1. Field of the Invention
The technical scope of the invention is that of firing safety devices for pyrotechnic devices.
2. Description of the Related Art
Safety devices (or SADs) are well known. They generally incorporate a barrier blocking a transmission channel which connects an igniter to a pyrotechnic charge.
The barrier thus positions itself in the way of the flame between the igniter and the charge thereby preventing the priming or firing of the latter.
Patents FR-2650662 and FR-2801099 thus disclose such known safety devices.
One of the problems encountered with these devices is their encumberment. The parts are relatively solid to ensure the interruption of the pyrotechnic train. The motor means enabling the barrier to be displaced must thus be powerful. More often than not, it is springs which are used, such springs remaining tensed during the storage phases possibly leading to a deterioration of their mechanical properties and a reduction in arming reliability.
Moreover, the springs do not enable an arming device with reversible function to be produced (that is to say, one which can move from its safety position to its armed position, and back again).
Small electric motors may be used, but these are cumbersome, fragile, difficult to integrate and require a substantial power source.
U.S. Pat. No. 3,750,589 discloses a safety and arming device which is activated by centrifugal force.
This device comprises several discs which are housed in a chamber that fills up with a fluid after firing. Each disc incorporates a channel, the centrifugal force causing the discs to be displaced with respect to one another in the fluid and the geometric characteristics of each disc are defined such that, after such a displacement, the different channels of each disc are aligned and form a continuous axial transmission channel between a primer and explosive charge.
The functioning of such a device is both complex and difficult to reproduce. Moreover, each disc constitutes in itself a barrier which must be displaced from a safety position in which it blocks the transmission channel to an armed position in which its hole is aligned with this channel.
Such a solution does not enable the dimensions and mass of the device to be reduced.
The aim of the invention is to propose a firing safety device of reduced mass which is nevertheless reliable and efficient.
Thus, the invention relates to a firing safety device for a pyrotechnic device, such device incorporating a barrier blocking a transmission channel connecting an igniter and a pyrotechnic charge, such device wherein the barrier comprises at least two elements able to move with respect to one another by the action of motor means between a safety position in which they cooperate to block the transmission channel and an armed position in which they free at least partially one part of the transmission channel, each barrier element alone being unable to block the channel.
Advantageously, the barrier elements may be displaced radially with respect to the transmission channel, the elements being, in a safety position of the device, in mutual contact at a zone positioned opposite the transmission channel.
According to one embodiment, the barrier elements will incorporate profiles at their contact zone with a matching shape whose juxtaposition will constitute at least one deflector ensuring gastightness for the gases generated by the igniter.
According to a particular embodiment, the barrier elements will be in the shape of cylindrical sectors.
The device may thus incorporate four sector-shaped elements.
According to another embodiment, the barrier elements may be substantially parallelepipedic in shape, and the axis of the transmission channel will pass through their transversal plane with the smallest section.
According to another embodiment, the barrier elements may be positioned one on top of the other and opposite the transmission channel, each element incorporating slots separated by tongues, the tongues of a first element blocking the slots in the second element when the device is in a safety position and the tongues uncovering the slots when the device is in the armed position.
Preferably, the transmission channel will have a section whose surface area will be less than or equal to 1 mm2 whilst being greater than the priming surface of the pyrotechnic charge.
According to a particular embodiment, the elements and their motor means will be made in the form of micro-machined or micro-engraved parts, added onto or made in a board of a substrate.
The safety device may thus incorporate at least two micro-machined or micro-engraved boards stacked one on top of the other, control means ensuring a synchronized displacement of the elements of the different boards.
The invention will become more apparent from the following description of different embodiments, such description made with reference to the appended drawings, in which:
a and 3b show, in isolation, the two barrier elements implemented in this first embodiment,
a and 4b show the two superimposed barrier elements in the system's armed position (
a and 10b are two schematic views of the device according to the third embodiment, such device being made in the form of micro-machined chips, the device being shown along two orthogonal cross sections.
With reference to
The casing 4 encloses a pyrotechnic charge 5 (for example an explosive onto which a priming relay 5a is positioned) and the safety device 1 has an igniter 6. The igniter 6 is connected to the explosive relay 5 by a transmission channel 7.
A mobile barrier 8 blocks the transmission channel 7 and prevents the charge 5, 5a from being ignited by the igniter 6.
The device 1 is shown in
The barrier 8 is held in this safety position by an electrically controlled lock 9 (retractor). Once it is unlocked, the barrier 8 slides in its housing 10 by the action of the motor means 11, which here is a spring, and takes up the armed position.
In this armed position, the hole 12 in the barrier 8 is positioned opposite the transmission channel 7 and allows the charge 5, 5a to be ignited.
Electronic control means 13 are connected to the igniter 6 and the lock 9. They ensure, firstly, the control of the lock leading the device to become armed and secondly, the firing of the igniter 6.
The device is only armed further to the detection of a certain number of events which are necessarily associated with firing (for example firing acceleration for a projectile). It is means 13 which manage these events. These means are thus connected to sensors (not shown) and incorporate event management software.
Such a device is well known to someone skilled in the art. Naturally,
Moreover, other solutions exist in which the lock is not controlled electronically but mechanically, further, for example, to the forces of inertia of a firing or through the detection using a probe of the exiting of a projectile from the launcher tube.
Patents FR-2650662 and FR-2801099 describe known devices.
The main drawback to this type of device is the long travel of the barrier 8. This travel is generally of about a few tens of mm and is linked to the dimensions adopted for the barrier.
Moreover, the barrier must have sufficient mechanical strength to ensure the interruption of the pyrotechnic train. Thus, when the device is in the safety position, firing the primer must not cause the charge 5, 5a to fire. The barrier must therefore effectively stop the pyrotechnic effect from the igniter 6.
It seems therefore somewhat contradictory to try to reduce the size of the barrier to reduce its travel whilst retaining an acceptable level of safety.
According to a first characteristic of the invention, the encumberment of the device is sought to be reduced by reducing the barriers travel. To do this, the barrier will be divided into at least two elements able to move with respect to one another. The full arming travel of the barrier may thus be divided into several partial travels for each barrier element. None of the barrier elements alone will be able to block the transmission channel but the different barrier elements will cooperate to block this channel.
The travel required to unblock the channel may therefore be largely reduced.
Element 8a is immobile (for example bonded to a bottom wall of the housing 10) whereas element 8b is mobile and is displaced by motor means 11 which here are a micro motor activated by the control means 13.
Naturally, the motor means may be replaced by a spring and a lock may be provided which would be released by the control means 13.
According to an important characteristic of this embodiment, each element 8a and 8b of the barrier incorporates slots 14a or 14b which are separated by tongues 15a or 15b.
Elements 8a and 8b may be seen more particularly in
a and 4b make it easier to understand the functioning of the shutter according to this embodiment.
In these Figures, the transmission channel 7 is drawn as a circle of dotted lines.
In
Gas leakage may be minimized thanks to the control of design play and manufacturing tolerances.
The transmission channel 7 is thus fully blocked.
When the device is being armed, the motor means 11 push element 8b in direction D. They push it along a travel C equal to the width of a tongue 15a or 15b.
Elements 8a and 8b thus adopt the armed position in
The transmission channel 7 is, in this case, partly blocked.
Someone skilled in the art will choose the number of slots 14 and will dimension them depending on the opening area required to ensure the ignition of the composition 5, 5a by the igniter 6. This area will naturally also depend on the area of the transmission channel 7 as well as on the pyrotechnic properties of the igniter 6 and the composition 5, 5a.
It is naturally also possible to vary the number and shape of the tongues 15 and slots 14.
We can see, therefore, that at a reduced travel C (=the width of a tongue 15) it is possible here for a section to be opened which is three times the area of an opening 14.
The travel will be all the more limited in that the width of a tongue 15 is reduced and thus the number of slots 14 increased for a given section of transmission channel.
The thickness and nature of the material forming elements 8a, 8b will naturally be chosen according to the properties of the igniter 6. Elements 8a, 8b may be made of steel or silicon.
Elements 8a, 8b may be of a width and length of around ten millimeters, which is two or three times less than that of known barriers.
According to a particular embodiment which will be detailed later, the elements may be of even smaller dimensions and will be advantageously made in the form of parts that are micro-machined or micro-engraved on a board of a substrate, for example an insulating substrate. This technology, known as MEMS (Micro Electro Mechanical System) indeed today enables micro mechanisms to be made by implementing a technique similar to that enabling electronic integrated circuits to be made.
This device is shown as a cross section and the transmission channel 7 appears in
The barrier 8 is here constituted by four sectors of cylinders each of 90°: 8a, 8b, 8c, 8d. These sectors are each delimited by orthogonal planes 16.
Each sector 8a, 8b, 8c, 8d may be radially displaced by motor means 11a, 11b, 11c or 11d.
The device is shown in
When the elements are in the safety position, the different planes 16 are in contact in a zone positioned opposite the transmission channel 7.
We can see in
The device is shown in
The transmission channel 7 is thus partially unblocked.
We can see that each element 8a, 8b, 8c and 8c merely need to be displaced a relatively short distance to largely unblock the channel 7. We note thus that the displacements of the elements for a distance D that is slightly greater than the third of the channel's 7 radius have freed up an area of the channel 7 which is almost half its total area.
The movements required are thus of reduced amplitude thereby enabling a reduction in the size of the device and minimal energy storage for unlocking.
The dimensions of sectors 8 and the amplitude of the displacements D will be selected such that the unblocked area is enough to enable the ignition of the pyrotechnic charge 5, 5a by the igniter 6 (elements not shown in these Figures but located on either side of the channel 7).
The height of the different sectors 8a, 8b, 8c and 8d will naturally be chosen according to the characteristics of the igniter 6 and the charge 5, 5a.
The different motor means may be made in the form of electric micro motors or else in the form of springs. In the latter case, locking means will be provided which will ensure that the sectors are maintained in the safety position as shown in
These locking means will be released to enable the device to arm. A single locking means may be provided for all the sectors or as many locking means may be provided as sectors.
Once again, the sectors may be made in the form of micro-machined or micro-engraved (MEMS) parts.
In this embodiment, the barrier 8 is constituted by two elements 8a and 8b which are able to be displaced radially with respect to the transmission channel 7.
Elements 8a and 8b here are substantially parallelepipedic in shape and their thickness is greater than or equal to the diameter of the channel 7.
Each element 8a, 8b can be displaced by motor means 11a, 11b (here, electric micro motors connected to the control means 13).
In place of the micro motors 11 spring means may naturally be implemented and blocking devices may be used which would be activated by the control means 13.
Once again, when the device is in its safety position, elements 8a, 8b are in mutual contact at a zone which is positioned opposite the transmission channel 7.
Contact surfaces 16a, 16b here have matching profiles constituted by a succession of toothing delimited by planes inclined with respect to the axis 17 of the channel 7.
The juxtaposition of the toothing thus constitutes deflectors which improve gastightness with respect to the gases generated by the igniter 6.
Each element 8a, 8b is thus displaced by a distance substantially equal to the half-diameter of the channel. The movements are thus of reduced amplitude thereby enabling a reduction in the size of the device and minimal energy to ensure unlocking.
The different embodiments described above of the invention may be implemented using barriers whose dimensions are of around ten millimeters. These barriers can block a channel of around 10 mm in diameter.
In any event, the invention enables the size of the barrier to be reduced and the travel reduced.
According to a preferred embodiment of the invention, and as has been suggested by the description different embodiments, the dimensions of the different elements can be further reduced by using MEMS technology.
Thus, the barrier elements will be made in the form of parts that are micro-machined or micro-engraved on a substrate board, for example an insulating substrate.
MEMS technology is well known to someone skilled in the art. Reference may be made therefore to patents EP-1559986 and EP-1559987 which describe safety devices implementing MEMS. Generally, given their small size, the MEMS implemented in known safety devices use a mobile barrier to interrupt an optical firing signal. Such a barrier is thus not directly positioned between the pyrotechnic igniter and the charge, and the interruption of the pyrotechnic train is not ensured.
The invention, on the contrary, intends to implement a MEMS technology mobile barrier to directly and reliably interrupt the pyrotechnic ignition train between an igniter and a charge.
To obtain such a result it is necessary for the whole pyrotechnic train to be optimized and an igniter 6 to be implemented that is of the smallest size able to ensure functioning, such igniter being coupled with a suitable pyrotechnic relay 5a which is positioned on the side of the pyprotechnic charge 5.
It has been verified that by implementing an igniter incorporating an output stage of 10 milligrams of cyclonite coupled with a very insensitive relay, for example of HNS (hexanitrostilbene), it is possible to make a transmission channel 7 with a section of less than 1 mm2 (channel diameter of around one mm) whilst ensuring the required ignition transmission. Note that classical igniters have an output stage of around 30 milligrams of cyclonite. The igniter 6 selected is thus of reduced power.
Indeed, the critical diameter of the HNS is of 0.5 mm and to be ignited this explosive thus requires a priming surface of approximately 0.2 mm2 which is much less than the section of the transmission channel.
It has also been verified that it is possible to ensure the interruption of the pyrotechnic effect using a silicon barrier of around 3 mm in thickness, which can be produced using MEMS technology.
Thanks to the barrier configurations proposed by the invention and with a channel section of less than or equal to 1 mm2, it is possible for the displacement of the barrier element to be limited to 0.5 mm maximum, which is also compatible with MEMS technologies.
The elements are kept locked together by a micro-machined lock 20 which may, for example, be constituted by a thermal fuse or electro thermal or electromagnetic actuator.
Once unlocked, the elements move away from each other due to the action of the motor means 11a and 11b which will, for example, be micro-machined springs.
We can see in this Figure that elements 8a and 8b are substantially parallelepipedic in shape and that the axis 17 of the transmission channel 7 passes through their transversal plane P with the smallest section.
Thus, the barrier no longer receives the pyrotechnic effect in a direction oriented according to the thickness of the barrier, as it did in prior art, but in a direction which is parallel to the plane of displacement of the elements and which thus encounters one of the largest dimensions of the barrier.
It is thus possible for a micro-machined MEMS technology to be implemented whilst ensuring a length of silicon of around 3 mm between the igniter and the pyrotechnic charge. This length is enough to stop the pyrotechnic effects due to the inadvertent ignition of the igniter selected.
Moreover, the displacement of the elements is reduced and is of around 0.5 mm.
Someone skilled in the art will easily determine the structure of the different micro-machined elements. The electro thermal and electromagnetic actuators are well known in the field of MEMS. The same applies to the fuses and micro-machined springs. Reference may be made, for example, to patents EP-1573782, US2005139577, U.S. Pat. No. 6,691,513 and US2004027029 which disclose possible solutions.
It is also possible to put barrier elements that have already been micro-machined on another board onto a board carrying the micro-machined or micro-engraved motor means.
Generally, the thickness of the micro-machined elements does not exceed half a millimeter. To block a channel of a diameter of 1 m, it is therefore necessary to stack at least two micro mechanisms on top of one another.
a and 10b enable the structure of such a device associating two MEMS to be detailed.
Case 3 thus encloses two substrate boards 18.1 and 18.2, for example an insulating substrate, each bonded onto a glass support 19.1, 19.2.
Board 18.1 carries two mobile elements 8a.1 and 8a.1.
Similarly, board 18.2 carries two mobile elements 8a.2 and 8b.2.
Each element may be displaced by motor means 11a.1, 11b.1; 11a.2, 11b.2.
Locking means 20.1 or 20.2 ensure the immobilization, for each board, of the two barriers elements in question.
Slight play (a few microns) in the assembly will be provided to enable the conjunctive movements of elements 8 carried by the two boards.
Each board is connected to the electronic control means 13 which are designed to ensure the synchronized displacement of elements 8 of the different boards.
b shows a connector 21 that ensures the interface between the boards and the cable from the control means 13. Certain conductors carried by the boards 18.1, 18.2 have also been shown schematically in
MEMS-based safety devices are described here which implement the embodiment shown in
It is naturally possible for the device according to other embodiments to be made in MEMS form.
With respect to the embodiment in
The same applies to the embodiment in
Number | Date | Country | Kind |
---|---|---|---|
05.11120 | Oct 2005 | FR | national |