The present application is a U.S. National Stage Application of International Application No. PCT/US2015/036461 filed Jun. 18, 2015, which is incorporated herein by reference in its entirety for all purposes.
The present disclosure relates generally to activation of down-hole devices in subterranean formations, and more particularly, to a pyrotechnic initiated hydrostatic/boost assisted device for activating the down-hole device.
Hydrocarbons, such as oil and gas, are commonly obtained from subterranean formations that may be located onshore or offshore. The development of subterranean operations and the processes involved in removing hydrocarbons from a subterranean formation typically include a number of different steps such as, for example, drilling a wellbore at a desired well site, treating the wellbore to optimize production of hydrocarbons, and performing the necessary steps to produce and process the hydrocarbons from the subterranean formation.
There are a number of different methods for perforating a production tubing or casing in connection with a work-over or other post-completion well service operation. Commonly used methods employ explosive charges. There are a number of logistical issues associated with the use of explosives, however, to perforate production tubing or casing. In many instances, transport of the necessary explosives is tightly controlled making movement of the devices to the well site very difficult.
Mechanical perforation avoids the logistical issues of explosives. Devices for mechanically perforating a well casing without the use of explosives are also known in the art and, in fact, predate the use of explosives. Such devices include, for example, laterally movable punches and toothed wheel perforators. Mechanical perforators require sufficient motive force to be activated to operate effectively. Current systems employ large rechargeable hydraulic power sources for actuating the down-hole tools. Such systems typically employ complex valving schemes to operate the tool. An activation system which utilizes a much smaller and less complex device to perforate the tubing or casing and which is thus desired.
For a more complete understanding of the features and advantages of the present disclosure, reference is now made to the detailed description of the present disclosure along with the accompanying figures in which corresponding numerals in the different figures refer to corresponding parts and in which:
Illustrative embodiments of the present disclosure are described in detail herein. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation specific decisions must be made to achieve developers' specific goals, such as compliance with system related and business related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of the present disclosure. Furthermore, in no way should the following examples be read to limit, or define, the scope of the disclosure.
It is to be understood that the various embodiments of the present disclosure described herein may be utilized in various orientations, such as inclined, inverted, horizontal, vertical, etc., and in various configurations, without departing from the principles of the present disclosure. The embodiments are described merely as examples of useful applications of the principles disclosed herein, which is not limited to any specific details of these embodiments.
In the following description of the representative embodiments of the present disclosure, directional terms, such as “above,” “below,” “upper,” “lower,” etc., are used for convenience in referring to the accompanying drawings. In general, “above,” “upper,” “upward” and similar terms refer to a direction toward the earth's surface along a wellbore, and “below,” “lower,” “downward” and similar terms refer to a direction away from the earth's surface along the wellbore.
The down-hole tool activating device 100 has an upper connector subassembly 102, shown configured for connection at threads 104 to a sucker rod (not shown) or similar. It is understood that the upper connector can be selected for connection to a tool string, wireline, coiled tubing, slickline, e-line etc. The upper connector 102 has lower threads at 110 which mate with the housing 108 of the control assembly 106.
The control assembly 106 has a housing 108, preferably a tubular body, connected to the upper connector sub 102 at threads 110 and connected at threads 112 to connector subassembly 130. The control assembly 106 houses an electronic control module 114 having, in a preferred embodiment, a power source, such as batteries, an electric-powered timer or timing device, and indicators 118 for start-up and timer set values. The indicators can be LED or other indicators as known in the art. The timer and battery packs are not discussed in detail and are known in the art. An electrical connector 116 is preferably provided for e-line start. It is also possible to provide electrical power via power line from the surface for powering the actuator (pyrotechnic initiator) 154. A hermetic connector 120 is positioned between the control module 114 and connector sub 130 to provide a hermetically sealed section for housing the control module.
A connector subassembly 130 has a connector body 132 with a bore 134 defined therein and extending axially there through. The bore 134 houses communication lines, such as electrical wiring, necessary for transmitting a signal from the control module to the actuator (pyrotechnic initiator) 154. The connector sub attaches to housing 108 at its upper end and to housing 142 at its lower end.
A booster assembly 140 has a housing 142 attached at threads 144 to the connector sub 130 and at threads 146 to connector sub 180. The booster assembly 140 defines a booster chamber 148 which is pre-charged with a pressurized fluid, preferably an inert gas to an actuation pressure. A charge port 151 and charging valve 150 are provided, with appropriate fluid passageways to the chamber, for supplying the pressurized gas to the chamber. In the embodiment shown, the charging valve and port are positioned in connector sub 180, although they can be positioned in connector sub 130 or as part of the booster assembly 140.
Positioned in the booster assembly are a pyrotechnic initiator 154, actuator retainer 152, rupture disc 160, and pin actuator 158. The initiator 154 is electrically connected via wire extending from the actuator retainer 152, through a conduit which is in threaded connection to the passageway 134 of connector assembly 130, and the control electronic control module 114. The initiator is triggered by a small electrical charge. The actuator retainer 152 houses the initiator 154. The rupture disc retainer and actuator guide 156 is mounted to the tool assembly, for example, to the connector assembly 180, as shown, via threaded connection or similar. Alternately, the retainer can be mounted to the housing, etc. The initiator 154 is positioned adjacent or proximate a rupture disc 160 that initially blocks fluid flow from the pressurized chamber.
Small, pyrotechnic initiators 154 are available from commercial vendors known in the art, such as SDI, Inc. The pyrotechnic initiator utilizes a small amount of pyrotechnic material, triggerable by a low electrical charge, to drive a thruster pin 158 longitudinally into and rupturing the rupture disc 160. The thruster pin 158 is preferably hollow with a relief port on the stem such that if the disc fails to rupture after the pin has pushed through the disc, a fluid path is available through the pin. Note that the pyrotechnic initiator does not provide the motive force for movement of the activating rod. The tool assembly is not a pyrotechnic activating tool. The initiator only provides motive force to move the pin actuator to rupture the rupture disc 160. The motive force for activating the tool is provided by the release of pressurized gas in the booster chamber. Because such a low amount of force is required of the initiator, and such a small amount of chemical or pyrotechnic required to provide the force, the preferred pyrotechnic initiator is classified by DOT and BATF as a non-explosive for purposes of transportation and shipping.
In addition to the preferred pyrotechnic initiator, other initiators can be used, preferably low-powered and classified as non-explosive. For example, such initiators include electrical, chemical, thermal, and other initiators. The initiators can open the pressurized chamber by opening, melting, dissolving, burning, etc., a fluid barrier. Further, the initiator can be used to power or actuate a variety of available actuators, such as a thruster pin, a check-valve, other valves, etc., to open the pressurized chamber to fluid flow.
Power to trigger the initiator is provided from the battery pack or power source in the electronic control module 114 of the control assembly 106. Since the preferred initiator is small and requires low power to initiate, it is ideal for low-powered battery activation. With a small power requirement, the battery can be small and low power and included within the timer module. An exemplary battery might include a single low rate “AA” primary lithium cell. The timer module can be small and used for the various tools for the different activating tools. The small timer module can thermally insulated, for example, for use in higher temperature operations within the larger housings of the bigger activating tools. The timer module is preferably switch-selectable and can include an electrical start port for either e-line or a pressure/temperature switch. Additional features could be added to the timer (pressure, temperature, motion, etc.); however, this would result in a larger electronics and battery assembly.
The rupture disc 160 can be selected from those known in the art and alternative discs and rupture assemblies will be apparent to those of skill in the art. The disc can be made of ceramic, metal, plastic, or other similar material. The disc can be ruptured, punctured, dissolved, melted, or otherwise penetrated, depending on the selected initiator and actuator. The preferred assembly utilizes a rupture disc which is physically punctured or broken by the extendable pin of the initiator. The rupture disc 160 initially blocks fluid flow from pressurized chamber 148 into passageway 184 of connector assembly 180. In a preferred embodiment, the rupture disc is mounted to the housing, connector assembly or retainer 156. The disc assembly is positioned in a bore 157 designed for that purpose in the connector assembly 180. Seals 161 are provided as necessary to facilitate assembly and fluid isolation. The retainer 156 provides and maintains positioning of the disc. Upon rupture, fluid communication is provided between the pressurized chamber 148 and the passageway 184 through connector assembly 180.
The initiator assembly may be a thruster assembly for rupturing discs, such as the actuator assemblies commercially made available by the assignee herein, Halliburton Energy Services, Inc. Additional actuator assemblies are known in the art and will be understood by persons of skill in the art. Key components are the rupture disc, an electrical power source, and an electrically-initiated method of breaching the barrier disc. In one exemplary embodiment, the electrical power source is a battery, and a thruster assembly is used to puncture the disc.
Connector assembly 180 is attached to a vent chamber assembly 190, preferably by threaded connection to a vent chamber housing 192. The vent chamber 194 defined within the vent chamber assembly contains fluid at hydrostatic pressure as it is open to fluid flow between the chamber and the exterior of the tool (the wellbore). One or more ports 196 provide fluid communication between chamber and exterior. A thick-walled tube 198 extends from the passageway 184 to a force-balance piston rod 216, providing communication of the released pressurized gas from the pressurized chamber 148 to the piston passageway 218. As piston rod 216 moves upward into the vent chamber, pressure is equalized in the vent chamber 194 as fluid flows out of the chamber through ports 196. Note that the activation section is force balanced by hydrostatic pressure acting on the power rod 230 from below, so the activation action is independent of hydrostatic pressure.
A flow restrictor 164 is preferably positioned across an upper portion 162 of the passageway 184 in body 182 of the connector assembly 180. The speed of activation is controlled by the flow restrictor. The flow restrictor can be positioned elsewhere along the flow path from the pressurized chamber to the piston head. Flow restrictors and use thereof to control activation speed is known in the art. The flow restrictor can be a flow nozzle, orifice, plate, inflow control device, autonomous inflow control device, tortuous path, as known in the art.
A connector assembly 200 provides flow connection between the vent chamber assembly 190 and the force-balance piston assembly 210. The connector assembly body 202 is threadedly attached to the vent chamber housing 192 and to a piston housing 212. An axial passageway 204 is defined through the connector body, the piston rod 216 axially slidable therein. Seals 206 are provided for sealing engagement between passageway wall and piston. Further, rod-wipes 208, or similar, are mounted to wipe the exterior surface of the piston as it moves through the passageway 204.
A piston assembly 210 is attached to the connector assembly 200 at housing 212. The housing defines a piston chamber 214 which is divided into two spaces by piston head 220. The chamber 214 is preferably at atmospheric pressure initially. Piston rod 216 defines an axial passageway 218 therein providing fluid communication from the tube 198 to a passageway 222 through the piston head 220. The piston rod 216 is mounted to the piston head 220. A power rod 230 is attached to the lower end of the piston head 220. Port 224 provides fluid communication from the passageway 218 of the piston rod to the chamber 214 below the piston head 220. When pressurized gas is released from pressurized chamber 148, the gas flows through the various passageways and tubes, through passageway 218 of the piston rod, through passageway 222 of the piston head 220, and through port 224 to the chamber 214 below the piston head. The pressurized gas forces the piston head upward. Upward movement of the piston head causes piston rod 216 to slide upwardly through the connector assembly 200 and into vent chamber 194. Movement of the piston head also pulls power rod 230 upwardly through a bore 232 defined in the lower end of the piston housing sub 210. Appropriate seals 234 and wipers 236 may be employed.
Movement of the power rod, axially, provides the necessary motion to activate the mechanical perforator positioned below the activation device. The activation force is supplied by the pre-charged fluid in the booster chamber. Carrying the activation force with a gas pre-charge means a large motor and battery arrangement, typical in many downhole force generators, is not required.
The entire assembly is compact, reducing the overall length of the tool assembly. This can be important in negotiating long, deviated or horizontal wellbores. Preferably, the length of the activation tool assembly is on the order of six feet for every eight inches of stroke. Greater activation force can be provided by utilizing a force-multiplying piston having varying surface areas on either side of the piston head, as is known in the art.
The down-hole tool activating device 400 of the embodiment of
The details of the pyrotechnic initiators shown in
A person skilled in the art would, upon a careful consideration of the above description of representative embodiments, readily appreciate that many modifications, additions, substitutions, deletions, and other changes may be made to the specific embodiments, and such changes are contemplated by the principles of the present disclosure. Accordingly, the foregoing detailed description is to be clearly understood as being given by way of illustration and example only, the spirit and scope of the present disclosure being limited solely by the appended claims and their equivalents.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/036461 | 6/18/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/204768 | 12/22/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2457277 | Schlumberger | Dec 1948 | A |
3398803 | Leutwyler et al. | Aug 1968 | A |
4429741 | Hyland | Feb 1984 | A |
5127477 | Schultz | Jul 1992 | A |
5447202 | Littleford | Sep 1995 | A |
5680905 | Green | Oct 1997 | A |
6550551 | Brunnert et al. | Apr 2003 | B2 |
7000705 | Buyers et al. | Feb 2006 | B2 |
7552773 | Wright et al. | Jun 2009 | B2 |
7757767 | Hill et al. | Jul 2010 | B2 |
7793733 | Stewart | Sep 2010 | B2 |
8235103 | Wright et al. | Aug 2012 | B2 |
8322426 | Wright et al. | Dec 2012 | B2 |
8813848 | Frazier | Aug 2014 | B2 |
20100200245 | Ringgenberg et al. | Aug 2010 | A1 |
20100206633 | Moore | Aug 2010 | A1 |
20100307773 | Tinnen et al. | Dec 2010 | A1 |
20110088946 | Moore et al. | Apr 2011 | A1 |
20110265987 | Wright | Nov 2011 | A1 |
20120024528 | Mytopher et al. | Feb 2012 | A1 |
20120037360 | Arizmendi, Jr. | Feb 2012 | A1 |
20120298361 | Sampson | Nov 2012 | A1 |
20150027302 | Wall et al. | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
2014109748 | Jul 2014 | WO |
2014186672 | Nov 2014 | WO |
Entry |
---|
International Preliminary Report on Patentability issued in related PCT Application No. PCT/US2015/036461, dated Dec. 28, 2017, 12 pages. |
International Search Report and Written Opinion issued in related PCT Application No. PCT/US2015/036461 dated Mar. 9, 2016, 15 pages. |
Billingham, Matthew et al., “Slickline Signaling a Change”, Oilfield Review, vol. 23, Issue 4, Dec. 1, 2011, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20180171764 A1 | Jun 2018 | US |