Diethyl cyanomethylphosphonate (9 ml) was added to a suspension of NaH (2.1 g) in THF (50 ml) and DMF (50 ml) at 0° C., warmed to room temperature for 20 min and then cooled to 0° C. A solution of 2-(trifluoromethyl)-4-fluoro-benzaldehyde (10 g) in THF (50 ml) was added and the reaction mixture allowed to warm to room temperature and stirred for 3 h. The mixture was diluted with saturated aq. NH4Cl solution and extracted with diethyl ether. The organic extracts were washed with water, dried, and evaporated to give an oil. This oil was chromatographed (silica, dichloromethane/hexane) to give the title compound (1:1 E/Z mixture) as a semi-solid (8.5 g). 1H-NMR (CDCl3) 5.67 (0.5H, dd), 5.86 (0.5H, d), 7.3-7.4 (2.5H, m), 7.4, 7.5 (1H, d), 8.0-8.1 (0.5H, m).


Intermediate A15
3-(2-(trifluoromethyl)-4-fluorophenyl)-propionitrile



embedded image


(E/Z)-3-(2-(trifluoromethyl)-4-fluorophenyl)-acrylonitrile (Int. A14) (7.5 g) in methanol (300 ml) was treated with Pd/C (100 mg) and hydrogenated for 6 h. The mixture was filtered and the filtrate evaporated to give the title compound as a oil (6 g). 1H-NMR (CDCl3) 6 2.64 (2H, t), 3.12 (2H, t), 7.22-7.30 (1H, m), 7.36-7.46 (2H, m).


The following intermediates were made by the method of Intermediate A1:














No.
Precursor
Name







A20
3-(2,4-Difluorophenyl)acrylic
3-(2,4-Difluorophenyl)propionic



acid
acid


A21
3-(2,5-Difluorophenyl)acrylic
3-(2,5-Difluorophenyl)propionic



acid
acid


A22
3-(2,6-Difluorophenyl)acrylic
3-(2,6-Difluorophenyl)propionic



acid
acid


A23
3-(3,5-Difluorophenyl)acrylic
3-(3,5-Difluorophenyl)propionic



acid
acid


A24
3-(2-Fluorophenyl)acrylic acid
3-(2-Fluorophenyl)propionic




acid


A25
3-(3-Fluorophenyl)acrylic acid
3-(3-Fluorophenyl)propionic




acid


A26
3-(2,3,4-Trifluorophenyl)acrylic
3-(2,3,4-Trifluorophenyl)pro-



acid
pionic acid


A27
3-(2,3,5-Trifluorophenyl)acrylic
3-(2,3,5-Trifluorophenyl)pro-



acid
pionic acid


A28
3-(2,4,5-Trifluorophenyl)acrylic
3-(2,4,5-Trifluorophenyl)pro-



acid
pionic acid


A29
3-(3,4,5-Trifluorophenyl)acrylic
3-(3,4,5-Trifluorophenyl)pro-



acid
pionic acid


A30
3-(3-Cyanophenyl)acrylic acid
3-(3-Cyanophenyl)propionic




acid









The following intermediates were made by the method of Intermediate A6:

















No.
Precursor
Name









A31
2,3,6-
Benzyl (E)-3-(2,3,6-




trifluoro-
trifluorophenyl)-acrylate




benzaldehyde



A32
2,4,6-
Benzyl (E)-3-(2,4,6-




trifluoro-
trifluorophenyl)-acrylate




benzaldehyde










The following intermediates were made by the method of Intermediate A7:

















No.
Precursor
Name









A33
Benzyl (E)-3-(2,3,6-
3-(2,3,6-Trifluoro-




trifluorophenyl)-
phenyl)propionic acid




acrylate (A31)



A34
Benzyl (E)-3-(2,4,6-
3-(2,4,6-Trifluoro-




trifluorophenyl)-
phenyl)propionic acid




acrylate (A32)










The following intermediates were made by the method of Intermediate A14:














No.
Precursor
Name







A36
3-(trifluoromethyl)-4-fluoro-
(E/Z)-3-(3-(trifluoromethyl)-



benzaldehyde
4-fluorophenyl)-acrylonitrile


A37
3-chloro-4-fluoro-benzaldehyde
(E/Z)-3-(3-chloro-4-




fluorophenyl)-acrylonitrile









The following intermediates were made by the method of Intermediate A15:














No.
Precursor
Name







A38
(E/Z)-3-(3-
3-(3-(trifluoromethyl)-4-



(trifluoromethyl)-4-fluoro-
fluorophenyl)-propanenitrile



phenyl)-acrylonitrile (A36)


A39
(E/Z)-3-(3-chloro-
3-(3-chloro-4-



4-fluorophenyl)-
fluorophenyl)-propanenitrile



acrylonitrile (A37)









The following acid chloride intermediates were made from the corresponding acids by the method of Intermediate A8:














No.
Precursor
Name







A51
A20
3-(2,4-Difluorophenyl)propionyl




chloride


A52
A22
3-(2,6-Difluorophenyl)propionyl




chloride


A53
A23
3-(3,5-Difluorophenyl)propionyl




chloride


A54
A1
3-(2,3-Difluorophenyl)propionyl




chloride


A55
3-(3,4-Difluoro-
3-(3,4-Difluorophenyl)propionyl



phenyl)propionic
chloride



acid


A56
A24
3-(2-Fluorophenyl)propionyl chloride


A57
A25
3-(3-Fluorophenyl)propionyl chloride


A59
A26
3-(2,3,4-Trifluorophenyl)propionyl




chloride


A60
A27
3-(2,3,5-Trifluorophenyl)propionyl




chloride


A61
A28
3-(2,4,5-Trifluorophenyl)propionyl




chloride


A62
A29
3-(3,4,5-Trifluorophenyl)propionyl




chloride


A63
A30
3-(3-Cyanophenyl)propionyl chloride


A64
A33
3-(2,3,6-Trifluorophenyl)propionyl




chloride


A65
A34
3-(2,4,6-Trifluorophenyl)propionyl




chloride


A66
3-methyl-3-phenyl-
3-methyl-3-phenylbutyryl chloride



butyric acid


A67
2-methyl-3-phenyl-
2-methyl-3-phenylpropionyl chloride



prioponic acid









The following nitrile intermediates were made from the corresponding acids by the method of Intermediate A2:














No.
Precursor
Name







A71
3-phenyl-butyric
3-phenyl-butyronitrile



acid


A72
A20
3-(2,4-Difluorophenyl)propanenitrile


A73
A21
3-(2,5-Difluorophenyl)propanenitrile


A74
3-(3,4-Difluoro-
3-(3,4-Difluorophenyl)propanenitrile



phenyl)propionic



acid


A75
A24
3-(2-fluorophenyl)propanenitrile


A76
A25
3-(3-fluorophenyl)propanenitrile


A77
3-(3-chlorophe-
3-(3-chlorophenyl)propanenitrile



nyl)propionic



acid


A78
3-(4-chlorophe-
3-(4-chlorophenyl)propanenitrile



nyl)propionic



acid


A79
3-(4-methylphe-
3-(4-methylphenyl)propanenitrile



nyl)propionic



acid


A80
3-(4-(trifluoro-
3-(4-(trifluoromethyl)phenyl)propane-



methyl)phenyl)pro-
nitrile



pionic acid


A81
3-(4-methoxyphe-
3-(4-methoxyphenyl)propanenitrile



nyl)propionic



acid


A82
3-(4-(trifluoro-
3-(4-(trifluoromethoxy)phenyl)propane-



methoxy)phenyl)pro-
nitrile



pionic acid


A85
A26
3-(2,3,4-Difluorophenyl)propanenitrile









The following intermediate was made by the method of Intermediate A4:














No.
Precursor
Name







A83
3-(4-fluorophenyl)propionic acid
3-(4-fluorophenyl)propionamide









The following intermediate was made by the method of Intermediate A5:














No.
Precursor
Name







A84
3-(4-fluorophenyl)propionamide
3-(4-fluorophenyl)propane-



(A83)
nitrile









The following amidine intermediates were made from the corresponding nitriles by the method of Intermediate A3:














No.
Precursor
Name







A91
A15
3-(2-(trifluoromethyl)-4-fluorophenyl)-




propionamidine hydrochloride


A93
A38
3-(3-(trifluoromethyl)-4-fluorophenyl)-




propionamidine hydrochloride


A94
A39
3-(3-chloro-4-fluorophenyl)-propionamidine




hydrochloride


A95
A71
3-phenyl-butyramidine hydrochloride


A97
A72
3-(2,4-Difluorophenyl)-propionamidine




hydrochloride


A98
A73
3-(2,5-Difluorophenyl)-propionamidine




hydrochloride


A99
A74
3-(3,4-Difluorophenyl)-propionamidine




hydrochloride


A100
A75
3-(2-fluorophenyl)-propionamidine




hydrochloride


A101
A76
3-(3-fluorophenyl)-propionamidine




hydrochloride


A102
A77
3-(3-chlorophenyl)-propionamidine




hydrochloride


A103
A78
3-(4-chlorophenyl)-propionamidine




hydrochloride


A104
A79
3-(4-methylphenyl)-propionamidine




hydrochloride


A105
A80
3-(4-(trifluoromethyl)phenyl)-propionamidine




hydrochloride


A106
A81
3-(4-methoxyphenyl)-propionamidine




hydrochloride


A107
A82
3-(4-(trifluoromethoxy)phenyl)-propionamidine




hydrochloride


A108
A84
3-(4-fluorophenyl)-propionamidine




hydrochloride


A110
3-phenyl-pro-
3-phenyl-propionamidine hydrochloride



panenitrile


A111
3-(2-chloro-
3-(2-chlorophenyl)-propionamidine



phenyl)-pro-
hydrochloride



panenitrile


A112
A5
4-(4-fluorophenyl)-butyramidine hydrochloride


A113
A85
3-(2,3,4-trifluorophenyl)-propionamidine




hydrochloride









Intermediate B1
2-[2-(2,3-Difluorophenyl)ethyl]-1,5,6,7-tetrahydrocyclopentapyrimidin-4-one



embedded image


To a solution of 3-(2,3-difluorophenyl)-propionamidine hydrochloride (Int. A3) (3.90 g, 17.7 mmol) in ethanol (80 ml) was added sodium ethoxide (1.44 g, 21.2 mmol) in portions and resulting slurry stirred at ambient temperature for 1 h. 2-Oxo-cyclopentanecarboxylic acid ethyl ester (3.09 ml, 21.2 mmol) was then added and the mixture refluxed for 2 days. Evaporation of the reaction mixture followed by chromatography (silica, dichloromethane-acetone) gave the title compound (2.76 g, 56%) as a cream solid. 1H-NMR (DMSO) δ 1.94 (2H, m), 2.59 (2H, t), 2.72 (2H, t), 2.82 (2H, t), 3.05 (2H, t), 7.07-7.29 (3H, m), 12.20 (1H, s); MS (APCI+) found (M+1)=277; C15H14F2N2O requires 276.


The following intermediates were made by the method of Intermediate B1:















Pre-



No.
cursors
Name







B2
A91
2-[2-(2-trifluoromethyl-4-fluorophenyl)-ethyl]-1,5,6,7-




tetrahydro-cyclopentapyrimidin-4-one


B3
A93
2-[2-(3-trifluoromethyl-4-fluorophenyl)-ethyl]-1,5,6,7-




tetrahydro-cyclopentapyrimidin-4-one


B4
A94
2-[2-(3-chloro-4-fluorophenyl)-ethyl]-1,5,6,7-tetra-




hydro-cyclopentapyrimidin-4-one


B5
A95
2-[2-phenyl-prop-1-yl]-1,5,6,7-tetrahydro-cyclopenta-




pyrimidin-4-one


B6
A97
2-[2-(2,4-Difluorophenyl)-ethyl]-1,5,6,7-tetrahydro-




cyclopentapyrimidin-4-one


B7
A98
2-[2-(2,5-Difluorophenyl)-ethyl]-1,5,6,7-tetrahydro-




cyclopentapyrimidin-4-one


B8
A99
2-[2-(3,4-Difluorophenyl)-ethyl]-1,5,6,7-tetrahydro-




cyclopentapyrimidin-4-one


B9
A100
2-[2-(2-Fluorophenyl)-ethyl]-1,5,6,7-tetrahydro-cyclo-




pentapyrimidin-4-one


B10
A101
2-[2-(3-Fluorophenyl)-ethyl]-1,5,6,7-tetrahydro-cyclo-




pentapyrimidin-4-one


B11
A102
2-[2-(3-Chlorophenyl)-ethyl]-1,5,6,7-tetrahydro-cyclo-




pentapyrimidin-4-one


B12
A103
2-[2-(4-Chlorophenyl)-ethyl]-1,5,6,7-tetrahydro-cyclo-




pentapyrimidin-4-one


B13
A104
2-[2-(4-Methylphenyl)-ethyl]-1,5,6,7-tetrahydro-cyclo-




pentapyrimidin-4-one


B14
A105
2-[2-(4-(trifluoromethyl)phenyl)-ethyl]-1,5,6,7-tetra-




hydro-cyclopentapyrimidin-4-one


B15
A106
2-[2-(4-Methoxyphenyl)-ethyl]-1,5,6,7-tetrahydro-cyclo-




pentapyrimidin-4-one


B16
A107
2-[2-(4-(trifluoromethoxy)phenyl)-ethyl]-1,5,6,7-tetra-




hydro-cyclopentapyrimidin-4-one


B17
A108
2-[2-(4-fluorophenyl)-ethyl]-1,5,6,7-tetrahydro-cyclo-




pentapyrimidin-4-one


B18
A110
2-[2-phenyl-ethyl]-1,5,6,7-tetrahydro-cyclopenta-




pyrimidin-4-one


B19
A111
2-[2-(2-chlorophenyl)-ethyl]-1,5,6,7-tetrahydro-cyclo-




pentapyrimidin-4-one


B20
A112
2-[3-(4-fluorophenyl)-propyl]-1,5,6,7-tetrahydro-cyclo-




pentapyrimidin-4-one


B21
A10
(E)-2-[2-(4-fluorophenyl)-vinyl]-1,5,6,7-tetrahydro-




cyclopentapyrimidin-4-one









Intermediate B40
5-Ethyl-2-[2-(4-fluorophenyl)ethyl]-1H-pyrimidin-4-one



embedded image


Sodium (0.23 g) in dry ethanol (10 ml) was treated with 3-(4-fluorophenyl)propionamidine hydrochloride (Int. A108) (1.02 g). Ethyl 2-formylbutyrate (0.72 g) was added and the mixture refluxed for 6 h then maintained at room temperature for a further 24 h. The reaction mixture was concentrated in vacuo, and the residue treated with water and acidified with conc. hydrochloric acid. The white precipitate was filtered off, washed with water and dried in vacuo at 40° C. overnight, to give the title compound, (982 mgs, 80%) 1H-NMR (CDCl3) δ 1.22 (3H, t), 2.52 (2H, q), 2.94 (2H, m), 3.09 (2H, m), 6.96 (2H, m), 7.24 (2H, m), 7.84 (1H, s) and 13.06 (1H, br. s). (APCI+) Found (M+1)=247, C14H15FN2O requires 246.


The following intermediates were made by the method of Intermediate B40:














No.
Precursors
Name







B41
A110 Methyl 2-
2-(2-phenylethyl)-5-methyl-1H-pyrimidin-



formylpropionate
4-one


B42
A112 Ethyl 2-
5-ethyl-2-[3-(4-fluorophenyl)propyl]-1H-



formylbutyrate
pyrimidin-4-one


B43
A108 Ethyl 4,4,4-
2-[2-(4-fluorophenyl)ethyl]-5-(2,2,2-



Trifluoro-2-
trifluoroethyl)-1H-pyrimidin-4-one



formylbutyrate


B44
A108 Ethyl 2-
5,6-dimethyl-2-[2-(4-fluorophenyl)ethyl]-



acetylpropionate
1H-pyrimidin-4-one









Intermediate B50
2-(2-[2-(2,3-Difluorophenyl)-ethyl]-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-acetic acid ethyl ester



embedded image


A mixture of Intermediate B1 (2.76 g, 10.0 mmol), ethyl iodoacetate (3.55 ml, 30.0 mmol) and N,N-diisopropylethylamine (5.22 ml, 30.0 mmol) in dichloromethane (40 ml) was stirred at 30° C. for 3 days. Further ethyl iodoacetate (3.55 ml, 30.0 mmol) and N,N-diisopropylethylamine (5.22 ml, 30.0 mmol), was added, the mixture stirred for 10 days and then washed with water, dried (MgSO4) and evaporated. The residue was purified by chromatography (silica, ethyl acetate/acetone) to give the title compound as a brown solid (0.67 g, 19%). 1H-NMR (DMSO) δ 1.21 (3H, t), 1.96 (2H, m), 2.59 (2H, t), 2.83-3.01 (4H, m), 3.04 (2H, t), 4.20 (2H, q), 4.92 (2H, s), 7.10-7.30 (3H, m); MS (APCI+) found (M+1)=363; C19H20F2N2O3 requires 362.


Intermediate B51
t-Butyl 2-(5-ethyl-2-(2-(4-fluorophenyl)ethyl)-4-oxo-4H-pyrimidin-1-yl)-acetate



embedded image


5-Ethyl-2-[2-(4-fluorophenyl)ethyl]-1H-pyrimidin-4-one (B40) (955 mgs) in dichloromethane (20was treated with t-butyl iodoacetate, (2.82 g) and diisopropylethylamine (2.03 mls) at room temperature for 3 days. The solution was washed with saturated sodium bicarbonate, brine and dried over anhydrous magnesium sulphate. The solution was concentrated to give a semi-solid which was triturated with ether:dichloromethane, 5:1, giving the title compound as a white solid, (1.101 g, 79%), 1H-NMR (CDCl3) δ 1.16 (3H, t), 1.47 (9H, s), 2.47 (2H, q), 2.74 (2H, t), 3.14 (2H, t), 4.27 (2H, s), 6.90 (1H, s), 6.98 (2H, m) and 7.17 (2H, m). (APCI+) Found (M+1)=361, C20H25FN3 requires 360.


Intermediate B52
Ethyl (2,4-dioxo-4H-pyrido[2,3-d][1,3]oxazin-1-yl)acetate



embedded image


A 2:1 mixture of 3- and 6-azaisatoic anhydride (3.55 g, 21.6 mmol) (Synthesis 1982, 11, 972) was added portionwise to a suspension of sodium hydride (0.95 g, 60% in oil, 23.8 mmol) in DMF (40 ml). After stirring for 1 h, ethyl bromoacetate (2.64 ml, 23.8 mmol) was added. The reaction mixture was stirred overnight. The solvent was removed under reduced pressure. Ice/water was added to the residue and stirred for 1 h. The resulting pink solid was collected by filtration, washed with water and dried under vacuum at 40° C. The product was a 4:1 mixture of the [2,3-d] and the [3,2-d] isomers. 1H-NMR (d6-DMSO) δ 1.21 (3H, t), 4.18 (2H, q), 4.92 (2H, s), 7.45 (1H, dd), 8.47 (1H, dd), 8.77 (1H, dd); MS (APCI+) found (M+1)=251; C11H10N2O5 requires 250.


Intermediate B53
Ethyl 2-(2-(2,3-difluorophenyl)ethyl-4-oxo-4H-pyrido[2,3-d]pyrimidin-1-yl)acetate



embedded image


Intermediate B52 (as a 4:1 mixture of the [2,3-d] and the [3,2-d] isomers) (1.0 g, 3.99 mmol) and 3-(2,3-difluorophenyl)propionamidine hydrochloride (Int. A3) (1.0 g, 4.53 mmol) were added to pyridine (25 ml) and heated under reflux for 16 h. The solvent was evaporated under reduced pressure. The residue was partitioned between dichloromethane and water and then filtered through a celite pad. The organic layer was separated, washed with water, dried (MgSO4), filtered and concentrated. Purification by chromatography (silica gel, EtOAc) gave the title compound (0.885 g, 59%) as an orange gum. 1H-NMR (CDCl3) 67 1.29 (3H, t), 3.05 (2H, t), 3.31 (2H, t), 4.26 (2H, q), 59% as an 7.01-7.09 (3H, m), 7.45 (1H, dd), 8.64 (1H, dd), 8.70 (1H, dd); MS (APCI+) found (M+1)=374; C19H17F2N3O3 requires 373.


Intermediate B55
Ethyl 2-(2,4-dioxo-4H-thieno[3,2-d][1,3]oxazin-1-yl)acetate



embedded image


Sodium hydride (851 mg, 60% dispersion in oil) in dry N,N-dimethylformamide (DMF) (15 ml) was cooled under argon in an ice bath. A solution of 1H-thieno[3,2-d][1,3]oxazine-2,4-dione (3 g) in DMF (10 ml) was added over ca 20 min. The reaction mixture was stirred for 30 min at room temperature, then recooled in an ice bath. Ethyl iodoacetate (4.55 g) was added and the mixture stirred at room temperature for ca 2 h. The solution was concentrated to about half volume and cooled in an ice bath. Water was added (ca 200 ml). After 10 min the precipitate was filtered off and washed with water and hexane and dried at 40° C. in vacuo overnight. The title compound was obtained as a white solid (3.62 g, 80%). 1H-NMR (CDCl3) δ 1.30 (3H, t), 4.28 (2H, q), 4.71 (2H, s), 6.77 (1H, d), 7.87 (1H, d). (APCI+) Found (M+1)=256, C10H9NO5S requires 255.


Intermediate B56
Ethyl 2-((2-Carbamoylthiophen-3-yl)-(3-(2,3-difluorophenyl)propanoyl)-amino)acetate



embedded image


Ethyl 2-(2,4-dioxo-4H-thieno[3,2-d][1,3]oxazin-1-yl)acetate (B55) (1 g) in (THF) (20 ml) was cooled in an ice bath and treated with 0.880 aqueous ammonia (20 ml) for 30 min then stirred at room temperature for a further 30 min. The THF was removed in vacuo and the aqueous solution treated with ethyl acetate and acidified with 5M hydrochloric acid. The aqueous solution was extracted with ethyl acetate. The combined organic phases were washed with brine, dried and concentrated to a solid. The crude amide as a suspension in dichloromethane (10 ml) was treated with diisopropylethylamine (0.82 ml) followed by a solution of 3-(2,3-difluorophenyl)propionoyl chloride (Int. A54) in dichloromethane (20 ml). After 1 h at room temperature, the dichloromethane was removed and replaced with ethyl acetate. The solution was washed with saturated sodium bicarbonate, brine and then dried and concentrated. After purification on a silica chromatography column eluting with 50% ethyl acetate/hexane, the title compound was obtained as a colourless solid (518 mgs, 33%); 1H-NMR (CDCl3) δ 1.31 (3H, t), 2.46 (1H, m), 2.64 (1H, m), 2.95 (2H, t) 3.90 (1H, d), 4.24 (2H, m), 4.77 (1H, d), 5.69 (1H, br. s), 6.74 (1H, d), 6.86 (1H, m), 6.96 (2H, m), 7.52 (1H, d) and 8.60 (1H, br. s). (APCI+) Found (M+1)=397, C18H18F2N2O4S requires 396.


Intermediate B57
Ethyl 2-(2-(2-(2,3-Difluorophenyl)ethyl)-4-oxo-4H-thieno[3,2-d]pyrimidin-1-yl)acetate



embedded image


Ethyl 2-((2-carbamoylthiophen-3-yl)-(3-(2,3-difluorophenyl)propanoyl)amino)acetate (Int. B56) (500 mg) in dry DMF (3 ml) was cooled in an ice bath and treated portion wise with sodium hydride (50 mg, 60% dispersion in oil). The reaction mixture was stirred at room temperature for 30 min to give an orange homogeneous solution. Excess 1 M hydrogen chloride in ether was added giving a pale yellow solution and a precipitate. The mixture was heated in an oil bath at 120° C. for 30 min. The solution was concentrated and re-dissolved in ethyl acetate. The solution was washed with saturated sodium bicarbonate, brine, dried and concentrated in vacuo to give a solid. Trituration with ether afforded the title compound as a white solid (375 mgs, 78%); 1H-NMR (CDCl3) δ 1.29 (3H, t), 3.01 (2H, t), 3.30 (2H, t), 4.29 (2H, q), 4.84 (2H, s), 6.96 (1H, d), 7.03, (3H, m) and 7.77 (1H, d). (APCI+) Found (M+1)=379, C18H16F2N2O3S requires 378.


Intermediate B58
3-(3-(2,3-Difluorophenyl)-propanoylamino)-1-methyl-1H-pyrazole-4-carboxylic acid amide



embedded image


To a solution of 3-(2,3-difluorophenyl)-propionic acid (Int. A1) (6.83 g, 36.69 mmol) in anhydrous dichloromethane (50 ml) containing a few drops of DMF was added oxalyl chloride (6.4 ml, 73.38 mmol) at 0° C. under argon. The solution was then stirred at ambient temperature for 2 h and the solvent removed in vacuo. The residue was dissolved in dichloromethane (20 ml) and added to a slurry of 3-amino-1-methyl-1H-4-carboxylic acid amide (4.4 g, 23.66 mmol) (Patent to Ciba Ltd., GB 884851) in dichloromethane (30 ml) and pyridine (30 ml) at 0° C. under argon. The mixture was stirred at room temperature for 3 h, the solvent evaporated in vacuo and the solid residue washed aqueous sodium bicarbonate, water and dried in vacuo to yield the title compound (4.0 g, 55%) as a cream solid. 1H-NMR (DMSO) δ 2.56-3.00 (4H, m), 3.76 (3H, s), 7.08-7.28 (5H, m), 8.06 (1H, s), 9.92 (1H, s); MS (APCI+) found (M+1)=309; C14H14F2N4O2 requires 308.


Intermediate B59
2-((4-Carbamoyl-1-methyl-1H-pyrazol-3-yl)-(3-(2,3-difluorophenyl)-propanoyl)-amino)-acetic acid ethyl ester



embedded image


To a suspension of sodium hydride (60% dispersion in mineral oil, 260 mg, 6.5 mmol) in anhydrous DMF (5 ml) under argon at 0° C. was added a solution of 3-[3-(2,3-difluorophenyl)-propanoylamino]-1-methyl-1H-pyrazole-4-carboxylic acid amide (Int. B58) (2.0 g, 6.49 mmol) in anhydrous DMF (5 ml). The reaction mixture was allowed to warm to room temperature over 30 min and then ethyl iodoacetate (0.15 ml, 1.27 mmol) was added at 0° C. The mixture was stirred at ambient temperature overnight, washed with brine, dried (MgSO4) and evaporated. The residue was purified by flash chromatography (fine silica, dichloromethane-methanol) to give the title compound as a cream solid (1.4 g, 55%). 1H-NMR (DMSO) δ 1.18 (3H, t), 2.41 (2H, t), 2.87 (2H, t), 3.82 (3H, s), 4.10 (2H, q), 4.26 (2H, s), 6.99-7.24 (4H, m), 7.55 (1H, s), 8.16 (1H, s); MS (APCI+) found (M+1)=395; C18H20F2N4O4 requires 394.


Intermediate B60
2-(4-(3-(2,3-Difluorophenyl)-propanoylcarbamoyl)-1-methyl-1H-pyrazol-3-ylamino)-acetic acid ethyl ester



embedded image


To a solution of 2-((4-carbamoyl-1-methyl-1H-pyrazol-3-yl)-[3-(2,3-difluorophenyl)-propanoyl]-amino)-acetic acid ethyl ester (Int. B59) (1.3 g, 3.3 mmol) in anhydrous DMF (12 ml) under argon was added sodium hydride (60% dispersion in mineral oil, 132 mg, 3.3 mmol) in one portion. The reaction mixture was stirred for 1 h at ambient temperature and then poured into saturated ammonium chloride solution and extracted with ethyl acetate. The combined extracts were washed with water, dried (MgSO4) and evaporated to give the title compound as a cream solid (1.2 g, 92%). 1H-NMR (DMSO) δ 1.18 (3H, t), 2.95 (2H, t), 3.08 (2H, t), 3.63 (3H, s), 3.95 (2H, d), 4.10 (2H, q), 6.33 (1H, t), 7.03-7.27 (3H, m), 8.23 (1H, s), 10.45 (1H, s); MS (APCI+) found (M+1)=395; C18H20F2N4O4 requires 394.


Intermediate B61
2-(6-(2-(2,3-Difluorophenyl)-ethyl)-2-methyl-4-oxo-2,4-dihydro-pyrazolo-[3,4-d]pyrimidin-7-yl)-acetic acid ethyl ester



embedded image


A suspension of p-toluenesulfonic acid monohydrate (200 mg) and 2-(4-(3-(2,3-difluorophenyl)-propanoylcarbamoyl)-1-methyl-1H-pyrazol-3-ylamino)-acetic acid ethyl ester (Int B60) (1.2 g, 3.04 mmol) in toluene (100 ml) was refluxed for 3 h. The mixture was cooled and dichloromethane (200 ml) was added. The resulting solution was washed with aqueous sodium bicarbonate solution, brine, dried (MgSO4) and evaporated. The residue was purified by flash chromatography (silica, 5% methanol/dichloromethane) to give the title compound as a cream solid (650 mg, 57%). 1H-NMR (DMSO) δ 1.20 (3H, t), 2.94-3.09 (4H, m), 3.95 (3H, s), 4.18 (2H, q), 5.05 (2H, s), 7.11-7.29 (3H, m), 8.39 (1H, s); MS (APCI+) found (M+1)=377; C18H18F2N4O3 requires 376.


Intermediate B65
Ethyl 2-(2-[2-(2,3-difluorophenyl)-ethyl]-4-oxo-4H-quinazolin-1-yl)-acetate



embedded image


To a solution of 3-(2,3-difluorophenyl)-propionic acid (Int. A1) (5 g, 26.9 mmol) in anhydrous dichloromethane (50 ml) containing a few drops of DMF was added oxalyl chloride (4.7 ml, 53.8 mmol) at 0° C. under argon. The solution was then stirred at ambient temperature for 2 h and the solvent removed in vacuo. The residue which contained the acid chloride (Int. A54) was dissoved in toluene (50 ml) and added to a slurry of (2-carbamoylphenylamino)-acetic acid ethyl ester (5.0 g, 22.5 mmol) in toluene (50 ml) containing pyridine (1 ml) and 4-dimethylaminopyridine (DMAP) (100 mg). After 16 h at 90° C. the solvent was evaporated and the solid residue washed with water, aqueous ammonia and ether to give the title compound (6.9 g, 82%) as a cream solid. 1H-NMR (DMSO) δ 1.24 (3H, t), 3.13 (2H, t), 3.34 (2H, m), 4.24 (2H, q), 5.48 (2H, s), 7.19 (1H, m), 7.29-7.35 (2H, m), 7.60-7.72 (2H, m), 7.94 (1H, t), 8.19 (1H, d); MS (APCI+) found (M+1)=373; C20H18F2N2O3 requires 372.


Intermediate B66
5-Methyl-1-H-thieno[2,3-d][1,3]oxazine-2,4-dione



embedded image


A mixture of ethyl 2-amino-4-methylthiophene-3-carboxylate (5 g, 0.03 mol) in methanol (25 ml) and aq. 2M sodium hydroxide (20.24 ml, 0.04 mol) was heated under reflux for 4 h. After cooling the solvents were evaporated, the residue dissolved in water (30 ml) and a 20% solution of phosgene in toluene (24 ml, 0.05 mol) added dropwise with ice cooling. After a further 30 min the solid which had precipitated was filtered, washed with water then ether, and dried to give the title compound 2.93 g (59%). 1H NMR (d6-DMSO) δ 2.31 (3H, s), 6.78 (1H, s), 12.50 (1H, br. s).


Intermediate B67
2-(5-Methyl-2,4-dioxo-4 H-thieno[2,3-d][1,3]oxazin-1-yl)-acetic acid ethyl ester



embedded image


To a stirring suspension of sodium hydride (0.7 g, 17.6 mmol, 60% dispersion in oil) in dry DMF (30 ml) 5-methyl-1 H-thieno[2,3-d][1,3]oxazine-2,4-dione (Int. B66) (2.93 g, 16 mmol) was portionwise under argon. After 1 h, ethyl bromoacetate (1.95 ml, 17.6 mmol) was added dropwise with ice cooling. When addition was complete the reaction was allowed to warm to ambient temperature. After 16 h the solvent was evaporated and the residue treated with water. The precipitated solid was filtered, washed with water and dried, to give the title compound (4.18 g, 97%). 1H NMR (d6-DMSO) δ 1.22 (3H, t), 2.34 (3H, s), 4.15 (2H, q), 4.75 (2H, s), 6,95 (1H, s).


Intermediate B68
Ethyl 2-(2-[2-(4-fluorophenyl)-ethyl]-4-oxo-4H-quinazolin-1-yl)-acetate



embedded image


A solution of 3-(4-fluorophenyl)-propionamidine hydrochloride (Int. A108) (0.42 g, 2.05 mmol) and ethyl 2-(2,4-dioxo-4H-benzo[d][1,3]oxazin-1-yl)-acetate (0.51 g, 2.05 mmol) in pyridine (20 ml) was heated at reflux for 16 h, allowed to cool then concentrated in vacuo. The residues were chromatographed over silica eluting with ethyl acetate to yield the product as a white solid (0.26 g, 36%). 1H-NMR (CDCl3) δ 1.24 (3H, t,), 3.0 (2H, m), 3.17 (2H, m), 4.24 (2H, q), 5.29 (2H, s), 6.95 (2H, m), 7.2-7.3 (3H, m), 7.40 (1H, m), 7.67 (1H, m), 8.29 (1H, dd); MS (APCI+) found (M+1)=355; C20H19FN2O3 requires 354.


Intermediate C1—2-(2-(2-(2,3-Difluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-acetic acid



embedded image


A solution of 2-(2-[2-(2,3-difluorophenyl)-ethyl]-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-acetic acid ethyl ester (B50) (0.66 g, 1.83 mmol), sodium hydroxide (0.15 g, 3.67 mmol) in methanol (6 ml) and water (2 ml) was stirred at ambient temperature overnight. The solvent was removed in vacuo and the residue dissolved in water (2 ml). Acidification to pH 1 with 2M hydrochloric acid gave a solid that was filtered, washed with water and dried in vacuo to give the desired product (0.50 g, 82%) as a cream solid. 1H-NMR (DMSO) δ 1.96 (2H, m), 2.63 (2H, t), 2.85-3.03 (6H, m), 4.91 (2H, s), 7.10-7.34 (3H, m); MS (APCI+) found (M+1)=335; C17H16F2N2O3 requires 334.


Intermediate C2
2-(5-ethyl-2-(2-(4-fluorophenyl)ethyl)-4-oxo-4H-pyrimidin-1-yl)acetic acid



embedded image


t-Butyl 2-(5-ethyl-2-[2-(4-fluorophenyl)ethyl]-4-oxo-4H-pyrimidin-1-yl)acetate (Int B51) (1 g) was dissolved in trifluoroacetic acid (10 ml) and stirred for 3 h at room temperature. The solution was concentrated under vacuum to a foam. Trituration with ether afforded the title compound as a colourless solid, (0.783 g, 93%), 1H-NMR (DMSO) δ 1.05 (3H, t, J=7.5Hz), 2.24 (2H, q, J=7.5 Hz), 2.79 (2H, m), 2.93 (2H, m), 4.79 (2H, s), 7.11 (2H, m), 7.30 (2H, m), 7.53 (1H, s) and 12.48 (1H, br. s). (APCI−) Found (M−1)=303, C16H17FN2O3 requires 304.


The following 4-oxo-4H-pyrimidin-1-ylacetic acids were prepared from the corresponding 1H-pyrimidin-4-ones by alkylation with ethyl iodoacetate (as for Intermediate B50) followed by hydrolysis as for Intermediate C1, or by alkylation with t-butyl iodoacetate (as for Intermediate B51) followed by hydrolysis as for Intermediate C2.















No.
Precursor
Structure
Name







C3
B2


embedded image


2-(2-(2-(2-trifluoromethyl-4-fluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-acetic acid





C4
B3


embedded image


2-(2-(2-(3-trifluoromethyl-4-fluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-acetic acid





C5
B4


embedded image


2-(2-(2-(3-chloro-4-fluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-aceticacid





C6
B5


embedded image


(±)-2-(2-(2-phenyl-prop-1-yl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-acetic acid





C7
B6


embedded image


2-(2-(2-(2,4-difluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-acetic acid





C8
B7


embedded image


2-(2-(2-(2,5-difluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-acetic acid





C9
B8


embedded image


2-(2-(2-(3,4-difluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-acetic acid





C10
B9


embedded image


2-(2-(2-(2-fluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-acetic acid





C11
B10


embedded image


2-(2-(2-(3-fluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-acetic acid





C12
B11


embedded image


2-(2-(2-(3-chlorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-acetic acid





C13
B12


embedded image


2-(2-(2-(4-chlorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-acetic acid





C14
B13


embedded image


2-(2-(2-(4-methylphenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-acetic acid





C15
B14


embedded image


2-(2-(2-(4-(trifluoromethyl)phenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-aceticacid





C16
B15


embedded image


2-(2-(2-(4-methoxyphenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-acetic acid





C17
B16


embedded image


2-(2-(2-(4-(trifluoromethoxy)phenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-aceticacid





C18
B17


embedded image


2-(2-(2-(4-fluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-acetic acid





C19
B18


embedded image


2-(2-(2-phenyl-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-acetic acid





C20
B19


embedded image


2-(2-(2-(2-chlorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-acetic acid





C21
B20


embedded image


2-(2-(3-(4-fluorophenyl)-propyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-acetic acid





C22
B21


embedded image


(E)-2-(2-(2-(4-fluorophenyl)-vinyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-acetic acid





C30
B41


embedded image


2-(2-(2-phenylethyl)-5-methyl-4-oxo-4H-pyrimidin-1-yl)acetic acid





C31
B42


embedded image


2-(5-ethyl-2-(3-(4-fluorophenyl)propyl)-4-oxo-4H-pyrimidin-1-yl)acetic acid





C32
B43


embedded image


2-(2-(2-(4-fluorophenyl)ethyl)-5-(2,2,2-trifluoroethyl)-4-oxo-4H-pyrimidin-1-yl)acetic acid





C33
B44


embedded image


2-(2-(2-(4-fluorophenyl)ethyl)-5,6-dimethyl-4-oxo-4H-pyrimidin-1-yl)acetic acid









Intermediate C35
2-(2-(2,3-Difluorophenyl)ethyl-4-oxo-4H-pyrido[2,3-d]pyrimidin-1-yl)acetic acid



embedded image


Example B53 (0.86 g, 2.3 mmol) was dissolved in EtOH (10 ml). Water (3 ml) and 2M NaOH (1.38 ml, 2.76 mmol) were added and the mixture was stirred for 15 min. The reaction mixture was concentrated, then water and EtOAc added. The pH was adjusted to 3.0 by the addition of 2M HCl. The resulting solid was collected by filtration, washed with water and EtOAc, and dried under vacuum to give 0.464 g of a 1.8:1 mixture of the title compound and (3-carbamoylpyridin-2-ylamino)acetic acid. 1H-NMR data of the title compound. 1H-NMR (d6-DMSO) δ 3.16 (4H,s), 5.25 (2H, s), 7.13-7.17 (1H, m), 7.24-7.30 (2H, m), 7.59 (1H, dd), 8.47 (1H, dd), 8.84 (1H, dd); MS (APCI) found (M-H3O)=326; C17H13NF2N3O5 requires 345.


The following intermediates were prepared from Intermediate B52 and the amidines stated by the method of Intermediate B53 to give acetic acid derivatives after hydrolysis as for Intermediates C35 or C1.















No.
Precursors
Structure
Name







C36
B52 + A108


embedded image


2-(2-(4-Fluorophenyl)ethyl-4-oxo-4H-pyrido[2,3-d]pyrimidin-1-yl)acetic acid





C37
B52 + A113


embedded image


2-(2-(2,3,4-Trifluorophenyl)ethyl-4-oxo-4H-pyrido[2,3-d]pyrimidin-1-yl)acetic acid









Intermediate C39
{2-[2-(2,3-Difluorophenyl)ethyl]-4-oxo-4H-thieno[3,2-d]pyrimidin-1yl}-acetic acid



embedded image


Ethyl 2-(2-[2-(2,3-difluorophenyl)ethyl]-4-oxo-4H-thieno[3,2-d]pyrimidin-1-yl)acetate (Int B57) (375 mg) as a suspension in dioxan (2-3 ml) was treated with 0.5M solution of aqueous sodium hydroxide (1.98 ml) at room temperature. After 1h the solution was concentrated to a small volume and acidified with 2M hydrochloric acid. The precipitate was filtered off, washed with water and dried in vacuo at 40° C. overnight. The title compound was obtained as a white solid (308 mgs, 89%); 1H-NMR (DMSO) δ 3.09 (4H, m), 5.19 (2H, s), 7.05-7.31 (3H, m), 7.49 (1H, d, J5.2 Hz) and 8.14 (1H, d, J5.2 Hz). (APCI+) Found (M+1)=351, C16H12F2N2O3S requires 350.


Intermediate C40
2-(2-[2-(4-Fluorophenyl)ethyl]-4-oxo-4H-thieno[3,2-d]pyrimidin-1-yl)acetic acid



embedded image


The above acetic acid derivative was prepared from Intermediates B55 and A108 by the procedures for Intermediates B56, B57 and C39.


Intermediate C41
(6-(2-(2,3-Difluorophenyl)-ethyl)-2-methyl-4-oxo-2,4-dihydro-pyrazolo-[3,4-d]pyrimidin-7-yl)-acetic acid



embedded image


A solution of 2-(6-[2-(2,3-difluorophenyl)-ethyl]-2-methyl-4-oxo-2,4-dihydro-pyrazolo[3,4-d]pyrimidin-7-yl)-acetic acid ethyl ester (Int. B61) (600 mg, 1.6 mmol) in methanol (15 ml) and 2M sodium hydroxide solution (1.0 ml, 2 mmol) was stirred at ambient temperature overnight. The solvent was removed in vacuo and the residue dissolved in water (3 ml). Acidification to pH 1 with 2M hydrochloric acid gave a solid that was filtered, washed with water and dried in vacuo to give the title compound as a cream solid (0.54 g, 97%). 1H-NMR (DMSO) δ 2.83 (2H, t), 3.31 (2H, t), 4.06 (3H, s), 5.24 (2H, s), 6.99-7.36 (3H, m), 8.80 (1H, s).


Intermediate C43
2-(2-(2-(2,3-Difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-acetic acid



embedded image


A solution of 2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-acetic acid ethyl ester (B65) (6.8 g, 18.3 mmol) in methanol (30 ml) and 2M sodium hydroxide solution (18.0 ml, 36 mmol) was stirred at ambient temperature overnight. The solvent was removed in vacuo and the residue dissolved in water (10 ml). Acidification to pH 1 with 2M hydrochloric acid gave a solid that was filtered, washed with water and dried in vacuo to give the desired product (5.9 g, 94%) as a white solid. 1H-NMR (DMSO) δ 3.11-3.30 (4H, m), 5.31 (2H, s), 7.16-7.33 (3H, m), 7.61 (1H, t), 7.68 (1H, d), 7.89 (1H, t), 8.18 (1H, d); MS (APCI+) found (M+1)=345; C18H14F2N2O3 requires 344.


The following 4-oxo-4H-quinazolin-1-yl-acetic acids (C44-C68) were prepared from acid chlorides and (2-carbamoylphenylamino)-acetic acid ethyl ester (or simple substituted derivatives prepared by the general method of Monatsh. Chem. 1986, 117(4), 499-509) in a two step procedure by the methods used for Intermediates B65 and C43.















No.
Precursors
Structure
Name







C44
A8 


embedded image


2-(2-(2-(3-Cyano-4-fluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-acetic acid





C45
A51


embedded image


2-(2-(2-(2,4-Difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-acetic acid





C46
A52


embedded image


2-(2-(2-(2,6-Difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-acetic acid





C47
A53


embedded image


2-(2-(2-(3,5-Difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-acetic acid





C48
A55


embedded image


2-(2-(2-(3,4-Difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-acetic acid





C49
A56


embedded image


2-(2-(2-(2-Fluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-acetic acid





C50
A57


embedded image


2-(2-(2-(3-Fluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-acetic acid





C52
A59


embedded image


2-(2-(2-(2,3,4-Trifluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-acetic acid





C53
A60


embedded image


2-(2-(2-(2,3,5-Trifluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-acetic acid





C54
A61


embedded image


2-(2-(2-(2,4,5-Trifluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-acetic acid





C55
A62


embedded image


2-(2-(2-(3,4,5-Trifluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-acetic acid





C56
A63


embedded image


2-(2-(2-(3-Cyanophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-acetic acid





C57
A64


embedded image


2-(2-(2-(2,3,6-Trifluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-acetic acid





C58
A65


embedded image


2-(2-(2-(2,4,6-Trifluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-acetic acid





C59
A66


embedded image


2-(2-(2-methyl-2-phenyl-propyl)-4-oxo-4H-quinazolin-1-yl)-acetic acid





C60
A67


embedded image


(+/−)-2-(2-(1-methyl-2-phenyl-ethyl)-4-oxo-4H-quinazolin-1-yl)-acetic acid





C61
A59


embedded image


2-(5-Fluoro-2-(2-(2,3,4-trifluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-acetic acid





C62
A59


embedded image


2-(6-Fluoro-2-(2-(2,3,4-trifluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-acetic acid





C63
A59


embedded image


2-(7-Fluoro-2-(2-(2,3,4-trifluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-acetic acid





C64
A54


embedded image


2-(2-(2-(2,3-Difluorophenyl)-ethyl)-5-methyl-4-oxo-4H-quinazolin-1-yl)-acetic acid





C65
A54


embedded image


2-(2-(2-(2,3-Difluorophenyl)-ethyl)-6-methyl-4-oxo-4H-quinazolin-1-yl)-acetic acid





C66
A54


embedded image


2-(2-(2-(2,3-Difluorophenyl)-ethyl)-8-methyl-4-oxo-4H-quinazolin-1-yl)-acetic acid





C67
A54


embedded image


2-(2-(2-(2,3-Difluorophenyl)-ethyl)-7-(trifluoromethyl)-4-oxo-4H-quinazolin-1-yl)-aceticacid





C68
3-Phenyl-propionylchloride


embedded image


2-(2-(2-phenyl-ethyl)-4-oxo-4H-quinazolin-1-yl)-acetic acid





C75
A54


embedded image


2-(2-(2-(2,3-difluorophenyl)-ethyl)-7-methyl-4-oxo-4H-quinazolin-1-yl)-acetic acid





C76
A54


embedded image


2-(2-(2-(2,3-difluorophenyl)-ethyl)-6,7-difluoro-4-oxo-4H-quinazolin-1-yl)acetic acid





C77
A54


embedded image


2-(2-(2-(2,3-difluorophenyl)-ethyl)-7-fluoro-4-oxo-4H-quinazolin-1-yl)acetic acid





C78
A54


embedded image


2-(2-(2-(2,3-difluorophenyl)-ethyl)-6-fluoro-4-oxo-4H-quinazolin-1-yl)acetic acid









Intermediate C69
2-2-[2-(4-Fluorophenyl)-ethyl]-4-oxo-4H-quinazolin-1-yl)-acetic acid



embedded image


Ethyl 2-(2-[2-(4-fluorophenyl)-ethyl]-4-oxo-4H-quinazolin-1-yl)-acetate (Intermediate B68) was hydrolysed using the method for Example C1 to give the title compound.


The following acetic acid intermediates were prepared using the general procedures of Examples B68 and C1.















No.
Precursors
Structure
Name







C70
A95


embedded image


2-(2-(2-phenyl-propyl)-4-oxo-4H-quinazolin-1-yl)-acetic acid





C71
A98


embedded image


2-(2-(2-(2,5-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-acetic acid





C72
B67, A108


embedded image


2-(2-(2-(4-fluorophenyl)-ethyl)-5-methyl-4-oxo-4H-thieno[2,3-d]pyimidin-1-yl)-acetic acid









Intermediate C80
2-(2-(2-(2,3-Difluorophenyl)-ethyl)-4-oxo-4H-pyrido[3,2-d]pyrimidin-1-yl)acetic acid



embedded image


A mixture of 3-amino-pyridine-2-carboxylic acid amide (300 mg, 2.2 mmol), ethyl bromoacetate (0.24 ml, 2.2 mmol) and sodium hydrogen carbonate (185 mg, 2.2 mmol) in DMF (2 ml) was heated at 70 ° C. for 4 h. The mixture was evaporated to dryness and partitioned between water and dichloromethane. The aqueous layer was extracted with dichloromethane and the combined organic phases washed with brine, dried (MgSO4) and evaporated. The residue was purified by chromatography (10 g silica cartridge, dichloromethane-50% ethyl acetate/dichloromethane) to give the title compound as a white solid. This material was converted to the title compound in a two step procedure by the methods of Intermediates B65 and C43. 1H-NMR (d6 DMSO) δ 3.13 (4H, brs), 5.20 (2H, s), 7.12-7.32 (3H, m), 7.83 (1H, dd), 8.13 (1H, d), 8.80 (1H, d), 13.70 (1H, brs); MS (APCI−) found (M−1)=344; C17H13F2N3O3 requires 345.


Intermediate D1
4-(4-Chlorophenyl)benzaldehyde



embedded image


(a) A mixture of 4-formylbenzeneboronic acid (2.50 g, 2 equiv), 4-chloroiodobenzene (1.98 g, 1 equiv), tetrakis(triphenylphosphine)palladium(0) (0.50 g, 0.05 equiv), aqueous sodium carbonate (18 ml, 2M solution, 2 equiv) and dimethoxyethane (50 ml) was stirred at reflux under argon overnight, then cooled and diluted with ethyl acetate. The mixture was filtered as necessary to remove inorganic residues, then the organic layer was washed successively with aqueous citric acid and brine, dried and evaporated. The crude product was purified by chromatography (silica, 5% ethyl acetate in hexane); product fractions were evaporated to a white solid (1.32 g, 72%).


(b) A mixture of 4-chlorobenzeneboronic acid (19.4 g, 1 equiv), 4-bromobenzaldehyde (22.9 g, 1 equiv), palladium(II) acetate (1.4 g, 0.05 equiv), aqueous sodium carbonate (30.3 g in 144 ml solution, 2 equiv) and dimethoxyethane (500 ml) was stirred at reflux under argon for 2.5 h, then evaporated to low volume and diluted with dichloromethane. Workup continued as in (a) above to give identical material (25.2 g, 94%). 1H-NMR (CDCl3) δ 10.05 (1H, s), 7.96 (2H, d), 7.73 (2H, d), 7.57 (2H, d), 7.46 (2H, d); MS (AP+) found (M+1)=217, C13H9ClO requires 216.


Intermediate D2
4-(4-Trifluoromethylphenyl)-benzaldehyde



embedded image


A 3 L 3-neck flask fitted with top stirrer, condenser and argon inlet/outlet was charged with 4-trifluoromethybenzene boronic acid (90.0 g, 0.474 mol), 4-bromobenzaldehyde (83.29 g, 0.450 mol) and 1,2-dimethoxyethane (1.3 L), followed by 2M aqueous sodium carbonate (474 ml) and palladium acetate (5.32 g, 0.0237 mol). The stirring mixture was heated to reflux for 4 h under argon, then allowed to cool to room temperature over 16 h. The reaction mixture was filtered through hyflo. The filtrate was diluted with saturated brine and extracted 3× with ethyl acetate. The combined extracts were dried over magnesium sulfate and filtered through hyflo, giving a clear orange filtrate which was evaporated to a solid (ca. 120 g, crude). Flash chromatography (silica, 10-50% dichloromethane in pet. ether, 10% steps) gave a white solid which dissolved in hexane (500 ml) on boiling. Crystallisation, finally in ice, gave the title compound as a solid which was filtered off, washed with ice cold hexane and dried, (86.33 g, 77%). 1H-NMR (CDCl3) δ 7.77-8.03 (8H, m), 10.09 (1H, s)


Intermediate D3
N-(2-Diethylaminoethyl)-4-(4-chlorophenyl)benzylamine



embedded image


A mixture of Intermediate D1 (55.0 g), N,N-diethylethylenediamine (35.6 ml), 4A molecular sieve (37 g), and dichloromethane (1100 ml) was reacted at room temperature under argon for 16 h, with occasional agitation. The solid was filtered off and washed with dichloromethane, and the combined filtrates evaporated to a yellow foam (72.4 g). This intermediate imine was reduced with sodium borohydride (8.7 g) in ethanol (850 ml) as described for Intermediate D4, yielding the title compound as a yellow oil (72.7 g). 1H-NMR (CDCl3) δ 1.70 (2H, t), 2.22 (6H, s), 2.33 (2H, t), 2.69 (2H, br. m), 3.83 (2H, s), 7.37-7.43 (4H, m), 7.52-7.56 (4H, m).


Intermediate D4
N,N-diethyl-N′-(4′-trifluoromethylbiphenyl-4-ylmethyl)-ethane-1,2-diamine)



embedded image


4-(4-Trifluoromethylphenyl)benzaldehyde (85.43 g, 0.3414 mol) (Int. D2) and 4A molecular sieve (400 g, predried at 120° C.) were suspended in dichloromethane (1.4 L), then N,N-diethylethylenediamine (47.97 ml, 0.3414 mol) was added. The mixture was left at room temperature for 16 h with occasional shaking, then the sieves were filtered off and washed with dichloromethane. The combined filtrates were evaporated to a yellow solid and dried under high vacuum. This material (114.3 g, 0.328 mol) in ethanol (1 L) was cooled in an ice bath, and sodium borohydride (12.41 g, 0.328 mol) was added under argon with stirring. Hydrogen evolution was observed. After 30 min the ice bath was removed, and the cloudy yellow solution was left to stand at room temperature for 16 h. The solvent was removed in vacuo, water and brine were added, and the mixture was extracted 3× with dichloromethane. The combined extracts were dried over potassium carbonate and evaporated to give the title compound as a yellow solid, (112.1 g, 98%). 1H-NMR (CDCl3) δ 7.66 (4H, s), 7.53-7.56 (2H, m), 7.40-7.44 (2H, m), 3.86 (2H, s), 2.47-2.75 (9H, m), 0.96-1.10 (6H, m); MS(APCI+) found (M+1)=351, C20H25F3N2 requires 350.


Intermediate D5
N-Methyl-4-(4-trifluoromethylphenyl)benzylamine



embedded image


A mixture of Intermediate D2 (4.57 g, 1 eq), methylamine (9.15 mL of a 2M solution in THF) and anhydrous magnesium sulphate (4.41 g, 2 eq) was stirred at room temperature for 16 h, filtered and the solid washed thoroughly with ethyl acetate. The combined filtrates were evaporated to a solid which was suspended in ethanol (90 mL) and sodium borohydride (1.01 g, 1.5 eq) added portionwise. The mixture stirred at room temperature for 3 h and the solvent removed in vacuo and the residue partitioned between dichloromethane and water. The organic layer was washed with brine, dried and evaporated to give the title compound as a white solid. 1H-NMR (CDCl3) δ 7.68 (4H, m), 7.56-7.58 (2H, m), 7.43-7.45 (2H, m), 3.83 (2H, s), 2.50 (3H, s); MS(APCI+) found (M+1)=266, C15H14F3N requires 265.


Intemediate D6
4-(4-Trifluoromethylphenyl)benzonitrile



embedded image


Prepared by the method of intermediate D2 using 4-trifluoromethylbenzeneboronic acid and 4-bromobenzonitrile. 1H-NMR (DMSO) δ 7.99-7.94 (6H, m) 7.86 (2H, d); MS(APCI+) found (M+1)=248, C14H8NF3requires 247.


Intemediate D7
4-(4-Trifluoromethylphenyl)benzylamine, free base and hydrochloride salt



embedded image


(a) A solution of intermediate D6 (75.5 g, 0.306 mol) in anhydrous THF (500 ml) was added dropwise to a solution of lithium aluminium hydride (460 ml, 1.0M solution in THF) at 0° C. under argon. The mixture was stirred at room temperature for 16 h, then water (17 ml), 10% aqueous sodium hydroxide solution (10 ml) and water (50 ml) were carefully added dropwise over 8 h under argon. The mixture was stirred for 16 h, then filtered through celite and the filtrate evaporated. The residue was dissolved in dichloromethane (500 ml) and washed with brine, dried and evaporated to give the title compound as a cream solid (66.3 g, 86%). 1H-NMR (CDCl3) δ 7.68 (4H, s), 7.57 (2H, d), 7.42 (2H, d), 3.94 (2H, s), 1.50 (2H, s); MS(APCI+) found (M-NH2)=235, C14H12F3N requires 251.


(b) To a solution of intermediate D6 (96.7 g, 0.39 mol) in absolute ethanol (5 L) and concentrated hydrochloric acid (200 ml) was added 10% palladium on charcoal (30.0 g, 54% H2O paste). The mixture was stirred under 50 psi hydrogen for 16 h. Additional 10% palladium on charcoal (25.0 g, 54% H2O paste) was added and the mixture was stirred under 50 psi hydrogen for further 16 h. The mixture was filtered through celite and the solvent evaporated to give the hydrochloride salt of the title compound as a cream solid (102.5 g, 91%). 1H-NMR (DMSO) δ 8.61 (3H, s), 7.93 (2H, d), 7.83 (2H, d), 7.80 (2H, d), 7.65 (2H, d), 4.08 (2H, s); MS(APCI+) found (M-NH2)=235, C14H12F3N requires 251.


Intermediate D8
N-(1-Methyl-piperidin-4-yl)-4-(4-trifluoromethylphenyl)benzylamine



embedded image


A mixture of intermediate D7 hydrochloride salt (6.0 g, 20.9 mmol), 1-methyl-piperidin-4-one (2.56 ml, 20.8 mmol), sodium triacetoxyborohyride (6.20 g, 29.3 mmol) and acetic acid (1.3 ml) in dichloroethane (50 ml) was stirred at room temperature under argon for 16 h then poured into 2M sodium hydroxide solution (150 ml). The organic phase was separated and the aqueous layer extracted with dichloromethane. The combined organic phases were washed with brine, dried and evaporated. Chromatography (silica, dichloromethane to 97:3 dichloromethane/methanolic ammonia) gave the product as a cream solid (6.3 g, 87%). 1H-NMR (CDCl3) δ 7.68 (4H, s), 7.57 (2H, d), 7.42 (2H, d), 3.87 (2H, s), 2.82 (2H, m), 2.52 (1H, m), 2.27 (3H, s), 1.90-2.02 (4H, m), 1.45-1.51 (2H, m); MS(APCI+) found (M+1)=349, C20H23N2F3 requires 348.


Intermediate D9
4-(4-Bromophenyl)benzylaldehyde



embedded image


A solution of 4,4′-dibromobiphenyl (10 g, 32 mmol) in tetrahydrofuran (250 ml), was cooled to −78° C., and butyllithium (2.5M, 12.8 ml, 32 mmol) was added dropwise. After 15 min, dimethylformamide (50 ml) was added, initially dropwise. The mixture was allowed to warm to room temperature and stirred for 2 h, then water (250 ml) was added and the product was extracted into ether. Drying and evaporation of the extracts, followed by chromatography (silica, toluene) yielded the title compound (7.1 g, 85%). 1H-NMR (CDCl3) δ 7.49 (2H, d), 7.60 (2H, d), 7.71 (2H, d), 7.95 (2H, d), 10.08 (1H, s).


Intermediate D10
4-(Thien-2-yl)benzyl acohol



embedded image


A mixture of 4-bromobenzyl alcohol (2.09 g, 11.2 mmol), 2-(tributylstannyl)thiophene (5.0 g, 13.4 mmol), tetrakis(trphenylphosphine)palladium (0.39 g, 0.34 mmol) and xylene (30 ml) was stirred at 140° C. for 1h, then cooled and applied directly to a silica column. Elution with ethyl acetate/hexane gave the desired product (1.43 g, 67%). 1H-NMR (CDCl3) δ 4.70 (2H, s), 7.07 (1H, m), 7.27 (1H, m), 7.30 (1H, m), 7.36 (2H, d), 7.60 (2H, d).


Intermediate D11
4-(5-Tributylstannyl-thien-2-yl)benzyl acohol



embedded image


Intermediate D10 (1.43 g, 7.5 mmol) was dissolved in THF (40 ml) and cooled to −30° C. n-Butyllithium (16.5 mmol) was added dropwise and stirring continued at −30° C. for 1 h, then the mixture was cooled to −78° C. and a solution of tributyltin chloride (4.47 ml, 16.5 mmol) in THF (10 ml) was added. The mixture was allowed to warm to room temperature, then saturated aqueous ammonium chloride (15 ml) was added with stirring, followed by water (10 ml). The product was extracted into ether, dried, and the solvent evaporated. Chromatography (silica, 30% ethyl acetate in hexane) gave the desired product (3.29 g, 92%). 1H-NMR (CDCl3) δ 0.90 (9H, t), 0.13 (6H, m), 0.37 (6H, m), 1.63 (6H, m), 4.70 (2H, d), 7.14 (1H, m), 7.36 (2H, m), 7.42 (1H, m), 7.62 (2H, m).


Intermediate D12
4-(5-Iodothien-2-yl)benzyl acohol



embedded image


A solution of intermediate D11 (1.6 g, 3.34 mmol) in chloroform (40 ml) was cooled to 0° C. and a solution of iodine (0.805 g, 3.17 mmol) in chloroform (10 ml) was added dropwise, followed by a solution of potassium fluoride (1.2 equiv) in methanol (4 ml). After stirring for 2 mins water was added, then the organic layer was separated and applied directly to a silica column, which was eluted with ethyl acetate/hexane to obtain the title compound (0.84 g, 80%). 1H-NMR (CDCl3) δ 1.66 (1H, t), 4.70 (2H, d), 6.97 (1H, m), 7.21 (1H, m), 7.36 (2H, m), 7.51 (2H, m).


Intermediate D13
4-(5-Iodothien-2-yl)benzaldehyde



embedded image


A mixture of intermediate D12 (0.40 g) and manganese dioxide (1.1 g, 10 equiv) in dichloromethane (20 ml) was stirred under argon in the dark for 16 h. Filtration through celite and evaporation of the solvent yielded the title compound (0.36 g). 1H-NMR (CDCl3) δ 7.11 (1H, m), 7.26 (1H, m), 7.64 (2H, m), 7.89 (2H, m), 10.00 (1H, s).


Intermediate D14
4-(5-Trifluoromethylthien-2-yl)benzaldehyde



embedded image


A mixture of intermediate D13 (0.772 g, 2.46 mmol), methyl 2,2-difluoro-2-(fluorosulfonyl)acetate (2.36 g, 12.3 mmol), copper iodide (0.56 g, 2.95 mmol), N-methylpyrrolidone (1.18 ml, 12.3 mmol) and dimethylformamide (20 ml) was stirred at 70° C. for 7 h, then further portions of methyl 2,2-difluoro-2-(fluorosulfonyl)acetate (2.36 g, 12.3 mmol) and copper iodide (2.8 g, 12.3 mmol) were added, and heating was continued for a further 6 h. Saturated aqueous ammonium chloride (30 ml) was added with stirring, then the mixtured was diluted with water (20 ml), filtered through celite, then extracted with ethyl acetate. The extracts were dried, evaporated, and purified by chromatography (silica, 15% ethyl acetate in hexane); yield 0.44 g (70%). 1H-NMR (CDCl3) δ 7.39 (1H, m), 7.46 (1H, m), 7.77 (2H, m), 7.94 (2H, m), 10.06 (1H, s).


Intermediate D15
4-(4-Pentafluorophenyl)benzaldehyde



embedded image


Pentafluoroethyl iodide (2 ml, 16.9 mmol) was added to copper (2.12 g, 33.3 mmol) and dimethylsulfoxide (13 ml) at 0° C. in a tube which was then sealed and heated to 110° C. for 4 h. A portion of the resulting organocuprate solution (3.2 ml) was mixed with intermediate D9 (0.20 g) and heated to 70° C. for 3 h. The remaining organocuprate was added, and heating continued for 20 h. The mixture was poured into a mixture of 2M hydrochloric acid and ethyl acetate, then the organic layer was dried and evaporated to obtain the title compound (0.22 g). 1H-NMR (CDCl3) δ 7.74 (6H, m), 7.97 (2H, m), 10.10 (1H, s).


The following intermediates were made as described in WO 00/66567














No.
Structure
Name







D16


embedded image


(2-(4-trifluoromethylphenyl)pyrimidine-5-carboxaldehyde





D17


embedded image


5-Formyl-2-(4-trifluoromethylphenyl)pyridine





D18


embedded image


4-(4-Chlorophenyl)benzylamine









5-(4-Chlorophenyl)furfural (Intermediate D19) was commercially available. The following intermediates were made by the method of Intermediate D1:














No.
Precursors
Name







D21
4-bromobenzaldehyde,
4-(4-n-pentylphenyl)benzaldehyde



4-n-pentylbenzeneboronic acid


D22
5-bromothiophene-2-carboxaldehyde
5-(4-trifluoromethylphenyl)thiophene-2-



4-trifluoromethylbenzeneboronic acid
carboxaldehyde


D23
4-bromobenzaldehyde
4-(2-chlorothien-5-yl)benzylaldehyde



5-chlorothiophene-2-boronic acid


D24
4-bromobenzaldehyde,
4-(4-methylphenyl)benzaldehyde



4-methylbenzeneboronic acid


D25
4-bromobenzaldehyde,
4-(4-ethylphenyl)benzaldehyde



4-ethylbenzeneboronic acid


D26
4-bromobenzaldehyde,
4-(4-methylthiophenyl)benzaldehyde



4-methylthiobenzeneboronic acid


D27
4-isopropyliodobenzene
4-(4-isopropylphenyl)benzaldehyde



4-formylbenzeneboronic acid


D28
4-iodobenzonitrile
4-(4-cyanophenyl)benzaldehyde



4-formylbenzeneboronic acid


D29
4-bromobenzaldehyde,
4-(4-methylsulfonylphenyl)benzaldehyde



4-methylsulfonylbenzeneboronic acid


D30
5-bromo-2-furaldehyde
5-(4-trifluoromethylphenyl)furfural



4-trifluoromethylbenzeneboronic acid


D31
5-bromothiophene-2-carboxaldehyde
5-(5-chlorothien-2-yl)thiophene-2-



5-chlorothiophene-2-boronic acid
carboxaldehyde


D91
1-iodo-4-(piperidin-1-ylsulfonyl)benzene
4-(piperidin-1-ylsulfonylphenyl)benzaldehyde



4-formylbenzeneboronic acid









The following intermediates were made by the method of Intermediate D3: Amine precursors were either commercially available, or readily prepared from commercially available materials by literature methods or minor modifications thereof















No.
Precursor
Structure
Name







D32
Int. D2


embedded image


N-(2-(piperidin-1-yl)ethyl)-4-(4-trifluoro-methylphenyl)benzylamine





D33
Int. D2


embedded image


N-(2-(N′-ethyl-t-butoxycarbonylamino)-ethyl)-4-(4-trifluoro-methylphenyl)benzylamine





D34
Int. D2


embedded image


N-(2-(ethylamino)-2-methyl-propyl)-4-(4-trifluoromethylphenyl)benzylamine





D35
Int. D2


embedded image


N-(2-(diethylamino)-2-methyl-propyl)-4-(4-trifluoromethylphenyl)-benzylamine





D36
Int. D2


embedded image


N-(2-(dimethylamino)-2-methyl-propyl)-4-(4-trifluoromethylphenyl)benzylamine





D37
Int. D2


embedded image


N-(2-(isopropylamino)-2-methyl-propyl)-4-(4-trifluoromethylphenyl)benzylamine





D38
Int. D2


embedded image


N-(2-(t-butylamino)-ethyl)-4-(4-trifluoro-methylphenyl)benzylamine





D39
Int. D2


embedded image


N-(2-(piperidin-1-yl)-2-methyl-propyl)-4-(4-trifluoromethylphenyl)benzylamine





D40
Int. D2


embedded image


N-(2-(morpholin-4-yl)ethyl)-4-(4-trifluoro-methylphenyl)benzylamine





D41
Int. D2


embedded image


N-(2-(morpholin-4-yl)-2-methyl-propyl)-4-(4-trifluoro-methylphenyl)benzylamine





D42
Int. D2


embedded image


N-(2-(pyrrolidin-1-yl)ethyl)-4-(4-trifluoro-methylphenyl)benzylamine





D43
Int. D2


embedded image


N-(2-(pyrrolidin-1-yl)-2-methyl-propyl)-4-(4-trifluoromethylphenyl)benzylamine





D44
Int. D2


embedded image


N-(3-(piperidin-1-yl)-propyl)-4-(4-trifluoro-methylphenyl)benzylamine





D45
Int. D2


embedded image


N-(3-(morpholin-4-yl)-propyl)-4-(4-trifluoro-methylphenyl)benzylamine





D46
Int. D2


embedded image


N-(3-(pyrrolidin-1-yl)-propyl)-4-(4-trifluoro-methylphenyl)benzylamine





D49
Int. D2


embedded image


(+/−)-N-(1-ethyl-pyrrolidin-2-ylmethyl)-4-(4-trifluoromethylphenyl)benzylamine





D50
Int. D21


embedded image


N-(2-diethylaminoethyl)-4-(4-pent-1-ylphenyl)benzylamine





D51
4-biphenyl-carboxaldehyde


embedded image


N-(2-diethylaminoethyl)-4-(phenyl)benzylamine





D53
Int. D2


embedded image


N-(3-diethylamino-propyl)-4-(4-trifluoro-methylphenyl)benzylamine





D54
Int. D2


embedded image


N-(2,2-dimethyl-3-dimethylamino-propyl)-4-(4-trifluoromethylphenyl)benzylamine





D55
Int. D2


embedded image


N-(3-(pyrrolidin-1-yl)-2,2-dimethylpropyl)-4-(4-trifluoromethylphenyl)benzylamine





D56
Int. D2


embedded image


N-(1-ethylpiperidin-4-ylmethyl)-4-(4-trifluoromethylphenyl)benzylamine





D57
Int. D24


embedded image


N-(2-diethylaminoethyl)-4-(4-methylphenyl)-benzylamine





D58
Int. D25


embedded image


N-(2-diethylaminoethyl)-4-(4-ethylphenyl)-benzylamine





D59
Int. D26


embedded image


N-(2-diethylaminoethyl)-4-(4-methylthio-phenyl)benzylamine





D60
Int. D27


embedded image


N-(2-diethylaminoethyl)-4-(4-isopropyl-phenyl)benzylamine





D61
Int. D28


embedded image


N-(2-diethylaminoethyl)-4-(4-cyanophenyl)-benzylamine





D62
Int. D29


embedded image


N-(2-diethylaminoethyl)-4-(4-methylsulfonyl-phenyl)benzylamine





D63
Int. D9


embedded image


N-(2-diethylaminoethyl)-4-(4-bromophenyl)-benzylamine





D64
Int. D2


embedded image


N-(2-methoxyethyl)-4-(4-trifluoromethyl-phenyl)benzylamine





D65
Int. D2


embedded image


N-(t-butoxycarbonylmethyl)-4-(4-trifluoro-methylphenyl)benzylamine





D66
Int. D17


embedded image


N-methyl-2-(4-trifluoromethylphenylpyrid-5-ylmethylamine





D67
Int. D16


embedded image


N-(2-diethylaminoethyl)-(2-(4-trifluoro-methylphenyl)pyrimid-5-ylmethylamine





D68
Int. D23


embedded image


N-(2-diethylaminoethyl)-4-(2-chlorothien-5-yl)benzylamine





D69
Int. D22


embedded image


N-(2-diethylaminoethyl)-5-(4-trifluoromethyl-phenyl)thien-2-ylmethylamine





D70
Int. D14


embedded image


N-(2-diethylaminoethyl)-4-(5-trifluoromethyl-thien-2-yl)benzylamine





D71
Int. D17


embedded image


N-(2-(diethylamino)ethyl)-2-(4-trifluoro-methylphenyl)pyrid-5-ylmethylamine





D72
Int. D23


embedded image


N-(1-ethylpiperidin-4-yl)-4-(5-chlorothien-2-yl)benzylamine





D73
Int. D19


embedded image


N-(1-ethylpiperidin-4-yl)-5-(4-chlorophenyl)-fur-2-ylmethylamine





D74
Int. D30


embedded image


N-(1-ethylpiperidin-4-yl)-5-(4-trifluoro-methylphenyl)fur-2-ylmethylamine





D75
Int. D31


embedded image


N-(1-ethylpiperidin-4-yl)-2-(2-chlorothien-5-yl)thien-5-ylmethylamine





D76
Int. D15


embedded image


N-(1-ethylpiperidin-4-yl)-(4-pentafluoro-ethylphenyl)benzylamine





D77
Int. D22


embedded image


N-(1-ethylpiperidin-4-yl)-5-(4-trifluoro-methylphenyl)thien-2-ylmethylamine





D78
Int. D17


embedded image


N-methyl-2-(4-trifluoromethylphenyl)pyrid-5-ylmethylamine





D79
Int. D14


embedded image


N-(1-ethylpiperidin-4-yl)-4-(5-trifluoro-methylthien-2-yl)benzylamine





D95
Int D2


embedded image


N-(1-t-butoxycarbonylpiperidin-4-yl)-4-(4-trifluoromethylphenyl)benzylamine





D96
Int D91


embedded image


N-(2-diethylaminoethyl)-4-(4-piperidin-1-ylsulfonylphenyl)benzylamine





D97
Int. D2


embedded image


N-(4-(pyrrolidin-1-yl)-butyl)-4-(4-trifluoromethylphenyl)benzylamine









The following intermediates were made by the method of Intermediate D8: Piperidone precursors were either commercially available, or readily prepared from commercially available materials by literature methods or minor modifications thereof.

















D47
Int. D2


embedded image


N-(1-ethyl-piperidin-4-yl)-4-(4-trifluoro-methylphenyl)benzylamine





D48
Int. D2


embedded image


N-(1-isopropyl-piperidin-4-yl)-4-(4-trifluoromethylphenyl)benzylamine





D80
Int. D2


embedded image


N-(1-(2-methoxyethyl)piperidin-4-yl)-4-(4-trifluoromethylphenyl)benzylamine





D81
Int. D2


embedded image


N-(1-ethoxycarbonylmethylpiperidin-4-yl)-4-(4-trifluoromethylphenyl)-benzylamine





D82
Int. D18


embedded image


N-(1-ethylpiperidin-4-yl)-4-(chloro-phenyl)benzylamine





D83
Int. D18


embedded image


N-(1-methylpiperidin-4-yl)-4-(4-chloro-phenyl)benzylamine





D84
Int. D18


embedded image


N-(1-isopropylpiperidin-4-yl)-4-(4-chlorophenyl)benzylamine





D85
Int. D18


embedded image


N-(1-(2-methoxyethyl)piperidin-4-yl)-4-(4-chlorophenyl)benzylamine









Example 1
N-(2-Diethylaminoethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate



embedded image


A solution of N-(2-(diethylamino)ethyl)-4-(4-trifluoromethylphenyl)benzylamine (Intermediate D4) (0.25 g, 0.73 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (DEC) (0.28 g, 1.45 mmol), 1-hydroxybenzotriazole hydrate (0.10 g, 0.73 mmol), 2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-acetic acid (Int. C43) (0.25 g, 0.73 mmol) in dichloromethane (20 ml) was stirred at ambient temperature overnight then diluted with dichloromethane, washed with aqueous sodium bicarbonate and evaporated. The residue was purified by chromatography (10 g silica cartridge, 20% methanol in ethyl acetate) to give the title compound, as the free base, as a yellow foam (0.43 g, 88%). 1H-NMR (CDCl3, rotamer mixture) δ 0.98-1.04 (6H, m), 2.50-2.67 (6H, m), 2.85-3.02 (2H, m), 3.23-3.66 (4H, m), 4.71/4.85/5.28 (4H, 3× s), 6.86-7.53 (9H, m), 7.63-7.73 (5H, m), 8.34/8.40 (1H, 2× d); MS (APCI+) found (M+1)=677; C38H37F5N4O2 requires 676.


A solution of d-tartaric acid (0.94 g, 0.62 mmol) and the title compound as the free base (0.42 g, 0.62 mmol) in methanol (2 ml) was evaporated to give a yellow foam which was triturated with ether, filtered, and dried in vacuo to yield the salt (0.49 g, 96%). 1H-NMR (CDCl3, rotamer mixture) δ 0.89-1.02 (6H, m), 2.55-3.50 (12H, m), 4.23 (2H, s), 4.64/4.88 (2H, 2× s), 5.29/5.53 (2H, 2× s), 7.10-7.86 (14H, m), 8.10 (1H, t). MS (APCI+) found (M+1)=677; C38H37F5N4O2 requires 676.


Example 2
N-(2-Diethylaminoethyl)-2-(5-ethyl-2-[2-(4-fluorophenyl)ethyl]-4-oxo-4H-pyrimidin-1-yl)-N-(4′-trifluoromethylbiphenyl-4-ylmethyl)acetamide bitartrate



embedded image


2-(5-Ethyl-2-[2-(4-fluorophenyl)ethyl]-4-oxo-4H-pyrimidin-1-yl)acetic acid (Int. C2) (150 mg), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride(89 mg), 1-hydroxybenzotriazole hydrate, (67 mg) and N,N-diethyl-N′-(4′-trifluoromethylbiphenyl-4-ylmethyl)ethane-1,2-diamine (Int. D4) (173 mg) were combined in dichloromethane (20 ml) at room temperature and stirred for 24 h. The solution was washed with saturated sodium bicarbonate, brine, dried and concentrated. The crude product was purified by column chromatography (silica gel,40% methanol/ethyl acetate). The title compound was obtained as a yellow foam, (277 mg, 89%); 1H-NMR (CDCl3) ca 2:1 mixture of rotamers δ 0.94/0.99 (6H, t, J=7.1Hz), 1.14 (3H, m), 2.42-2.75 (10H, m), 3.07/3.15 (2H, t, J=8.3 Hz), 3.25/3.59 (2H, t, J=4.8Hz), 4.34/4.66 (2H, s), 4.66/4.83 (2H, s) and 6.86-7.74 (13H, m). (APCI+) Found (M+1)=637, C36H40F4N4O2 requires 636.


The bitartrate salt was prepared by treatment of the free base (270 mg) in methanol (2 ml) with d-tartaric acid,(64 mg). The solution was concentrated to a yellow foam, and triturated with ether to give the title compound as a yellow solid, (314 mg, 94%), 1H-NMR (DMSO) ca 2:1 mixture of rotamers δ 0.90/0.97 (6H, t, J=7.2 Hz), 1.06 (3H, m), 2.27 (2H, m), 2.50 (2H, m), 2.68 (6H, m), 2.93 (2H, m), 3.37/3.45 (2H, t, J=6.0 Hz), 4.21 (2H, s), 4.64/4.71 (2H, s), 4.99/5.15 (2H, s) and 7.06-7.85 (13H, m).


Example 3
N-(2-Diethylaminoethyl)-2-[2-(2-(2,3-difluorophenyl)ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl]-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate



embedded image


A solution of N,N-diethyl-N′-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-ethane-1,2-diamine (Int D4) (0.50 g, 1.44 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (0.56 g, 1.45 mmol), 1-hydroxybenzotriazole hydrate (0.12 g) and 2-(2-[2-(2,3-difluorophenyl)-ethyl]-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-acetic acid (Int C1) (0.48 g, 1.44 mmol) in dichloromethane (10 ml) was stirred at ambient temperature overnight then diluted with dichloromethane (30 ml), washed with aqueous sodium bicarbonate and evaporated. The residue was purified by chromatography (10 g silica cartridge, ethyl acetate-acetone) to give the title compound as a yellow foam (free base) (0.50 g, 52%). 1H-NMR (DMSO, rotamer mixture) δ 0.83-0.89 (6H, m), 1.98 (2H, m), 2.40 (4H, m), 2.45-2.82 (10H, m), 3.02 (2H, m), 4.64/4.75 (2H,2× s), 4.96/5.19 (2H,2× s), 7.11-7.40 (5H, m), 7.65 (2H, m), 7.84 (4H, m); MS (APCI+) found (M+1)=667; C37H39F5N4O2 requires 666.


d-Tartaric acid (0.09 g, 0.60 mmol) was added to a solution of the free base (0.40 g, 0.60 mmol) in methanol (10 ml) with stirring. The resulting solution was evaporated to yield the salt (0.49 g). 1H-NMR (DMSO, rotamer mixture) δ 0.85-0.97 (6H, m), 1.91-2.00 (2H, m), 2.40-2.49 (4H, m), 2.54-2.82 (10H, m), 3.02-3.46 (2H, m), 4.20 (2H, s), 4.64/4.75 (2H, 2× s), 4.97/5.18 (2H, 2× s), 7.11-7.40 (5H, m), 7.65 (2H, m), 7.84 (4H, m); MS (APCI+) found (M+1)=667; C37H39F5N4O2 requires 666.


Example 4
N-(2-Diethylaminoethyl)-2-[2-(2-(2,3-difluorophenyl)ethyl)-4-oxo-4H-thieno[3,2-d]pyrimidin-1-yl]-N-(4′-trifluoromethylbiphenyl-4-ylmethyl)acetamide bitartrate



embedded image


2-(2-[2-(2,3-Difluorophenyl)ethyl]-4-oxo-4H-thieno[3,2-d]pyrimidin-1-yl)acetic acid, (Int. C39) (150 mg), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (164 mg), 1-hydroxybenzotriazole hydrate (58 mg) and N,N-diethyl-N′-(4′-trifluoromethylbiphenyl-4-ylmethyl)ethane-1,2-diamine (Int. D4) (150 mg) were combined in dichloromethane (5 ml) at room temperature and stirred for 24 h. The solution was washed with saturated sodium bicarbonate, brine, dried and concentrated. The crude product was purified by column chromatography on silica gel eluting with 40% methanol/ethyl acetate. The title compound was obtained as a yellow foam, (260 mgs, 89%), 1H-NMR (CDCl3) ca 2:1 mixture of rotamers δ 1.00 (6H, t, J6.8 Hz), 2.57 (4H, q, J6.8 Hz), 2.64 (2H, m), 2.83/2.96 (2H, t, J8.4 Hz), 3.24/3.30 (2H, t, J8.4 Hz), 3.39/3.65 (2H, m), 4.68/4.82 (2H, s), 5.30 (2H, s), 6.95-7.06 (5H, m), 7.32/7.36 (1H, d, J8.4 Hz), 7.52/7.60 (1H, d, J8.2 Hz) and 7.62-7.72 (6H, m). (APCI+) Found (M+1)=683, C36H35F5N4O2S requires 682.


The free base (260 mg) in methanol (2 ml) was treated with d-tartaric acid (57 mg). The solution was concentrated to a colourless foam and triturated with ether to give the title compound as a colourless solid (304 mg, 96%), 1H-NMR (DMSO) ca 2:1 mixture of rotamers δ 0.90/0.98 (6H, t, J7.0 Hz), 2.72-3.51 (10H, complex m), 4.22 (2H, s), 4.64/4.83 (2H, s), 5.34/5.55 (2H, s), 7.14-7.44 (6H, m), 7.65 (2H, m), 7.83 (4H, m) and 8.13/8.17 (1H, d, J5.4 Hz).


Example 5
N-(2-Diethylaminoethyl)-2-[6-(2-(2,3-difluorophenyl)ethyl)-2-methyl-4-oxo-2,4-dihydro-pyrazolo[3,4-d]pyrimidin-7-yl]-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate



embedded image


A solution of N,N-diethyl-N′-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-ethane-1,2-diamine (Int. D4) (0.54 g, 0.73 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (0.58 g, 3.04 mmol), 1-hydroxybenzotriazole hydrate (0.03 g), {6-[2-(2,3-difluorophenyl)-ethyl]-2-methyl-4-oxo-2,4-dihydro-pyrazolo[3,4-d]pyrimidin-7-yl}-acetic acid (Int. C41) (0.54, 1.52 mmol) and N,N-diisopropylethylamine (0.27 ml, 1.55 mmmol) in dichloromethane (6 ml) was stirred at ambient temperature overnight then diluted with dichloromethane, washed with aqueous sodium bicarbonate and evaporated. The residue was purified by chromatography (10 g silica cartridge, dichloromethane-2% methanolic ammonia/dichloromethane) to give the title compound as a white solid (0.14 g, 13%). 1H-NMR (DMSO, rotamer mixture) δ 0.83-0.93 (6H, m), 2.22-2.58 (6H, m), 2.86-2.95 (2H, m), 3.06-3.15 (2H, m), 3.32-3.40 (2H, m), 3.97 (3H, s), 4.64/4.81 (2H, 2× s), 5.19/5.40 (2H, 2× s), 7.09-7.87 (11H, m), 8.37 (1H, 2× s); MS (APCI+) found (M+1)=681; C36H37F5N6O2 requires 680.


d-Tartaric acid (0.031 g, 0.21 mmol) was added to a solution of the free base (0.14 g, 0.21 mmol) in methanol (5 ml) with stirring. The resulting solution was evaporated to yield the salt (0.24 g). 1H-NMR (DMSO, rotamer mixture) δ 0.94-0.99 (6H, m), 2.51-2.93 (8H, m), 3.11 (2H, m), 3.74 (2H, m), 3.98 (3H,s), 4.18 (2H,s), 4.64/4.81 (2H,2× s), 5.22/5.40 (2H,2× s), 7.09-7.87 (11H, m), 8.39 (1H,s); MS (APCI+) found (M+1)=681; C36H37F5N6O2 requires 680.


Example 6
N-(2-Diethylaminoethyl)-(2-(2-(2,3-difluorophenyl)ethyl)-4-oxo-4H-pyrido[2,3-d]pyrimidin-1-yl)-N-(4-(4-trifluoromethylphenyl)phenyl)methylacetamide bitartrate



embedded image


Intermediate C35 (0.33 g) and intermediate D4 (0.37 g) were stirred together in an ice bath under argon in dimethylformamide. Diisopropylethylamine (0.36 ml) and O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU) (0.43 g) were added and stirred for 30 min. Solvent was removed under reduced pressure and the residue partitioned between dichloromethane and water, filtered through celite and the organic layer washed with further water and dried over K2CO3. The solvent was removed under reduced pressure and the residue chromatographed on silica gel, eluting with 5% methanol in dichloromethane, to give a solid. The celite pad was washed with methanol and concentrated. The residue was dissolved in 9:1 dichloromethane:methanol and washed with water. Drying, evaporation and chromatography as above gave a material which was combined with the product from the previous chromatography (total yield=0.21 g). This material dissolved in methanol and a solution of tartaric acid (0.046 g) in methanol added. The solvent was removed under reduced pressure and the residue triturated with Et2O to give the title compound (0.235 g). Rotamers were present in the 1H-NMR (d6-DMSO) δ 0.90-1.11 (6H, m), 2.67-3.50 (m), 4.20 (2H, s), 4.64 & 4.87 (2H, 2s), 5.51 & 5.68 (1H, 2× brs), 7.12-7.19 (1H, m), 7.24-7.36 (3H, m), 7.58-7.66 (3H, m), 7.80-7.93 (5H, m), 8.47-8.50 (1H, m), 8.85-8.89 (1H, m); MS (APCI+) found (free base M+1) C37H36 F5N5O2 requires 677.


Example 7
N-(1-Methylpiperidin-4-yl)-(2-(2-(2,3-difluorophenyl)ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4-(4-trifluoromethylphenyl)phenyl)methylacetamide bitartrate



embedded image


Intermediate C43 (0.2 g) and intermediate D8 (0.2 g) were stirred together in an ice bath under argon in dichloromethane. Diisopropylethylamine (0.23 ml) and O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU) (0.26 g) were added and stirred overnight. After diluting with dichloromethane, the mixture was washed with water and chromatographed on silica gel eluting with 6-13% methanol in dichloromethane. This gave a solid (0.26 g) which was converted to the bitartrate salt (title compound) with tartaric acid as in example 6. 1H-NMR (DMSO, rotamer mixture) δ 1.6-2.0 (4H, m), 2.2-2.5 (5H, m), 2.5-3.9 (6H, m), 4.0-4.1+4.25-4.4 (1H, 2× m), 4.56+4.85+5.1+5.58 (4H, 4× br.s), 7.05-7.7 (9H, 2× br.m), 7.7-7.95 (5H, m), 8.1 (1H, t); MS (APCI+) found (M+1)=675; C38H35F5N4O2 requires 674.


Example 8
N-(1-Ethylpiperidin-4-yl)-(2-(2-(2,3-difluorophenyl)ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(5-(4-trifluoromethylphenyl)thien-2-yl)methylacetamide bitartrate



embedded image


The title compound was prepared from intermediates C43+D77 in dimethylformamide using O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU) as a coupling agent, followed by bitartrate salt formation using the methods described in examples 6 and 7. 1H-NMR (DMSO, rotamer mixture) δ 1.0-1.2 (3H, m), 1.6-2.2 (4H, m), 2.2-2.75 (4H, m), 2.75-3.9 (6H, m), 3.9-4.1+4.15-4.35 (1H, 2× m), 4.15 (2H, s), 4.7+4.95 (2H, 2× br.s), 6.9-7.55 (8H, 2× br.s), 7.7-7.95 (4H, m), 8.1 (1H, t); MS (APCI+) found (M+1)=695; C37H35F5N4O2S requires 694.


Example 9
N-(1-Ethylpiperidin-4-yl)-(2-(2-(2,3-difluorophenyl)ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4-(5-trifluoromethylthien-2-yl)phenyl)methylacetamide bitartrate



embedded image


The title compound was prepared from intermediates C43+D79 in dimethylformamide using O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU) as a coupling agent, followed by bitartrate salt formation using the methods described in examples 6 and 7. 1H-NMR (DMSO, rotamer mixture) δ 1.05-1.14 (3H, m), 1.70-2.00 (4H, m), 2.48-3.21 (10H, m), 4.09 (2H, s), 4.14/4.41 (1H, 2× br m), 4.41/4.84 (2H, 2× s), 5.11/5.60 (2H, 2× s), 7.09-8.12 (13H, m); MS (APCI+) found (M+1)=695; C37H35F5N4O2S requires 694.


Example 10
N-(1-Methylpiperidin-4-yl)-(2-(2-(2,3-difluorophenyl)ethyl)-4-oxo-4H-pyrido[2,3-d]pyrimidin-1-yl)-N-(4-(4-trifluoromethylphenyl)phenyl)methylacetamide bitartrate



embedded image


The title compound was prepared from intermediates C35+D8 in dimethylformamide using O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU) as a coupling agent, followed by bitartrate salt formation using the methods described in examples 6 and 7. 1H-NMR (DMSO, rotamer mixture) δ 1.60-1.91 (4H, m), 2.37-2.42 (5H, m), 3.04-3.18 (6H, m), 4.09/4.26 (1H 2× br m), 4.14 (2H, s), 4.60/4.83 (2H, 2× s), 5.40/5.68 (2H, 2× s), 7.13-7.18 (1H, m), 7.25-7.33 (3H, m), 7.57-7.67 (3H, m), 7.78-7.92 (5H, m), 8.46-8.49 (1H, m). 8.88-8.93 (1H, m); MS (APCI+) found (M+1)=676; C37H34F5N5O2 requires 675.


Example 11
N-(1-(2-Methoxyethyl)piperidin-4-yl)-(2-(2-(2,3-difluorophenyl)ethyl)-4-oxo-4H-pyrido[2,3-d]pyrimidin-1-yl)-N-(4-(4-trifluoromethylphenyl)phenyl)methylacetamide bitartrate



embedded image


The title compound was prepared from intermediates C35+D80 in dimethylformamide using O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU) as a coupling agent, followed by bitartrate salt formation using the methods described in examples 6 and 7. 1H-NMR (DMSO, rotamer mixture) δ 1.56-1.82 (4H, m), 2.23-2.37 (2H, m), 2.63-2.66 (2H, m), 3.02-3.18 (6H, m), 3.20/3.23 (3H, 2× s), 3.40-3.46 (2H, m), 4.05/4.26 (1H 2× br m), 4.19 (2H, s), 4.61/4.83 (2H, 2× s), 5.39/5.68 (2H, 2× s), 7.13-7.17 (1H, m), 7.25-7.33 (3H, m), 7.57-7.66 (3H, m), 7.78-7.92 (5H, m), 8.45-8.49 (1H, m), 8.88-8.93 (1H, m); MS (APCI+) found (M+1)=720; C39H38F5N5O3requires 719.


The following amide Examples were prepared from the corresponding acetic acid and amine using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide with or without 1-hydroxybenzotriazole hydrate as coupling agent (as for Examples 1-5), though a few were prepared using O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU) as a coupling agent (as for Examples 6 and 7), followed by treatment with d-tartaric acid to give the salt if indicated.















No.
Precursors
Structure
Name


















20
C1 +D34


embedded image


N-(2-ethylamino-2-methyl-propyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





21
C1 +D38


embedded image


N-(2-t-butylaminoethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





22
C1 +D47


embedded image


N-(1-ethyl-piperidin-4-yl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





23
C3 +D4


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(4-fluoro-2-(trifluoromethyl)phenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





24
C4 +D4


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(4-fluoro-3-(trifluoromethyl)phenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





25
C5 +D4


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(3-chloro-4-fluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





26
C6 +D4


embedded image


(+/−)-N-(2-diethylaminoethyl)-2-(2phenyl-propyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





27
C7 +D4


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(2,4-difluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





28
C8 +D4


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(2,5-difluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





29
C9 +D4


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(3,4-difluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide





30
C10 +D4


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(2-fluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide





31
C11 +D4


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(3-fluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





32
C12 +D4


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(3-chlorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide





33
C13 +D4


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(4-chlorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide





34
C14 +D4


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(4-methylphenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide





35
C15 +D4


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(4-(trifluoromethyl)phenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide





36
C16 +D4


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(4-methoxyphenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





37
C17 +D4


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(4-(trifluoromethoxy)phenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





38
C18 +D4


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(4-fluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





39
C19 +D4


embedded image


N-(2-diethylaminoethyl)-2-(2-(2phenyl-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





40
C20 +D4


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(2-chlorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide





41
C21 +D4


embedded image


N-(2-diethylaminoethyl)-2-(2-(3-(4-fluorophenyl)-propyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





42
C30 +D4


embedded image


N-(2-Diethylaminoethyl)-2-[2-[2-phenyl-ethyl]-5-methyl-4-oxo-4H-pyrimidin-1-yl]-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide





43
C31 +D4


embedded image


N-(2-Diethylaminoethyl)-2-[2-[3-(4-fluorophenyl)-propyl]-5-ethyl-4-oxo-4H-pyrimidin-1-yl]-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





44
C32 +D4


embedded image


N-(2-Diethylaminoethyl)-2-[2-(2-(4-fluorophenyl)-ethyl)-5-(2,2,2-trifluoroethyl)-4-oxo-4H-pyrimidin-1-yl]-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





45
C22 +D4


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(4-fluorophenyl)-vinyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





46
C33 +D4


embedded image


N-(2-Diethylaminoethyl)-2-[2-(2-(4-fluorophenyl)-ethyl)-5,6-dimethyl-4-oxo-4H-pyrimidin-1-yl]-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





47
C36 +D5


embedded image


N-Methyl-2-(2-(2-(4-fluorophenyl)ethyl)-4-oxo-4H-pyrido[2,3-d]pyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide





48
C36 +D4


embedded image


N-(2-Diethylaminoethyl)-2-(2-(2-(4-fluorophenyl)ethyl)-4-oxo-4H-pyrido[2,3-d]pyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





49
C37 +D4


embedded image


N-(2-Diethylaminoethyl)-2-(2-(2-(2,3,4-trifluorophenyl)ethyl)-4-oxo-4H-pyrido[2,3-d]pyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





50
C72 +D4


embedded image


N-(2-Diethylaminoethyl)-2-[2-(2-(4-fluorophenyl)ethyl)-5-methyl-4-oxo-4H-thieno[2,3-d]pyrimidin-1-yl]-N-(4′-trifluoromethylbiphenyl-4-ylmethyl)-acetamide bitartrate





51
C40 +D4


embedded image


N-(2-Diethylaminoethyl)-2-[2-(2-(4-fluorophenyl)ethyl)-4-oxo-4H-thieno[3,2-d]pyrimidin-1-yl]-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





52
C44 +D4


embedded image


N-(2-Diethylaminoethyl)-2-(2-(2-(3-cyano-4-fluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





53
C45 +D4


embedded image


N-(2-Diethylaminoethyl)-2-(2-(2-(2,4-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





54
C46 +D4


embedded image


N-(2-Diethylaminoethyl)-2-(2-(2-(2,6-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





55
C47 +D4


embedded image


N-(2-Diethylaminoethyl)-2-(2-(2-(3,5-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





56
C48 +D4


embedded image


N-(2-Diethylaminoethyl)-2-(2-(2-(3,4-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





57
C49 +D4


embedded image


N-(2-Diethylaminoethyl)-2-(2-(2-(2-fluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





58
C50 +D4


embedded image


N-(2-Diethylaminoethyl)-2-(2-(2-(3-fluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





59
C69 +D4


embedded image


N-(2-Diethylaminoethyl)-2-(2-(2-(4-fluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





60
C52 +D4


embedded image


N-(2-Diethylaminoethyl)-2-(2-(2-(2,3,4-trifluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





61
C53 +D4


embedded image


N-(2-Diethylaminoethyl)-2-(2-(2-(2,3,5-trifluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





62
C54 +D4


embedded image


N-(2-Diethylaminoethyl)-2-(2-(2-(2,4,5-trifluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





63
C55 +D4


embedded image


N-(2-Diethylaminoethyl)-2-(2-(2-(3,4,5-trifluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





64
C56 +D4


embedded image


N-(2-Diethylaminoethyl)-2-(2-(2-(3-cyanophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





65
C57 +D4


embedded image


N-(2-Diethylaminoethyl)-2-(2-(2-(2,3,6-trifluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





66
C58 +D4


embedded image


N-(2-Diethylaminoethyl)-2-(2-(2-(2,4,6-trifluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





67
C71 +D4


embedded image


N-(2-Diethylaminoethyl)-2-(2-(2-(2,5-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





68
C59 +D4


embedded image


N-(2-Diethylaminoethyl)-2-(2-(2-methyl-2-phenyl-propyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





69
C60 +D4


embedded image


(+/−) - N-(2-Diethylaminoethyl)-2-(2-(1-methyl-2-phenyl-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





70
C70 +D4


embedded image


(+/−) - N-(2-Diethylaminoethyl)-2-(2-(2-phenyl-propyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





71
C61 +D4


embedded image


N-(2-Diethylaminoethyl)-5-fluoro-2-(2-(2-(2,3,4-trifluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





72
C62 +D4


embedded image


N-(2-Diethylaminoethyl)-6-fluoro-2-(2-(2-(2,3,4-trifluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





73
C63 +D4


embedded image


N-(2-Diethylaminoethyl)-7-fluoro-2-(2-(2-(2,3,4-trifluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





74
C64 +D4


embedded image


N-(2-Diethylaminoethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-5-methyl-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





75
C65 +D4


embedded image


N-(2-Diethylaminoethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-6-methyl-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





76
C66 +D4


embedded image


N-(2-Diethylaminoethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-8-methyl-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide





77
C67 +D4


embedded image


N-(2-Diethylaminoethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-7-trifluoromethyl-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





78
C68 +D4


embedded image


N-(2-Diethylaminoethyl)-2-(2-(2-phenyl-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





79
C43 +D71


embedded image


N-(2-Diethylaminoethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(2-(4′-trifluoromethylphenyl)pyrid-5-yl-methyl)acetamide bitartrate





80
C43 +D3


embedded image


N-(2-Diethylaminoethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-chloro-biphenyl-4-ylmethyl)acetamide bitartrate





81
C43 +D32


embedded image


N-(2-piperidin-1-ylethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoro-biphenyl-4-ylmethyl)acetamide bitartrate





82
C43 +D33


embedded image


N-(2-(N′-ethyl-t-butoxycarbonylamino)-ethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide





83
C43 +D34


embedded image


N-(2-Ethylamino-2-methylpropyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





84
C43 +D35


embedded image


N-(2-(Diethylamino)-2-methyl-propyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





85
C43 +D36


embedded image


N-(2-(Dimethylamino)-2-methyl-propyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





86
C43 +D37


embedded image


N-(2-(isopropylamino)-2-methyl-propyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide





87
C43 +D38


embedded image


N-(2-(t-butylamino)-ethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide





88
C43 +D39


embedded image


N-(2-(piperidin-1-yl)-2-methyl-propyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide





89
C43 +D40


embedded image


N-(2-(morpholin-4-yl)-ethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





90
C43 +D41


embedded image


N-(2-(morpholin-4-yl)-2-methyl-propyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





91
C43 +D42


embedded image


N-(2-(pyrrolidin-1-yl)-ethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide





92
C43 +D43


embedded image


N-(2-(pyrrolidin-1-yl)-2-methyl-propyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide





93
C43 +D44


embedded image


N-(3-(piperidin-1-yl)-propyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





94
C43 +D45


embedded image


N-(3-(morpholin-4-yl)-propyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





95
C43 +D46


embedded image


N-(3-(pyrrolidin-1-yl)-propyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





96
C43 +D47


embedded image


N-(1-Ethyl-piperidin-4-yl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





97
C43 +D48


embedded image


N-(1-isopropyl-piperidin-4-yl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





98
C43 +D49


embedded image


(+/−)-N-(1-ethyl-pyrrolidin-2-ylmethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





99
C43 +D50


embedded image


N-(2-(diethylamino)ethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-pent-1-yl-biphenyl-4-ylmethyl)acetamide bitartrate





100
C43 +D51


embedded image


N-(2-(diethylamino)ethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(biphenyl-4-ylmethyl)acetamide bitartrate





101
C43 +D53


embedded image


N-(3-(diethylamino)propyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





102
C43 +D54


embedded image


N-(2,2-dimethyl-3-(dimethylamino)-propyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide





103
C68 +D4


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-phenyl-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





105
C75 +D4


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-7-methyl-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





106
C76 +D4


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-6,7-difluoro-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





107
C77 +D4


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-7-fluoro-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





108
C78 +D4


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-6-fluoro-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





109
C35 +D47


embedded image


N-(1-ethylpiperidin-4-yl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-pyrido[2,3-d]pyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





110
C80 +D47


embedded image


N-(1-ethylpiperidin-4-yl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-pyrido[3,2-d]pyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





111
C43 +D80


embedded image


N-(1-(2-methoxyethyl)piperidin-4-yl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





112
C43 +D97


embedded image


N-(4-(pyrrolidin-1-yl)butyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





113
C43 +D5


embedded image


N-methyl-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide





114
C43 +D78


embedded image


N-methyl-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(5-(4-trifluoromethylphenylpyrid-2-ylmethyl)acetamide





115
C43 +D67


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(2-(4-trifluoromethyl-phenyl)pyrimid-5-ylmethyl)acetamidebitartrate





116
C43 +D55


embedded image


N-(3-(pyrrolidin-1-yl)-2,2-dimethyl-propyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





117
C43 +D56


embedded image


N-(1-ethylpiperidin-4-ylmethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate





118
C43 +D57


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-methyl-biphenyl-4-ylmethyl)acetamide bitartrate





119
C43 +D58


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-ethyl-biphenyl-4-ylmethyl)acetamide bitartrate





120
C43 +D59


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-methylthio-biphenyl-4-ylmethyl)acetamide bitartrate





121
C43 +D60


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-(prop-2-yl)-biphenyl-4-ylmethyl)acetamide bitartrate





122
C43 +D61


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-cyano-biphenyl-4-ylmethyl)acetamide bitartrate





123
C43 +D62


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-methylsulfonyl-biphenyl-4-ylmethyl)acetamide bitartrate





124
C43 +D64


embedded image


N-(2-methoxyethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide





125
C43 +D68


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4-(2-chlorothien-5-yl)phenylmethyl)acetamide bitartrate





126
C43 +D81


embedded image


N-(1-ethoxycarbonylmethylpiperidin-4-yl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide bitartrate





127
C43 +D65


embedded image


N-(t-butoxycarbonylmethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide





128
C43 +D69


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(2-(4-trifluoromethyl-phenyl)thien-5-ylmethyl)acetamidebitartrate





129
C43 +D70


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4-(2-trifluoromethyl-thien-5-yl)phenylmethyl)acetamidebitartrate





130
C43 +D72


embedded image


N-(1-ethylpiperidin-4-yl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4-(2-chlorothien-5-yl)phenylmethyl)acetamide bitartrate





131
C43 +D73


embedded image


N-(1-ethylpiperidin-4-yl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(2-(4-chlorophenyl)-fur-5-ylmethyl)acetamide bitartrate





132
C43 +D74


embedded image


N-(1-ethylpiperidin-4-yl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(2-(4-trifluoromethyl-phenyl)fur-5-ylmethyl)acetamidebitartrate





133
C43 +D63


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-bromo-biphenyl-4-ylmethyl)acetamide bitartrate





134
C43 +D75


embedded image


N-(1-ethylpiperidin-4-yl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(2-(2-chlorothien-5-yl)thien-5-ylmethyl)acetamide bitartrate





135
C43 +D82


embedded image


N-(1-ethylpiperidin-4-yl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quninazolin-1-yl)-N-(4′-chloro-biphenyl-4-ylmethyl)acetamide bitartrate





136
C43 +D83


embedded image


N-(1-methylpiperidin-4-yl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quninazolin-1-yl)-N-(4′-chloro-biphenyl-4-ylmethyl)acetamide





137
C43 +D84


embedded image


N-(1-isopropylpiperidin-4-yl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quninazolin-1-yl)-N-(4′-chloro-biphenyl-4-ylmethyl)acetamide bitartrate





138
C43 +D85


embedded image


N-(1-(2-methoxyethyl)piperidin-4-yl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quninazolin-1-yl)-N-(4′-chloro-biphenyl-4-ylmethyl)acetamide bitartrate





139
C43 +D76


embedded image


N-(1-ethylpiperidin-4-yl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quninazolin-1-yl)-N-(4′-pentafluoroethyl-biphenyl-4-ylmethyl)acetamidebitartrate





140
C43 +D34


embedded image


N-(2-ethylamino-2-methylprop-1-yl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide





141
C43 +N-(2-hydroxyethyl)-4-(4-trifluoromethyl-phenyl)benzylamine(WO 00/66567)


embedded image


N-(2-hydroxyethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide





142
C43 +D96


embedded image


N-(2-diethylaminoethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-(piperidin-1-ylsulfonyl)-biphenyl-4-ylmethyl)-acetamide





143
C43 +D95


embedded image


N-(1-t-butoxycarbonylpiperidin-4-yl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide









The following compounds were prepared by the method of Intermediate C2















No.
Precursors
Structure
Name







144
E127


embedded image


N-(hydroxycarbonylmethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide





145
E143


embedded image


N-(piperidin-4-yl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide





146
E82 


embedded image


N-(2-Ethylaminoethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4H-quinazolin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide bitartrate










Biological Data


1. Screen for Lp-PLA2 inhibition.


Enzyme activity was determined by measuring the rate of turnover of the artificial substrate (A) at 37 C in 50 mM HEPES (N-2-hydroxyethylpiperazine-N′-2-ethanesulphonic acid) buffer containing 150 mM NaCl, pH 7.4.




embedded image


Assays were performed in 96 well titre plates.


Recombinant LpPLA2 was purified to homogeneity from baculovirus infected Sf9 cells, using a zinc chelating column, blue sepharose affinity chromatography and an anion exchange column. Following purification and ultra-filtration, the enzyme was stored at 6 mg/ml at 4° C. Assay plates of compound or vehicle plus buffer were set up using automated robotics to a volume of 170 μl. The reaction was initiated by the addition of 20 μl of 10× substrate (A) to give a final substrate concentration of 20 μM and 10 μl of diluted enzyme to a final 0.2 nM LpPLA2.


The reaction was followed at 405 nm and 37° C. for 20 minutes using a plate reader with automatic mixing. The rate of reaction was measured as the rate of change of absorbance.


Results


The compounds described in the Examples were tested as described above and had IC50 values in the range <0.1 to 200 nM.

Claims
  • 1. A compound of formula (I):
  • 2. A compound of formula (I) as claimed in claim 1 in which R1 is phenyl optionally substituted by halogen, C(1-6)alkyl, trifluoromethyl, C(1-6)alkoxy; or a pharmaceutically acceptable salt thereof.
  • 3. A compound of formula (I) as claimed in claim 1 in which R4 is selected from the group consisting of 2-(diethylamino)ethyl, 1-ethyl-piperidin-4-yl, 1-methylpiperidin-4-yl or 1-(2-methoxyethyl)piperidin-4-yl; or a pharmaceutically acceptable salt thereof.
  • 4. A compound of formula (I) as claimed in claim 1 in which R5 is phenyl or thienyl; or a pharmaceutically acceptable salt thereof.
  • 5. A compound of formula (I) as claimed in claim 1 in which R6 is phenyl substituted by trifluoromethyl at the 4-position or R6 is thienyl substituted by trifluoromethyl at the 5-position; or a pharmaceutically acceptable salt thereof.
  • 6. A compound of formula (I) as claimed in claim 1 in which R5 and R6 together form a 4-(phenyl)phenyl or a 2-(phenyl)pyridinyl substituent in which the remote phenyl ring may be optionally substituted by halogen or trifluoromethyl, preferably at the 4-position; or a pharmaceutically acceptable salt thereof.
  • 7. A compound of formula (I) as claimed in claim 1 in which R1 is phenyl substituted by 1 to 3 fluoro; R4 is 2-(diethylamino)ethyl, 1-ethyl-piperidin-4-yl, 1-methylpiperidin-4-yl or 1-(2-methoxyethyl)piperidin-4-yl; R5 is phenyl, thienyl or pyridyl; R6 is phenyl substituted by trifluoromethyl at the 4-position, or thien-2-yl substituted by trifluoromethyl in the 5-position; or a pharmaceutically acceptable salt thereof.
  • 8. A compound of formula (I) as claimed in claim 1 in which R1 is phenyl substituted by 2,3 difluoro; R4 is 2-(diethylamino)ethyl, 1-ethyl-piperidin-4-yl, 1-methylpiperidin-4-yl or 1-(2-methoxyethyl)piperidin-4-yl; R5 is phenyl, thienyl or pyridyl; R6 is phenyl substituted by trifluoromethyl at the 4-position, or thien-2-yl substituted by trifluoromethyl in the 5-position; or a pharmaceutically acceptable salt thereof.
  • 9. A compound of formula (I) as claimed in claim 1 in which R1 is phenyl substituted by 2,3 difluoro; R4 is 1-methylpiperidin-4-yl or 1-(2-methoxyethyl)piperidin-4-yl; R5 and R6 together form a 4-(phenyl)phenyl in which the remote phenyl ring is substituted by trifluoromethyl at the 4-position; or a pharmaceutically acceptable salt thereof.
  • 10. A compound according to claim 1 which is: N-(2-ethylamino-2-methyl-propyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide;N-(2-t-butylaminoethyl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4-trifluoromethyl-biphenyl-4-ylmethyl)acetamide;N-(1-ethyl-piperidin-4-yl)-2-(2-(2-(2,3-difluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahyro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide;N-(2-diethylaminoethyl)-2-(2-(2-(4-fluoro-2-(trifluoromethyl)phenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide;N-(2-diethylaminoethyl)-2-(2-(2-(4-fluoro-3-(trifluoromethyl)phenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)-acetamide;N-(2-diethylaminoethyl)-2-(2-(2-(3-chloro-4-fluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide;(+/−)-N-(2-dicthylaminocthyl)-2-(2phenyl-propyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4-trifluoromethyl-biphenyl-4-ylmethyl)acetamide;N-(2-diethylaminoethyl)-2-(2-(2-(2,5-difluorphenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide;N-(2-diethylaminoethyl)-2-(2-(2-(3,4-difluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide;N-(2-diethylaminoethyl)-2-(2-(2-(2-fluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide;N-(2-diethylaminoethyl)-2-(2-(2-(3-fluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide;N-(2-diethylaminoethyl)-2-(2-(2-(3-chlorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide;N-(2-diethylaminoethyl)-2-(2-(2-(4-chlorophcnyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide;N-(2-diethylaminoethyl)-2-(2-(2-(4-methylphenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide;N-(2-diethylaminoethyl)-2-(2-(2-(4-(trifluoromethyl)phenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide;N-(2-diethylaminoethyl)-2-(2-(2-(4-methoxyphenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide;N-(2-diethylaminoethyl)-2-(2-(2-(4-(trifluoromethoxy)phenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide;N-(2-diethylaminoethyl)-2-(2-(2-(4-fluorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl -4-ylmethyl)acetamide:N-(2-diethylaminoethyl)-2-(2-(2phenyl-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide;N-(2-diethylaminoethyl)-2-(2-(2-(2-chlorophenyl)-ethyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide;N-(2-diethylaminoethyl )-2-(2-(3-(4-fluorophenyl)-propyl)-4-oxo-4,5,6,7-tetrahydro-cyclopentapyrimidin-1-yl)-N-(4′-trifluoromethyl-biphenyl-4-ylmethyl)acetamide; or
  • 11. A pharmaceutical composition comprising a compound of formula (I) as defined in claim 1 and a pharmaceutically acceptable carrier.
  • 12. A pharmaceutical composition according to claim 11 which further comprises a therapeutically effective amount of a cholesterol lowering agent.
  • 13. A pharmaceutical composition according to claim 12 wherein said cholesterol lowering agent is a statin.
  • 14. A method for treating atherosclerosis in a mammal in need thereof, which method comprises administering an effective amount of a compound of formula 1 according to claim 1 to said mammal.
Priority Claims (1)
Number Date Country Kind
0024807.0 Oct 2000 GB national
Parent Case Info

This case is a divisional of U.S. patent application Ser. No. 10/398,977 filed 2 Sep. 2003 (allowed) which is a 371 application of PCT/EP2001/11562 filed 5 Oct. 2001 which claims the benefit of GB patent application 0024807.0 filed 10 Oct. 2000.

US Referenced Citations (3)
Number Name Date Kind
6649619 Hickey et al. Nov 2003 B1
7153861 Leach et al. Dec 2006 B2
7169924 Elliott et al. Jan 2007 B2
Related Publications (1)
Number Date Country
20060241126 A1 Oct 2006 US
Divisions (1)
Number Date Country
Parent 10398977 US
Child 11456129 US