The invention relates to novel compounds based on pyrrolo[3,2-b]pyrrole-2,5-dione, methods for their preparation and intermediates used therein, mixtures and formulations containing them, the use of the compounds, mixtures and formulations as semiconductor in organic electronic (OE) devices, especially in organic photovoltaic (OPV) devices, and to OE and OPV devices comprising these compounds, mixtures or formulations.
In recent years there has been growing interest in the use of organic semiconductors, including conjugated polymers and small molecules, for various electronic applications.
One particular area of importance is the field of organic photovoltaics (OPV). Organic semiconductors (OSCs) have found use in OPV as they allow devices to be manufactured by solution-processing techniques such as spin casting, dip coating or ink jet printing. Solution processing can be carried out cheaper and on a larger scale compared to the evaporative techniques used to make inorganic thin film devices. Numerous small molecules have been developed for solution processable OPV devices as disclosed for example in Thuc-Quyen Nguyen et al., Chem. Mater. 2011, 23, 470-482. However, device power conversion efficiency is still generally low. One particular example has demonstrated an important step towards higher power conversion efficiencies; squarine based small molecules combined with C70 fullerenes have shown a power conversion efficiency of 5.2% in a solution processed OPV device as disclosed in Stephen R. Forrest et al., Adv. Ener. Mater. DOI:10.1002/aenm.201100045.
Another particular area of importance is the field of organic thin film transistors (OTFTs) or organic field effect transistors (OFETs), which are used for example in RFID tags or in backplanes of liquid crystal displays.
Compared to the classical, Si-based FETs, organic TFTs can be fabricated much more cost-effectively by solution coating methods such as spin-coating, drop casting, dip-coating, and more efficiently, ink-jet printing. Solution processing of OSCs requires the molecular materials to be soluble enough in non-toxic solvents, stable in the solution state, easy to crystallise when solvents are evaporated, and provide high charge carrier mobility with low off current.
However, the OSC materials that have been suggested in prior art for use in OPV devices do still suffer from certain drawbacks. For example many polymers suffer from limited solubility in commonly used organic solvents, which can inhibit their suitability for device manufacturing methods based on solution processing, or show only limited power conversion efficiency in OPV bulk-hetero-junction devices, or have only limited charge carrier mobility, or are difficult to synthesize and require synthesis methods which are unsuitable for mass production.
In case of OSC materials for OFETs and OTFTs, the currently available OSC materials do also still have some major drawbacks, like a low photo and environment stability particularly in solution states, and a low temperature of the phase transition and melting point. Also for future OLED backplane applications, which demand higher source and drain current, the mobility and processibility of currently available materials needs further improvement.
In prior art small molecules and polymers based on the 3,6-dioxopyrrolo-[3,4-c]pyrrole (DPP) unit having the following structure, wherein R is for example an alkyl or aryl group,
have been proposed for use as electroluminescent or charge transport material in organic electronic devices like polymer light emitting diodes (PLEDs), organic field effect transistors (OFETs), OPV devices or organic laser diodes, as disclosed for example in WO 05/049695 A1 or WO 08/000,664 A1.
However, for some applications DPP based materials were reported to still have limitations. For example, it was reported that the power conversion efficiency of solution processed OPV devices based upon a p/n-type blend of a DPP-based oligomer and C60 or C70 fullerenes were limited to 4.4% primarily due to a low external quantum efficiency (EQE) and fill factor (FF), as disclosed in Thuc-Quyen Nguyen et al., Adv. Funct. Mater. 2009, 19, 3063-3069. Most likely the bulk heterojunction between the oligomer based-DPP and the fullerene formed a non-optimal morphology.
Therefore, there is still a need for organic semiconducting (OSC) materials that are easy to synthesize, especially by methods suitable for mass production, show good structural organization and film-forming properties, exhibit good electronic properties, especially a high charge carrier mobility, good processibility, especially a high solubility in organic solvents, and high stability in air.
For use in OPV cells, there is a need for OSC materials having a low bandgap, which enable improved light harvesting by the photoactive layer and can lead to higher cell efficiencies, compared to the compounds from prior art.
For use in OTFTs, there is a need for materials that show good electronic properties, especially high charge carrier mobility, good processability and high thermal and environmental stability, especially a high solubility in organic solvents.
It was an aim of the present invention to provide compounds for use as organic semiconducting materials that do not have the drawbacks of prior art materials as described above, are easy to synthesize, especially by methods suitable for mass production, and do especially show advantageous properties, especially for OPV and OTFT use, as described above. Another aim of the invention was to extend the pool of OSC materials available to the expert. Other aims of the present invention are immediately evident to the expert from the following detailed description.
The inventors of the present invention have found that one or more of the above aims can be achieved by providing monomeric compounds (small molecules) containing a pyrrolo[3,2-b]pyrrole-2,5-dione-3,6-diyl group of the following structure, wherein R is for example an alkyl or aryl group and the numbers indicate the position on the pyrrolopyrrole core.
It was found that compounds comprising such a group show good processability and high solubility in organic solvents, and are thus especially suitable for large scale production using solution processing methods. At the same time, they show a low bandgap, high charge carrier mobility, high external quantum efficiency in BHJ solar cells, good morphology when used in p/n-type blends e.g. with fullerenes, high oxidative stability, and are promising materials for organic electronic OE devices, especially for OPV devices with high power conversion efficiency.
Compared to the DPP compounds of prior art, in the compounds of the present invention the inversion at the atom position constituting the amide functionality leads to unexpected improvements for example regarding the solubility and morphology profile, and results in surprising improvements regarding their OFET and OPV device performance.
DE 3525109 A1 discloses monomeric pyrrolo[3,2-b]pyrrole-2,5-dione derivatives for use as dyes or pigments. WO 2007/003520 A1 discloses monomeric pyrrolo[3,2-b]pyrrole-2,5-dione derivatives for use as fluorescent dye in inks, colourants, pigmented plastics for coatings, non-impact-printing materials, colour filters, cosmetics, polymeric ink particles, toners, as fluorescent tracers, in colour changing media, dye lasers and electroluminescent devices. However, it has hitherto not been suggested to use such compounds as organic semiconductors, especially for use in OFET or OPV devices.
The invention relates to the use of compounds of formula I
wherein
The invention further relates to novel compounds of formula I as defined above and below, which contain at least one group Ar1, Ar2 or Ar3 and at least one group Ar4, Ar5 or Ar6 that is different from phenylene and substituted phenylene.
The invention further relates to a formulation comprising one or more novel compounds of formula I as described above and below and one or more solvents, preferably selected from organic solvents.
Preferably the formulation comprises one or more compounds of formula I, one or more organic binders, or precursors thereof, preferably having a permittivity ∈ at 1,000 Hz and 20° C. of 3.3 or less, and optionally one or more solvents.
The invention further relates to the use of compounds and formulations according to the present invention as charge transport, semiconducting, electrically conducting or photoconducting material in an optical, electrooptical or electronic component or device.
The invention further relates to a charge transport, semiconducting, electrically conducting or photoconducting material or component comprising one or more compounds or formulations according to the present invention.
The invention further relates to an optical, electrooptical or electronic component or device comprising one or more compounds, formulations, components or materials according to the present invention.
The optical, electrooptical and electronic components or devices include, without limitation, organic field effect transistors (OFET), thin film transistors (TFT), integrated circuits (IC), logic circuits, capacitors, radio frequency identification (RFID) tags, devices or components, organic light emitting diodes (OLED), organic light emitting transistors (OLET), flat panel displays, backlights of displays, organic photovoltaic devices (OPV), solar cells, photodiodes, laser diodes, photoconductors, photodetectors, electrophotographic devices, electrophotographic recording devices, organic memory devices, sensor devices, charge injection layers, charge transport layers or interlayers in polymer light emitting diodes (PLEDs), organic plasmon-emitting diodes (OPEDs), Schottky diodes, planarising layers, antistatic films, polymer electrolyte membranes (PEM), conducting substrates, conducting patterns, electrode materials in batteries, alignment layers, biosensors, biochips, security markings, security devices, and components or devices for detecting and discriminating DNA sequences.
The compounds of formula I are especially suitable as (electron) acceptor in p-type semiconducting materials or mixtures, and for the preparation of mixtures of p-type and n-type semiconductors which are useful for application in BHJ OPV devices, furthermore as p-type semiconductor in OTFTs and OFETs.
In addition, they show the following advantageous properties:
Such difference will have impact on the OFET and/or OPV device fabrication process and performance.
The compounds of formula I are easy to synthesize and exhibit several advantageous properties, like a low bandgap, a high charge carrier mobility, a high solubility in organic solvents, a good processability for the device manufacture process, a high oxidative stability and a long lifetime in electronic devices.
Above and below, the term “polymer” generally means a molecule of high relative molecular mass, the structure of which essentially comprises the multiple repetition of units derived, actually or conceptually, from molecules of low relative molecular mass (PAC, 1996, 68, 2291). The term “oligomer” generally means a molecule of intermediate relative molecular mass, the structure of which essentially comprises a small plurality of units derived, actually or conceptually, from molecules of lower relative molecular mass (PAC, 1996, 68, 2291). In a preferred sense according to the present invention a polymer means a compound having >1, preferably ≧5 repeating units, and an oligomer means a compound with >1 and <10, preferably <5, repeating units.
Above and below, in a structural unit or group of a compound an asterisk (“*”) denotes a linkage to an adjacent structural unit or group.
The terms “repeating unit” and “monomeric unit” mean the constitutional repeating unit (CRU), which is the smallest constitutional unit the repetition of which constitutes a regular macromolecule, a regular oligomer molecule, a regular block or a regular chain (PAC, 1996, 68, 2291).
The terms “donor” and “acceptor”, unless stated otherwise, mean an electron donor or electron acceptor, respectively. “Electron donor” means a chemical entity that donates electrons to another compound or another group of atoms of a compound. “Electron acceptor” means a chemical entity that accepts electrons transferred to it from another compound or another group of atoms of a compound. (see also U.S. Environmental Protection Agency, 2009, Glossary of technical terms, http://www.epa.gov/oust/cat/TUMGLOSS.HTM).
The term “leaving group” means an atom or group (charged or uncharged) that becomes detached from an atom in what is considered to be the residual or main part of the molecule taking part in a specified reaction (see also PAC, 1994, 66, 1134).
Preferred leaving groups are selected from the group consisting of F, Br, Cl, —SiR′R″R′″, —SnR′R″R′″, —BR′R″, —B(OR′)(OR″), —B(OH)2, O-tosylate, O-triflate, O-mesylate, O-nonaflate, —SiMe2F, —SiMeF2, —O—SO2—R′, wherein R′, R″ and R′″ have independently of each other one of the meanings of R0 as given in formula I or one of the preferred meanings as described above and below, and preferably denote alkyl with 1 to 20 C atoms or aryl with 4 to 20 C atoms, and two of R′, R″ and R′″ may also form a ring together with the hetero atom to which they are attached, and “Me” denotes methyl.
Unless stated otherwise, the molecular weight is given as the number average molecular weight Mn or weight average molecular weight MW, which is determined by gel permeation chromatography (GPC) against polystyrene standards in eluent solvents such as tetrahydrofuran, trichloromethane (TCM, chloroform), chlorobenzene or 1,2,4-trichlorobenzene. Unless stated otherwise, 1,2,4-trichlorobenzene is used as solvent. The degree of polymerization, also referred to as total number of repeating units, n, means the number average degree of polymerization given as n=Mn/MU, wherein Mn is the number average molecular weight and MU is the molecular weight of the single repeating unit, see J. M. G. Cowie, Polymers: Chemistry & Physics of Modern Materials, Blackie, Glasgow, 1991.
The term “conjugated” means a compound containing mainly C atoms with sp2-hybridisation (or optionally also sp-hybridisation), which may also be replaced by heteroatoms. In the simplest case this is for example a compound with alternating C—C single and double (or triple) bonds, but does also include compounds with units like 1,3-phenylene. “Mainly” means in this connection that a compound with naturally (spontaneously) occurring defects, which may lead to interruption of the conjugation, is still regarded as a conjugated compound.
The term “carbyl group” as used above and below denotes any monovalent or multivalent organic radical moiety which comprises at least one carbon atom either without any non-carbon atoms (like for example —C≡C—), or optionally combined with at least one non-carbon atom such as N, O, S, P, Si, Se, As, Te or Ge (for example carbonyl etc.). The term “hydrocarbyl group” denotes a carbyl group that additionally contains one or more H atoms and optionally contains one or more heteroatoms like for example N, O, S, P, Si, Se, As, Te or Ge.
The term “heteroatom” means an atom in an organic compound that is not a H or C atom, and preferably means N, O, S, P, Si, Se, As, Te or Ge.
A carbyl or hydrocarbyl group comprising a chain of 3 or more C atoms may be straight-chain, branched and/or cyclic, including spiro and/or fused rings.
Preferred carbyl and hydrocarbyl groups include alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy and alkoxycarbonyloxy, each of which is optionally substituted and has 1 to 40, preferably 1 to 25, very preferably 1 to 18 C atoms, furthermore optionally substituted aryl or aryloxy having 6 to 40, preferably 6 to 25 C atoms, furthermore alkylaryloxy, arylcarbonyl, aryloxycarbonyl, arylcarbonyloxy and aryloxycarbonyloxy, each of which is optionally substituted and has 6 to 40, preferably 7 to 40 C atoms, wherein all these groups do optionally contain one or more hetero atoms, preferably selected from N, O, S, P, Si, Se, As, Te and Ge.
The carbyl or hydrocarbyl group may be a saturated or unsaturated acyclic group, or a saturated or unsaturated cyclic group. Unsaturated acyclic or cyclic groups are preferred, especially aryl, alkenyl and alkynyl groups (especially ethynyl). Where the C1-C40 carbyl or hydrocarbyl group is acyclic, the group may be straight-chain or branched. The C1-C40 carbyl or hydrocarbyl group includes for example: a C1-C40 alkyl group, a C1-C40 alkoxy or oxaalkyl group, a C2-C40 alkenyl group, a C2-C40 alkynyl group, a C3-C40 allyl group, a C4-C40 alkyldienyl group, a C4-C40 polyenyl group, a C6-C18 aryl group, a C6-C40 alkylaryl group, a C6-C40 arylalkyl group, a C4-C40 cycloalkyl group, a C4-C40 cycloalkenyl group, and the like. Preferred among the foregoing groups are a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, a C3-C20 allyl group, a C4-C20 alkyldienyl group, a C6-C12 aryl group, and a C4-C20 polyenyl group, respectively. Also included are combinations of groups having carbon atoms and groups having hetero atoms, like e.g. an alkynyl group, preferably ethynyl, that is substituted with a silyl group, preferably a trialkylsilyl group.
Aryl and heteroaryl preferably denote a mono-, bi- or tricyclic aromatic or heteroaromatic group with 4 to 30 ring C atoms that may also comprise condensed rings and is optionally substituted with one or more groups L,
wherein L is selected from halogen, —CN, —NC, —NCO, —NCS, —OCN, —SCN, —C(═O)NR0R00, —C(═O)X0, —C(═O)R0, —C(O)OR0, —O—C(O)R0, —NH2, —NR0R00, —SH, —SR0, —SO3H, —SO2R0, —OH, —NO2, —CF3, —SF5, P-Sp-, optionally substituted silyl, or carbyl or hydrocarbyl with 1 to 40 C atoms that is optionally substituted and optionally comprises one or more hetero atoms, and is preferably alkyl, alkoxy, thiaalkyl, alkylcarbonyl, alkoxycarbonyl or alkoxycarbonyloxy with 1 to 20 C atoms that is optionally fluorinated, and R0, R00, X0, P and Sp have the meanings given above and below.
Very preferred substituents L are selected from halogen, most preferably F, or alkyl, alkoxy, oxaalkyl, thioalkyl, fluoroalkyl and fluoroalkoxy with 1 to 12 C atoms or alkenyl, alkynyl with 2 to 12 C atoms.
Especially preferred aryl and heteroaryl groups are phenyl in which, in addition, one or more CH groups may be replaced by N, naphthalene, thiophene, selenophene, thienothiophene, dithienothiophene, fluorene and oxazole, all of which can be unsubstituted, mono- or polysubstituted with L as defined above. Very preferred rings are selected from pyrrole, preferably N-pyrrole, furan, pyridine, preferably 2- or 3-pyridine, pyrimidine, pyridazine, pyrazine, triazole, tetrazole, pyrazole, imidazole, isothiazole, thiazole, thiadiazole, isoxazole, oxazole, oxadiazole, thiophene preferably 2-thiophene, selenophene, preferably 2-selenophene, thieno[3,2-b]thiophene, indole, isoindole, benzofuran, benzo-thiophene, benzodithiophene, quinole, 2-methylquinole, isoquinole, quinoxaline, quinazoline, benzotriazole, benzimidazole, benzothiazole, benzisothiazole, benzisoxazole, benzoxadiazole, benzoxazole, benzo-thiadiazole, all of which can be unsubstituted, mono- or polysubstituted with L as defined above. Further examples of heteroaryl groups are those selected from the following formulae
An alkyl or alkoxy radical, i.e. where the terminal CH2 group is replaced by —O—, can be straight-chain or branched. It is preferably straight-chain, has 2, 3, 4, 5, 6, 7 or 8 carbon atoms and accordingly is preferably ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, ethoxy, propoxy, butoxy, pentoxy, hexoxy, heptoxy, or octoxy, furthermore methyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, nonoxy, decoxy, undecoxy, dodecoxy, tridecoxy or tetradecoxy, for example.
An alkenyl group, wherein one or more CH2 groups are replaced by —CH═CH— can be straight-chain or branched. It is preferably straight-chain, has 2 to 10 C atoms and accordingly is preferably vinyl, prop-1-, or prop-2-enyl, but-1-, 2- or but-3-enyl, pent-1-, 2-, 3- or pent-4-enyl, hex-1-, 2-, 3-, 4- or hex-5-enyl, hept-1-, 2-, 3-, 4-, 5- or hept-6-enyl, oct-1-, 2-, 3-, 4-, 5-, 6- or oct-7-enyl, non-1-, 2-, 3-, 4-, 5-, 6-, 7- or non-8-enyl, dec-1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or dec-9-enyl.
Especially preferred alkenyl groups are C2-C7-1E-alkenyl, C4-C7-3E-alkenyl, C5-C7-4-alkenyl, C6-C7-5-alkenyl and C7-6-alkenyl, in particular C2-C7-1E-alkenyl, C4-C7-3E-alkenyl and C5-C7-4-alkenyl. Examples for particularly preferred alkenyl groups are vinyl, 1E-propenyl, 1E-butenyl, 1E-pentenyl, 1E-hexenyl, 1E-heptenyl, 3-butenyl, 3E-pentenyl, 3E-hexenyl, 3E-heptenyl, 4-pentenyl, 4Z-hexenyl, 4E-hexenyl, 4Z-heptenyl, 5-hexenyl, 6-heptenyl and the like. Groups having up to 5 C atoms are generally preferred.
An oxaalkyl group, i.e. where one CH2 group is replaced by —O—, is preferably straight-chain 2-oxapropyl (=methoxymethyl), 2-(=ethoxy-methyl) or 3-oxabutyl (=2-methoxyethyl), 2-, 3-, or 4-oxapentyl, 2-, 3-, 4-, or 5-oxahexyl, 2-, 3-, 4-, 5-, or 6-oxaheptyl, 2-, 3-, 4-, 5-, 6- or 7-oxaoctyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-oxanonyl or 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-oxadecyl, for example. Oxaalkyl, i.e. where one CH2 group is replaced by —O—, is preferably straight-chain 2-oxapropyl (=methoxymethyl), 2-(=ethoxy-methyl) or 3-oxabutyl (=2-methoxyethyl), 2-, 3-, or 4-oxapentyl, 2-, 3-, 4-, or 5-oxahexyl, 2-, 3-, 4-, 5-, or 6-oxaheptyl, 2-, 3-, 4-, 5-, 6- or 7-oxaoctyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-oxanonyl or 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-oxadecyl, for example.
In an alkyl group wherein one CH2 group is replaced by —O— and one by —C(O)—, these radicals are preferably neighboured. Accordingly these radicals together form a carbonyloxy group —C(O)—O— or an oxycarbonyl group —O—C(O)—. Preferably this group is straight-chain and has 2 to 6 C atoms. It is accordingly preferably acetyloxy, propionyloxy, butyryloxy, pentanoyloxy, hexanoyloxy, acetyloxymethyl, propionyloxymethyl, butyryloxymethyl, pentanoyloxymethyl, 2-acetyloxyethyl, 2-propionyloxy-ethyl, 2-butyryloxyethyl, 3-acetyloxypropyl, 3-propionyloxypropyl, 4-acetyloxybutyl, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, pentoxycarbonyl, methoxycarbonylmethyl, ethoxy-carbonylmethyl, propoxycarbonylmethyl, butoxycarbonylmethyl, 2-(methoxycarbonyl)ethyl, 2-(ethoxycarbonyl)ethyl, 2-(propoxycarbonyl)ethyl, 3-(methoxycarbonyl)propyl, 3-(ethoxycarbonyl)propyl, 4-(methoxycarbonyl)-butyl.
An alkyl group wherein two or more CH2 groups are replaced by —O— and/or —C(O)O— can be straight-chain or branched. It is preferably straight-chain and has 3 to 12 C atoms. Accordingly it is preferably bis-carboxy-methyl, 2,2-bis-carboxy-ethyl, 3,3-bis-carboxy-propyl, 4,4-bis-carboxy-butyl, 5,5-bis-carboxy-pentyl, 6,6-bis-carboxy-hexyl, 7,7-bis-carboxy-heptyl, 8,8-bis-carboxy-octyl, 9,9-bis-carboxy-nonyl, 10,10-bis-carboxy-decyl, bis-(methoxycarbonyl)-methyl, 2,2-bis-(methoxycarbonyl)-ethyl, 3,3-bis-(methoxycarbonyl)-propyl, 4,4-bis-(methoxycarbonyl)-butyl, 5,5-bis-(methoxycarbonyl)-pentyl, 6,6-bis-(methoxycarbonyl)-hexyl, 7,7-bis-(methoxycarbonyl)-heptyl, 8,8-bis-(methoxycarbonyl)-octyl, bis-(ethoxy-carbonyl)-methyl, 2,2-bis-(ethoxycarbonyl)-ethyl, 3,3-bis-(ethoxycarbonyl)-propyl, 4,4-bis-(ethoxycarbonyl)-butyl, 5,5-bis-(ethoxycarbonyl)-hexyl.
A thioalkyl group, i.e where one CH2 group is replaced by —S—, is preferably straight-chain thiomethyl (—SCH3), 1-thioethyl (—SCH2CH3), 1-thiopropyl (═—SCH2CH2CH3), 1-(thiobutyl), 1-(thiopentyl), 1-(thiohexyl), 1-(thioheptyl), 1-(thiooctyl), 1-(thiononyl), 1-(thiodecyl), 1-(thioundecyl) or 1-(thiododecyl), wherein preferably the CH2 group adjacent to the sp2 hybridised vinyl carbon atom is replaced.
A fluoroalkyl group is preferably straight-chain perfluoroalkyl CiF2i+1, wherein i is an integer from 1 to 15, in particular CF3, C2F5, C3F7, C4F9, C5F11, C6F13, C7F15 or C8F17, very preferably C6F13.
The above-mentioned alkyl, alkoxy, alkenyl, oxaalkyl, thioalkyl, carbonyl and carbonyloxy groups can be achiral or chiral groups. Particularly preferred chiral groups are 2-butyl (=1-methylpropyl), 2-methylbutyl, 2-methylpentyl, 3-methylpentyl, 2-ethylhexyl, 2-propylpentyl, in particular 2-methylbutyl, 2-methylbutoxy, 2-methylpentoxy, 3-methylpentoxy, 2-ethyl-hexoxy, 1-methylhexoxy, 2-octyloxy, 2-oxa-3-methylbutyl, 3-oxa-4-methylpentyl, 4-methylhexyl, 2-hexyl, 2-octyl, 2-nonyl, 2-decyl, 2-dodecyl, 6-meth-oxyoctoxy, 6-methyloctoxy, 6-methyloctanoyloxy, 5-methylheptyloxy-carbonyl, 2-methylbutyryloxy, 3-methylvaleroyloxy, 4-methylhexanoyloxy, 2-chloropropionyloxy, 2-chloro-3-methylbutyryloxy, 2-chloro-4-methyl-valeryl-oxy, 2-chloro-3-methylvaleryloxy, 2-methyl-3-oxapentyl, 2-methyl-3-oxahexyl, 1-methoxypropyl-2-oxy, 1-ethoxypropyl-2-oxy, 1-propoxypropyl-2-oxy, 1-butoxypropyl-2-oxy, 2-fluorooctyloxy, 2-fluorodecyloxy, 1,1,1-trifluoro-2-octyloxy, 1,1,1-trifluoro-2-octyl, 2-fluoromethyloctyloxy for example. Very preferred are 2-hexyl, 2-octyl, 2-octyloxy, 1,1,1-trifluoro-2-hexyl, 1,1,1-trifluoro-2-octyl and 1,1,1-trifluoro-2-octyloxy.
Preferred achiral branched groups are isopropyl, isobutyl (=methylpropyl), isopentyl (=3-methylbutyl), tert. butyl, isopropoxy, 2-methyl-propoxy and 3-methylbutoxy.
In another preferred embodiment of the present invention, R1 and R2 are independently of each other selected from primary, secondary or tertiary alkyl or alkoxy with 1 to 30 C atoms, wherein one or more H atoms are optionally replaced by F, or aryl, aryloxy, heteroaryl or heteroaryloxy that is optionally alkylated or alkoxylated and has 4 to 30 ring atoms. Very preferred groups of this type are selected from the group consisting of the following formulae
wherein “ALK” denotes optionally fluorinated, preferably linear, alkyl or alkoxy with 1 to 20, preferably 1 to 12 C-atoms, in case of tertiary groups very preferably 1 to 9 C atoms, and the dashed line denotes the link to the ring to which these groups are attached. Especially preferred among these groups are those wherein all ALK subgroups are identical.
—CY1═CY2— is preferably —CH═CH—, —CF═CF— or —CH═C(CN)—.
Halogen is F, Cl, Br or I, preferably F, Cl or Br.
—CO—, —C(═O)— and —C(O)— denote a carbonyl group, i.e
The compounds may also be substituted with a polymerisable or crosslinkable reactive group. Particularly preferred compounds of this type are those compounds of formula I wherein R1 and/or R2 denote P-Sp. These compounds are particularly useful as semiconductors or charge transport materials, as they can be crosslinked via the groups P, for example by polymerisation in situ, during or after processing the polymer into a thin film for a semiconductor component, to yield crosslinked polymer films with high charge carrier mobility and high thermal, mechanical and chemical stability.
Preferably the polymerisable or crosslinkable group P is selected from CH2═CW1—C(O)—O—, CH2═CW1—C(O)—,
CH2═CW2—(O)k1—, CW1═CH—C(O)—(O)k3—, CW1═CH—C(O)—NH—, CH2═CW1—C(O)—NH—, CH3—CH═CH—O—, (CH2═CH)2CH—OC(O)—, (CH2═CH—CH2)2CH—O—C(O)—, (CH2═CH)2CH—O—, (CH2═CH—CH2)2N—, (CH2═CH—CH2)2N—C(O)—, HO—CW2W3—, HS—CW2W3—, HW2N—, HO—CW2W3—NH—, CH2═CH—(C(O)—O)k1-Phe-(O)k2—, CH2═CH—(C(O))k1-Phe-(O)k2—, Phe-CH═CH—, HOOC—, OCN—, and W4W5W6Si—, with W1 being H, F, Cl, CN, CF3, phenyl or alkyl with 1 to 5 C-atoms, in particular H, Cl or CH3, W2 and W3 being independently of each other H or alkyl with 1 to 5 C-atoms, in particular H, methyl, ethyl or n-propyl, W4, W5 and W6 being independently of each other Cl, oxaalkyl or oxacarbonylalkyl with 1 to 5 C-atoms, W7 and W8 being independently of each other H, Cl or alkyl with 1 to 5 C-atoms, Phe being 1,4-phenylene that is optionally substituted by one or more groups L as defined above, k1, k2 and k3 being independently of each other 0 or 1, k3 preferably being 1, and k4 being an integer from 1 to 10.
Alternatively P is a protected derivative of these groups which is non-reactive under the conditions described for the process according to the present invention. Suitable protective groups are known to the ordinary expert and described in the literature, for example in Green, “Protective Groups in Organic Synthesis”, John Wiley and Sons, New York (1981), like for example acetals or ketals.
Especially preferred groups P are CH2═CH—C(O)—O—, CH2═C(CH3)—C(O)—O—, CH2═CF—C(O)—O—, CH2═CH—O—, (CH2═CH)2CH—O—C(O)—, (CH2═CH)2CH—O—,
or protected derivatives thereof. Further preferred groups P are selected from the group consisting of vinyloxy, acrylate, methacrylate, fluoroacrylate, chloracrylate, oxetan and epoxy groups, very preferably from an acrylate or methacrylate group.
Polymerisation of group P can be carried out according to methods that are known to the ordinary expert and described in the literature, for example in D. J. Broer; G. Challa; G. N. Mol, Macromol. Chem, 1991, 192, 59.
The term “spacer group” is known in prior art and suitable spacer groups Sp are known to the ordinary expert (see e.g. Pure Appl. Chem. 73(5), 888 (2001). The spacer group Sp is preferably of formula Sp′-X′, such that P-Sp- is P-Sp′-X′-, wherein
Typical groups Sp′ are, for example, —(CH2)p—, —(CH2CH2O)q—CH2CH2—, —CH2CH2—S—CH2CH2— or —CH2CH2—NH—CH2CH2— or —(SiR0R00—O)p—, with p being an integer from 2 to 12, q being an integer from 1 to 3 and R0 and R00 having the meanings given above.
Preferred groups Sp′ are ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, undecylene, dodecylene, octadecylene, ethyleneoxyethylene, methyleneoxybutylene, ethylene-thioethylene, ethylene-N-methyl-iminoethylene, 1-methylalkylene, ethenylene, propenylene and butenylene for example.
In a preferred embodiment of the present invention both, R1 and R2, denote an aromatic or heteroaromatic group which is optionally substituted. Particularly preferred groups are optionally substituted aromatic or heteroaromatic groups having 5 to 20 aromatic ring atoms, in particular optionally substituted phenyl groups. Preferred substituents are those groups as described for R3 and R4 above.
Another aspect of the invention relates to compounds of formula II
wherein
Preferably in the compounds of formula I and II X1 and X2 have the same meaning, i.e. both X1 and X2 denote O or both X1 and X2 denote S. Furthermore preferred are compounds of formula I and II wherein at least one of X1 and X2 is S, i.e. compounds of formula I and II wherein both X1 and X2 denote S or wherein one of X1 and X2 is O and the other is S.
Further preferred are compounds of formula I and II wherein R1, R2, R3 and R4 independently of each other denote H or straight-chain, branched or cyclic alkyl with 1 to 35 C atoms, in which one or more non-adjacent C atoms are optionally replaced by —O—, —S—, —C(O)—, —C(O)—O—, —O—C(O)—, —O—C(O)—O—, —CR0═CR00— or —C≡C— and in which one or more H atoms are optionally replaced by F, Cl, Br, I or CN, or denote aryl, heteroaryl, aryloxy, heteroaryloxy, arylcarbonyl, heteroarylcarbonyl, arylcarbonyloxy, heteroarylcarbonyloxy, aryloxycarbonyl and heteroaryloxycarbonyl, each of which has 4 to 30 ring atoms and is optionally substituted by one or more non-aromatic groups L as defined above.
Particularly preferred groups R1 and R2 are those groups as described above.
Preferably Ar1-6 in formula I and Ar7 and Ar8 in formula II independently of each other, and on each occurrence identically or differently, denote aryl or heteroaryl that is different from pyrrolo[3,2-b]pyrrole-2,5-dione, preferably has 5 to 30 ring atoms, and is optionally substituted, preferably by one or more groups R1 or R3 as defined above.
Especially preferred are compounds of formula I wherein one or more of Ar1, Ar2, Ar3 and/or one or more of Ar4, Ar5 and Ar6 are selected from aryl or heteroaryl groups having electron donor properties.
Further preferred are compounds of formula II wherein one or more of Ar7 and/or one or more of Ar8 are selected from aryl or heteroaryl groups having electron donor properties.
Further preferred are compounds of formula I wherein one or more of Ar1, Ar2, Ar3 and/or one or more of Ar4, Ar5 and Ar6, and compounds of formula II wherein or one or more of Ar7 and/or one or more of Ar8, denote aryl or heteroaryl, preferably having electron donor properties, selected from the group consisting of the following formulae
wherein one of X11 and X12 is S and the other is Se, and R11, R12, R13, R14, R15, R16, R17 and R18 independently of each other denote H or have one of the meanings of R1 or R3 as defined above and below.
Further preferred are compounds of formula I wherein one or more of Ar1, Ar2, Ar3 and/or one or more of Ar4, Ar5 and Ar6, and compounds of formula II wherein or one or more of Ar7 and/or one or more of Ar8, denote aryl or heteroaryl, preferably having electron acceptor properties, selected from the group consisting of the following formulae
wherein one of X11 and X12 is S and the other is Se, and R11, R12, R13, R14 and R15 independently of each other denote H or have one of the meanings of R1 or R3 as defined above and below.
Further preferred are compounds of formula I and II that are selected from the following list of preferred embodiments:
The compounds of formula I and II can be synthesized according to or in analogy to methods that are known to the skilled person and are described in the literature. Other methods of preparation can be taken from the examples. Preferred and suitable synthesis methods are further described in the reaction schemes shown below, wherein Ar1-Ar5 have one of the meanings of Ar1 as given in formula I, “Alk” means an alkyl group and “Ar” means an aryl group.
The generic preparation of symmetric pyrrolo[3,2-b]pyrrole-2,5-dione core has been described for example in P. Langer, J. Wuckelt, M. Doring, J. Org. Chem. 2000, 65, 729-734 and is illustrated in Scheme 1.
The generic preparation of asymmetric pyrrolo[3,2-b]pyrrole-2,5-dione core has been described for example in P. Langer, F. Helmholz, R. Schroeder, Synlett 2003, 15, 2389-2391 and is illustrated in Scheme 2.
The generic preparation of symmetric and asymmetric pyrrolo[3,2-b]pyrrole-2,5-dione core with non substituted amide has been described, for example, in DE3525109 (A1) and is illustrated in Scheme 3.
Further substitution of the pyrrolo[3,2-b]pyrrole-2,5-dione core can be done, for example, by the following methods as described in Scheme 4, or in analogy thereto, to prepare the required precursors for the compounds of formula I, like those represented by formula II.
Based on these precursors, as represented for example by formula II (wherein Ar7 corresponds to Ar1 and Ar8 corresponds to Ar4), the compounds of formula I can be prepared as exemplarily shown in Scheme 5 below.
The novel methods of preparing compounds as described above and below and the intermediates used therein are further aspects of the present invention.
The invention further relates to a formulation comprising one or more compounds of formula I and one or more solvents, preferably selected from organic solvents.
Preferred solvents are aliphatic hydrocarbons, chlorinated hydrocarbons, aromatic hydrocarbons, ketones, ethers and mixtures thereof. Additional solvents which can be used include 1,2,4-trimethylbenzene, 1,2,3,4-tetra-methylbenzene, pentylbenzene, mesitylene, cumene, cymene, cyclohexyl-benzene, diethylbenzene, tetralin, decalin, 2,6-lutidine, 2-fluoro-m-xylene, 3-fluoro-o-xylene, 2-chlorobenzotrifluoride, dimethylformamide, 2-chloro-6fluorotoluene, 2-fluoroanisole, anisole, 2,3-dimethylpyrazine, 4-fluoroanisole, 3-fluoroanisole, 3-trifluoro-methylanisole, 2-methylanisole, phenetol, 4-methylansiole, 3-methylanisole, 4-fluoro-3-methylanisole, 2-fluorobenzonitrile, 4-fluoroveratrol, 2,6-dimethylanisole, 3-fluorobenzonitrile, 2,5-dimethylanisole, 2,4-dimethylanisole, benzonitrile, 3,5-dimethylanisole, N,N-dimethylaniline, ethyl benzoate, 1-fluoro-3,5-dimethoxy-benzene, 1-methylnaphthalene, N-methylpyrrolidinone, 3-fluorobenzotrifluoride, benzotrifluoride, benzotrifluoride, diosane, trifluoromethoxy-benzene, 4-fluorobenzotrifluoride, 3-fluoropyridine, toluene, 2-fluorotoluene, 2-fluorobenzotrifluoride, 3-fluorotoluene, 4-isopropylbiphenyl, phenyl ether, pyridine, 4-fluorotoluene, 2,5-difluorotoluene, 1-chloro-2,4-difluorobenzene, 2-fluoropyridine, 3-chlorofluorobenzene, 3-chlorofluorobenzene, 1-chloro-2,5-difluorobenzene, 4-chlorofluorobenzene, chlorobenzene, o-dichlorobenzene, 2-chlorofluorobenzene, p-xylene, m-xylene, o-xylene or mixture of o-, m-, and p-isomers. Solvents with relatively low polarity are generally preferred. For inkjet printing solvents with high boiling temperatures and solvent mixtures are preferred. For spin coating alkylated benzenes like xylene and toluene are preferred.
The invention further relates to an organic semiconducting formulation comprising one or more compounds of formula I, one or more organic binders, or precursors thereof, preferably having a permittivity ∈ at 1,000 Hz of 3.3 or less, and optionally one or more solvents.
Combining specified soluble compounds of formula I, especially compounds of the preferred formulae as described above and below, with an organic binder resin (hereinafter also referred to as “the binder”) results in little or no reduction in charge mobility of the compounds of formula I, even an increase in some instances. For instance, the compounds of formula I may be dissolved in a binder resin (for example poly(α-methylstyrene) and deposited (for example by spin coating), to form an organic semiconducting layer yielding a high charge mobility. Moreover, a semiconducting layer formed thereby exhibits excellent film forming characteristics and is particularly stable.
If an organic semiconducting layer formulation of high mobility is obtained by combining a compound of formula I with a binder, the resulting formulation leads to several advantages. For example, since the compounds of formula I are soluble they may be deposited in a liquid form, for example from solution. With the additional use of the binder the formulation can be coated onto a large area in a highly uniform manner. Furthermore, when a binder is used in the formulation it is possible to control the properties of the formulation to adjust to printing processes, for example viscosity, solid content, surface tension. Whilst not wishing to be bound by any particular theory it is also anticipated that the use of a binder in the formulation fills in volume between crystalline grains otherwise being void, making the organic semiconducting layer less sensitive to air and moisture. For example, layers formed according to the process of the present invention show very good stability in OFET devices in air.
The invention also provides an organic semiconducting layer which comprises the organic semiconducting layer formulation.
The invention further provides a process for preparing an organic semiconducting layer, said process comprising the following steps:
The process is described in more detail below.
The invention additionally provides an electronic device comprising the said organic semiconducting layer. The electronic device may include, without limitation, an organic field effect transistor (OFET), organic light emitting diode (OLED), photodetector, sensor, logic circuit, memory element, capacitor or photovoltaic (PV) cell. For example, the active semiconductor channel between the drain and source in an OFET may comprise the layer of the invention. As another example, a charge (hole or electron) injection or transport layer in an OLED device may comprise the layer of the invention. The formulations according to the present invention and layers formed therefrom have particular utility in OFETs especially in relation to the preferred embodiments described herein.
The semiconducting compound of formula I preferably has a charge carrier mobility, μ, of more than 0.001 cm2V−1s−1, very preferably of more than 0.01 cm2V−1s−1, especially preferably of more than 0.1 cm2V−1s−1 and most preferably of more than 0.5 cm2V−1s−1.
The binder, which is typically a polymer, may comprise either an insulating binder or a semiconducting binder, or mixtures thereof may be referred to herein as the organic binder, the polymeric binder or simply the binder.
Preferred binders according to the present invention are materials of low permittivity, that is, those having a permittivity ∈ of 3.3 or less. The organic binder preferably has a permittivity ∈ of 3.0 or less, more preferably 2.9 or less. Preferably the organic binder has a permittivity ∈ at of 1.7 or more. It is especially preferred that the permittivity of the binder is in the range from 2.0 to 2.9. Whilst not wishing to be bound by any particular theory it is believed that the use of binders with a permittivity ∈ of greater than 3.3, may lead to a reduction in the OSC layer mobility in an electronic device, for example an OFET. In addition, high permittivity binders could also result in increased current hysteresis of the device, which is undesirable.
An example of a suitable organic binder is polystyrene. Further examples of suitable binders are disclosed for example in US 2007/0102696 A1. Especially suitable and preferred binders are described in the following.
In one type of preferred embodiment, the organic binder is one in which at least 95%, more preferably at least 98% and especially all of the atoms consist of hydrogen, fluorine and carbon atoms.
It is preferred that the binder normally contains conjugated bonds, especially conjugated double bonds and/or aromatic rings.
The binder should preferably be capable of forming a film, more preferably a flexible film. Polymers of styrene and α-methyl styrene, for example copolymers including styrene, α-methylstyrene and butadiene may suitably be used.
Binders of low permittivity of use in the present invention have few permanent dipoles which could otherwise lead to random fluctuations in molecular site energies. The permittivity c (dielectric constant) can be determined by the ASTM D150 test method. The permittivity values given above and below, unless stated otherwise, refer to 1,000 Hz and 20° C.
It is also preferred that in the present invention binders are used which have solubility parameters with low polar and hydrogen bonding contributions as materials of this type have low permanent dipoles. A preferred range for the solubility parameters (“Hansen parameter”) of a binder for use in accordance with the present invention is provided in Table 1 below.
The three dimensional solubility parameters listed above include: dispersive (δd), polar (δp) and hydrogen bonding (δh) components (C. M. Hansen, Ind. Eng. and Chem., Prod. Res. and Devl., 9, No 3, p 282, 1970). These parameters may be determined empirically or calculated from known molar group contributions as described in Handbook of Solubility Parameters and Other Cohesion Parameters ed. A.F.M. Barton, CRC Press, 1991. The solubility parameters of many known polymers are also listed in this publication.
It is desirable that the permittivity of the binder has little dependence on frequency. This is typical of non-polar materials. Polymers and/or copolymers can be chosen as the binder by the permittivity of their substituent groups. A list of suitable and preferred low polarity binders is given (without limiting to these examples) in Table 2:
Further preferred binders are poly(1,3-butadiene) and polyphenylene.
Especially preferred are formulations wherein the binder is selected from poly-α-methyl styrene, polystyrene and polytriarylamine or any copolymers of these, and the solvent is selected from xylene(s), toluene, tetralin and cyclohexanone.
Copolymers containing the repeat units of the above polymers are also suitable as binders. Copolymers offer the possibility of improving compatibility with the compounds of formula I, modifying the morphology and/or the glass transition temperature of the final layer composition. It will be appreciated that in the above table certain materials are insoluble in commonly used solvents for preparing the layer. In these cases analogues can be used as copolymers. Some examples of copolymers are given in Table 3 (without limiting to these examples). Both random or block copolymers can be used. It is also possible to add more polar monomer components as long as the overall composition remains low in polarity.
2-2.5
Other copolymers may include: branched or non-branched polystyrene-block-polybutadiene, polystyrene-block(polyethylene-ran-butylene)-block-polystyrene, polystyrene-block-polybutadiene-block-polystyrene, polystyrene-(ethylene-propylene)-diblock-copolymers (e.g. KRATON®-G1701E, Shell), poly(propylene-co-ethylene) and poly(styrene-co-methylmethacrylate).
Preferred insulating binders for use in the organic semiconductor layer formulation according to the present invention are poly(α-methylstyrene), polyvinylcinnamate, poly(4-vinylbiphenyl), poly(4-methylstyrene), and Topas™ 8007 (linear olefin, cyclo-olefin(norbornene) copolymer available from Ticona, Germany). Most preferred insulating binders are poly(α-methylstyrene), polyvinylcinnamate and poly(4-vinylbiphenyl).
The binder can also be selected from crosslinkable binders, like e.g. acrylates, epoxies, vinylethers, thiolenes etc., preferably having a sufficiently low permittivity, very preferably of 3.3 or less. The binder can also be mesogenic or liquid crystalline.
As mentioned above the organic binder may itself be a semiconductor, in which case it will be referred to herein as a semiconducting binder. The semiconducting binder is still preferably a binder of low permittivity as herein defined. Semiconducting binders for use in the present invention preferably have a number average molecular weight (Mn) of at least 1500-2000, more preferably at least 3000, even more preferably at least 4000 and most preferably at least 5000. The semiconducting binder preferably has a charge carrier mobility, μ, of at least 10−5 cm2V−1s−1, more preferably at least 10−4 cm2V−1s−1.
A preferred class of semiconducting binder is a polymer as disclosed in U.S. Pat. No. 6,630,566, preferably an oligomer or polymer having repeat units of formula 1:
wherein
In the context of Ar11, Ar22 and Ar33, a mononuclear aromatic group has only one aromatic ring, for example phenyl or phenylene. A polynuclear aromatic group has two or more aromatic rings which may be fused (for example napthyl or naphthylene), individually covalently linked (for example biphenyl) and/or a combination of both fused and individually linked aromatic rings. Preferably each Ar11, Ar22 and Ar33 is an aromatic group which is substantially conjugated over substantially the whole group.
Further preferred classes of semiconducting binders are those containing substantially conjugated repeat units. The semiconducting binder polymer may be a homopolymer or copolymer (including a block-copolymer) of the general formula 2:
A(c)B(d) . . . Z(z) 2
wherein A, B, . . . , Z each represent a monomer unit and (c), (d), . . . (z) each represent the mole fraction of the respective monomer unit in the polymer, that is each (c), (d), . . . (z) is a value from 0 to 1 and the total of (c)+(d)+ . . . +(z)=1.
Examples of suitable and preferred monomer units A, B, . . . Z include units of formula 1 above and of formulae 3 to 8 given below (wherein m is as defined in formula 1:
wherein
wherein
Y is Se, Te, O, S or —N(Re), preferably O, S or —N(Re)—,
Re is H, optionally substituted alkyl or aryl,
wherein Ra, Rb and Y are as defined in formulae 3 and 4;
wherein Ra, Rb and Y are as defined in formulae 3 and 4,
wherein Ra and Rb are as defined in formula 3;
wherein Ra, Rb, Rg and Rh independently of each other have one of the meanings of Ra and Rb in formula 3.
In the case of the polymeric formulae described herein, such as formulae 1 to 8, the polymers may be terminated by any terminal group, that is any end-capping or leaving group, including H.
In the case of a block-copolymer, each monomer A, B, . . . Z may be a conjugated oligomer or polymer comprising a number, for example 2 to 50, of the units of formulae 3-8. The semiconducting binder preferably includes: arylamine, fluorene, thiophene, spiro bifluorene and/or optionally substituted aryl (for example phenylene) groups, more preferably arylamine, most preferably triarylamine groups. The aforementioned groups may be linked by further conjugating groups, for example vinylene.
In addition, it is preferred that the semiconducting binder comprises a polymer (either a homo-polymer or copolymer, including block-copolymer) containing one or more of the aforementioned arylamine, fluorene, thiophene and/or optionally substituted aryl groups. A preferred semiconducting binder comprises a homo-polymer or copolymer (including block-copolymer) containing arylamine (preferably triarylamine) and/or fluorene units. Another preferred semiconducting binder comprises a homo-polymer or co-polymer (including block-copolymer) containing fluorene and/or thiophene units.
The semiconducting binder may also contain carbazole or stilbene repeat units. For example, polyvinylcarbazole, polystilbene or their copolymers may be used. The semiconducting binder may optionally contain DBBDT segments (for example repeat units as described for formula 1 above) to improve compatibility with the soluble compounds of formula.
Very preferred semiconducting binders for use in the organic semiconductor formulation according to the present invention are poly(9-vinylcarbazole) and PTAA1, a polytriarylamine of the following formula
wherein m is as defined in formula 1.
For application of the semiconducting layer in p-channel FETs, it is desirable that the semiconducting binder should have a higher ionisation potential than the semiconducting compound of formula I, otherwise the binder may form hole traps. In n-channel materials the semiconducting binder should have lower electron affinity than the n-type semiconductor to avoid electron trapping.
The formulation according to the present invention may be prepared by a process which comprises:
In step (i) the solvent may be a single solvent or the compound of formula I and the organic binder may each be dissolved in a separate solvent followed by mixing the two resultant solutions to mix the compounds.
The binder may be formed in situ by mixing or dissolving a compound of formula I in a precursor of a binder, for example a liquid monomer, oligomer or crosslinkable polymer, optionally in the presence of a solvent, and depositing the mixture or solution, for example by dipping, spraying, painting or printing it, on a substrate to form a liquid layer and then curing the liquid monomer, oligomer or crosslinkable polymer, for example by exposure to radiation, heat or electron beams, to produce a solid layer. If a preformed binder is used it may be dissolved together with the compound of formula I in a suitable solvent, and the solution deposited for example by dipping, spraying, painting or printing it on a substrate to form a liquid layer and then removing the solvent to leave a solid layer. It will be appreciated that solvents are chosen which are able to dissolve both the binder and the compound of formula I, and which upon evaporation from the solution blend give a coherent defect free layer.
Suitable solvents for the binder or the compound of formula I can be determined by preparing a contour diagram for the material as described in ASTM Method D 3132 at the concentration at which the mixture will be employed. The material is added to a wide variety of solvents as described in the ASTM method.
It will also be appreciated that in accordance with the present invention the formulation may also comprise two or more compounds of formula I and/or two or more binders or binder precursors, and that the process for preparing the formulation may be applied to such formulations.
Examples of suitable and preferred organic solvents include, without limitation, dichloromethane, trichloromethane, monochlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, toluene, o-xylene, m-xylene, p-xylene, 1,4-dioxane, acetone, methylethylketone, 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, n-butyl acetate, dimethylformamide, dimethylacetamide, dimethylsulfoxide, tetralin, decalin, indane and/or mixtures thereof.
After the appropriate mixing and ageing, solutions are evaluated as one of the following categories: complete solution, borderline solution or insoluble. The contour line is drawn to outline the solubility parameter-hydrogen bonding limits dividing solubility and insolubility. ‘Complete’ solvents falling within the solubility area can be chosen from literature values such as published in “Crowley, J. D., Teague, G. S. Jr and Lowe, J. W. Jr., Journal of Paint Technology, 1966, 38(496), 296”. Solvent blends may also be used and can be identified as described in “Solvents, W. H. Ellis, Federation of Societies for Coatings Technology, p 9-10, 1986”. Such a procedure may lead to a blend of ‘non’ solvents that will dissolve both the binder and the compound of formula I, although it is desirable to have at least one true solvent in a blend.
Especially preferred solvents for use in the formulation according to the present invention, with insulating or semiconducting binders and mixtures thereof, are xylene(s), toluene, tetralin and o-dichlorobenzene.
The proportions of binder to the compound of formula I in the formulation or layer according to the present invention are typically 20:1 to 1:20 by weight, preferably 10:1 to 1:10 more preferably 5:1 to 1:5, still more preferably 3:1 to 1:3 further preferably 2:1 to 1:2 and especially 1:1. Surprisingly and beneficially, dilution of the compound of formula I in the binder has been found to have little or no detrimental effect on the charge mobility, in contrast to what would have been expected from the prior art.
In accordance with the present invention it has further been found that the level of the solids content in the organic semiconducting layer formulation is also a factor in achieving improved mobility values for electronic devices such as OFETs. The solids content of the formulation is commonly expressed as follows:
wherein a=mass of compound of formula I, b=mass of binder and c=mass of solvent.
The solids content of the formulation is preferably 0.1 to 10% by weight, more preferably 0.5 to 5% by weight.
Surprisingly and beneficially, dilution of the compound of formula I in the binder has been found to have little or no effect on the charge mobility, in contrast to what would have been expected from the prior art.
The compounds according to the present invention can also be used in mixtures or blends, for example together with other compounds having charge-transport, semiconducting, electrically conducting, photoconducting and/or light emitting semiconducting properties. Thus, another aspect of the invention relates to a mixture or blend comprising one or more compounds of formula I and one or more further compounds having one or more of the above-mentioned properties. These mixtures can be prepared by conventional methods that are described in prior art and known to the skilled person. Typically the compounds are mixed with each other or dissolved in suitable solvents and the solutions combined.
The formulations according to the present invention can additionally comprise one or more further components like for example surface-active compounds, lubricating agents, wetting agents, dispersing agents, hydrophobing agents, adhesive agents, flow improvers, defoaming agents, deaerators, diluents which may be reactive or non-reactive, auxiliaries, colourants, dyes or pigments, sensitizers, stabilizers, nanoparticles or inhibitors.
It is desirable to generate small structures in modern microelectronics to reduce cost (more devices/unit area), and power consumption. Patterning of the layer of the invention may be carried out by photolithography or electron beam lithography.
Liquid coating of organic electronic devices such as field effect transistors is more desirable than vacuum deposition techniques. The formulations of the present invention enable the use of a number of liquid coating techniques. The organic semiconductor layer may be incorporated into the final device structure by, for example and without limitation, dip coating, spin coating, ink jet printing, letter-press printing, screen printing, doctor blade coating, roller printing, reverse-roller printing, offset lithography printing, flexographic printing, web printing, spray coating, brush coating or pad printing. The present invention is particularly suitable for use in spin coating the organic semiconductor layer into the final device structure.
Selected formulations of the present invention may be applied to prefabricated device substrates by ink jet printing or microdispensing. Preferably industrial piezoelectric print heads such as but not limited to those supplied by Aprion, Hitachi-Koki, InkJet Technology, On Target Technology, Picojet, Spectra, Trident, Xaar may be used to apply the organic semiconductor layer to a substrate. Additionally semi-industrial heads such as those manufactured by Brother, Epson, Konica, Seiko Instruments Toshiba TEC or single nozzle microdispensers such as those produced by Microdrop and Microfab may be used.
In order to be applied by ink jet printing or microdispensing, the mixture of the compound of formula I and the binder should be first dissolved in a suitable solvent. Solvents must fulfil the requirements stated above and must not have any detrimental effect on the chosen print head.
Additionally, solvents should have boiling points>100° C., preferably >140° C. and more preferably >150° C. in order to prevent operability problems caused by the solution drying out inside the print head. Suitable solvents include substituted and non-substituted xylene derivatives, di-C1-2-alkyl formamide, substituted and non-substituted anisoles and other phenol-ether derivatives, substituted heterocycles such as substituted pyridines, pyrazines, pyrimidines, pyrrolidinones, substituted and non-substituted N,N-di-C1-2-alkylanilines and other fluorinated or chlorinated aromatics.
A preferred solvent for depositing a formulation according to the present invention by ink jet printing comprises a benzene derivative which has a benzene ring substituted by one or more substituents wherein the total number of carbon atoms among the one or more substituents is at least three. For example, the benzene derivative may be substituted with a propyl group or three methyl groups, in either case there being at least three carbon atoms in total. Such a solvent enables an ink jet fluid to be formed comprising the solvent with the binder and the compound of formula I which reduces or prevents clogging of the jets and separation of the components during spraying. The solvent(s) may include those selected from the following list of examples: dodecylbenzene, 1-methyl-4-tert-butylbenzene, terpineol limonene, isodurene, terpinolene, cymene, diethylbenzene. The solvent may be a solvent mixture, that is a combination of two or more solvents, each solvent preferably having a boiling point>100° C., more preferably >140° C. Such solvent(s) also enhance film formation in the layer deposited and reduce defects in the layer.
The ink jet fluid (that is mixture of solvent, binder and semiconducting compound) preferably has a viscosity at 20° C. of 1 to 100 mPa·s, more preferably 1 to 50 mPa·s and most preferably 1 to 30 mPa·s.
The use of the binder in the present invention allows tuning the viscosity of the coating solution, to meet the requirements of particular print heads.
The semiconducting layer of the present invention is typically at most 1 micron (=1 μm) thick, although it may be thicker if required. The exact thickness of the layer will depend, for example, upon the requirements of the electronic device in which the layer is used. For use in an OFET or OLED, the layer thickness may typically be 500 nm or less.
In the semiconducting layer of the present invention there may be used two or more different compounds of formula I. Additionally or alternatively, in the semiconducting layer there may be used two or more organic binders of the present invention.
As mentioned above, the invention further provides a process for preparing the organic semiconducting layer which comprises (i) depositing on a substrate a liquid layer of a formulation which comprises one or more compounds of formula I, one or more organic binders or precursors thereof and optionally one or more solvents, and (ii) forming from the liquid layer a solid layer which is the organic semiconducting layer.
In the process, the solid layer may be formed by evaporation of the solvent and/or by reacting the binder resin precursor (if present) to form the binder resin in situ. The substrate may include any underlying device layer, electrode or separate substrate such as silicon wafer or polymer substrate for example.
In a particular embodiment of the present invention, the binder may be alignable, for example capable of forming a liquid crystalline phase. In that case the binder may assist alignment of the compound of formula I, for example such that their aromatic core is preferentially aligned along the direction of charge transport. Suitable processes for aligning the binder include those processes used to align polymeric organic semiconductors and are described in prior art, for example in US 2004/0248338 A1.
The formulation according to the present invention can additionally comprise one or more further components like for example surface-active compounds, lubricating agents, wetting agents, dispersing agents, hydrophobing agents, adhesive agents, flow improvers, defoaming agents, deaerators, diluents, reactive or non-reactive diluents, auxiliaries, colourants, dyes or pigments, furthermore, especially in case crosslinkable binders are used, catalysts, sensitizers, stabilizers, inhibitors, chain-transfer agents or co-reacting monomers.
The present invention also provides the use of the semiconducting compound, formulation or layer in an electronic device. The formulation may be used as a high mobility semiconducting material in various devices and apparatus. The formulation may be used, for example, in the form of a semiconducting layer or film. Accordingly, in another aspect, the present invention provides a semiconducting layer for use in an electronic device, the layer comprising the formulation according to the invention. The layer or film may be less than about 30 microns. For various electronic device applications, the thickness may be less than about 1 micron thick. The layer may be deposited, for example on a part of an electronic device, by any of the aforementioned solution coating or printing techniques.
The compounds and formulations according to the present invention are useful as charge transport, semiconducting, electrically conducting, photoconducting or light mitting materials in optical, electrooptical, electronic, electroluminescent or photoluminescent components or devices. Especially preferred devices are OFETs, TFTs, ICs, logic circuits, capacitors, RFID tags, OLEDs, OLETs, OPEDs, OPVs, solar cells, laser diodes, photoconductors, photodetectors, electrophotographic devices, electrophotographic recording devices, organic memory devices, sensor devices, charge injection layers, Schottky diodes, planarising layers, antistatic films, conducting substrates and conducting patterns. In these devices, the compounds of the present invention are typically applied as thin layers or films.
For example, the compound or formulation may be used as a layer or film, in a field effect transistor (FET) for example as the semiconducting channel, organic light emitting diode (OLED) for example as a hole or electron injection or transport layer or electroluminescent layer, photodetector, chemical detector, photovoltaic cell (PVs), capacitor sensor, logic circuit, display, memory device and the like. The compound or formulation may also be used in electrophotographic (EP) apparatus.
The compound or formulation is preferably solution coated to form a layer or film in the aforementioned devices or apparatus to provide advantages in cost and versatility of manufacture. The improved charge carrier mobility of the compound or formulation of the present invention enables such devices or apparatus to operate faster and/or more efficiently.
Especially preferred electronic device are OFETs, OLEDs and OPV devices, in particular bulk heterojunction (BHJ) OPV devices. In an OFET, for example, the active semiconductor channel between the drain and source may comprise the layer of the invention. As another example, in an OLED device, the charge (hole or electron) injection or transport layer may comprise the layer of the invention.
For use in OPV devices the polymer according to the present invention is preferably used in a formulation that comprises or contains, more preferably consists essentially of, very preferably exclusively of, a p-type (electron donor) semiconductor and an n-type (electron acceptor) semiconductor. The p-type semiconductor is constituted by a compound of formula I according to the present invention. The n-type semiconductor can be an inorganic material such as zinc oxide or cadmium selenide, or an organic material such as a fullerene derivate, for example (6,6)-phenyl-butyric acid methyl ester derivatized methano C60 fullerene, also known as “PCBM” or “C60PCBM”, as disclosed for example in G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789 ff and having the structure shown below, or an structural analogous compound with e.g. a C70 fullerene group (C70PCBM), or a polymer (see for example Coakley, K. M. and McGehee, M. D. Chem. Mater. 2004, 16, 4533).
A preferred material of this type is a blend or mixture of a compound of formula I according to the present invention with a C60 or C70 fullerene or modified fullerene like PCBM. Preferably the ratio compound of formula I:fullerene is from 2:1 to 1:2 by weight, more preferably from 1.2:1 to 1:1.2 by weight, most preferably 1:1 by weight. For the blended mixture, an optional annealing step may be necessary to optimize blend morphology and consequently OPV device performance.
The OPV device can for example be of any type known from the literature (see for example Waldauf et al., Appl. Phys. Lett. 89, 233517 (2006), or Coakley, K. M. and McGehee, M. D. Chem. Mater. 2004, 16, 4533).
A first preferred OPV device according to the invention comprises the following layers (in the sequence from bottom to top):
A second preferred OPV device according to the invention is an inverted OPV device and comprises the following layers (in the sequence from bottom to top):
In the OPV devices of the present invent invention the p-type and n-type semiconductor materials are preferably selected from the materials, like the acenefullerene systems, as described above. If the bilayer is a blend an optional annealing step may be necessary to optimize device performance.
The compound, formulation and layer of the present invention are also suitable for use in an OFET as the semiconducting channel. Accordingly, the invention also provides an OFET comprising a gate electrode, an insulating (or gate insulator) layer, a source electrode, a drain electrode and an organic semiconducting channel connecting the source and drain electrodes, wherein the organic semiconducting channel comprises a compound of formula I, formulation or organic semiconducting layer according to the present invention. Other features of the OFET are well known to those skilled in the art.
OFETs where an OSC material is arranged as a thin film between a gate dielectric and a drain and a source electrode, are generally known, and are described for example in U.S. Pat. No. 5,892,244, U.S. Pat. No. 5,998,804, U.S. Pat. No. 6,723,394 and in the references cited in the background section. Due to the advantages, like low cost production using the solubility properties of the compounds according to the invention and thus the processibility of large surfaces, preferred applications of these FETs are such as integrated circuitry, TFT displays and security applications.
The gate, source and drain electrodes and the insulating and semiconducting layer in the OFET device may be arranged in any sequence, provided that the source and drain electrode are separated from the gate electrode by the insulating layer, the gate electrode and the semiconductor layer both contact the insulating layer, and the source electrode and the drain electrode both contact the semiconducting layer.
An OFET device according to the present invention preferably comprises:
The OFET device can be a top gate device or a bottom gate device.
Suitable structures and manufacturing methods of an OFET device are known to the skilled in the art and are described in the literature, for example in US 2007/0102696 A1.
The gate insulator layer preferably comprises a fluoropolymer, like e.g. the commercially available Cytop 809M® or Cytop 107M® (from Asahi Glass). Preferably the gate insulator layer is deposited, e.g. by spin-coating, doctor blading, wire bar coating, spray or dip coating or other known methods, from a formulation comprising an insulator material and one or more solvents with one or more fluoro atoms (fluorosolvents), preferably a perfluorosolvent. A suitable perfluorosolvent is e.g. FC75® (available from Acros, catalogue number 12380). Other suitable fluoropolymers and fluorosolvents are known in prior art, like for example the perfluoropolymers Teflon AF® 1600 or 2400 (from DuPont) or Fluoropel® (from Cytonix) or the perfluorosolvent FC 43® (Acros, No. 12377). Especially preferred are organic dielectric materials having a low permittivity (or dielectric constant) from 1.0 to 5.0, very preferably from 1.8 to 4.0 (“low k materials”), as disclosed for example in US 2007/0102696 A1 or U.S. Pat. No. 7,095,044.
In security applications, OFETs and other devices with semiconducting materials according to the present invention, like transistors or diodes, can be used for RFID tags or security markings to authenticate and prevent counterfeiting of documents of value like banknotes, credit cards or ID cards, national ID documents, licenses or any product with monetary value, like stamps, tickets, shares, cheques etc.
Alternatively, the materials according to the invention can be used in OLEDs, e.g. as the active display material in a flat panel display applications, or as backlight of a flat panel display like e.g. a liquid crystal display. Common OLEDs are realized using multilayer structures. An emission layer is generally sandwiched between one or more electron-transport and/or hole-transport layers. By applying an electric voltage electrons and holes as charge carriers move towards the emission layer where their recombination leads to the excitation and hence luminescence of the lumophor units contained in the emission layer. The inventive compounds, materials and films may be employed in one or more of the charge transport layers and/or in the emission layer, corresponding to their electrical and/or optical properties. Furthermore their use within the emission layer is especially advantageous, if the compounds, materials and films according to the invention show electroluminescent properties themselves or comprise electroluminescent groups or compounds. The selection, characterization as well as the processing of suitable monomeric, oligomeric and polymeric compounds or materials for the use in OLEDs is generally known by a person skilled in the art, see, e.g., Müller, Synth. Metals, 2000, 111-112, 31, Alcala, J. Appl. Phys., 2000, 88, 7124 and the literature cited therein.
According to another use, the materials according to this invention, especially those showing photoluminescent properties, may be employed as materials of light sources, e.g. in display devices, as described in EP 0 889 350 A1 or by C. Weder et al., Science, 1998, 279, 835.
A further aspect of the invention relates to both the oxidised and reduced form of the compounds according to this invention. Either loss or gain of electrons results in formation of a highly delocalised ionic form, which is of high conductivity. This can occur on exposure to common dopants. Suitable dopants and methods of doping are known to those skilled in the art, e.g. from EP 0 528 662, U.S. Pat. No. 5,198,153 or WO 96/21659.
The doping process typically implies treatment of the semiconductor material with an oxidating or reducing agent in a redox reaction to form delocalised ionic centres in the material, with the corresponding counterions derived from the applied dopants. Suitable doping methods comprise for example exposure to a doping vapor in the atmospheric pressure or at a reduced pressure, electrochemical doping in a solution containing a dopant, bringing a dopant into contact with the semiconductor material to be thermally diffused, and ion-implantantion of the dopant into the semiconductor material.
When electrons are used as carriers, suitable dopants are for example halogens (e.g., I2, Cl2, Br2, ICl, ICl3, IBr and IF), Lewis acids (e.g., PF5, AsF5, SbF5, BF3, BCl3, SbCl5, BBr3 and SO3), protonic acids, organic acids, or amino acids (e.g., HF, HCl, HNO3, H2SO4, HClO4, FSO3H and ClSO3H), transition metal compounds (e.g., FeCl3, FeOCl, Fe(ClO4)3, Fe(4-CH3C6H4SO3)3, TiCl4, ZrCl4, HfCl4, NbF5, NbCl5, TaCl5, MoF5, MoCl5, WF5, WCl6, UF6 and LnCl3 (wherein Ln is a lanthanoid), anions (e.g., Cl−, Br−, I−, I3−, HSO4−, SO42−, NO3−, ClO4−, BF4−, PF6−, AsF6−, SbF6−, FeCl4−, Fe(CN)63, and anions of various sulfonic acids, such as aryl-SO3). When holes are used as carriers, examples of dopants are cations (e.g., H+, Li+, Na+, K+, Rb+ and Cs+), alkali metals (e.g., Li, Na, K, Rb, and Cs), alkaline-earth metals (e.g., Ca, Sr, and Ba), O2, XeOF4, (NO2+) (SbF6−), (NO2+) (SbCl6−), (NO2+) (BF4−), AgClO4, H2IrCl6, La(NO3)36H2O, FSO2OOSO2F, Eu, acetylcholine, R4N+, (R is an alkyl group), R4P+ (R is an alkyl group), R6As+ (R is an alkyl group), and R3S+ (R is an alkyl group).
The conducting form of the compounds of the present invention can be used as an organic “metal” in applications including, but not limited to, charge injection layers and ITO planarising layers in OLED applications, films for flat panel displays and touch screens, antistatic films, printed conductive substrates, patterns or tracts in electronic applications such as printed circuit boards and condensers.
The compounds and formulations according to the present invention may also be suitable for use in organic plasmon-emitting diodes (OPEDs), as described for example in Koller et al., Nat. Photonics, 2008, 2, 684.
According to another use, the materials according to the present invention can be used alone or together with other materials in or as alignment layers in LCD or OLED devices, as described for example in US 2003/0021913. The use of charge transport compounds according to the present invention can increase the electrical conductivity of the alignment layer. When used in an LCD, this increased electrical conductivity can reduce adverse residual dc effects in the switchable LCD cell and suppress image sticking or, for example in ferroelectric LCDs, reduce the residual charge produced by the switching of the spontaneous polarisation charge of the ferroelectric LCs. When used in an OLED device comprising a light emitting material provided onto the alignment layer, this increased electrical conductivity can enhance the electroluminescence of the light emitting material. The compounds or materials according to the present invention having mesogenic or liquid crystalline properties can form oriented anisotropic films as described above, which are especially useful as alignment layers to induce or enhance alignment in a liquid crystal medium provided onto said anisotropic film. The materials according to the present invention may also be combined with photoisomerisable compounds and/or chromophores for use in or as photoalignment layers, as described in US 2003/0021913.
According to another use, the materials according to the present invention, especially their water-soluble derivatives (for example with polar or ionic side groups) or ionically doped forms, can be employed as chemical sensors or materials for detecting and discriminating DNA sequences. Such uses are described for example in L. Chen, D. W. McBranch, H. Wang, R. Helgeson, F. Wudl and D. G. Whitten, Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 12287; D. Wang, X. Gong, P. S. Heeger, F. Rininsland, G. C. Bazan and A. J. Heeger, Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 49; N. DiCesare, M. R. Pinot, K. S. Schanze and J. R. Lakowicz, Langmuir 2002, 18, 7785; D. T. McQuade, A. E. Pullen, T. M. Swager, Chem. Rev. 2000, 100, 2537.
Unless the context clearly indicates otherwise, as used herein plural forms of the terms herein are to be construed as including the singular form and vice versa.
Throughout the description and claims of this specification, the words “comprise” and “contain” and variations of the words, for example “comprising” and “comprises”, mean “including but not limited to”, and are not intended to (and do not) exclude other components.
It will be appreciated that variations to the foregoing embodiments of the invention can be made while still falling within the scope of the invention. Each feature disclosed in this specification, unless stated otherwise, may be replaced by alternative features serving the same, equivalent or similar purpose. Thus, unless stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
All of the features disclosed in this specification may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. In particular, the preferred features of the invention are applicable to all aspects of the invention and may be used in any combination. Likewise, features described in non-essential combinations may be used separately (not in combination).
It will be appreciated that many of the features described above, particularly of the preferred embodiments, are inventive in their own right and not just as part of an embodiment of the present invention. Independent protection may be sought for these features in addition to or alternative to any invention presently claimed.
The invention will now be described in more detail by reference to the following examples, which are illustrative only and do not limit the scope of the invention.
Unless stated otherwise, above and below percentages are percent by weight and temperatures are given in degrees Celsius.
4-Octyl-phenylamine (27.30 g; 133.0 mmol; 2.250 eq.) is dissolved in triethyl-amine (24.7 cm3; 177.3 mmol; 3.000 eq.) and anhydrous tetrahydrofuran (600 cm3). The resulting solution is cooled down to 0° C. and the oxalyl dichloride (5.00 cm3; 59.1 mmol; 1.000 eq.) is added dropwise. The resulting mixture is stirred at 23° C. for 18 hours. The precipitate is filtered, further washed with diethyl ether, triturated in water and filtered. The white solid (20.41 g) is dried in a oven overnight and used as it used as it without further purification (Crude Yield: 74%)
A solution of N,N′-Bis-(4-octyl-phenyl)-oxalamide (7.500 g; 16.14 mmol; 1.000 eq.) and phosphorus pentachloride (6.722 g; 32.28 mmol; 2.000 eq.) in anhydrous toluene (100 cm3) is stirred at reflux (110° C.) for 1 hour. The reaction mixture is cooled down to 23° C. The residual toluene and POCl3 by product is removed in vacuo and the residue titrated in petroleum ether (40-60° C.). The soluble fraction in petroleum ether is filtered off and removed in vacuo to obtain a yellow solid (6.05 g, Yield: 75%). NMR (1H, 300 MHz, CDCl3): δ 7.23 (d, J=8.4 Hz, 4H); 7.09 (d, J=8.4 Hz, 4H); 2.63 (t, J=7.7 Hz, 4H); 1.64 (m, 4H), 1.28 (m, 24H); 0.88 (t, J=7.7 Hz, 6H).
2.5 M n-BuLi (10.5 cm3; 26.3 mmol; 2.200 eq.) is added dropwise to a solution of 2,2,6,6-Tetramethyl-piperidine (4.85 cm3; 28.7 mmol; 2.400 eq.) in anhydrous tetrahydrofuran (130 cm3) at 0° C. After 30 minutes, thiophen-2-yl-acetic acid ethyl ester (4.480 g; 26.317 mmol; 2.200 eq.) is added. After a further 30 minutes, N1,N2-Bis-(4-octyl-phenyl)-oxalodiimidoyl dichloride (6.000 g; 11.96 mmol; 1.000 eq.) in anhydrous tetrahydrofuran (130 cm3) is added slowly to the previous mixture cooled down to −78° C. The solution is then warmed to 20° C. and stirred for 18 hours. The mixture is poured into an aqueous saturated solution of ammonium chloride (200 cm3) and the precipitate filtered and washed with water and methanol. The crude product is recrystallized in a chloroform-acetone mixture several times to yield an orange solid (2.71 g, Yield: 34%). NMR (1H, 300 MHz, CDCl3): δ 7.23 (m, 2H); 7.21 (8H); 6.75 (dd, J=5.1 Hz and 3.9 Hz, 2H), 6.40 (d, J=3.8 Hz, 2H), 2.65 (t, J=7.7 Hz, 4H); 1.64 (m, 4H), 1.28 (m, 24H); 0.88 (t, J=7.7 Hz, 6H).
1,4-Bis-(4-octyl-phenyl)-3,6-di-thiophen-2-yl-1H,4H-pyrrolo[3,2-1D]pyrrole-2,5-dione (2.400 g; 3.545 mmol; 1.000 eq.) is dissolved in Chloroform (720 cm3) at 23° C. N-Bromosuccinimide (1.325 g; 7.445 mmol; 2.100 eq.) is added and the resulting solution stirred at 23° C. for 18 hours. The reaction mixture is poured into methanol, the precipitate filtered and recrystallized several times in tetrahydrofuran to afford 1.15 g of the title product (1.15 g, Yield: 39%). NMR (1H, 300 MHz, CDCl3): δ 7.26 (d, J=8.5 Hz, 4H); 7.20 (d, J=8.5 Hz, 4H); 6.67 (d, J=4.1 Hz, 2H), 5.99 (d, J=4.1 Hz, 2H), 2.67 (t, J=7.7 Hz, 4H); 1.65 (m, 4H), 1.28 (m, 24H); 0.88 (t, J=7.7 Hz, 6H).
Number | Date | Country | Kind |
---|---|---|---|
11002503.8 | Mar 2011 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/000859 | 2/28/2012 | WO | 00 | 9/24/2013 |