The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jan. 29, 2019, is named TIP0280USCNT1_SL.txt and is 615 bytes in size.
This invention relates to pyrrolo[3,2-d]pyrimidine derivatives, processes for their preparation, pharmaceutical compositions, and their use in treatment and/or therapy of diseases.
The present invention relates to the use of pyrrolo-pyrimidine derivatives, more specifically to the use of pyrrolo[3,2-d]pyrimidine derivatives in the treatment of viral infections, immune or inflammatory disorders, whereby the modulation, or agonism, of toll-like-receptors (TLRs) is involved. Toll-Like Receptors are primary transmembrane proteins characterized by an extracellular leucine rich domain and a cytoplasmic extension that contains a conserved region. The innate immune system can recognize pathogen-associated molecular patterns via these TLRs expressed on the cell surface of certain types of immune cells. Recognition of foreign pathogens activates the production of cytokines and upregulation of co-stimulatory molecules on phagocytes. This leads to the modulation of T cell behaviour.
A majority of mammalian species have between ten and fifteen types of Toll-like receptors. Thirteen TLRs (named simply TLR1 to TLR13) have been identified in humans and mice together, and equivalent forms of many of these have been found in other mammalian species. However, equivalents of certain TLR found in humans are not present in all mammals. For example, a gene coding for a protein analogous to TLR10 in humans is present in mice, but appears to have been damaged at some point in the past by a retrovirus. On the other hand, mice express TLRs 11, 12, and 13, none of which are represented in humans. Other mammals may express TLRs which are not found in humans. Other non-mammalian species may have TLRs distinct from mammals, as demonstrated by TLR14, which is found in the Takifugu pufferfish. This may complicate the process of using experimental animals as models of human innate immunity.
For reviews on toll-like receptors see the following journal articles. Hoffmann, J. A., Nature, 426, p 33-38, 2003; Akira, S., Takeda, K., and Kaisho, T., Annual Rev. Immunology, 21, p 335-376, 2003; Ulevitch, R. J., Nature Reviews: Immunology, 4, p 512-520, 2004.
Compounds indicating activity on Toll-Like receptors have been previously described such as heterocyclic derivatives in WO2000006577, adenine derivatives in WO 98/01448 and WO 99/28321, and pyrimidines in WO 2009/067081.
In the treatment of certain viral infections, regular injections of interferon (IFN-alfa) can be administered, as is the case for hepatitis C virus (HCV) (Fried et. al. Peginterferon-alfa plus ribavirin for chronic hepatitis C virus infection, N Engl J Med 2002; 347: 975-82). Orally available small molecule IFN inducers offer the potential advantages of reduced immunogenicity and convenience of administration. Thus, novel IFN inducers are potentially effective new class of drugs for treating virus infections. For an example in the literature of a small molecule IFN inducer having antiviral effect see De Clercq, E.; Descamps, J.; De Somer, P. Science 1978,200, 563-565.
Interferon alpha is also given to patients in combination with other drugs in the treatment of certain types of cancer (Eur. J. Cancer (46) p 2849-57, and Cancer Res. 1992 (52) p. 1056). TLR 7/8 agonists are also of interest as vaccine adjuvants because of their ability to induce pronounced Th1 response (Hum. Vaccines, 2009 (5), 381-394).
However, there exists a strong need for novel Toll-Like receptor modulators having preferred selectivity, and an improved safety profile compared to the compounds of the prior art.
In accordance with the present invention a compound of formula (I) is provided
and their pharmaceutically acceptable salt, solvate prodrug, stereoisomers or polymorph thereof wherein
R1 is H, fluorine or methyl;
R2 is H, halogen or C1-3 alkyl;
R3 is C1-6 alkyl optionally substituted by aryl optionally further substituted by one or more substituents independently selected from aryloxy, halogen, aryl, alkylamino, dialkylamino, heterocycloalkyl, C1-6 cycloalkyl, C1-6 alkyl, carboxylic acid, carboxylic ester, carboxylic amide, nitrile, or C1-6 alkoxy, or
R3 is C1-6 alkyl optionally substituted by C1-6 alkene, C3-7 cycloalkyl or C3-7 heterocycloalkyl, or
R3 is C1-6 alkyl optionally substituted by C1-6 alkoxy optionally further substituted by aryl;
R4 is C1-8 alkyl optionally substituted by one or more substituents independently selected from hydroxyl, C1-6 alkoxy, C1-6 alkyl, C3-7 cycloalkyl, C2-6 alkenyl, aryl, heteroaryl optionally further substituted by C1-6 alkyl, and C3-7 cycloalkyl optionally further substituted by C1-6 alkyl;
with the proviso that 2-amino-4-(N-butylamino)-5-(alphamethylbenzyl)pyrrolo[3,2-d]pyrimidine is excluded.
Preferred compounds are those of formula (I) wherein R3 is a C1-3 alkyl group substituted with an aryl (substituted or unsubstituted), and R1, R2, and R4 are described as above.
In a second embodiment are the compounds of formula (I) wherein R3 and R4 are a C1-3 alkyl substituted by an aryl, optionally further substituted as described above.
In a further embodiments are those of formula (I) wherein R1 is hydrogen, R2 is fluorine, and R3 and R4 are described as above.
Other preferred embodiments are those of formula (I) wherein R1 is fluorine, R2 is hydrogen, and R3 and R4 are described as above.
The compounds, as listed in Tables I and II, having the following numbers #89, 94, 101, 144, 154, 156, 175, 192, 209, 213 and 215 are of special interest because of their properties according to the invention disclosed herein.
The compounds of formula (I) and their pharmaceutically acceptable salt, solvate or polymorph thereof have activity as pharmaceuticals, in particular as modulators of Toll-Like Receptor (especially TLR7 and/or TLR8) activity.
In a further aspect the present invention provides a pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable salt, solvate or polymorph thereof together with one or more pharmaceutically acceptable excipients, diluents or carriers.
Furthermore a compound of formula (I) or a pharmaceutically acceptable salt, solvate or polymorph thereof according to the current invention, or a pharmaceutical composition comprising said compound of formula (I) or a pharmaceutically acceptable salt, solvate or polymorph thereof can be used as a medicament.
Another aspect of the invention is that a compound of formula (I) or a pharmaceutically acceptable salt, solvate or polymorph thereof, or said pharmaceutical composition comprising said compound of formula (I) or a pharmaceutically acceptable salt, solvate or polymorph thereof can be used accordingly in the treatment of any disorder in which the modulation of TLR7 and/or TLR8 is involved.
The term “alkyl” refers to a straight-chain or branched-chain saturated aliphatic hydrocarbon containing the specified number of carbon atoms.
The term “halogen” refers to fluorine, chlorine, bromine or iodine.
The term “alkenyl” refers to an alkyl as defined above consisting of at least two carbon atoms and at least one carbon-carbon double bond.
The term “cycloalkyl” refers to a carbocyclic ring containing the specified number of carbon atoms.
The term “alkoxy” refers to an alkyl (carbon and hydrogen chain) group singular bonded to oxygen like for instance a methoxy group or ethoxy group.
The term “aryl” means an aromatic ring structure optionally comprising one or two heteroatoms selected from N, O and S, in particular from N and O. Said aromatic ring structure may have 5, 6 or 7 ring atoms. In particular, said aromatic ring structure may have 5 or 6 ring atoms. Said aromatic ring structure may also be fused to another aryl ring affording a bicyclic structure (examples include but are not limited to: quinoline, isoquinoline, quinazoline, benzoxazole).
The term “aryloxy” refers to an aromatic ring structure. Said aromatic group is singularly bonded to oxygen (e.g. phenoxy).
The term “alkene” refers to an unsaturated hydrocarbon chain containing the specified number of carbon atoms containing at least one carbon-to carbon double bond.
The term “heterocycle” refers to molecules that are saturated or partially saturated and include tetrahydrofuran, dioxane or other cyclic ethers. Heterocycles containing nitrogen include, for example azetidine, morpholine, piperidine, piperazine, pyrrolidine, and the like. Other heterocycles include, for example, thiomorpholine, dioxolinyl, and cyclic sulfones.
Pharmaceutically acceptable salts of the compounds of formula (I) include the acid addition and base salts thereof. Suitable acid addition salts are formed from acids which form non-toxic salts. Suitable base salts are formed from bases which form non-toxic salts.
The compounds of the invention may also exist in unsolvated and solvated forms. The term “solvate” is used herein to describe a molecular complex comprising the compound of the invention and one or more pharmaceutically acceptable solvent molecules, for example, ethanol.
The term “polymorph” refers to the ability of the compound of the invention to exist in more than one form or crystal structure.
The compounds of the present invention may be administered as crystalline or amorphous products. They may be obtained for example as solid plugs, powders, or films by methods such as precipitation, crystallization, freeze drying, spray drying, or evaporative drying. They may be administered alone or in combination with one or more other compounds of the invention or in combination with one or more other drugs. Generally, they will be administered as a formulation in association with one or more pharmaceutically acceptable excipients. The term “excipient” is used herein to describe any ingredient other than the compound(s) of the invention. The choice of excipient depends largely on factors such as the particular mode of administration, the effect of the excipient on solubility and stability, and the nature of the dosage form.
The compounds of the present invention or any subgroup thereof may be formulated into various pharmaceutical forms for administration purposes. As appropriate compositions there may be cited all compositions usually employed for systemically administering drugs. To prepare the pharmaceutical compositions of this invention, an effective amount of the particular compound, optionally in addition salt form, as the active ingredient is combined in intimate admixture with a pharmaceutically acceptable carrier, which carrier may take a wide variety of forms depending on the form of preparation desired for administration. These pharmaceutical compositions are desirably in unitary dosage form suitable, for example, for oral, rectal, or percutaneous administration. For example, in preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed such as, for example, water, glycols, oils, alcohols and the like in the case of oral liquid preparations such as suspensions, syrups, elixirs, emulsions, and solutions; or solid carriers such as starches, sugars, kaolin, diluents, lubricants, binders, disintegrating agents and the like in the case of powders, pills, capsules, and tablets. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit forms, in which case solid pharmaceutical carriers are obviously employed. Also included are solid form preparations that can be converted, shortly before use, to liquid forms. In the compositions suitable for percutaneous administration, the carrier optionally comprises a penetration enhancing agent and/or a suitable wetting agent, optionally combined with suitable additives of any nature in minor proportions, which additives do not introduce a significant deleterious effect on the skin. Said additives may facilitate the administration to the skin and/or may be helpful for preparing the desired compositions. These compositions may be administered in various ways, e.g., as a transdermal patch, as a spot-on, as an ointment. The compounds of the present invention may also be administered via inhalation or insufflation by means of methods and formulations employed in the art for administration via this way. Thus, in general the compounds of the present invention may be administered to the lungs in the form of a solution, a suspension or a dry powder.
It is especially advantageous to formulate the aforementioned pharmaceutical compositions in unit dosage form for ease of administration and uniformity of dosage. Unit dosage form as used herein refers to physically discrete units suitable as unitary dosages, each unit containing a predetermined quantity of active ingredient calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. Examples of such unit dosage forms are tablets (including scored or coated tablets), capsules, pills, powder packets, wafers, suppositories, injectable solutions or suspensions and the like, and segregated multiples thereof.
Those of skill in the treatment of infectious diseases will be able to determine the effective amount from the test results presented hereinafter. In general it is contemplated that an effective daily amount would be from 0.01 mg/kg to 50 mg/kg body weight, more preferably from 0.1 mg/kg to 10 mg/kg body weight. It may be appropriate to administer the required dose as two, three, four or more sub-doses at appropriate intervals throughout the day. Said sub-doses may be formulated as unit dosage forms, for example, containing 1 to 1000 mg, and in particular 5 to 200 mg of active ingredient per unit dosage form.
The exact dosage and frequency of administration depends on the particular compound of formula (I) used, the particular condition being treated, the severity of the condition being treated, the age, weight and general physical condition of the particular patient as well as other medication the individual may be taking, as is well known to those skilled in the art. Furthermore, it is evident that the effective amount may be lowered or increased depending on the response of the treated subject and/or depending on the evaluation of the physician prescribing the compounds of the instant invention. The effective amount ranges mentioned above are therefore only guidelines and are not intended to limit the scope or use of the invention to any extent.
Compounds of type A in scheme 1 can be alkylated with benzyl bromides using a polar aprotic solvent, for example DMF. The reaction of alkyl halides with intermediate A requires a stronger base (e.g. cesium carbonate) and possibly a longer reaction time and/or increased temperature. The displacement of the chlorine in intermediate B with an amine to form compounds of the type C may require additional heating or prolonged reaction time as observed with aminoalcohols (for the preparation of aminoalcohols refer to WO2009067081 and WO2008147697). The displacement of the chlorine in intermediate B with an amine may also proceed at room temperature in a polar solvent (e.g. DMF or acetonitrile). A variety of bases may be used to aid in the reaction from B to C including but not limited to the following: triethylamine, diisopropylamine, cesium carbonate, potassium carbonate, or sodium hydride. The reduction of the azido group in compounds represented by the intermediate D above may also proceed over Pd/C in a hydrogen atmosphere. Intermediates B, C, and D containing fluorine can be substituted under the same protocols as the unsubstituted analogs, thus, reaction schemes described apply to both types of compounds.
Into a 50 mL vial was placed 2,4-dichloro-5H-pyrrolo[3,2-d]pyrimidine [CAS 63200-54-4](1 g, 5.319 mmol), DMF (10 mL), DIPEA (2.75 mL, 16 mmol) and benzyl bromide (0.7 mL, 5.85 mmol). The vial was sealed and shaken for 16 hours at room temperature. The solvents were removed under reduced pressure. The crude was purified via silica gel column chromatography using a heptane to ethyl acetate gradient. The best fractions were pooled and the solvents were removed under reduced pressure to afford B.
LC-MS (M+H) m/z=278
Into a 50 mL vial equipped with a magnetic stir bar was placed A (50 mg, 0.27 mmol), anhydrous DMF (1 mL), cesium carbonate (0.259 g, 0.8 mmol) and then 2-bromoethyl methyl ether (0.03 mL, 0.29 mmol). The flask was sealed, and the reaction was allowed to stir at 70° C. for 2 hours. The solvents were removed under reduced pressure. The crude was purified via silica gel column chromatography using a heptane to ethyl acetate gradient. The best fractions were pooled and the solvents were removed under reduced pressure to afford B2.
LC-MS (M+H) m/z=246
Into a 50 mL round bottom flask equipped with a magnetic stir bar was placed B (1.4 g, 5.03 mmol), n-butylamine (0.59 mL, 6.04 mmol), and 1,4-dioxane (5 mL). The flask was equipped with a reflux condenser and allowed to heat with stirring at 100° C. for 16 hours. After cooling to room temperature, the solvents were removed under reduced pressure. The crude was purified via silica gel column chromatography using a heptane to ethyl acetate gradient. The best fractions were pooled and the solvents were removed under reduced pressure to afford C.
LC-MS (M+H) m/z=315
Into a glass vial equipped with a magnetic stir bar was placed C (1 g, 3.18 mmol), sodium azide (0.62 g, 9.53 mmol), and NMP:water (9:1, 4 mL). The glass vial was sealed and the mixture was heated with stirring to 170° C. for 5 hours. After cooling to room temperature, the mixture was diluted with ethyl acetate (20 mL) and washed with water (5×15 mL). The organic layer was dried over magnesium sulfate, the solids were removed via filtration and the solvents of the filtrate were removed under reduced pressure. The crude was purified via silica gel column chromatography using a heptane to ethyl acetate gradient. The best fractions were combined and the solvents were removed under reduced pressure to afford D.
LC-MS (M+H) m/z=322
Into a glass vial equipped with a magnetic stir bar was placed D (100 mg, 0.311 mmol), 1,4-dioxane (4 mL), water (1 mL), and triphenylphosphine (245 mg, 0.93 mmol). The glass vial was sealed and the mixture heated with stirring to 120° C. for 48 hours. After cooling to room temperature, the solvents were removed under reduced pressure. The crude was purified via silica gel column chromatography using a dichloromethane to 10% methanol in dichloromethane gradient. The best fractions were pooled and the solvents were removed under reduced pressure to afford 1.
LC-MS (M+H) m/z=296
Into a glass vial equipped with a magnetic stir bar was placed 1 (110 mg, 0.372 mmol), nitromethane (1.5 mL), and selectfluor (198 mg, 0.56 mmol). The glass vial was sealed and the mixture stirred at room temperature for 16 hours. The solvents were removed under reduced pressure. The crude was purified via reverse phase chromatography. The best fractions were pooled and the solvents were removed under reduced pressure to afford 86.
Into a glass vial equipped with a magnetic stir bar was placed A (600 mg, 3.19 mmol), nitromethane (10 mL), and selectfluor (5.67 g, 16 mmol). The glass vial was sealed and the mixture stirred at room temperature for 48 hours. NaHCO3 (sat. aq., 10 mL) was added and extracted with ethyl acetate (3×15 mL). The organic layers were pooled, dried over magnesium sulfate, the solids were removed by filtration, and the solvent of the filtrate was removed under reduced pressure to afford crude E, used as such in the next step.
LC-MS (M+H) m/z=206
Step 1.
Intermediate F was prepared according to the method used to prepare compound 9 in scheme 3 on page 44 of WO2010006025. With the exception that acetyl group was employed in place of the trimethylacetyl group.
Step 2. Preparation of Intermediate G
Into a 50 mL glass vial equipped with a magnetic stir bar was placed F (200 mg, 0.97 mmol), anhydrous DMF (5 mL), DBU (0.435 mL, 2.91 mmol), and BOP (536 mg, 1.2 mmol). The reaction mixture becomes a solution after stirring for several minutes, then n-butylamine (0.48 mL, 4.85 mmol) was added and the stirring continues at room temperature for 16 hours. The solvent was removed under reduced pressure and the crude was purified via reverse phase chromatography.
LC-MS (M+H) m/z=262
General procedure. Compounds of type X in scheme 2 can be functionalized with alcohols using Mitsunobu conditions in a polar aprotic solvent, for example THF. Cleavage of methyl carbamate was performed under basic conditions in 1,4-dioxane to form intermediate Z. The displacement of the chlorine in intermediate Z was performed with an amine and a base (e.g. NaH) in a polar solvent (e.g. NMP) to form compounds of formula (I).
3-Amino-2-ethoxycarbonylpyrrole hydrochloride (25.8 g, 135.3 mmol) was partitioned between dichloromethane and sat. NaHCO3, dried over MgSO4, filtered and evaporated to dryness. The residue was dissolved in methanol (500 mL) together with 1,3-bis(methoxycarbonyl)-2-methyl-2-thiopseudourea (32.1 g, 156 mmol) and acetic acid (39 mL, 677 mmol) and stirred 1 hour at room temperature. A precipitate appeared and stirring was continued overnight. Sodium methoxide (73.1 g, 1353 mmol) was added. An exotherm was observed and the reaction mixture was stirred overnight. The reaction mixture was brought to pH 5 via addition of acetic acid and the precipitate was filtered off, triturated with water (2×350 mL), acetonitrile (1×350 mL) and diisopropylether (1×350 mL). The obtained methyl N-(4-hydroxy-5H-pyrrolo[3,2-d]pyrimidin-2-yl)carbamate was dried in the oven.
Methyl N-(4-hydroxy-5H-pyrrolo[3,2-d]pyrimidin-2-yl)carbamate (25 g, 120 mmol) was dispensed into acetonitrile (350 mL) in a 500 mL multi neck flask at room temperature. POCl3 (22.1 mL, 238.2 mmol) was added and the reaction mixture was heated to 70° C. while stirring by an overhead, mechanical stirrer (300 rpm). Hunig's base (41.4 mL, 240.2 mmol) was added dropwise via a syringe pump at a flow rate of 0.2 mL/min. The reaction mixture was cooled to room temperature and poured into a stirred solution of sodium acetate (78.8 g, 961 mmol) in water (500 mL) at 45° C. The organics were evaporated and the remaining liquid was stirred and cooled in an ice bath. The formed solid was isolated by filtration, washed with acetonitrile and triturated with diisopropylether to become intermediate X as a solid which was dried under vacuum.
To a suspension of intermediate X (5 g, 22 mmol), 2-pyridinemethanol (2.6 mL, 26.5 mmol) and polystyrene-bound triphenylphosphine (18.4 g, 55.2 mmol) in anhydrous THF (153 mL) was added DIAD (6.9 mL, 33 mmol) at room temperature and the reaction mixture stirred for 30 minutes then was concentrated under reduced pressure. The product was purified via silica gel column chromatography using gradient a dichloromethane:methanol 100:0 to 90:10 gradient. The product fractions were collected and concentrated under reduced pressure. The product was recrystallized in acetonitrile, isolated by filtration and dried under vacuum to afford Y as a white solid.
Y (4.5 g, 14.2 mmol) was dissolved in 1,4-dioxane (68 mL) in a 100 mL round bottom flask and 1 N NaOH (34 mL) was added. The mixture was heated to 60° C. for 5 h. The mixture was cooled and concentrated under reduced pressure. The residue was treated with water and the precipitate was isolated by filtration and dried to afford Z. The product was used as such in the next step.
Z (175 mg, 0.67 mmol), isoxazol-3-yl-methylamine hydrochloride (136 mg, 1.0 mmol), and diisopropylethylamine (173 mg, 1.3 mmol) were dissolved in NMP (2.4 mL) in a 7 mL glass vial. The mixture was stirred at 100° C. for 2 h then cooled and concentrated in vacuo. It was purified by Prep HPLC (Stationary phase: RP Vydac Denali C18-10 μm, 200 g, 5 cm), Mobile phase: 0.25% NH4OAc solution in water, methanol), the desired fractions were collected and concentrated in vacuo. The product was triturated in acetonitrile, isolated by filtration and dried under vacuum to become 155 as a white solid.
1H NMR
1H NMR (400 MHz, DMSO- d6) δ ppm 0.77 (t, J = 7.3 Hz, 3 H), 0.98-1.11 (m, 2 H), 1.33 (dt, J = 14.5, 7.2 Hz, 2 H), 3.25-3.30 (m, 2 H), 5.23 (s, 2 H), 5.48 (s, 6 2 H), 5.75 (t, J = 5.5 Hz, 1 H), 5.98 (d, J = 3.0 Hz, 1 H), 6.97 (d, J = 7.0 Hz, 2 H), 7.19-7.35 (m, 4 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.76 (t, J = 7.2 Hz, 3 H), 1.07 (dq, J = 14.9, 7.3 Hz, 2 H), 1.23-1.35 (m, 2 H), 3.31 (td, J = 6.8, 5.6 Hz, 2 H), 4.90 (t, J = 4.9 Hz, 1 H), 5.12 (br. s., 2 H), 5.31 (s, 2 H), 6.21 (d, J = 3.0 Hz, 1 H), 6.71-6.79 (m, 1 H), 6.86- 6.94 (m, 3 H), 6.97-7.05 (m, 2 H), 7.06-7.14 (m, 1 H), 7.20-7.27 (m, 1 H), 7.27-7.36 (m, 2 H)
1H NMR (400 MHz, DMSO- d6) δ ppm 0.75 (t, J = 7.3 Hz, 3 H), 0.96-1.09 (m, 2 H), 1.28-1.41 (m, 2 H), 3.25- 3.33 (m, 2 H), 5.55 (s, 4 H), 5.85 (dd, J = 9.7, 2.6 Hz, 1 H), 5.98 (t, J = 3.0 Hz, 1 H), 6.08 (d, J = 3.0 Hz, 1 H), 7.11 (td, J = 8.5, 3.1 Hz, 1 H), 7.30 (d, J = 3.0 Hz, 1 H), 7.70 (dd, J = 8.8, 5.3 Hz, 1 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.91 (t, J = 7.2 Hz, 3 H), 1.30- 1.44 (m, 2 H), 1.49-1.61 (m, 2 H), 3.34 (s, 3 H), 3.43 (td, J = 7.1, 5.3 Hz, 2 H), 3.69- 3.77 (m, 2 H), 4.20-4.29 (m, 2 H), 5.73 (br. s., 1 H), 6.20 (d, J = 3.0 Hz, 1 H), 6.86 (d, J = 3.2 Hz, 1 H), 7.11 (br. s., 1 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.74 (t, J = 7.2 Hz, 3 H), 0.90-1.07 (m, 2 H), 1.11- 1.17 (m, 2 H), 3.18-3.28 (m, 2 H), 4.40 (br. s., 1 H), 4.94 (br. s., 2 H), 5.30 (s, 2 H), 6.23 (d, J = 3.0 Hz, 1 H), 6.70 (d, J = 8.8 Hz, 1 H), 6.79 (d, J = 7.7 Hz, 1 H), 6.94-7.03 (m, 2 H), 7.30 (td, J = 8.0, 5.8 Hz, 1 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.72 (t, J = 7.2 Hz, 3 H), 0.88-1.03 (m, 2 H), 1.14- 1.27 (m, 2 H), 3.24 (td, J = 6.7, 5.3 Hz, 2 H), 4.29 (br. s., 1 H), 4.89 (br. s., 2 H), 5.33 (s, 2 H), 6.24 (d, J = 3.0 Hz, 1 H), 6.46-6.53 (m, 1 H), 6.99 (d, J = 3.0 Hz, 1 H), 7.10-7.22 (m, 2 H), 7.55-7.60 (m, 1 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.74 (t, J = 7.2 Hz, 3 H), 0.86-1.01 (m, 2 H), 1.06- 1.18 (m, 2 H), 3.12-3.22 (m, 2 H), 4.31 (t, J = 5.0 Hz, 1 H), 5.18 (br. s., 2 H), 5.19- 5.24 (m, 2 H), 6.20 (d, J = 3.0 Hz, 1 H), 6.71 (d, J = 7.7 Hz, 1 H), 6.96 (d, J = 3.0 Hz, 1 H), 7.21-7.47 (m, 8 H)
1H NMR (300 MHz, DMSO- d6) δ ppm 0.84 (t, J = 7.4 Hz, 3 H), 0.93 (t, J = 7.3 Hz, 3 H), 1.06-1.27 (m, 2 H), 1.27- 1.44 (m, 2 H), 1.50-1.66 (m, 4 H), 3.44-3.54 (m, 2 H), 4.28 (t, J = 6.9 Hz, 2 H), 5.99 (d, J = 2.9 Hz, 1 H), 6.17 (br. s., 2 H), 6.79 (br. s., 1 H), 7.28 (d, J = 2.9 Hz, 1 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.86 (t, J = 7.4 Hz, 3 H), 0.91 (t, J = 7.3 Hz, 3 H), 1.36 (dq, J = 15.0, 7.4 Hz, 2 H), 1.52- 1.65 (m, 2 H), 1.76 (sxt, J = 7.3 Hz, 2 H), 3.52 (td, J = 7.1, 5.6 Hz, 2 H), 4.07 (t, J = 7.1 Hz, 2 H), 5.17-5.30 (m, 1 H), 5.52 (br. s., 2 H), 6.09 (d, J = 3.0 Hz, 1 H), 6.88 (d, J = 3.0 Hz, 1 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.92 (t, J = 7.3 Hz, 3 H), 1.38 (dq, J = 15.0, 7.3 Hz, 2 H), 1.56-1.68 (m, 2 H), 3.49 (td, J = 7.1, 5.1 Hz, 2 H), 5.28 (s, 2 H), 5.78 (br. s., 2 H), 6.18 (d, J = 3.0 Hz, 1 H), 7.06 (d, J = 3.0 Hz, 1 H), 7.25- 7.32 (m, 1 H), 7.34 (d, J = 7.7 Hz, 1 H), 7.74 (td, J = 7.7, 1.7 Hz, 1 H), 8.48 (c, J = 4.4 Hz, 1 H), 8.58 (br. s., 1 H)
1H NMR (300 MHz, DMSO- d6) δ ppm 0.94 (t, J = 7.4 Hz, 3 H), 1.39 (dq, J = 14.9, 7.4 Hz, 2 H), 1.63 (cuin, J = 7.3 Hz, 2 H), 2.90 (t, J = 7.1 Hz, 2 H), 3.46-3.55 (m, 2 H), 4.55 (t, J = 7.1 Hz, 2 H), 5.94 (d, J = 3.0 Hz, 1 H), 6.33 (br. s., 2 H), 6.97 (br. s., 1 H), 7.02-7.12 (m, 3 H), 7.16- 7.29 (m, 3 H)
1H NMR (300 MHz, DMSO- d6) δ ppm 0.90 (t, J = 7.3 Hz, 3 H), 1.34 (dq, J = 14.9, 7.3 Hz, 2 H), 1.57 (cuin, J = 7.3 Hz, 2 H), 1.91 (cuin, J = 7.5 Hz, 2 H), 2.41-2.48 (m, 2 H), 3.41-3.49 (m, 2 H), 4.29 (t, J = 7.0 Hz, 2 H), 5.57 (s, 2 H), 5.94 (d, J = 2.9 Hz, 1 H), 6.32 (t, J = 5.4 Hz, 1 H), 7.10-7.22 (m, 4 H), 7.22- 7.31 (m, 2 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.81 (t, J = 7.2 Hz, 3 H), 1.06 (dq, J = 14.9, 7.3 Hz, 2 H), 1.22-1.35 (m, 2 H), 3.32 (td, J = 6.7, 5.4 Hz, 2 H), 4.20 (br. s., 1 H), 4.51 (br. s., 2 H), 5.44 (s, 2 H), 6.31 (d, J = 3.2 Hz, 1 H), 6.63 (d, J = 7.4 Hz, 1 H), 7.07 (d, J = 3.0 Hz, 1 H), 7.16-7.25 (m, 1 H), 7.29-7.34 (m, 1 H), 7.47 (dd, J = 8.0, 1.2 Hz, 1 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.89 (t, J = 6.9 Hz, 3 H), 1.20- 1.27 (m, 1 H), 1.28-1.41 (m, 4 H), 1.64 (q, J = 7.0 Hz, 2 H), 3.61 (dd, J = 11.2, 6.9 Hz, 1 H), 3.77 (dd, J = 11.0, 2.8 Hz, 1 H), 4.24 (td, J = 6.9, 2.8 Hz, 1 H), 4.57 (br. s., 2 H), 5.48-5.68 (m, 2 H), 6.21 (d, J = 3.0 Hz, 1 H), 6.74 (d, J = 6.8 Hz, 1 H), 7.10 (d, J = 3.0 Hz, 1 H), 7.35 (dd, J = 8.5, 1.3 Hz, 1 H), 7.51 (dd, J = 8.4, 4.9 Hz, 1 H), 9.16 (dd, J = 5.0, 1.3 Hz, 1 H)
1H NMR (400 MHz, METHANOL-d4) δ ppm 0.88 (t, J = 7.3 Hz, 3 H), 1.13- 1.32 (m, 3 H), 1.46-1.69 (m, 3 H), 2.39 (t, J = 6.8 Hz, 1 H), 3.61 (d, J = 5.5 Hz, 2 4 H), 4.31 (dd, J = 8.8, 5.0 Hz, 1 H), 5.62-5.87 (m, 2 H), 6.13 (d, J = 3.0 Hz, 1 H), 7.39 (d, J = 3.0 Hz, 1 H), 7.46 (dd, J = 8.5, 1.8 Hz, 1 H), 7.70 (dd, J = 8.5, 5.0 Hz, 1 H), 9.14 (dd, J = 4.9, 1.6 Hz, 1 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.77 (t, J = 7.2 Hz, 3 H), 1.02 (dq, J = 14.9, 7.3 Hz, 2 H), 1.15-1.29 (m, 2 H), 3.25 (td, J = 6.8, 5.4 Hz, 2 H), 4.08- 4.22 (m, 1 H), 4.42 (br. s., 2 H), 5.23 (s, 2 H), 6.20 (d, J = 3.0 Hz, 1 H), 6.83 (ddd, J = 8.5, 4.3, 2.2 Hz, 1 H), 6.95 (d, J = 3.0 Hz, 1 H), 7.04- 7.12 (m, 2 H)
1H NMR (400 MHz, DMSO- d6) δ ppm 0.69 (t, J = 7.3 Hz, 3 H), 0.80-0.93 (m, 2 H), 1.05-1.17 (m, 1 H), 1.34- 1.45 (m, 1 H), 3.24 (br. s., 2 H), 4.06-4.16 6 (m, 1 H), 4.63 (br. s., 1 H), 5.03 (d, J = 8.6 Hz, 1 H), 5.24 (s, 2 H), 5.40-5.57 (m, 2 H), 5.99 (d, J = 3.1 Hz, 1 H), 6.98 (d, J = 7.0 Hz, 2 H), 7.22-7.35 (m, 3 H), 7.36 (d, J = 2.9 Hz, 1 H)
1H NMR (300 MHz, DMSO- d6) δ ppm 0.89 (t, J = 7.4 Hz, 3 H), 1.18-1.39 (m, 2 H), 1.45-1.63 (m, 2 H), 2.50 (s, 3 H), 3.36-3.46 (m, 2 H), 5.33 (s, 2 H), 5.41 (s, 2 H), 5.96 (d, J = 2.9 Hz, 1 H), 7.03 (d, J = 7.6 Hz, 1 H), 7.23 (d, J = 7.7 Hz, 1 H), 7.28 (t, J = 5.2 Hz, 1 H), 7.40 (c, J = 3.0 Hz, 1 H), 7.71 (t, J = 7.7 Hz, 1 H)
1H NMR (300 MHz, DMSO- d6) δ ppm 0.99 (t, J = 7.4 Hz, 3 H), 1.26-1.43 (m, 2 H), 1.45 (d, J = 6.3 Hz, 6 H), 1.67 (quin, J = 7.3 Hz, 2 H), 3.54- 3.63 (m, 2 H), 4.95 (dt, J = 12.9, 6.4 Hz, 1 H), 6.18 (d, J = 3.2 Hz, 1 H), 6.73 (br. s., 2 H), 7.29 (br. s., 1 H), 7.57 (d, J = 3.2 Hz, 1 H)
1H NMR (300 MHz, DMSO- d6) δ ppm 0.89 (t, J = 7.3 Hz, 3 H), 1.27 (dq, J = 14.9, 7.4 Hz, 2 H), 1.51 (cuin, J = 7.2 Hz, 2 H), 2.32 (s, 3 H), 3.26- 3.44 (m, 2 H), 5.33 (s, 2 H), 5.51 (s, 2 H), 5.83-5.87 (m, 1 H), 5.97 (d, J = 3.0 Hz, 1 H), 6.11 (t, J = 5.3 Hz, 1 H), 7.29 (d, J = 3.0 Hz, 1 H)
1H NMR (400 MHz, DMSO- d6) δ ppm 0.70 (t, J = 7.3 Hz, 3 H), 0.82-0.98 (m, 2 H), 1.17-1.36 (m, 2 H), 1.37- 1.48 (m, 1 H), 1.51-1.63 (m, 1 H), 3.21-6 3.31 (m, 2 H), 4.17-4.29 (m, 1 H), 4.49 (br. s., 1 H), 5.24 (d, J = 8.5 Hz, 1 H), 5.30 (s, 2 H), 5.41-5.58 (m, 2 H), 6.00 (d, J = 3.0 Hz, 1 H), 6.95 (s, 1 H), 6.96 (s, 1 H), 7.20-7.27 (m, 1 H), 7.27-7.34 (m, 2 H), 7.36 (d, J = 3.0 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 0.87 (t, J = 7.3 Hz, 3 H), 1.15-1.32 (m, 2 H), 1.45-1.59 (m, 1 H), 1.64 (td, J = 8.0, 5.0 Hz, 1 H), 3.50-3.54 (m, 2 H), 3.72-3.79 (m, 1 H), 4.35 (td, J = 8.5, 4.8 Hz, 1 H), 5.45-5.64 (m, 2 H), 6.14 (d, J = 3.0 Hz, 1 H), 6.77 (br. s., 2 H), 7.43 (ddd, J = 7.7, 5.45-5.64 (m, 2 H), 6.14 (d, J = 3.0 Hz, 1 H), 6.77 (br. s., 2 H), 7.43 (ddd, J = 7.7, 4.9, 1.0 Hz, 1 H), 7.51 (d, J = 7.8 Hz, 1 H), 7.63 (d, J = 3.0 Hz, 1 H), 7.91 (td, J = 7.7, 1.8 Hz, 1 H), 8.42 (d, J = 7.8 Hz, 1 H), 8.50- 8.58 (m, 1 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.67 (t, J = 7.4 Hz, 3 H), 1.25 (sxt, J = 7.3 Hz, 2 H), 3.24 (td, J = 7.0, 5.4 Hz, 2 H), 4.65 (br. s., 1 H), 5.16 (br. s., 2 H), 5.39 (s, 2 H), 6.30 (d, J = 3.0 Hz, 1 H), 7.03-7.13 (m, 3 H), 7.32- 7.47 (m, 3 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 0.82 (t, J = 7.40 Hz, 3 H) 1.13-1.24 (m, 2 H) 1.43-1.54 (m, 2 H) 1.55-1.76 (m, 2 H) 3.38-3.46 (m, 2 H) 4.28- 4.37 (m, 1 H) 4.47 (br. s., 1 H) 5.35 (s, 2 H) 5.43-5.51 (m, 2 H) 5.97 (d, J = 3.01 Hz, 1 H) 6.88 (d, J = 8.28 Hz, 1 H) 7.26 (d, J = 7.78 Hz, 1 H) 7.37 (ddd, J = 7.53, 5.02, 1.00 Hz, 1 H) 7.43 (d, J = 3.01 Hz, 1 H) 7.84 (td, J = 7.65, 1.76 Hz, 1 H) 8.53 (dt, J = 4.00, 0.80 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 0.74- 0.85 (m, 3 H) 1.09-1.18 (m, 2 H) 1.18-1.30 (m, 2 H) 1.40-1.56 (m, 2 H) 1.56-1.65 (m, 1 H) 1.65- 1.76 (m, 1 H) 3.34-3.45 (m, 2 H) 4.24-4.34 (m, 1 H) 4.47 (br. s., 1 H) 5.22 (s, 2 H) 5.39-5.53 (m, 2 H) 5.96 (d, J = 2.76 Hz, 1 H) 6.75 (d, J = 8.28 Hz, 1 H) 7.23 (d, J = 7.78 Hz, 1 H) 7.37 (ddd, J = 7.53, 4.89, 1.13 Hz, 1 H) 7.41 (d, J = 3.01 Hz, 1 H) 7.83 (td, J = 7.72, 1.88 Hz, 1 H) 8.50- 8.55 (m, 1 H)
1H NMR (400 MHz, DMSO- d6) δ ppm 0.73 (t, J = 7.4 Hz, 3 H), 0.77-0.93 (m, 2 H), 1.01-1.19 (m, 3 H), 1.38- 1.51 (m, 1 H), 3.23-3.30 (m, 2 H), 4.04-6 4.17 (m, 1 H), 4.66 (br. s., 1 H), 5.12 (d, J = 8.5 Hz, 1 H), 5.35 (s, 2 H), 5.40-5.60 (m, 2 H), 6.01 (d, J = 3.0 Hz, 1 H), 6.95- 7.03 (m, 2 H), 7.22-7.35 (m, 3 H), 7.38 (d, J = 3.0 Hz, 1 H)
1H NMR (400 MHz, DMSO- d6) δ ppm 0.74 (d, J = 6.52 Hz, 3 H) 0.82 (d, J = 6.78 Hz, 3 H) 0.92 (t, J = 7.28 Hz, 3 H) 1.30-1.46 (m, 2 H) 1.50- 1.69 (m, 2 H) 1.87-2.01 (m, 1 H) 3.43-3.58 (m, 2 H) 3.88 (dd, J = 14.68, 8.16 Hz, 1 H) 4.12 (dd, J = 14.56, 6.53 Hz, 1 H) 4.28 (m, J = 8.40, 3.90 Hz, 1 H) 4.79 (br. s., 1 H) 5.22 (s, 2 H) 5.41 (d, J = 8.53 Hz, 1 H) 5.89 (d, J = 3.01 Hz, 1 H) 7.15 (d, J = 3.01 Hz, 1 H)
1H NMR (400 MHz, DMSO- d6) δ ppm 0.69 (d, J = 6.9 Hz, 3 H), 0.79 (d, J = 6.9 Hz, 3 H), 0.82-0.91 (m, 3 H), 1.20- 1.39 (m, 4 H), 1.49-1.65 (m, 2 H), 1.66-6 1.79 (m, 2 H), 1.83-1.97 (m, 1 H), 3.43-3.58 (m, 2 H), 3.86 (dd, J = 14.5, 6.5 Hz, 1 H), 4.27-4.44 (m, 1 H), 4.71 (br. s., 1 H), 5.21 (s, 2 H), 5.75 (d, J = 8.5 Hz, 1 H), 5.87 (d, J = 2.8 Hz, 1 H), 7.12 (d, J = 3.2 Hz, 1 H)
1H NMR (300 MHz, DMSO-d6) δ ppm 0.75- 0.85 (m, 3 H), 1.02 (d, J = 7.0 Hz, 2 H), 1.11-1.26 (m, 2 H), 1.34 (d, J = 7.6 Hz, 2 H), 3.28 (s, 2 H), 5.22 (s, 2 H), 5.49 (s, 2 H), 5.76 (s, 1 H), 5.98 (d, J = 3.0 Hz, 1 H), 6.97 (d, J = 6.7 Hz, 2 H), 7.17-7.35 (m, 4 H)
1H NMR (400 MHz, DMSO- d6) δ ppm 0.76 (dd, J = 11.42, 6.65 Hz, 6 H) 0.90 (t, J = 7.28 Hz, 3 H) 1.26- 1.37 (m, 2 H) 1.53-1.63 (m, 1 H) 1.63-1.73 (m, 1 H) 1.74-1.90 (m, 3 H) 3.49- 3.62 (m, 2 H) 4.11-4.22 (m, 2 H) 4.55 (m, J = 6.50 Hz, 1 H) 4.79 (t, J = 4.52 Hz, 1 H) 6.16 (d, J = 3.01 Hz, 1 H) 7.24 (d, J = 8.28, 1 H) 7.33 (br. ., 2 H) 7.44 (d, J = 2.76 Hz, 1 H) 12.35 (br. s., 1 H)
1H NMR (300 MHz, DMSO-d6) δ ppm 0.64- 0.75 (m, 3 H), 0.77-0.97 (m, 2 H), 1.02-1.21 (m, 1 H), 1.30-1.50 (m, 1 H), 3.33 (d, J = 4.3 Hz, 2 H), 4.15 (dd, J = 9.2, 4.5 Hz, 1 H), 4.69 (br. s., 1 H), 5.34 (d, J = 8.5 Hz, 1 H), 5.42- 5.64 (m, 2 H), 5.71 (br. s., 2 H), 6.06 (d, J = 3.0 Hz, 1 H), 6.99 (d, J = 6.6 Hz, 2 H), 7.17-7.37 (m, 3 H), 7.44 (d, J = 3.0 Hz, 1 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.57 (d, J = 6.6 Hz, 6 H), 1.19 (s, 2 H), 1.33-1.52 (m, 1 H), 3.05 (dd, J = 6.8, 5.6 Hz, 2 H), 4.61-4.78 (m, 1 H), 5.32 (s, 2 H), 6.25 (d, J = 3.0 Hz, 1 H), 6.97- 7.06 (m, 3 H), 7.26-7.39 (m, 3 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.74-0.82 (m, 3 H), 0.86 (d, J = 6.5 Hz, 3 H), 0.93- 1.28 (m, 4 H), 4.01-4.22 (m, 1 H), 4.39 (d, J = 7.8 Hz, 1 H), 5.05 (br. s., 2 H), 5.37 (s, 2 H), 6.29 (d, J = 3.0 Hz, 1 H), 7.02-7.13 (m, 3 H), 7.32-7.47 (m, 3 H)
1H NMR (300 MHz, DMSO-d6) δ ppm 3.24 (s, 3 H), 3.35-3.44 (m, 2 H), 3.57 (q, J = 5.6 Hz, 2 H), 5.55 (s, 2 H), 5.97 (br. s., 2 H), 6.09 (d, J = 2.9 Hz, 1 H), 6.30 (br. s., 1 H), 7.05- 7.14 (m, 2 H), 7.25-7.41 (m, 3 H), 7.46 (d, J = 3.0 Hz, 1 H)
1H NMR (300 MHz, DMSO-d6) δ ppm 0.98 (t, J = 7.1 Hz, 3 H), 3.23-3.44 (m, 2 H), 5.43 (s, 2 H), 5.49 (s, 2 H), 5.96-6.07 (m, 2 H), 7.02 (d, J = 6.7 Hz, 2 H), 7.17-7.38 (m, 4 H)
1H NMR (300 MHz, DMSO-d6) δ ppm 1.56 (quin, J = 6.4 Hz, 2 H), 3.24- 3.44 (m, 4 H), 4.45-4.58 (m, 1 H), 5.49 (s, 2 H), 5.61 (br. s., 2 H), 6.03 (d, J = 2.9 Hz, 1 H), 6.19 (t, J = 5.0 Hz, 1 H), 6.96-7.04 (m, 2 H), 7.19-7.34 (m, 3 H), 7.37 (d, J = 3.0 Hz, 1 H)
1H NMR (400 MHz, DMSO- d6) δ ppm 0.74 (t, J = 7.3 Hz, 3 H), 0.80-0.95 (m, 2 H), 1.02-1.17 (m, 2 H), 1.19- 1.48 (m, 3 H), 1.51-1.64 (m, 1 H), 3.21-6 3.27 (m, 2 H), 4.20 (tt, J = 8.5, 4.0 Hz, 1 H), 4.49 (br. s., 1 H), 5.18- 5.32 (m, 3 H), 5.40-5.59 (m, 2 H), 6.00 (d, J = 3.1 Hz, 1 H), 6.96 (d, J = 7.3 Hz, 2 H), 7.19-7.39 (m, 4 H)
1H NMR (400 MHz, DMSO- d6) δ ppm 0.62 (d, J = 4.0 Hz, 3 H), 0.65 (d, J = 6.8 Hz, 3 H), 0.95-1.04 (m, 1 H), 1.35- 1.47 (m, 1 H), 1.89 (s, 3 H), 3.35-3.46 6 (m, 2 H), 3.98- 4.07 (m, 1 H), 5.06 (d, J = 8.8 Hz, 1 H), 5.42-5.60 (m, 4 H), 6.01 (d, J = 2.9 Hz, 1 H), 6.94-6.98 (m, 2 H), 7.23-7.28 (m, 1 H), 7.29- 7.35 (m, 2 H), 7.38 (d, J = 3.1 Hz, 1 H)
1H NMR (400 MHz, DMSO- d6) δ ppm 0.63-0.73 (m, 3 H), 0.75-0.95 (m, 2 H), 1.18-1.36 (m, 2 H), 1.48 (dd, J = 8.9, 4.7 Hz, 1 H), 1.53-1.64 (m, 1 H), 3.20 6- 3.28 (m, 2 H), 4.13-4.29 (m, 1 H), 4.50 (t, J = 5.4 Hz, 1 H), 5.28 (s, 2 H), 5.37 (d, J = 8.6 Hz, 1 H), 5.47-5.69 (m, 2 H), 6.04 (d, J = 3.1 Hz, 1 H), 6.81 (d, J = 5.9 Hz, 2 H), 7.36 (d, J = 2.9 Hz, 1 H), 8.40- 8.50 (m, 2 H)
1H NMR (400 MHz, CHLOROFORM-d) δ ppm 0.76-0.82 (m, 3 H), 0.87- 1.00 (m, 2 H), 1.02-1.22 (m, 5 H), 1.28-1.41 (m, 1 H), 1.72-1.85 (m, 1 H), 3.34 (td, J = 11.6, 2.4 Hz, 1 H), 3.44-3.55 (m, 1 H), 4.12-4.27 (m, 2 H), 4.58 (br. s., 2 H), 5.26-5.45 (m, 2 H), 6.27 (d, J = 3.1 Hz, 1 H), 6.89-6.97 (m, 2 H), 7.06 (d, J = 3.1 Hz, 1 H), 8.55- 8.62 (m, 2 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.65-0.80 (m, 3 H) 0.89- 1.07 (m, 2 H) 1.11-1.22 (m, 2 H) 3.14-3.28 (m, 2 H) 3.73 (s, 3 H) 4.76 (br. s., 1 H) 5.08-5.24 (m, 2 H) 5.27 (s, 2 H) 6.18 (d, J = 3.02 Hz, 1 H) 6.84 (d, J = 8.66 Hz, 2 H) 6.94 (d, J = 8.66 Hz, 2 H) 7.00 (d, J = 3.02 Hz, 1 H)
1H NMR (300 MHz, DMSO-d6) δ ppm 0.70- 0.87 (m, 3 H) 0.97-1.14 (m, 2 H) 1.31-1.46 (m, 2 H) 3.36-3.40 (m, 2 H) 5.52 (s, 2 H) 5.62 (s, 2 H) 6.05 (d, J = 3.02 Hz, 1 H) 6.11 (s, 1 H) 6.90-7.09 (m, 2 H) 7.09-7.24 (m, 2 H) 7.39 (d, J = 3.02 Hz, 1 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.67-0.85 (m, 3 H) 0.94- 1.13 (m, 2 H) 1.16-1.33 (m, 2 H) 3.16-3.43 (m, 2 H) 4.33 (br. s., 1 H) 4.54 (br. s., 2 H) 5.32 (s, 2 H) 6.21 (d, J = 3.02 Hz, 1 H) 6.67 (t, J = 7.35 Hz, 1 H) 6.99 (d, J = 3.02 Hz, 1 H) 7.00-7.13 (m, 2 H) 7.22- 7.32 (m, 1 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm- 0.07-0.07 (m, 2 H) 0.21- 0.43 (m, 3 H) 0.66-0.75 (m, 3 H) 0.76-0.95 (m, 1 H) 3.22-3.51 (m, 2 H) 4.86 (br. s., 1 H) 5.15 (br. s., 2 H) 5.41 (s, 2 H) 6.33 (d, J = 3.02 Hz, 1 H) 7.07 (br. s., 1 H) 7.10 (s, 2 H) 7.35-7.47 (m, 3 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 4.21 (d, J = 4.95 Hz, 2 H) 4.48 (br. s., 1 H) 4.70 (br. s., 2 H) 5.18-5.30 (m, 2 H) 5.97 (s, 1 H) 6.22 (d, J = 3.02 Hz, 1 H) 6.90 (dd, J = 6.53, 2.13 Hz, 2 H) 6.98 (s, 1 H) 7.02 (d, J = 3.02 Hz, 1 H) 7.20-7.29 (m, 4 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm- 0.12-0.09 (m, 2 H) 0.24- 0.46 (m, 2 H) 0.89 (d, J = 5.64 Hz, 3 H) 2.84-3.06 (m, 1 H) 3.08-3.25 (m, 1 H) 4.51 (br. s., 1 H) 4.63 (br. s., 2 H) 5.34 (s, 2 H) 6.23 (d, J = 3.02 Hz, 1 H) 7.03 (d, J = 2.75 Hz, 2 H) 7.06 (br. s., 1 H) 7.27-7.40 (m, 3 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 1.42 (s, 3 H) 1.58 (s, 3 H) 3.66-3.80 (m, 2 H) 4.42 (br. s., 1 H) 4.71-4.88 (m, 1 H) 5.02 (br. s., 2 H) 5.28 (s, 2 H) 6.21 (d, J = 3.02 Hz, 1 H) 6.96-7.01 (m, 2 H) 7.02 (s, 1 H) 7.24-7.41 (m, 3 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 2.28 (s, 3 H) 4.46 (d, J = 5.22 Hz, 2 H) 4.65 (br. s., 2 H) 4.92 (br. s., 1 H) 5.30 (s, 2 H) 5.54 (s, 1 H) 6.22 (d, J = 3.02 Hz, 1 H) 6.89-7.01 (m, 2 H) 7.03 (d, J = 3.16 Hz, 1 H) 7.21- 7.27 (m, 3 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 3.79 (s, 3 H) 4.44 (d, J = 4.67 Hz, 2 H) 5.33 (s, 2 H) 5.60 (br. s., 1 H) 5.84 (d, J = 2.06 Hz, 1 H) 6.28 (d, J = 3.02 Hz, 1 H) 6.43 (br. s., 2 H) 6.96 (dd, J = 6.53, 2.82 Hz, 2 H) 7.02 (d, J = 3.02 Hz, 1 H) 7.18 (d, J = 2.20 Hz, 1 H) 7.21-7.28 (m, 3 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.83-0.91 (m, 3 H) 1.30- 1.41 (m, 2 H) 1.57-1.67 (m, 2 H) 3.44-3.60 (m, 2 H) 5.41 (s, 2 H) 6.22 (br. s, 2 H) 6.21 (d, J = 3.02 Hz, 1 H) 7.05 (d, J = 3.02 Hz, 1 H) 7.55-7.65 (m, 2 H) 7.70 (t, J = 7.49 Hz, 1 H) 7.76-7.86 (m, 1 H) 7.95 (d, J = 8.11 Hz, 1 H) 8.23 (br. s., 1 H) 9.12 (s, 1 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.71 (d, J = 6.32 Hz, 6 H) 0.74-0.86 (m, 1 H) 0.93- 1.05 (m, 2 H) 3.15-3.28 (m, 2 H) 4.59 (br. s., 1 H) 5.29 (s, 2 H) 6.18 (br. s., 2 H) 6.27 (d, J = 3.02 Hz, 1 H) 6.97-7.01 (m, 2 H) 7.02 (br. s., 1 H) 7.26-7.42 (m, 3 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.89-0.95 (m, 1 H) 0.92 (t, J = 7.35 Hz, 3 H) 1.00-1.26 (m, 4 H) 1.31-1.44 (m, 2 H) 1.47-1.75 (m, 8 H) 3.43-3.59 (m, 2 H) 3.83 (d, J = 7.29 Hz, 2 H) 4.73 (br. s., 1 H) 4.93 (br. s., 2 H) 6.08 (d, J = 3.02 Hz, 1 H) 6.81 (d, J = 3.02 Hz, 1 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.19-0.35 (m, 2 H) 0.50- 0.65 (m, 2 H) 0.69-0.86 (m, 1 H) 0.91 (t, J = 7.29 Hz, 3 H) 1.33-1.45 (m, 2 H) 1.49-1.65 (m, 2 H) 3.50 (td, J = 7.11, 5.57 Hz, 2 H) 4.00 (d, J = 6.05 Hz, 2 H) 4.68 (br. s., 2 H) 4.80 (br. s., 1 H) 6.10 (d, J = 3.02 Hz, 1 H) 6.93 (d, J = 3.02 Hz, 1 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.69-0.74 (m, 3 H) 0.89- 0.97 (m, 2 H) 1.07-1.13 (m, 2 H) 2.21 (s, 3 H) 3.14- 3.27 (m, 2 H) 4.66 (br. s., 1 H) 5.24 (s, 2 H) 6.40 (br. s., 2 H) 6.78-6.86 (m, 1 H) 6.92-7.05 (m, 2 H) 7.26- 7.41 (m, 3 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.96 (t, J = 7.29 Hz, 3 H) 1.38-1.57 (m, 2 H) 1.58- 1.75 (m, 2 H) 3.54-3.64 (m, 2 H) 4.29-4.42 (m, 2 H) 4.56 (t, J = 4.88 Hz, 2 H) 4.59 (br. s., 2 H) 5.96 (br. s., 1 H) 6.26 (d, J = 3.02 Hz, 1 H) 6.79-6.91 (m, 2 H) 6.99 (d, J = 3.02 Hz, 1 H) 7.00-7.08 (m, 1 H) 7.28- 7.34 (m, 2 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.93 (t, J = 7.35 Hz, 3 H) 1.36-1.52 (m, 2 H) 1.52- 1.71 (m, 2 H) 3.46-3.65 (m, 2 H) 5.35 (s, 2 H) 6.06 (br. s., 2 H) 6.22 (d, J = 3.02 Hz, 1 H) 7.13 (d, J = 3.02 Hz, 1 H) 7.31 (t, J = 5.02 Hz, 1 H) 8.02 (br. s., 1 H) 8.71 (d, J = 5.09 Hz, 2 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.79 (t, J = 7.29 Hz, 3 H) 1.22 (dd, J = 15.19, 7.49 Hz, 2 H) 1.39-1.56 (m, 2 H) 3.29-3.45 (m, 2 H) 4.63 (br. s., 2 H) 5.44 (s, 2 H) 6.17 (d, J = 3.02 Hz, 1 H) 7.00 (br. s., 1 H) 7.09 (d, J = 3.02 Hz, 1 H) 7.18-7.28 (m, 1 H) 7.42-7.57 (m, 1 H) 7.62-7.83 (m, 2 H) 7.97 (d, J = 8.39 Hz, 1 H) 8.10 (d, J = 8.39 Hz, 1 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.69-0.74 (m, 3 H) 0.89- 0.97 (m, 2 H) 1.07-1.13 (m, 2 H) 2.21 (s, 3 H) 3.14- 3.27 (m, 2 H) 4.66 (br. s., 1 H) 5.24 (s, 2 H) 6.40 (br. s., 2 H) 6.78-6.86 (m, 1 H) 6.92-7.05 (m, 2 H) 7.26- 7.41 (m, 3 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.89 (t, J = 7.22 Hz, 3 H) 1.26-1.40 (m, 2 H) 1.41- 1.57 (m, 2 H) 1.70-1.77 (m, 6 H) 3.32-3.51 (m, 2 H) 4.47 (br. s., 2 H) 4.66 (d, J = 5.64 Hz, 2 H) 4.98 (br. s., 1 H) 5.28-5.41 (m, 1 H) 6.06 (d, J = 3.02 Hz, 1 H) 6.84 (d, J = 3.02 Hz, 1 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 4.47 (br. s., 2 H) 4.74 (d, J = 5.50 Hz, 2 H) 5.15 (t, J = 5.16 Hz, 1 H) 5.32 (s, 2 H) 6.22 (d, J = 3.02 Hz, 1 H) 6.94-7.01 (m, 2 H) 7.03 (d, J = 3.02 Hz, 1 H) 7.14 (d, J = 3.30 Hz, 1 H) 7.17-7.27 (m, 3 H) 7.58 (d, J = 3.30 Hz, 1 H)
1H NMR (300 MHz, chloroform-d) δ ppm 4.38 (d, J = 5.36 Hz, 2 H) 4.49 (br. s., 2 H) 4.54-4.66 (m, 1 H) 5.26 (s, 2 H) 6.21 (d, J = 3.02 Hz, 1 H) 6.84-6.92 (m, 2 H) 7.00-7.08 (m, 2 H) 7.08-7.14 (m, 1 H) 7.14-7.23 (m, 2 H) 8.15- 8.23 (m, 1 H) 8.36-8.44 (m, 1 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.92 (t, J = 7.35 Hz, 3 H) 1.37 (dq, J = 14.90, 7.31 Hz, 2 H), 1.52-1.63 (m, 2 H) 1.65-1.78 (m, 2 H) 1.78- 1.90 (m, 2 H) 1.91-2.05 (m, 2 H) 2.47-2.83 (m, 2 H) 3.41-3.54 (m, 1 H) 4.05 (d, J = 7.01 Hz, 2 H) 4.73 (br. s., 1 H) 4.89 (br. s., 2 H) 6.09 (d, J = 3.02 Hz, 1 H) 6.85 (d, J = 3.02 Hz, 1 H)
1H NMR (400 MHz, DMSO- d6) δ ppm 0.75 (t, J = 7.3 Hz, 3 H), 0.98-1.06 (m, 2 H), 1.32 (quin, J = 7.2 Hz, 2 H), 2.27 (s, 3 H), 3.24-3.28 (m, 2 H), 5.25 (br. s., 6 2 H), 5.44 (s, 2 H), 5.75 (t, J = 5.4 Hz, 1 H), 5.87 (s, 1 H), 6.87 (d, J = 7.0 Hz, 2 H), 7.19- 7.25 (m, 1 H), 7.25-7.32 (m, 2 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.75 (t, J = 7.30 Hz, 3 H) 0.89-1.06 (m, 2 H) 1.11- 1.29 (m, 2 H) 3.24-3.34 (m, 2 H) 5.16 (br. s., 1 H) 5.47 (s, 2 H) 5.96 (br. s., 2 H) 6.21 (d, J = 3.02 Hz, 1 H) 7.00 (d, J = 3.02 Hz, 1 H) 7.18-7.26 (m, 2 H) 8.33- 8.42 (m, 1 H) 8.49-8.59 (m, 1 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.95 (t, J = 7.29 Hz, 3 H) 1.30-1.54 (m, 2 H) 1.70 (quin, J = 7.32 Hz, 2 H) 3.50 (td, J = 7.11, 5.02 Hz, 2 H) 4.76 (br. s., 2 H) 5.77 (s, 2 H) 6.14 (d, J = 3.02 Hz, 1 H) 7.17-7.21 (m, 1 H) 7.62- 7.73 (m, 3 H) 7.80-7.87 (m, 1 H) 8.25-8.34 (m, 1 H) 8.37 (d, J = 5.77 Hz, 1 H) 8.59 (br. s., 1 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.90 (t, J = 7.22 Hz, 3 H) 1.25-1.40 (m, 2 H) 1.43- 1.54 (m, 2 H) 3.29 (td, J = 7.11, 5.57 Hz, 2 H) 3.87 (br. s., 1 H) 4.07-4.22 (m, 2 H) 4.23-4.31 (m, 2 H) 4.61 (br. s., 2 H) 6.06 (t, J = 2.06 Hz, 2 H) 6.14 (d, J = 3.02 Hz, 1 H) 6.29 (t, J = 2.06 Hz, 2 H) 6.70 (d, J = 3.02 Hz, 1 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.92 (t, J = 7.29 Hz, 3 H) 1.26-1.47 (m, 2 H) 1.49- 1.67 (m, 2 H) 2.34-2.46 (m, 4 H) 2.72-2.81 (m, 2 H) 3.52 (td, J = 7.22, 5.77 Hz, 2 H) 3.57-3.64 (m, 4 H) 4.17-4.24 (m, 2 H) 5.75-6.08 (m, 2 H) 6.19 (d, J = 3.02 Hz, 1 H) 6.87 (d, J = 3.02 Hz, 1 H) 8.19 (br. s., 1 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.90 (t, J = 7.29 Hz, 3 H) 1.30-1.46 (m, 2 H) 1.58- 1.73 (m, 2 H) 3.53 (td, J = 7.01, 5.22 Hz, 2 H) 5.32 (s, 2 H) 5.78-6.11 (m, 2 H) 6.18 (d, J = 3.02 Hz, 1 H) 6.78-6.84 (m, 1 H) 7.01 (d, J = 3.02 Hz, 1 H) 7.18- 7.24 (m, 2 H) 7.46 (d, J = 9.07 Hz, 1 H) 7.54 (s, 1 H) 8.06 (d, J = 6.74 Hz, 1 H) 8.92-9.11 (m, 0 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.74 (t, J = 7.30 Hz, 3 H) 0.90-1.12 (m, 2 H) 1.14- 1.27 (m, 2 H) 3.20-3.28 (m, 2 H) 3.85 (s, 3 H) 4.55 (br. s., 3 H) 5.22-5.27 (m, 2 H) 6.18 (d, J = 3.02 Hz, 1 H) 6.62 (d, J = 7.01 Hz, 1 H) 6.82 (t, J = 7.56 Hz, 1 H) 6.87 (d, J = 8.25 Hz, 1 H) 6.98 (d, J = 3.02 Hz, 1 H) 7.20-7.27 (m, 1 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.74 (t, J = 7.40 Hz, 3 H) 0.88-1.09 (m, 2 H) 1.10- 1.25 (m, 2 H) 3.18-3.28 (m, 2 H) 4.21 (br. s., 1 H) 4.66 (br. s., 2 H) 5.23 (s, 2 H) 6.22 (d, J = 3.16 Hz, 2 H) 6.89 (d, J = 5.77 Hz, 1 H) 6.96 (d, J = 3.02 Hz, 1 H) 8.51-8.59 (m, 2 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.91 (t, J = 7.29 Hz, 3 H) 1.27-1.45 (m, 2 H) 1.49- 1.67 (m, 3 H) 1.85 (d, J = 7.01 Hz, 1 H) 1.91-2.12 (m, 2 H) 3.39-3.49 (m, 2 H) 3.72 (t, J = 6.67 Hz, 2 H) 4.02 (dd, J = 15.81, 4.54 Hz, 1 H) 4.12-4.23 (m, 1 H) 4.42 (dd, J = 15.74, 1.72 Hz, 1 H) 5.76-6.13 (m, 2 H) 6.23 (d, J = 3.02 Hz, 1 H) 6.82 (d, J = 3.02 Hz, 1 H) 7.61-7.79 (m, 1 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.78 (t, J = 7.30 Hz, 3 H) 1.00-1.15 (m, 2 H) 1.16- 1.29 (m, 2 H) 3.19-3.31 (m, 2 H) 4.46 (br. s., 1 H) 4.59 (br. s., 2 H) 5.27 (s, 2 H) 6.17 (d, J = 3.02 Hz, 1 H) 6.82 (dd, J = 4.95, 1.10 Hz, 1 H) 6.91-6.95 (m, 1 H) 6.97 (d, J = 3.02 Hz, 1 H) 7.34 (dd, J = 4.95, 2.89 Hz, 1 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.79 (t, J = 7.20 Hz, 3 H) 1.02-1.33 (m, 4 H) 1.90- 2.08 (m, 2 H) 3.27 (td, J = 6.80, 5.36 Hz, 2 H) 4.58 (br. s., 2 H) 5.41 (s, 2 H) 6.19 (d, J = 3.02 Hz, 1 H) 6.67-6.84 (m, 1 H) 6.93 (dd, J = 5.02, 3.51 Hz, 1 H) 6.98 (d, J = 3.16 Hz, 1 H) 7.26 (dd, J = 5.09, 0.96 Hz, 1 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.73 (t, J = 7.20 Hz, 3 H) 0.89 (d, J = 6.46 Hz, 3 H) 0.93-1.07 (m, 2 H) 1.07- 1.29 (m, 2 H) 4.05-4.20 (m, 1 H) 4.43 (d, J = 7.84 Hz, 1 H) 5.16-5.29 (m, 2 H) 5.33 (s, 2 H) 6.25 (d, J = 3.02 Hz, 1 H) 6.68 (t, J = 7.49 Hz, 1 H) 7.02-7.13 (m, 3 H) 7.23-7.34 (m, 1 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.72 (t, J = 7.00 Hz, 3 H) 0.83 (d, J = 6.46 Hz, 3 H) 0.86-1.07 (m, 2 H) 1.08- 1.22 (m, 2 H) 3.74 (s, 3 H) 4.07 (s, 1 H) 4.57-4.62 (m, 1 H) 5.23 (s, 2 H) 5.30- 5.55 (m, 2 H) 6.24 (d, J = 3.02 Hz, 1 H) 6.82-6.89 (m, 2 H) 6.90-6.97 (m, 2 H) 7.02 (d, J = 3.02 Hz, 1 H)
1H NMR (300 MHz, DMSO-d6) δ ppm 0.68 (t, J = 7.20 Hz, 1 H) 0.81-0.95 (m, 2 H) 0.96-1.14 (m, 2 H) 1.16-1.62 (m, 2 H) 3.21- 3.28 (m, 2 H) 4.09-4.25 (m, 1 H) 4.39-4.48 (m, 1 H) 5.15-5.26 (m, 2 H) 5.32-5.39 (m, 1 H) 5.40- 5.50 (m, 1 H) 5.55-5.65 (m, 1 H) 5.96 (d, J = 2.90 Hz, 1 H) 6.34-6.44 (m, 1 H) 6.97-7.05 (m, 1 H) 7.10-7.30 (m, 3 H)
1H NMR (300 MHz, CHLOROFORM-d) δ ppm 0.73 (t, J = 7.20 Hz, 3 H) 0.80-1.00 (m, 4 H) 1.00- 1.33 (m, 2 H) 1.47-1.83 (m, 3 H) 3.15-3.26 (m, 1 H) 3.32-3.43 (m, 1 H) 3.72 (s, 3 H) 4.01-4.14 (m, 1 H) 4.22 (d, J = 8.25 Hz, 1 H) 4.40 (br. s., 2 H) 5.16- 5.29 (m, 2 H) 6.18 (d, J = 3.02 Hz, 1 H) 6.80-6.95 (m, 4 H) 7.03 (d, J = 3.02 Hz, 1 H)
1H NMR (300 MHz, CDCl3) δ 7.31 (t, J = 7.9 Hz, 1H), 7.12 (d, J = 3.0 Hz, 1H), 6.95 (d, J = 8.5 Hz, 1H) 6.89 (d, J = 7.6 Hz, 1H), 6.63 (d, J = 6.9 Hz, 1H), 6.29 (d, J = 3.0 Hz, 1H), 5.33 (d, J = 6.0 Hz, 2H), 5.02 (s, 2H), 4.60 (s, 1H), 4.20 (s, 1H), 3.92 (s, 3H), 3.50-3.35 (m, 1H), 3.24 (td, J = 11.6, 2.7 Hz, 1H), 1.86-1.69 (m, 2H), 1.44-1.29 (m, 1H), 1.29-0.92 (m, 6H), 0.81 (t, J = 7.2 Hz, 3H).
1H NMR (300 MHz, CDCl3) δ 7.34 (t, J = 7.8 Hz, 1H), 7.10 (d, J = 3.0 Hz, 1H), 6.97 (d, J = 8.5 Hz, 1H), 6.91 (d, J = 7.4 Hz, 1H), 6.65 (d, J = 7.4 Hz, 1H), 6.31 (d, J = 3.0 Hz, 1H), 5.33 (s, 2H), 4.76 (d, J = 7.2 Hz, 1H), 4.18 (dt, J = 14.2, 6.9 Hz, 1H), 3.93 (s, 3H), 1.24-0.95 (m, 6H), 0.91 (d, J = 6.5 Hz, 3H), 0.79 (t, J = 7.0 Hz, 3H).
1H NMR (300 MHz, CDCl3) δ 7.24 (t, J = 7.8 Hz, 1H), 7.05 (d, J = 3.0 Hz, 1H), 6.88 (d, J = 8.3 Hz, 1H), 6.83 (t, J = 7.8 Hz, 1H), 6.56 (d, J = 7.3 Hz, 1H), 6.21 (d, J = 3.0 Hz, 1H), 5.26 (2d, J = 6.0 Hz, 2H), 4.90 (s, 2H), 4.52 (d, J = 8.3 Hz, 1H), 4.17 (dd, J = 9.1, 6.4 Hz, 1H), 3.86 (s, 3H), 3.36 (ddd, J = 11.8, 5.0, 2.7 Hz, 1H), 3.17 (td, J = 11.5, 2.7 Hz, 1H), 1.77- 1.60 (m, 1H), 1.37-1.13 (m, 2H), 1.09-0.75 (m, 4H), 0.71 (t, J = 7.0 Hz, 3H).
1H NMR (300 MHz, CDCl3) δ 7.27 (dd, J = 13.6, 6.2 Hz, 1H), 7.09 (d, J = 10.1 Hz, 1H), 7.05 (d, J = 3.1 Hz, 1H), 7.02 (d, J= 7.7 Hz, 1H), 6.63 (t, J = 7.2 Hz, 1H), 6.24 (d, J = 3.0 Hz, 1H), 5.42-5.25 (m, 2H), 4.78 (s, 2H), 4.43 (s, 1H), 4.20 (s, 1H), 3.48- 3.36 (m, 1H), 3.25 (td, J = 11.6, 2.5 Hz, 1H), 1.82- 1.65 (m, 2H), 1.39-0.86 (m, 5H), 0.71 (t, J = 7.1 Hz, 3H).
1H NMR (300 MHz, CDCl3) δ 6.92 (d, J = 3.0 Hz, 1H), 6.16 (d, J = 3.0 Hz, 1H), 5.85 (s, 1H), 5.51 (s, 2H), 4.60-4.39 (m, 1H), 4.24-4.04 (m, 2H), 3.81 (d, J = 6.6 Hz, 2H), 2.71 (dt, J = 14.9, 7.5 Hz, 1H), 2.15-1.32 (m, 13H), 0.97 (t, J = 7.3 Hz, 3H).
1H NMR (300 MHz, CDCl3) δ 7.44-7.28 (m, 5H), 6.93 (d, J = 3.0 Hz, 1H), 6.17 (d, J = 3.0 Hz, 1H), 4.95 (s, 1H), 4.83 (s, 2H), 4.78 (d, J = 5.2 Hz, 2H), 4.03 (t, J = 7.2 Hz, 2H), 1.85-1.59 (m, 2H), 1.35-1.10 (m, 2H), 0.84 (t, J = 7.3 Hz, 3H).
1H NMR (300 MHz, CDCl3) δ 6.94 (d, J = 3.0 Hz, 1H), 6.17 (d, J = 3.0 Hz, 1H), 5.08 (s, 2H), 4.46 (s, 1H), 4.27-3.99 (m, 2H), 3.72 (d, J = 6.9 Hz, 2H), 8.12-−0.50 (m, 60H), 2.71 (dd, J = 14.9, 7.4 Hz, 1H), 2.13-1.31 (m, 16H), 0.92 (t, J = 6.8 Hz, 3H).
1H NMR (300 MHz, CDCl3) δ 8.75 (d, J = 1.9 Hz, 1H), 7.19 (s, J = 1.9 Hz, 1H), 7.02 (d, J = 3.0 Hz, 2H), 6.19 (d, J = 3.0 Hz, 1H), 5.36 (s, 2H), 5.22- 4.88 (m, 2H), 4.37 (s, 2H), 3.48 (dd, J = 23.1, 14.8 Hz, 3H), 2.03-1.83 (m, 2H), 1.81-1.05 (m, 5H), 0.82 (dt, J = 19.4, 7.1 Hz, 3H).
1H NMR (300 MHz, CDCl3) δ 7.48-7.28 (m, 3H), 7.15 (d, J = 6.8 Hz, 2H), 5.72 (d, J = 3.3 Hz, 1H), 5.25 (s, 2H), 4.44 (s, 2H), 4.16 (s, 1H), 3.23 (dd, J = 12.0, 6.8 Hz, 2H), 1.18 (dd, J = 14.4, 7.1 Hz, 2H), 1.03 (dd, J = 15.0, 7.1 Hz, 2H), 0.79 (t, J = 7.1 Hz, 3H).
1H NMR (300 MHz, CDCl3) δ 6.88 (d, J = 3.0 Hz, 1H), 6.13 (d, J = 2.9 Hz, 1H), 5.60 (s, 1H), 5.46 (s, 2H), 4.57-4.45 (m, 1H), 4.00 (dd, J = 15.0, 6.2 Hz, 1H), 3.89-3.69 (m, 3H), 2.10-1.91 (m, 2H), 1.85-1.06 (m, 16H), 0.95 (dd, J = 15.9, 8.6 Hz, 3H).
1H NMR (300 MHz, CDCl3) δ 8.79 (d, J = 1.9 Hz, 1H), 7.19 (d, J = 1.6 Hz, 1H), 7.07 (s, 1H), 6.25 (d, J = 8.1 Hz, 1H), 6.22 (d, J = 3.0 Hz, 1H), 5.43 (d, J = 1.3 Hz, 2H), 4.42 (s, 2H), 4.34 (ddd, J = 11.0, 5.5, 2.9 Hz, 1H), 3.57 (dd, J = 11.8, 2.6 Hz, 1H), 3.44 (td, J = 11.7, 2.4 Hz, 2H), 2.03- 1.87 (m, 2H), 1.70-1.45 (m, 2H), 1.41-1.18 (m, 4H), 0.87 (t, J = 6.5 Hz, 3H).
1H NMR (300 MHz, CDCl3) δ 9.55 (s, 1H), 8.34 (d, J = 4.5 Hz, 1H), 7.70 (td, J = 7.7, 1.7 Hz, 1H), 7.30 (d, J = 7.8 Hz, 1H), 7.23 (dd, J = 7.0, 5.1 Hz, 1H), 7.04 (d, J = 3.0 Hz, 1H), 6.21 (d, J = 3.0 Hz, 1H), 5.92 (s, 3H), 5.25 (s, 2H), 4.75 (d, J = 5.5 Hz, 2H), 2.32 (s, 3H).
1H NMR (300 MHz, CDCl3) δ 9.39 (s, 1H), 7.63 (t, J = 7.7 Hz, 1H), 7.17 (s, 1H), 7.14 (d, J = 5.5 Hz, 1H), 7.10 (d, J = 3.2 Hz, 1H), 6.24 (d, J = 3.0 Hz, 1H), 6.01 (s, 1H), 5.33 (s, 2H), 5.27 (s, 2H), 4.83 (d, J = 5.6 Hz, 2H), 2.39 (s, 3H), 2.38 (s, 3H).
1H NMR (300 MHz, CDCl3) δ 6.90 (d, J = 3.0 Hz, 1H), 6.26 (d, J = 3.0 Hz, 1H), 5.49 (s, 1H), 5.34 (d, J = 23.9 Hz, 2H), 4.55- 4.31 (m, 2H), 4.23 (s, 1H), 4.09 (dd, J = 15.8, 4.2 Hz, 1H), 3.85-3.49 (m, 4H), 2.15-1.81 (m, 6H), 1.75- 1.54 (m, 4H), 1.54-1.30 (m, 3H), 0.89 (dd, J = 14.3, 7.3 Hz, 3H).
1H NMR (300 MHz, CDCl3) δ 6.70 (d, J = 2.9 Hz, 1H), 6.06 (d, J = 3.0 Hz, 1H), 5.43 (s, 1H), 5.31 (s, 2H), 4.26 (t, J = 12.8 Hz, 2H), 4.03 (s, 1H), 3.89 (dd, J = 15.8, 4.3 Hz, 1H), 3.69-3.24 (m, 4H), 2.09- 1.61 (m, 4H), 1.60-1.33 (m, 4H), 1.31-1.09 (m, 3H), 0.74 (t, J = 7.2 Hz, 3H).
1H NMR (300 MHz, CDCl3) δ 7.37 (t, J = 7.4 Hz, 3H), 7.08 (d, J = 6.6 Hz, 2H), 6.90 (d, J = 2.7 Hz, 1H), 5.25 (s, 2H), 4.53 (s, 2H), 4.35 (s, 1H), 3.25 (dd, J = 12.1, 6.8 Hz, 2H), 1.32-1.13 (m, 2H), 1.04 (dq, J = 13.9, 7.1 Hz, 2H), 0.79 (t, J = 7.2 Hz, 3H).
1H NMR (300 MHz, CDCl3) δ 7.38 (q, J = 6.2 Hz, 3H), 7.07 (d, J = 6.5 Hz, 2H), 6.97 (d, J = 2.7 Hz, 1H), 5.26 (d, J = 2.4 Hz, 2H), 4.52 (s, 2H), 4.20 (d, J = 11.6 Hz, 1H), 3.42 (d, J = 11.7 Hz, 1H), 3.22 (td, J = 11.7, 2.4 Hz, 2H), 1.85-1.66 (m, 2H), 1.24 (d, J = 7.1 Hz, 2H), 0.95 (ddd, J = 24.8, 13.8, 9.0 Hz, 3H), 0.75 (t, J = 6.8 Hz, 3H).
1H NMR (300 MHz, CDCl3) δ 7.46-7.31 (m, 3H), 7.07 (d, J = 6.5 Hz, 2H), 6.97 (d, J = 2.7 Hz, 1H), 5.26 (d, J = 3.3 Hz, 2H), 4.55 (s, 2H), 4.32- 4.02 (m, 1H), 3.53-3.33 (m, 1H), 3.22 (td, J = 11.7, 2.5 Hz, 2H), 1.74 (ddd, J = 14.3, 8.6, 4.1 Hz, 2H), 1.38- 1.08 (m, 3H), 0.93 (ddd, J = 13.8, 11.7, 4.3 Hz, 4H), 0.80 (t, J = 7.2 Hz, 3H).
1H NMR (300 MHz, CDCl3) δ 7.49-7.30 (m, 3H), 7.08 (d, J = 6.3 Hz, 2H), 6.91 (d, J = 2.7 Hz, 1H), 5.24 (s, 2H), 4.51 (s, 2H), 4.28-3.96 (m, 1H), 1.08 (dddd, J = 18.0, 16.8, 13.6, 10.8 Hz, 7H), 0.85 (d, J = 6.4 Hz, 3H), 0.77 (dd, J = 9.4, 4.5 Hz, 3H).
1H NMR (300 MHz, DMSO-d6) δ ppm 0.94 (t, J = 7.4 Hz, 3 H), 1.29-1.47 (m, 2 H), 1.61 (t, J = 7.1 Hz, 2 H), 3.46 (q, J = 6.7 Hz, 2 H), 3.80 (s, 6 H), 5.17 (s, 2 H), 5.31 (s, 2 H), 5.80 (d, J = 2.9 Hz, 1 H), 6.33 (t, J = 5.4 Hz, 1 H), 6.66-6.83 (m, 3 H), 7.38 (t, J = 8.5 Hz, 1 H)
1H NMR (300 MHz, DMSO-d6) δ ppm 0.91 (t, J = 7.29 Hz, 3 H) 1.14-1.43 (m, 5 H) 1.46-1.72 (m, 2 H) 3.79 (s, 6 H) 4.41-4.60 (m, 1 H) 5.32-5.49 (m, 2 H) 6.02 (d, J = 3.02 Hz, 1 H) 6.72-6.88 (m, 5 H) 6.92 (d, J = 3.02 Hz, 1 H) 7.40 (t, J = 8.39 Hz, 1 H)
1H NMR (300 MHz, DMSO-d6) δ ppm 0.79- 0.93 (m, 3 H) 1.18-1.39 (m, 4 H) 1.49-1.86 (m, 4 H) 3.41-3.54 (m, 2 H) 3.78 (s, 6 H) 4.30-4.48 (m, 1 H) 4.56-4.70 (m, 1 H) 5.10-5.24 (m, 2 H) 5.32 (s, 2 H) 5.78-5.83 (m, 1 H) 5.85-5.93 (m, 1 H) 6.76 (s, 3 H) 7.30-7.44 (m, 1 H)
1H NMR (300 MHz, DMSO- d6) δ ppm 0.74-1.01 (m, 3 H) 1.19-1.44 (m, 2 H) 1.46- 1.74 (m, 2 H) 3.45-3.58 (m, 2 H) 3.80 (s, 6 H) 4.24- 4.43 (m, 1 H) 4.75-4.88 (m, 1 H) 5.11-5.22 (m, 2 H) 5.23-5.36 (m, 2 H) 5.74- 5.81 (m, 1 H) 5.81-5.85 (m, 1 H) 6.78 (s, 3 H) 7.29- 7.44 (m, 1 H)
1H NMR (300 MHz, DMSO-d6) δ ppm 0.75- 0.93 (m, 3 H) 1.19-1.40 (m, 4 H) 1.45-1.61 (m, 1 H) 1.61-1.78 (m, 1 H) 3.44- 3.63 (m, 2 H) 3.80 (s, 6 H) 4.31 (d, J = 4.95 Hz, 1 H) 4.81 (br. s., 1 H) 5.17 (s, 2 H) 5.30 (s, 2 H) 5.78 (d, J = 8.52 Hz, 1 H) 5.83 (d, J = 3.02 Hz, 1 H) 6.69-6.82 (m, 1 H) 6.69-6.82 (m, 2 H) 7.37 (t, J = 8.39 Hz, 1 H)
1H NMR (300 MHz, DMSO-d6) δ ppm 0.89 (t, J = 7.40 Hz, 3 H) 1.20-1.42 (m, 2 H) 1.44-1.85 (m, 4 H) 3.42-3.54 (m, 2 H) 3.78 (s, 6 H) 4.32-4.51 (m, 1 H) 4.56-4.69 (m, 1 H) 5.12-5.23 (m, 2 H) 5.32 (s, 2 H) 5.81 (d, J = 2.90 Hz, 1 H) 5.85-5.93 (m, 1 H) 6.71-6.79 (m, 3 H) 7.31- 7.44 (m, 1 H)
1H NMR (400 MHz, DMSO- d6) δ ppm 3.17 (s, 3 H) 3.31- 3.42 (m, 3 H) 3.45-3.56 (m, 3 H) 3.86 (s, 3 H) 5.11 (br. s., 2 H) 5.35 (s, 2 H) 5.62 (t, J = 5.05 Hz, 1 H) 5.97 (d, J = 2.83 Hz, 1 H) 6.60- 6.69 (m, 1 H) 6.84 (td, J = 7.47, 0.81 Hz, 1 H) 7.05 (d, J = 8.07 Hz, 1 H) 7.18 (d, J = 3.23 Hz, 1 H) 7.22-7.33 (m, 1 H)
1H NMR (300 MHz, DMSO-d6) δ ppm 1.56 (d, J = 6.87 Hz, 3 H) 4.01 (s, 3 H) 5.26 (s, 2 H) 5.49 (t, J = 7.01 Hz, 1 H) 5.89 (d, J = 2.89 Hz, 1 H) 6.67 (d, J = 7.42 Hz, 1 H) 7.14 (d, J = 2.89 Hz, 1 H) 7.28 (dd, J = 7.01, 5.22 Hz, 1 H) 7.50 (d, J = 7.84 Hz, 1 H) 7.78 (td, J = 7.70, 1.65 Hz, 1 H) 8.56 (d, J = 4.67 Hz, 1 H)
1H NMR (300 MHz, DMSO-d6) δ ppm 1.53 (d, J = 6.87 Hz, 3 H) 3.24 (s, 3 H) 3.68 (t, J = 4.81 Hz, 2 H) 4.42 (t, J = 4.81 Hz, 2 H) 5.24 (s, 2 H) 5.47 (t, J = 7.01 Hz, 1 H) 5.94 (d, J = 2.89 Hz, 1 H) 6.93 (d, J = 7.42 Hz, 1 H) 7.20 (d, J = 3.02 Hz, 1 H) 7.26 (dd, J = 7.22, 5.02 Hz, 1 H) 7.47 (d, J = 7.84 Hz, 1 H) 7.75 (td, J = 7.63, 1.37 Hz, 1 H) 8.55 (d, J = 4.81 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 0.95 (t, J = 7.37 Hz, 3 H) 1.37-1.46 (m, 2 H) 1.64 (quin, J = 7.26 Hz, 2 H) 3.42 (td, J = 6.93, 5.28 Hz, 2 H) 3.90 (s, 3 H) 5.18 (s, 2 H) 5.38 (s, 2 H) 5.89 (d, J = 3.08 Hz, 1 H) 7.21 (d, J = 3.08 Hz, 1 H) 7.42 (dd, J = 8.47, 4.73 Hz, 1 H) 7.54-7.60 (m, 2 H) 8.11 (dd, J = 4.73, 1.21 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 3.20 (s, 3 H) 3.36 (t, J = 6.05 Hz, 2 H) 3.47-3.54 (m, 2 H) 3.71 (s, 3 H) 5.29 (s, 2 H) 5.42 (s, 2 H) 5.88 (t, J = 5.50 Hz, 1 H) 6.00 (d, J = 2.86 Hz, 1 H) 6.61 (d, J = 7.48 Hz, 1 H) 6.63-6.66 (m, 1 H) 6.83 (dd, J = 8.14, 2.20 Hz, 1 H) 7.23 (t, J = 7.92 Hz, 1 H) 7.35 (d, J = 3.08 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 1.21 (d, J = 7.04 Hz, 6 H) 3.02 (m, J = 6.60, 6.60, 6.60, 6.60, 6.60, 6.60 Hz, 0 H) 4.64 (d, J = 5.72 Hz, 2 H) 5.35 (s, 2 H) 5.56 (s, 2 H) 5.97 (d, J = 3.08 Hz, 1 H) 6.01 (d, J = 0.66 Hz, 1 H) 7.24 (t, J = 5.83 Hz, 1 H) 7.32 (d, J = 3.08 Hz, 1 H) 7.40 (d, J = 1.98 Hz, 1 H) 9.03 (d, J = 1.76 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 0.70 (t, J = 7.04 Hz, 3 H) 0.84-0.95 (m, 2 H) 1.17-1.35 (m, 2 H) 1.38-1.46 (m, 1 H) 1.53-1.62 (m, 1 H) 3.23- 3.34 (m, 2 H) 3.68 (s, 3 H) 4.22 (dt, J = 8.53, 4.43 Hz, 1 H) 4.49 (t, J = 5.50 Hz, 1 H) 5.14 (d, J = 8.58 Hz, 1 H) 5.23 (s, 2 H) 5.45 (q, J = 16.95 Hz, 2 H) 5.98 (d, J = 2.86 Hz, 1 H) 6.48 (d, J = 7.70 Hz, 1 H) 6.56-6.58 (m, 1 H) 6.82 (dd, J = 8.14, 2.20 Hz, 1 H) 7.21 (t, J = 7.92 Hz, 1 H) 7.34 (d, J = 3.08 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.30 (s, 3 H) 3.80 (s, 3 H) 4.55 (d, J = 5.72 Hz, 2 H) 5.34 (s, 2 H) 5.41 (s, 2 H) 5.71 (d, J = 0.88 Hz, 1 H) 5.99 (d, J = 2.86 Hz, 1 H) 6.44 (dd, J = 7.59, 1.43 Hz, 1 H) 6.50 (t, J = 5.83 Hz, 1 H) 6.80 (td, J = 7.43, 0.99 Hz, 1 H) 7.01 (d, J = 7.48 Hz, 1 H) 7.21- 7.27 (m, 2 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 1.59- 1.70 (m, 4 H) 2.28-2.39 (m, 4 H) 3.18 (s, 3 H) 3.32 (t, J = 6.46 Hz, 2 H) 3.44- 3.50 (m, 4 H) 5.26 (s, 2 H) 5.43 (s, 2 H) 5.86 (t, J = 4.84 Hz, 1 H) 5.97 (d, J = 2.83 Hz, 1 H) 6.84-6.90 (m, 0 H) 7.03 (s, 1 H) 7.15 (m, J = 7.67 Hz, 1 H) 7.22 (t, J = 7.30 Hz, 1 H) 7.32 (d, J = 3.23 Hz, 1 H)
1H NMR (300 MHz, DMSO-d6) δ ppm 2.29 (s, 3 H) 4.55 (d, J = 5.50 Hz, 2 H) 5.55 (s, 1 H) 5.61 (s, 2 H) 5.68 (br. s., 2 H) 6.11 (d, J = 2.89 Hz, 1 H) 6.83 (d, J = 5.64 Hz, 2 H) 6.92 (t, J = 5.43 Hz, 1 H) 7.43 (d, J = 3.02 Hz, 1 H) 8.44 (d, J = 5.77 Hz, 2 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.60 (s, 3 H) 3.22 (s, 3 H) 3.52 (t, J = 5.70 Hz, 2 H) 3.72 (q, J = 5.58 Hz, 2 H) 5.71 (br. s., 2 H) 6.26 (d, J = 3.08 Hz, 1 H) 7.21 (d, J = 7.48 Hz, 1 H) 7.34-7.58 (m, 3 H) 7.72 (d, J = 2.86 Hz, 1 H) 7.94 (t, J = 7.70 Hz, 1 H) 8.81-8.97 (m, 1 H) 12.60 (br. s., 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 0.87 (t, J = 7.37 Hz, 3 H) 1.18-1.32 (m, 2 H) 1.50 (quin, J = 7.21 Hz, 2 H) 3.33-3.38 (m, 2 H) 5.27 (s, 2 H) 5.79 (s, 2 H) 5.99 (d, J = 3.08 Hz, 1 H) 6.47 (t, J = 5.28 Hz, 1 H) 7.35 (d, J = 2.86 Hz, 1 H) 7.67 (d, J = 3.08 Hz, 1 H) 7.77 (d, J = 3.30 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 3.30 (s, 3 H) 3.52-3.57 (m, 2 H) 3.57-3.64 (m, 2 H) 3.90 (s, 3 H) 5.23 (s, 2 H) 5.37 (s, 2 H) 5.90 (d, J = 3.08 Hz, 1 H) 7.21 (d, J = 2.86 Hz, 1 H) 7.41 (dd, J = 8.36, 4.62 Hz, 1 H) 7.54 (dd, J = 8.58, 1.10 Hz, 1 H) 7.80 (t, J = 4.95 Hz, 1 H) 8.12 (dd, J = 4.73, 1.21 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 0.78 (t, J = 7.30 Hz, 3 H) 1.01-1.11 (m, 2 H) 1.33 (quin, J = 7.26 Hz, 2 H) 1.62-1.68 (m, 4 H) 2.31-2.37 (m, 4 H) 3.25-3.29 (m, 2 H) 3.48 (s, 2 H) 5.21 (s, 2 H) 5.47 (s, 2 H) 5.69 (t, J = 5.39 Hz, 1 H) 5.97 (d, J = 2.86 Hz, 1 H) 6.79 (d, J = 7.48 Hz, 1 H) 7.01 (s, 1 H) 7.15 (d, J = 7.70 Hz, 1 H) 7.21 (t, J = 7.59 Hz, 1 H) 7.31 (d, J = 2.86 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 3.15 (s, 3 H) 3.35 (t, J = 5.83 Hz, 2 H) 3.50 (q, J = 5.65 Hz, 2 H) 5.30 (s, 2 H) 5.63 (s, 2 H) 6.01 (d, J = 3.08 Hz, 1 H) 6.56 (t, J = 5.39 Hz, 1 H) 7.17 (d, J = 8.36 Hz, 1 H) 7.39 (d, J = 3.08 Hz, 1 H) 8.21 (dd, J = 8.36, 1.98 Hz, 1 H) 8.91-8.94 (m, 1 H)
1H NMR (300 MHz, DMSO-d6) δ ppm 3.15 (s, 3 H) 3.25-3.31 (m, 2 H) 3.47 (d, J = 5.77 Hz, 2 H) 5.32 (s, 2 H) 5.53 (s, 2 H) 5.97 (s, 1 H) 6.03 (d, J = 2.89 Hz, 1 H) 6.91 (d, J = 5.91 Hz, 2 H) 7.36 (d, J = 3.02 Hz, 1 H) 8.47 (d, J = 5.91 Hz, 2 H)
1H NMR (300 MHz, DMSO- d6) δ ppm 3.26 (s, 3 H) 3.44- 3.52 (m, 2 H) 3.52-3.62 (m, 2 H) 5.30 (s, 2 H) 5.44 (s, 2 H) 5.96 (d, J = 3.02 Hz, 1 H) 7.29 (d, J = 7.70 Hz, 1 H) 7.33-7.45 (m, 1 H) 7.33- 7.45 (m, 2 H) 7.83 (td, J = 7.70, 1.65 Hz, 1 H) 8.56 (d, J = 4.26 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 3.25- 3.29 (m, 3 H) 3.47-3.54 (m, 2 H) 3.54-3.61 (m, 2 H) 3.81 (s, 3 H) 5.25 (s, 2 H) 5.33 (s, 2 H) 5.94 (d, J = 3.08 Hz, 1 H) 6.95 (dd, J = 5.72, 2.64 Hz, 1 H) 6.98 (d, J = 2.42 Hz, 1 H) 7.39 (d, J = 3.08 Hz, 1 H) 7.74 (t, J = 5.06 Hz, 1 H) 8.37 (d, J = 5.72 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 3.18 (s, 3 H) 3.38 (t, J = 5.70 Hz, 2 H) 3.51 (q, J = 5.65 Hz, 2 H) 3.91 (s, 3 H) 5.31 (s, 2 H) 5.40 (s, 2 H) 5.95-6.00 (m, 2 H) 7.08 (d, J = 5.72 Hz, 1 H) 7.21 (d, J = 3.08 Hz, 1 H) 7.65 (s, 1 H) 8.38 (d, J = 5.72 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.28 (s, 3 H) 4.56 (d, J = 5.94 Hz, 2 H) 5.38 (s, 2 H) 5.68 (s, 2 H) 5.76 (d, J = 0.88 Hz, 1 H) 6.05 (d, J = 3.08 Hz, 1 H) 7.04 (d, J = 8.36 Hz, 1 H) 7.08 (t, J = 5.83 Hz, 1 H) 7.41 (d, J = 3.08 Hz, 1 H) 8.16 (dd, J = 8.36, 1.98 Hz, 1 H) 8.82-8.85 (m, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.31 (s, 3 H) 3.85 (s, 3 H) 4.56 (d, J = 5.72 Hz, 2 H) 5.37 (s, 2 H) 5.44 (s, 2 H) 5.82 (s, 1 H) 6.01 (d, J = 3.08 Hz, 1 H) 6.70 (t, J = 5.72 Hz, 1 H) 7.05 (d, J = 5.72 Hz, 1 H) 7.22 (d, J = 2.86 Hz, 1 H) 7.53 (s, 1 H) 8.37 (d, J = 5.50 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.31 (s, 3 H) 3.71 (s, 3 H) 3.72 (s, 3 H) 4.60 (d, J = 5.72 Hz, 2 H) 5.32-5.37 (m, 4 H) 5.86 (s, 1 H) 5.99 (d, J = 2.86 Hz, 1 H) 6.55 (d, J = 7.92 Hz, 1 H) 6.83 (t, J = 5.83 Hz, 1 H) 7.19 (d, J = 7.92 Hz, 1 H) 7.34 (d, J = 2.86 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.34 (s, 3 H) 4.63 (d, J = 5.50 Hz, 2 H) 5.36 (s, 2 H) 5.58 (d, J = 1.76 Hz, 2 H) 5.97 (d, J = 3.08 Hz, 1 H) 6.06 (d, J = 0.88 Hz, 1 H) 7.26 (dd, J = 3.08, 0.88 Hz, 1 H) 7.44- 7.49 (m, 1 H) 7.62 (t, J = 5.72 Hz, 1 H) 7.78 (ddd, J = 9.90, 8.47, 1.21 Hz, 1 H) 8.21-8.24 (m, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 0.76- 0.83 (m, 2 H) 0.99-1.04 (m, 2 H) 2.06 (tt, J = 8.47, 4.95 Hz, 1 H) 4.59 (d, J = 5.50 Hz, 2 H) 5.36 (s, 2 H) 5.48 (s, 2 H) 5.90 (s, 1 H) 5.99 (d, J = 2.86 Hz, 1 H) 7.14-7.17 (m, 1 H) 7.31- 7.35 (m, 1 H) 7.40 (d, J = 2.86 Hz, 1 H) 7.74 (t, J = 5.61 Hz, 1 H) 7.76-7.82 (m, 1 H) 8.40-8.43 (m, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 1.19 (d, J = 7.04 Hz, 6 H) 2.94-3.08 (m, 1 H) 4.63 (d, J = 5.72 Hz, 2 H) 5.37 (s, 2 H) 5.49 (s, 2 H) 5.93 (s, 1 H) 5.99 (d, J = 3.08 Hz, 1 H) 7.15 (d, J = 7.92 Hz, 1 H) 7.32 (dd, J = 7.04, 5.06 Hz, 1 H) 7.41 (d, J = 2.86 Hz, 1 H) 7.74 (t, J = 5.61 Hz, 1 H) 7.78 (td, J = 7.70, 1.76 Hz, 1 H) 8.40 (d, J = 4.18 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.35 (d, J = 0.66 Hz, 3 H) 3.15 (s, 3 H) 3.55 (t, J = 5.06 Hz, 2 H) 4.36 (t, J = 4.95 Hz, 2 H) 4.62 (d, J = 5.72 Hz, 2 H) 5.31 (s, 2 H) 5.92 (d, J = 3.08 Hz, 1 H) 6.18 (d, J = 0.88 Hz, 1 H) 6.84 (t, J = 5.83 Hz, 1 H) 7.17 (d, J = 3.08 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 1.38 (t, J = 6.9 Hz, 3 H), 3.15 (s, 3 H), 3.27-3.33 (m, 2 H), 3.47 (q, J = 5.6 Hz, 2 H), 4.10 (q, J = 7.0 Hz, 2 H), 5.29 (s, 2 6 H), 5.37 (s, 2 H), 5.72 (t, J = 5.4 Hz, 1 H), 5.97 (d, J = 2.9 Hz, 1 H), 6.59 (dd, J = 7.5, 1.5 Hz, 1 H), 6.79-6.85 (m, 1 H), 7.02 (d, J = 7.7 Hz, 1 H), 7.20-7.27 (m, 2 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 0.71- 0.78 (m, 3 H), 0.96-1.08 (m, 2 H), 1.28-1.38 (m, 2 H), 3.22-3.29 (m, 2 H), 5.28 (s, 2 H), 5.59 (s, 2 H), 5.77 6 (t, J = 5.4 Hz, 1 H), 6.03 (d, J = 3.1 Hz, 1 H), 6.35 (d, J = 7.7 Hz, 1 H), 7.19-7.25 (m, 1 H), 7.28 (d, J = 3.1 Hz, 1 H), 7.35- 7.40 (m, 2 H) SLAST_1343_1.1.esp
1H NMR (400 MHz, DMSO-d6) δ ppm 2.29- 2.33 (m, 3 H) 3.71 (s, 3 H) 4.59 (d, J = 5.72 Hz, 2 H) 5.36 (s, 2 H) 5.44 (s, 2 H) 5.82-5.85 (m, 1 H) 6.01 (d, J = 3.08 Hz, 1 H) 6.50 (d, J = 7.26 Hz, 1 H) 6.70 (d, J = 8.14 Hz, 1 H) 6.90 (t, J = 5.72 Hz, 1 H) 7.36 (d, J = 2.86 Hz, 1 H) 7.62 (dd, J = 8.25, 7.37 Hz, 1 H)
1H NMR (300 MHz, chloroform-d) δ ppm 3.30 (s, 3 H) 3.47-3.60 (m, 2 H) 3.68 (m, J = 5.10, 5.10, 5.10 Hz, 2 H) 5.37 (s, 2 H) 5.77 (br. s., 2 H) 6.20 (d, J = 3.02 Hz, 1 H) 7.02 (d, J = 3.16 Hz, 1 H) 7.23-7.31 (m, 1 H) 7.85 (br. s., 1 H) 8.78 (d, J = 1.79 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 0.79 (t, J = 7.3 Hz, 3 H), 1.09 (dq, J = 15.0, 7.4 Hz, 2 H), 1.30- 1.35 (m, 2 H), 1.38 (t, J = 6.9 Hz, 3 H), 3.24-3.29 (m, 2 6 H), 4.10 (q, J = 6.9 Hz, 2 H), 5.22 (s, 2 H), 5.39 (s, 2 H), 5.50 (t, J = 5.4 Hz, 1 H), 5.96 (d, J = 2.9 Hz, 1 H), 6.48 (dd, J = 7.5, 1.3 Hz, 1 H), 6.77-6.84 (m, 1 H), 7.03 (d, J = 7.9 Hz, 1 H), 7.20-7.26 (m, 2 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 0.91 (t, J = 7.4 Hz, 3 H), 1.29-1.39 (m, 2 H), 1.54-1.65 (m, 2 H), 1.84-1.94 (m, 1 H), 2.17-2.30 (m, 1 H), 3.37- 6 3.44 (m, 2 H), 3.70-3.79 (m, 2 H), 3.82 (s, 3 H), 3.83- 3.90 (m, 2 H), 4.97-5.04 (m, 1 H), 5.22 (s, 2 H), 5.30 (s, 2 H), 5.93 (d, J = 3.1 Hz, 1 H), 7.03 (s, 1 H), 7.40 (d, J = 2.9 Hz, 1 H), 7.47 (t, J = 5.1 Hz, 1 H), 8.10 (s, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 0.91 (t, J = 7.4 Hz, 3 H), 1.29-1.39 (m, 2 H), 1.54-1.65 (m, 2 H), 1.84-1.94 (m, 1 H), 2.17-2.30 (m, 1 H), 3.37- 6 3.44 (m, 2 H), 3.70-3.79 (m, 2 H), 3.82 (s, 3 H), 3.83- 3.90 (m, 2 H), 4.97-5.04 (m, 1 H), 5.22 (s, 2 H), 5.30 (s, 2 H), 5.93 (d, J = 3.1 Hz, 1 H), 7.03 (s, 1 H), 7.40 (d, J = 2.9 Hz, 1 H), 7.47 (t, J = 5.1 Hz, 1 H), 8.10 (s, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 4.94 (d, J = 5.9 Hz, 2 H), 5.37 (s, 2 H), 5.53 (s, 2 H), 6.01 (d, J = 3.1 Hz, 1 H), 7.15 (d, J = 7.7 Hz, 1 H), 7.31 (ddd, J = 7.7, 6 4.8, 1.1 Hz, 1 H), 7.43 (d, J = 3.1 Hz, 1 H), 7.52 (d, J = 3.3 Hz, 1 H), 7.71 (d, J = 3.3 Hz, 1 H), 7.78 (td, J = 7.7, 2.0 Hz, 1 H), 8.10 (t, J = 5.8 Hz, 1 H), 8.42-8.46 (m, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 1.05 (d, J = 6.2 Hz, 6 H), 3.46-3.59 (m, 5 H), 5.27 (s, 2 H), 5.44 (s, 2 H), 5.96 (d, J = 3.1 Hz, 1 H), 7.17-7.25 (m, 2 H), 6 7.31-7.39 (m, 2 H), 7.77- 7.85 (m, 1 H), 8.51-8.59 (m, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 1.78 (quin, J = 6.6 Hz, 2 H), 3.20 (s, 3 H), 3.28-3.32 (m, 2 H), 3.37-3.44 (m, 2 H), 5.25 (s, 2 H), 5.47 (s, 2 H), 5.96 (d, 6 J = 2.9 Hz, 1 H), 7.01 (t, J = 5.2 Hz, 1 H), 7.16 (d, J = 7.9 Hz, 1 H), 7.32-7.39 (m, 2 H), 7.81 (td, J = 7.7, 1.8 Hz, 1 H), 8.53-8.56 (m, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 1.47- 1.58 (m, 1 H), 1.72-1.88 (m, 3 H), 3.39-3.54 (m, 2 H), 3.58-3.66 (m, 1 H), 3.70-3.78 (m, 1 H), 4.00 (quin, 6 J = 6.2 Hz, 1 H), 5.26 (s, 2 H), 5.38-5.50 (m, 2 H), 5.96 (d, J = 2.9 Hz, 1 H), 7.24 (d, J = 7.7 Hz, 1 H), 7.30 (t, J = 5.4 Hz, 1 H), 7.35 (ddd, J = 7.6, 5.0, 1.1 Hz, 1 H), 7.39 (d, J = 3.1 Hz, 1 H), 7.82 (td, J = 7.7, 1.8 Hz, 1 H), 8.55 (ddd, J = 4.8, 1.5, 0.9 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 1.08 (t, J = 7.0 Hz, 3 H), 3.43 (q, J = 7.0 Hz, 2 H), 3.48-3.59 (m, 4 H), 5.27 (s, 2 H), 5.44 (s, 2 H), 5.96 (d, J = 3.1 Hz, 1 6 H), 7.23-7.31 (m, 2 H), 7.35 (ddd, J = 7.6, 5.0, 1.1 Hz, 1 H), 7.38 (d, J = 3.1 Hz, 1 H), 7.81 (td, J = 7.7, 1.8 Hz, 1 H), 8.53-8.57 (m, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 0.87 (t, J = 7.4 Hz, 3 H), 1.21-1.33 (m, 1 H), 1.33-1.45 (m, 1 H), 3.26-3.33 (m, 1 H), 3.45 (dt, J = 13.1, 5.4 Hz, 1 H), 6 3.50-3.60 (m, 1 H), 4.81 (br. s., 1 H), 5.27 (s, 2 H), 5.47 (s, 2 H), 5.96 (d, J = 3.1 Hz, 1 H), 7.17-7.26 (m, 2 H), 7.34 (ddd, J = 7.7, 4.8, 1.1 Hz, 1 H), 7.38 (d, J = 3.1 Hz, 1 H), 7.81 (td, J = 7.7, 1.8 Hz, 1 H), 8.52- 8.56 (m, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 4.79 (d, J = 5.7 Hz, 2 H), 5.31 (s, 2 H), 5.47 (s, 2 H), 5.99 (d, J = 2.9 Hz, 1 H), 7.14 (d, J = 0.7 Hz, 1 H), 7.28-7.36 (m, 2 6 H), 7.42 (d, J = 2.9 Hz, 1 H), 7.81 (td, J = 7.7, 1.8 Hz, 1 H), 7.99 (d, J = 0.9 Hz, 1 H), 8.06 (t, J = 5.6 Hz, 1 H), 8.40-8.45 (m, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.23- 2.32 (m, 3 H) 4.53 (d, J = 5.94 Hz, 2 H) 5.40 (s, 2 H) 5.67-5.71 (m, 3 H) 6.07 (d, J = 3.08 Hz, 1 H) 6.90 (d, J = 7.92 Hz, 1 H) 6.96 (t, J = 5.83 Hz, 1 H) 7.41 (d, J = 3.08 Hz, 1 H) 7.81 (d, J = 7.70 Hz, 1 H) 8.01 (t, J = 7.92 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.31- 2.35 (m, 3 H) 4.59 (d, J = 5.72 Hz, 2 H) 5.36 (s, 2 H) 5.52 (s, 2 H) 5.89 (d, J = 0.88 Hz, 1 H) 6.00 (d, J = 3.08 Hz, 1 H) 7.11 (dd, J = 8.69, 4.51 Hz, 1 H) 7.28 (t, J = 5.83 Hz, 1 H) 7.39 (d, J = 3.08 Hz, 1 H) 7.70 (td, J = 8.80, 2.86 Hz, 1 H) 8.42 (d, J = 2.86 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.31 (d, J = 0.66 Hz, 3 H) 4.59 (d, J = 5.72 Hz, 2 H) 5.38 (s, 2 H) 5.64 (s, 2 H) 5.84 (d, J = 0.66 Hz, 1 H) 6.02 (d, J = 3.08 Hz, 1 H) 7.29 (t, J = 5.72 Hz, 1 H) 7.42-7.45 (m, 2 H) 7.69-7.72 (m, 1 H) 8.71 (d, J = 5.06 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 0.93 (t, J = 7.3 Hz, 3 H), 1.37 (dq, J = 15.0, 7.3 Hz, 2 H), 1.56- 1.66 (m, 2 H), 2.21 (s, 3 H), 2.33 (s, 3 H), 3.36-3.42 (m, 6 3 H), 3.72 (s, 3 H), 5.21 (s, 2 H), 5.44 (s, 2 H), 5.92 (d, J = 3.1 Hz, 1 H), 7.30 (d, J = 3.1 Hz, 1 H), 7.85 (t, J = 5.1 Hz, 1 H), 8.21 (s, 1 H) SLAST_1354_1.1.esp M07(s)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.21 (s, 3 H), 2.34 (s, 3 H), 3.28 (s, 3 H), 3.50-3.60 (m, 4 H), 3.72 (s, 3 H), 5.25 (s, 2 H), 5.42 (s, 2 H), 5.92 (d, J = 3.1 6 Hz, 1 H), 7.31 (d, J = 2.9 Hz, 1 H), 8.14 (t, J = 4.7 Hz, 1 H), 8.22 (s, 1 H) SLAST_1354_2.1.esp M04(m)
1H NMR (400 MHz, DMSO-d6) δ ppm 0.93 (t, J = 7.4 Hz, 3 H), 1.38 (dq, J = 14.9, 7.4 Hz, 2 H), 1.47- 1.67 (m, 4 H), 1.69-1.84 (m, 1 H), 1.85-1.99 (m, 1 H), 6 3.34-3.42 (m, 2 H), 3.56-3.74 (m, 2 H), 4.01- 4.11 (m, 1 H), 4.17 (dd, J = 15.2, 6.2 Hz, 1 H), 4.37 (dd, J = 15.2, 2.9 Hz, 1 H), 5.26 (s, 2 H), 5.91 (d, J = 3.1 Hz, 1 H), 6.51 (t, J = 5.2 Hz, 1 H), 7.14 (d, J = 2.9 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 0.83 (t, J = 7.4 Hz, 3 H), 1.17 (dq, J = 14.9, 7.4 Hz, 2 H), 1.42 (quin, J = 7.3 Hz, 2 H), 3.21- (t, J = 8.7 Hz, 2 H), 3.29- 3.35 6 (m, 2 H), 4.60 (t, J = 8.7 Hz, 2 H), 5.23 (s, 2 H), 5.34 (s, 2 H), 5.71 (t, J = 5.3 Hz, 1 H), 5.95 (d, J = 2.9 Hz, 1 H), 6.46 (d, J = 7.7 Hz, 1 H), 6.72 (t, J = 7.6 Hz, 1 H), 7.14 (d, J = 6.6 Hz, 1 H), 7.23 (d, J = 3.1 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 3.16- 3.24 (m, 5 H), 3.40 (t, J = 5.8 Hz, 2 H), 3.52 (q, J = 5.6 Hz, 2 H), 4.60 (t, J = 8.7 Hz, 2 H), 5.28 (s, 2 H), 5.31 (s, 2 6 H), 5.92 (t, J = 5.5 Hz, 1 H), 5.95 (d, J = 2.9 Hz, 1 H), 6.58 (d, J = 7.5 Hz, 1 H), 6.73 (t, J = 7.5 Hz, 1 H), 7.14 (d, J = 6.6 Hz, 1 H), 7.22 (d, J = 2.9 Hz, 1 H)
1H NMR (400 MHz, chloroform-d) δ ppm 1.58 (d, J = 6.8 Hz, 3 H), 3.29 (s, 3 H), 3.70-3.79 (m, 2 H), 4.32-4.41 (m, 2 H), 4.50 (br. s., 2 H), 5.49 (t, J = 6.8 Hz, 1 H), 6.17 (d, J = 3.1 Hz, 1 H), 6.91 (d, J = 3.1 Hz, 1 H), 7.14 (ddd, J = 7.5, 4.8, 1.1 Hz, 2 H), 7.33 (d, J = 7.7 Hz, 1 H), 7.61 (td, J = 7.6, 1.8 Hz, 1 H), 8.50-8.60 (m, 1 H)
1H NMR (400 MHz, chloroform-d) δ ppm 1.59 (d, J = 6.8 Hz, 3 H), 3.31 (s, 3 H), 3.71-3.82 (m, 2 H), 4.39 (d, J = 5.1 Hz, 2 H), 4.42 (br. s., 2 H), 5.50 (t, J = 6.7 Hz, 1 H), 6.18 (d, J = 2.9 Hz, 1 H), 6.93 (d, J = 3.1 Hz, 1 H), 7.10-7.20 (m, 2 H), 7.35 (d, J = 7.9 Hz, 1 H), 7.63 (td, J = 7.6, 1.8 Hz, 1 H), 8.53-8.60 (m, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 1.63 (dt, J = 6.66, 3.16 Hz, 4 H) 2.27 (s, 3 H) 2.28-2.34 (m, 4 H) 3.44 (s, 2 H) 4.54 (d, J = 5.72 Hz, 2 H) 5.32 (s, 2 H) 5.48 (s, 2 H) 5.56 (d, J = 0.88 Hz, 1 H) 6.01 (d, J = 2.86 Hz, 1 H) 6.61 (t, J = 5.94 Hz, 1 H) 6.76 (d, J = 7.26 Hz, 1 H) 6.98 (s, 1 H) 7.12-7.20 (m, 2 H) 7.35 (d, J = 2.86 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.34 (s, 3 H) 4.62 (d, J = 5.72 Hz, 2 H) 5.34 (s, 2 H) 5.55 (s, 2 H) 5.97 (d, J = 3.08 Hz, 1 H) 6.02 (s, 1 H) 7.28 (t, J = 5.83 Hz, 1 H) 7.32 (d, J = 2.86 Hz, 1 H) 7.40 (d, J = 1.98 Hz, 1 H) 9.04 (d, J = 1.98 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 4.70 (d, J = 5.72 Hz, 2 H) 5.37 (s, 2 H) 5.48 (s, 2 H) 5.98 (d, J = 3.08 Hz, 1 H) 6.38 (d, J = 1.76 Hz, 1 H) 7.20 (d, J = 7.70 Hz, 1 H) 7.32 (ddd, J = 7.54, 5.01, 1.10 Hz, 1 H) 7.41 (d, J = 3.08 Hz, 1 H) 7.79 (td, J = 7.70, 1.76 Hz, 1 H) 7.87 (t, J = 5.61 Hz, 1 H) 8.39-8.42 (m, 1 H) 8.77 (d, J = 1.76 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.34 (d, J = 0.66 Hz, 3 H) 4.62 (d, J = 5.50 Hz, 2 H) 5.36 (s, 2 H) 5.62 (s, 2 H) 5.97 (d, J = 3.08 Hz, 1 H) 6.03 (d, J = 0.66 Hz, 1 H) 7.29 (d, J = 3.08 Hz, 1 H) 7.42 (dd, J = 8.14, 4.84 Hz, 1 H) 7.68 (t, J = 5.72 Hz, 1 H) 8.00 (dd, J = 8.14, 1.54 Hz, 1 H) 8.32 (dd, J = 4.73, 1.43 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.27 (s, 3 H) 4.68 (d, J 5.72 Hz, 2 H) 5.33 (s, 2 H) 5.48 (s, 2 H) 5.94 (d, J = 2.86 Hz, 1 H) 6.01 (s, 1 H) 6.89 (td, J = 6.77, 1.21 Hz, 1 H) 7.26 (ddd, J = 9.08, 6.66, 1.21 Hz, 1 H) 7.35-7.38 (m, 2 H) 7.79 (s, 1 H) 8.30 (t, J = 5.72 Hz, 1 H) 8.51 (dt, J = 6.82, 1.10 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.33 (s, 3 H) 4.60 (d, J = 5.72 Hz, 2 H) 5.38 (s, 2 H) 5.52 (s, 2 H) 5.89 (s, 1 H) 6.01 (d, J = 3.08 Hz, 1 H) 7.18-7.22 (m, 1 H) 7.39-7.50 (m, 3 H) 8.41 (d, J = 5.50 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.31 (s, 3 H) 4.56 (d, J = 5.72 Hz, 2 H) 5.39 (s, 2 H) 5.56 (s, 2 H) 5.75 (s, 1 H) 6.05 (d, J = 3.08 Hz, 1 H) 6.68 (d, J = 7.48 Hz, 1 H) 6.99 (t, J = 5.83 Hz, 1 H) 7.38 (d, J = 2.86 Hz, 1 H) 7.41 (d, J = 7.92 Hz, 1 H) 7.78 (t, J = 7.81 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 1.46- 1.70 (m, 2 H), 1.70-1.83 (m, 1 H), 1.87-1.99 (m, 1 H), 3.29 (s, 3 H), 3.48- 3.56 (m, 3 H), 3.56-3.65 (m, 2 H), 6 3.68-3.77 (m, 1 H), 4.05 (qd, J = 6.7, 2.8 Hz, 1 H), 4.14 (dd, J = 15.1, 6.5 Hz, 1 H), 4.35 (dd, J = 15.1, 2.8 Hz, 1 H), 5.23 (s, 2 H), 5.92 (d, J = 2.9 Hz, 1 H), 6.61 (t, J = 4.8 Hz, 1 H), 7.15 (d, J = 3.1 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 0.76 (t, J = 7.3 Hz, 3 H), 1.05 (dq, J = 15.0, 7.3 Hz, 2 H), 1.30- 1.40 (m, 2 H), 3.24-3.30 (m, 2 H), 5.26 (s, 2 H), 5.51 (s, 6 2 H), 5.70 (t, J = 5.5 Hz, 1 H), 6.00 (d, J = 2.9 Hz, 1 H), 6.36-6.41 (m, 1 H), 7.06-7.12 (m, 1 H), 7.20- 7.25 (m, 2 H), 7.29 (t, J = 73.8 Hz, 1 H), 7.30-7.36 (m, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 3.13 (s, 3 H), 3.32-3.35 (m, 2 H), 3.46 (q, J = 5.6 Hz, 2 H), 5.32 (s, 2 H), 5.48 (s, 2 H), 5.80 (t, J = 5.4 Hz, 1 H), 6.01 (d, 6 J = 3.1 Hz, 1 H), 6.51 (dd, J = 7.7, 1.3 Hz, 1 H), 7.08-7.14 (m, 1 H), 7.20-7.25 (m, 2 H), 7.28 (t, J = 73.8 Hz, 1 H), 7.31- 7.36 (m, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 0.80 (t, J = 7.3 Hz, 3 H), 1.12 (dq, J = 15.0, 7.4 Hz, 2 H), 1.34- 1.44 (m, 2 H), 3.26-3.31 (m, 2 H). 4.23-4.30 (m, 2 H), 6 4.30-4.37 (m, 2 H). 5.24 (s, 2 H), 5.38 (s, 2 H), 5.59 (t, J = 5.4 Hz, 1 H), 5.96 (d, J = 3.1 Hz. 1 H), 6.02 (dd, J = 7.6, 1.4 Hz, 1 H), 6.68 (t, J = 7.8 Hz, 1 H). 6.77 (dd, J = 8.1, 1.5 Hz, 1 H), 7.20 (d, J = 2.9 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 3.16 (s, 3 H), 3.35-3.40 (m, 2 H), 3.51 (q, J = 5.6 Hz, 2 H), 4.24-4.31 (m, 2 H), 4.31- 4.37 (m, 2 H), 5.35 (s, 2 H), 6 5.37 (br. s., 2 H), 5.78 (t, J = 5.4 Hz, 1 H), 5.97 (d, J = 3.1 Hz, 1 H), 6.16 (dd, J = 7.7, 1.5 Hz, 1 H), 6.70 (t, J = 7.8 Hz, 1 H), 6.76-6.81 (m, 1 H), 7.22 (d, J = 2.9 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 3.16 (s, 3 H), 3.35-3.40 (m, 2 H), 3.51 (q, J = 5.6 Hz, 2 H), 4.24-4.31 (m, 2 H), 4.31- 4.37 (m, 2 H), 5.35 (s, 2 H), 6 5.37 (br. s., 2 H), 5.78 (t, J = 5.4 Hz, 1 H), 5.97 (d, J = 3.1 Hz, 1 H), 6.16 (dd, J = 7.7, 1.5 Hz, 1 H), 6.70 (t, J = 7.8 Hz, 1 H), 6.76-6.81 (m, 1 H), 7.22 (d, J = 2.9 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 0.92 (t, J = 7.4 Hz, 3 H), 1.37 (dq, J = 15.0, 7.3 Hz, 2 H), 1.51- 1.62 (m, 2 H), 2.63 (d, J = 4.6 Hz, 3 H), 3.33-3.41 (m, 2 6 H), 4.74 (s, 2 H), 5.40 (br. s., 2 H), 5.94 (d, J = 2.9 Hz, 1 H), 6.93 (t, J = 5.2 Hz, 1 H), 7.11 (d, J = 3.1 Hz, 1 H), 8.31 (d, J = 4.4 Hz, 1 H)
1H NMR (400 MHz, DMSO, d6) δ ppm 2.34 (s, 3 H) 3.78 (s, 3 H) 4.63 (d, J = 5.50 Hz, 2 H) 5.33-5.39 (m, 4 H) 5.97 (d, J = 3.08 Hz, 1 H) 6.02 (s, 1 H) 6.90 (d, J = 2.42 Hz, 1 H) 6.93 (dd, J = 5.72, 2.42 Hz, 1 H) 7.41 (d, J = 3.08 Hz, 1 H) 8.16 (t, J = 5.61 Hz, 1 H) 8.22 (d, J = 5.94 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.36 (s, 3 H) 3.79 (s, 3 H) 3.88 (s, 3 H) 4.66 (d, J = 5.50 Hz, 2 H) 5.33 (s, 2 H) 5.36 (s, 2 H) 5.94 (d, J = 2.86 Hz, 1 H) 6.18 (s, 1 H) 7.14 (d, J = 5.72 Hz, 1 H) 7.23 (d, J = 3.08 Hz, 1 H) 8.00 (d, J = 5.50 Hz, 1 H) 8.50 (t, J = 5.50 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.17 (s, 3 H) 2.31 (s, 3 H) 2.35 (s, 3 H) 3.71 (s, 3 H) 4.63 (d, J = 5.50 Hz, 2 H) 5.32 (s, 2 H) 5.44 (s, 2 H) 5.94 (d, J = 3.08 Hz, 1 H) 6.10 (s, 1 H) 7.33 (d, J = 2.86 Hz, 1 H) 8.01 (s, 1 H) 8.49 (t, J = 5.50 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.35 (s, 3 H) 3.88 (s, 3 H) 4.66 (d, J = 5.50 Hz, 2 H) 5.33 (s, 2 H) 5.40 (s, 2 H) 5.93 (d, J = 2.86 Hz, 1 H) 6.13 (s, 1 H) 7.23 (d, J = 3.08 Hz, 1 H) 7.38 (dd, J = 8.36, 4.62 Hz, 1 H) 7.52 (d, J = 7.92 Hz, 1 H) 7.92 (dd, J = 4.62, 1.10 Hz, 1 H) 8.19 (t, J = 5.50 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.33 (s, 3 H) 3.79 (s, 3 H) 4.63 (d, J = 5.50 Hz, 2 H) 5.34 (s, 2 H) 5.40 (s, 2 H) 5.96 (d, J = 2.86 Hz, 1 H) 5.98 (d, J = 0.88 Hz, 1 H) 7.20 (d, J = 8.58 Hz, 1 H) 7.37-7.41 (m, 2 H) 7.79 (t, J = 5.72 Hz, 1 H) 8.09 (d, J = 2.64 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.27 (s, 3 H) 4.56 (d, J = 5.72 Hz, 2 H) 5.35 (s, 2 H) 5.59-5.64 (m, 3 H) 6.04 (d, J = 3.08 Hz, 1 H) 6.84 (t, J = 5.83 Hz, 1 H) 7.03 (dd, J = 6.05, 2.75 Hz, 1 H) 7.45 (d, J = 2.86 Hz, 1 H) 7.65 (br. s., 1 H) 7.80 (br. s., 1 H) 7.86-7.92 (m, 2 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.55 (s, 3 H) 4.76 (d, J = 5.50 Hz, 2 H) 5.30 (s, 2 H) 5.46 (s, 2 H) 5.98 (d, J = 2.86 Hz, 1 H) 7.31-7.36 (m, 2 H) 7.42 (d, J = 3.08 Hz, 1 H) 7.81 (td, J = 7.70, 1.76 Hz, 1 H) 8.06 (t, J = 5.61 Hz, 1 H) 8.44-8.47 (m, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.63 (s, 3 H) 4.67 (d, J = 5.28 Hz, 2 H) 5.32 (s, 2 H) 5.49 (s, 2 H) 5.98 (d, J = 2.86 Hz, 1 H) 7.02 (s, 1 H) 7.23 (d, J = 7.70 Hz, 1 H) 7.33 (dd, J = 6.93, 5.17 Hz, 1 H) 7.40 (d, J = 3.08 Hz, 1 H) 7.75- 7.83 (m, 2 H) 8.43 (d, J = 4.40 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.25 (s, 3 H) 2.34 (s, 3 H) 4.62 (d, J = 5.50 Hz, 2 H) 5.34 (s, 2 H) 5.42 (s, 2 H) 5.96-5.99 (m, 2 H) 7.12 (d, J = 7.92 Hz, 1 H) 7.39 (d, J = 2.86 Hz, 1 H) 7.60 (dd, J = 8.03, 2.09 Hz, 1 H) 7.84 (t, J = 5.61 Hz, 1 H) 8.22-8.25 (m, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.22 (s, 3 H) 4.67 (d, J = 5.72 Hz, 2 H) 5.35 (s, 2 H) 5.63 (s, 2 H) 5.98 (d, J = 3.08 Hz, 1 H) 6.07-6.09 (m, 1 H) 7.07 (t, J = 5.83 Hz, 1 H) 7.34 (d, J = 3.08 Hz, 1 H) 7.46-7.51 (m, 1 H) 7.55-7.61 (m, 2 H) 7.79-7.84 (m, 2 H) 8.57 (s, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.25 (s, 3 H) 2.32 (s, 3 H) 4.37 (d, J = 5.06 Hz, 2 H) 5.26 (s, 2 H) 5.40 (s, 2 H) 5.95 (d, J = 3.08 Hz, 1 H) 7.31-7.37 (m, 2 H) 7.39 (d, J = 3.08 Hz, 1 H) 7.77-7.82 (m, 2 H) 8.45-8.48 (m, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.30 (s, 3 H) 4.56 (d, J = 5.72 Hz, 2 H) 5.38 (s, 2 H) 5.54 (s, 2 H) 5.75-5.80 (m, 1 H) 6.04 (d, J = 2.86 Hz, 1 H) 6.66 (dd, J = 7.37, 2.31 Hz, 1 H) 6.87 (t, J = 5.83 Hz, 1 H) 7.06 (dd, J = 8.14, 2.20 Hz, 1 H) 7.36 (d, J = 2.86 Hz, 1 H) 7.85-7.92 (m, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.30 (s, 3 H) 3.90 (s, 3 H) 4.53 (d, J = 5.72 Hz, 2 H) 5.38 (s, 2 H) 5.42 (s, 2 H) 5.72 (s, 1 H) 6.03 (d, J = 3.08 Hz, 1 H) 6.60-6.65 (m, 2 H) 6.84 (dd, J = 7.26, 5.06 Hz, 1 H) 7.27 (d, J = 2.86 Hz, 1 H) 8.05 (dd, J = 4.95, 1.65 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.31 (s, 3 H) 3.69 (s, 6 H) 4.58 (d, J = 5.50 Hz, 2 H) 5.33 (s, 2 H) 5.43 (s, 2 H) 5.92 (s, 1 H) 5.99 (d, J = 2.64 Hz, 1 H) 6.11 (s, 1 H) 6.80 (t, J = 5.61 Hz, 1 H) 7.27 (d, J = 2.64 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.30 (s, 3 H) 2.34 (s, 3 H) 4.61 (d, J = 5.72 Hz, 2 H) 5.38 (s, 2 H) 5.52 (s, 2 H) 5.83 (s, 1 H) 6.00 (d, J = 3.08 Hz, 1 H) 6.04 (s, 1 H) 6.85 (t, J = 5.72 Hz, 1 H) 7.29 (d, J = 3.08 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.20 (s, 3 H) 4.63 (d, J = 5.72 Hz, 2 H) 5.34 (s, 2 H) 5.64 (s, 2 H) 5.82 (s, 1 H) 6.01 (d, J = 3.08 Hz, 1 H) 7.45 (d, J = 3.08 Hz, 1 H) 7.58 (s, 1 H) 7.66-7.70 (m, 1 H) 7.75-7.80 (m, 2 H) 7.85- 7.89 (m, 1 H) 8.13 (d, J = 8.14 Hz, 1 H) 9.20 (s, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.07 (s, 1 H) 2.14 (s, 3 H) 4.57 (d, J = 5.72 Hz, 2 H) 5.35 (s, 1 H) 5.77-5.82 (m, 3 H) 6.06 (d, J = 2.86 Hz, 1 H) 7.18 (d, J = 8.36 Hz, 1 H) 7.51 (d, J = 2.86 Hz, 1 H) 7.56 (t, J = 5.72 Hz, 1 H) 7.64 (dd, J = 8.14, 4.18 Hz, 1 H) 8.45 (d, J = 8.36 Hz, 2 H) 9.09 (dd, J = 4.07, 1.65 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.16 (s, 3 H) 4.71 (d, J = 5.50 Hz, 2 H) 5.37 (s, 2 H) 5.50 (s, 2 H) 5.95 (s, 1 H) 5.99 (d, J = 2.86 Hz, 1 H) 7.18 (d, J = 7.70 Hz, 1 H) 7.35 (dd, J = 6.82, 5.06 Hz, 1 H) 7.42 (d, J = 3.08 Hz, 1 H) 7.81 (td, J = 7.65, 1.65 Hz, 1 H) 7.88 (t, J = 5.50 Hz, 1 H) 8.47 (d, J = 4.40 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.34 (s, 3 H) 2.42 (s, 3 H) 4.63 (d, J = 5.72 Hz, 2 H) 5.34 (s, 2 H) 5.49 (s, 2 H) 5.95 (d, J = 2.86 Hz, 1 H) 6.07 (s, 1 H) 7.27 (dd, J = 7.70, 4.84 Hz, 1 H) 7.32 (d, J = 3.08 Hz, 1 H) 7.66 (d, J = 7.48 Hz, 1 H) 8.17 (dd, J = 4.73, 0.99 Hz, 1 H) 8.35 (t, J = 5.61 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.31- 2.36 (m, 3 H) 4.58 (d, J = 5.72 Hz, 2 H) 5.34 (s, 2 H) 5.62 (s, 2 H) 5.93 (d, J = 0.66 Hz, 1 H) 5.97 (d, J = 3.08 Hz, 1 H) 7.13 (t, J = 5.61 Hz, 1 H) 7.30 (d, J = 3.08 Hz, 1 H) 7.43 (t, J = 4.95 Hz, 1 H) 8.72 (d, J = 5.06 Hz, 2 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.17 (s, 3 H) 3.65 (s, 3 H) 4.46 (d, J = 5.28 Hz, 2 H) 5.29 (s, 2 H) 5.44 (s, 2 H) 5.76 (s, 1 H) 5.96 (d, J = 3.08 Hz, 1 H) 7.20 (d, J = 7.92 Hz, 1 H) 7.30-7.34 (m, 1 H) 7.38 (d, J = 3.08 Hz, 1 H) 7.51 (t, J = 5.28 Hz, 1 H) 7.78 (td, J = 7.70, 1.76 Hz, 1 H) 8.39 (d, J = 4.18 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 3.57 (s, 3 H) 4.45 (d, J = 5.06 Hz, 2 H) 5.34 (br. s., 2 H) 5.44 (s, 2 H) 5.97 (d, J = 2.86 Hz, 1 H) 6.76 (s, 1 H) 7.24 (d, J = 7.70 Hz, 1 H) 7.33 (dd, J = 7.04, 5.28 Hz, 1 H) 7.39 (d, J = 2.86 Hz, 1 H) 7.47 (s, 1 H) 7.64 (t, J = 4.84 Hz, 1 H) 7.77-7.83 (m, 1 H) 8.43 (d, J = 4.40 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.25 (s, 3 H) 4.67 (d, J = 5.50 Hz, 2 H) 5.26 (s, 2 H) 5.54 (s, 2 H) 5.99 (d, J = 2.86 Hz, 1 H) 6.97 (d, J = 7.92 Hz, 1 H) 7.13 (d, J = 7.92 Hz, 1 H) 7.32 (ddd, J = 6.93, 5.61, 0.88 Hz, 1 H) 7.41 (d, J = 3.08 Hz, 1 H) 7.43 (dd, J = 8.14, 1.98 hz, 1 H) 7.62 (t, J = 5.61 Hz, 1 H) 7.79 (td, J = 7.70, 1.76 Hz, 1 H) 8.30- 8.32 (m, 1 H) 8.43 (dd, J = 4.95, 0.77 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 1.52 (d, J = 6.82 Hz, 3 H) 5.21 (s, 2 H) 5.43 (quin, J = 6.82 Hz, 1 H) 5.48-5.60 (m, 2 H) 5.97 (d, J = 2.86 Hz, 1 H) 7.18-7.25 (m, 1 H) 7.27- 7.39 (m, 3 H) 7.44 (d, J = 2.86 Hz, 1 H) 7.63-7.69 (m, 1 H) 7.76 (d, J = 7.26 Hz, 1 H) 7.80-7.88 (m, 1 H) 8.46-8.52 (m, 2 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.23 (d, J = 1.10 Hz, 3 H) 4.72 (d, J = 5.50 Hz, 2 H) 5.31 (s, 2 H) 5.47 (s, 2 H) 5.98 (d, J = 2.86 Hz, 1 H) 6.73 (d, J = 1.10 Hz, 1 H) 7.28-7.36 (m, 2 H) 7.42 (d, J = 3.08 Hz, 1 H) 7.81 (ttd, J = 7.70, 1.76 Hz, 1 H) 7.99 (t, J = 5.50 Hz, 1 H) 8.40-8.44 (m, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.34 (d, J = 0.7 Hz, 3 H), 2.53 (s, 3 H), 4.64 (d, J = 5.7 Hz, 2 H), 5.35 (s, 2 H), 5.41 (s, 2 H), 5.95 (d, J = 3.1 Hz, 1 H), 6 6.08 (d, J = 0.7 Hz, 1 H), 7.27 (s, 1 H), 7.31 (d, J = 3.1 Hz, 1 H), 7.57 (t, J = 5.7 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 3.98 (s, 3 H) 4.62 (d, J = 5.28 Hz, 2 H) 5.36 (s, 2 H) 5.44 (s, 2 H) 5.96 (d, J = 2.86 Hz, 1 H) 7.25 (d, J = 7.70 Hz, 1 H) 7.31-7.35 (m, 1 H) 7.38 (d, J = 3.08 Hz, 1 H) 7.77- 7.83 (m, 2 H) 7.89 (t, J = 5.39 Hz, 1 H) 8.41 (dd, J = 4.84, 0.66 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 1.52 (d, J = 7.04 Hz, 3 H) 5.21 (s, 2 H) 5.43 (quin, J = 7.04 Hz, 1 H) 5.47-5.58 (m, 2 H) 5.97 (d, J = 2.86 Hz, 1 H) 7.19-7.23 (m, 1 H) 7.28- 7.38 (m, 3 H) 7.44 (d, J = 3.08 Hz, 1 H) 7.66 (td, J = 7.70, 1.76 Hz, 1 H) 7.76 (d, J = 7.26 Hz, 1 H) 7.84 (td, J = 7.70, 1.76 Hz, 1 H) 8.47-8.51 (m, 2 H).
1H NMR (400 MHz, DMSO-d6) δ ppm 1.52 (d, J = 6.82 Hz, 3 H) 5.21 (s, 2 H) 5.42 (quin, J = 6.99 Hz, 1 H) 5.47-5.58 (m, 2 H) 5.97 (d, J = 2.86 Hz, 1 H) 7.19-7.23 (m, 1 H) 7.28- 7.38 (m, 3 H) 7.44 (d, J = 3.08 Hz, 1 H) 7.66 (td, J = 7.65, 1.65 Hz, 1 H) 7.77 (d, J = 7.26 Hz, 1 H) 7.84 (td, J = 7.59, 1.32 Hz, 1 H) 8.47-8.51 (m, 2 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.56 (s, 3 H) 3.90 (s, 3 H) 4.81 (d, J = 5.72 Hz, 2 H) 5.27 (s, 2 H) 5.40 (s, 2 H) 5.93 (d, J = 3.08 Hz, 1 H) 7.25 (d, J = 3.08 Hz, 1 H) 7.40 (dd, J = 8.36, 4.84 Hz, 1 H) 7.52- 7.56 (m, 1 H) 7.98 (dd, J = 4.84, 1.10 Hz, 1 H) 8.41 (t, J = 5.50 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 1.55 (d, J = 7.0 Hz, 3 H), 2.58 (s, 3 H), 5.22 (s, 2 H), 5.41- 5.49 (m, 1 H), 5.46 (d, J = 6.8 Hz, 2 H), 5.94 (d, J = 3.1 Hz, 1 6 H), 7.23 (ddd, J = 7.5, 4.8, 0.9 Hz, 1 H), 7.34 (d, J = 3.1 Hz, 1 H), 7.38 (d, J = 8.1 Hz, 1 H), 7.40 (s, 1 H), 7.47 (d, J = 7.5 Hz, 1 H), 7.69 (td, J = 7.7, 1.8 Hz, 1 H), 8.47-8.54 (m, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 1.15 (s, 6 H) 1.69-1.74 (m, 2 H) 3.57-3.64 (m, 2 H) 5.62 (s, 2 H) 6.22 (d, J = 2.86 Hz, 1 H) 7.34-7.48 (m, 4 H) 7.67 (d, J = 3.08 Hz, 1 H) 7.91 (td, J = 7.70, 1.76 Hz, 1 H) 8.56-8.59 (m, 1 H) 8.79 (t, J = 4.80 Hz, 1 H) 12.51 (br. s., 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 1.21 (d, J = 7.04 Hz, 6 H) 2.97-3.10 (m, 1 H) 3.14-3.18 (m, 3 H) 3.56 (t, J = 4.95 Hz, 2 H) 4.37 (t, J = 5.06 Hz, 2 H) 4.65 (d, J = 5.72 Hz, 2 H) 5.37 (s, 2 H) 5.93 (d, J = 3.08 Hz, 1 H) 6.18 (s, 1 H) 6.86 (t, J = 5.61 Hz, 1 H) 7.17 (d, J = 3.08 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 0.78- 0.90 (m, 2 H) 0.94-1.06 (m, 2 H) 2.03-2.17 (m, 1 H) 3.11-3.18 (m, 3 H) 3.55 (t, J = 5.06 Hz, 2 H) 4.36 (t, J = 5.06 Hz, 2 H) 4.61 (d, J = 5.72 Hz, 2 H) 5.36 (s, 2 H) 5.92 (d, J = 3.08 Hz, 1 H) 6.15 (s, 1 H) 6.84 (t, J = 5.72 Hz, 1 H) 7.17 (d, J = 3.08 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 1.54 (d, J = 7.04 Hz, 3 H) 3.20 (s, 3 H) 3.63 (dt, J = 5.94, 3.19 Hz, 2 H) 4.32-4.50 (m, 2 H) 5.23 (s, 2 H) 5.42 (t, J = 7.04 Hz, 1 H) 5.92 (d, J = 2.86 Hz, 1 H) 6.68 (d, J = 7.04 Hz, 1 H) 7.18 (d, J = 3.08 Hz, 1 H) 7.34 (ddd, J = 7.87, 4.68, 0.66 Hz, 1 H) 7.84 (dt, J = 7.92, 1.76 Hz, 1 H) 8.42 (dd, J = 4.62, 1.54 Hz, 1 H) 8.68 (d, J = 2.20 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.27 (s, 3 H) 3.17-3.19 (m, 3 H) 3.61 (t, J = 5.06 Hz, 2 H) 4.40 (t, J = 5.06 Hz, 2 H) 4.70 (d, J = 5.50 Hz, 2 H) 5.23 (s, 2 H) 5.92 (d, J = 3.08 Hz, 1 H) 6.96 (t, J = 5.61 Hz, 1 H) 7.17 (d, J = 2.86 Hz, 1 H) 7.27 (d, J = 7.92 Hz, 1 H) 7.55 (dd, J = 8.03, 1.65 Hz, 1 H) 8.26- 8.42 (m, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.54 (s, 3 H) 4.72 (d, J = 5.72 Hz, 2 H) 5.30 (s, 2 H) 5.59 (s, 2 H) 5.98 (d, J = 3.08 Hz, 1 H) 7.30-7.35 (m, 2 H) 7.45 (t, J = 4.95 Hz, 1 H) 8.75 (d, J = 4.84 Hz, 2 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.54 (s, 3 H) 4.71 (d, J = 5.72 Hz, 2 H) 5.33 (s, 2 H) 5.63 (s, 2 H) 6.02 (d, J = 3.08 Hz, 1 H) 7.22-7.30 (m, 1 H) 7.41 (d, J = 3.08 Hz, 1 H) 8.43 (s, 1 H) 8.52 (dd, J = 2.42, 1.54 Hz, 1 H) 8.56 (d, J = 2.42 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.57 (s, 3 H) 3.80 (s, 3 H) 4.85 (d, J = 5.72 Hz, 2 H) 5.56 (s, 2 H) 6.24 (d, J = 2.86 Hz, 1 H) 6.84-6.90 (m, 2 H) 7.03 (d, J = 8.14 Hz, 1 H) 7.28- 7.34 (m, 1 H) 7.40 (d, J = 2.86 Hz, 1 H) 7.49 (br. s., 2 H) 8.22-8.28 (m, 1 H) 12.89 (br. s., 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 1.21 (d, J = 6.6 Hz, 3 H), 2.65 (s, 3 H), 3.27 (s, 3 H), 3.32- 3.35 (m, 1 H), 3.47 (dd, J = 9.2, 5.1 Hz, 1 H), 4.35- 4.55 (m, 6 1 H), 5.25 (s, 2 H), 5.36 (d, J = 4.8 Hz, 2 H), 5.92 (d, J = 3.1 Hz, 1 H), 6.76 (d, J = 7.5 Hz, 1 H), 7.30 (d, J = 3.1 Hz, 1 H), 7.40 (s, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.37 (s, 3 H) 4.97 (d, J = 5.06 Hz, 2 H) 5.81 (s, 2 H) 6.31 (d, J = 2.86 Hz, 1 H) 7.37 (d, J = 7.70 Hz, 1 H) 7.43 (s, 1 H) 7.47-7.52 (m, 1 H) 7.57 (br. s., 1 H) 7.75 (d, J = 3.08 Hz, 1 H) 7.97 (t, J = 7.70 Hz, 1 H) 8.53 (d, J = 4.62 Hz, 1 H) 9.50 (br. s., 1 H) 12.88 (br. s., 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 3.37 (s, 3 H) 4.72 (s, 2 H) 4.82 (d, J = 5.72 Hz, 2 H) 5.29 (s, 2 H) 5.46 (s, 2 H) 5.96-6.00 (m, 1 H) 7.29-7.37 (m, 2 H) 7.42 (d, J = 3.08 Hz, 1 H) 7.81 (td, J = 8.00, 1.50 Hz, 1 H) 8.12 (t, J = 6.16 Hz, 1 H) 8.45-8.50 (m, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.49 (s, 3 H) 3.71 (s, 6 H) 4.70 (d, J = 5.72 Hz, 2 H) 5.27 (s, 2 H) 5.41 (s, 2 H) 5.98 (d, J = 2.86 Hz, 1 H) 6.11 (s, 1 H) 6.79 (t, J = 5.61 Hz, 1 H) 7.28 (d, J = 2.86 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.19 (d, J = 1.10 Hz, 3 H) 3.68 (s, 6 H) 4.77 (d, J = 5.72 Hz, 2 H) 5.68 (s, 2 H) 6.12 (s, 1 H) 6.28 (d, J = 3.08 Hz, 1 H) 6.70 (d, J = 1.32 Hz, 1 H) 7.45 (br. s., 1 H) 7.59 (d, J = 3.08 Hz, 1 H) 8.12 (t, J = 5.50 Hz, 1 H) 12.59- 12.72 (m, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 1.17 (d, J = 6.60 Hz, 3 H) 3.23-3.30 (m, 4 H) 3.43 (dd, J = 9.02, 5.06 Hz, 1 H) 4.36-4.44 (m, 1 H) 5.27 (br. s., 2 H) 5.36-5.47 (m, 2 H) 5.95 (d, J = 2.64 Hz, 1 H) 7.19 (d, J = 7.04 Hz, 1 H) 7.33-7.43 (m, 3 H) 7.85 (t, J = 7.37 Hz, 1 H) 8.55 (d, J = 3.96 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 1.18 (d, J = 6.60 Hz, 3 H) 3.25 (s, 3 H) 3.29 (s, 3 H) 3.32-3.35 (m, 1 H) 3.45 (dd, J = 9.35, 5.17 Hz, 1 H) 3.61 (t, J = 4.73 Hz, 2 H) 4.28-4.39 (m, 2 H) 4.44 (dt, J = 12.71, 6.30 Hz, 1 H) 5.32 (br. s., 2 H) 5.93 (br. s., 1 H) 6.24 (d, J = 7.70 Hz, 1 H) 7.16 (s, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.25 (d, J = 1.10 Hz, 3 H) 3.89 (s, 3 H) 4.76 (d, J = 5.50 Hz, 2 H) 5.29 (s, 2 H) 5.40 (s, 2 H) 5.93 (d, J = 3.08 Hz, 1 H) 6.76 (d, J = 1.10 Hz, 1 H) 7.25 (d, J = 3.08 Hz, 1 H) 7.39 (dd, J = 8.36, 4.62 Hz, 1 H) 7.53 (dd, J = 8.36, 1.10 Hz, 1 H) 7.94 (dd, J = 4.73, 1.21 Hz, 1 H) 8.36 (t, J = 5.61 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.05 (d, J = 1.32 Hz, 3 H) 4.73 (d, J = 5.72 Hz, 2 H) 5.31 (s, 2 H) 5.47 (s, 2 H) 5.98 (d, J = 3.08 Hz, 1 H) 7.29-7.35 (m, 2 H) 7.42 (d, J = 3.08 Hz, 1 H) 7.67 (d, J = 1.10 Hz, 1 H) 7.81 (td, J = 7.70, 1.76 Hz, 1 H) 7.99 (t, J = 5.61 Hz, 1 H) 8.41-8.45 (m, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.31 (s, 3 H) 3.80 (s, 3 H) 4.77 (d, J = 5.72 Hz, 2 H) 5.34 (s, 2 H) 5.43 (s, 2 H) 6.01 (d, J = 2.86 Hz, 1 H) 6.46-6.50 (m, 1 H) 6.80 (t, J = 7.26 Hz, 1 H) 6.90 (t, J = 5.83 Hz, 1 H) 7.00 (d, J = 8.14 Hz, 1 H) 7.20-7.27 (m, 2 H) 7.31 (d, J = 1.10 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ ppm 2.43 (s, 3 H) 4.85 (d, J = 5.72 Hz, 2 H) 5.33 (s, 2 H) 5.49 (s, 2 H) 5.99 (d, J = 3.08 Hz, 1 H) 7.24 (d, J = 7.70 Hz, 1 H) 7.34 (ddd, J = 7.54, 4.90, 0.99 Hz, 1 H) 7.43 (d, J = 3.08 Hz, 1 H) 7.80 (td, J = 7.70, 1.76 Hz, 1 H) 8.03 (t, J = 5.61 Hz, 1 H) 8.44- 8.47 (m, 1 H)
Analytical Methods.
All compounds were characterized by LC-MS according to the following LC-MS methods.
Method A.
Using a Phenomenex Kinetex column (XB-018, 50×4.6 mm I.D. 2.6 μm) held at 35° C. MS detection: API-ES positive ionization mode, mass range 100-1200. PDA detection (λ=190-400 nm). The following gradient was used with a 2 μL injection:
Method B.
Reversed phase UPLC (Ultra Performance Liquid Chromatography) was carried out on a bridged ethylsiloxane/silica hybrid (BEH) C18 column (1.7 μm, 2.1×50 mm, Waters Acquity) with a flow rate of 0.8 ml/min. Two mobile phases (10 mM ammonium acetate in H2O/acetonitrile 95/5; mobile phase B: acetonitrile) were used to run a gradient condition from 95% A and 5% B to 5% A and 95% B in 1.3 minutes and hold for 0.7 minutes. An injection volume of 0.75 μl was used. Cone voltage was 30 V for positive ionization mode and 30 V for negative ionization mode.
Method C.
Analyses were carried out on a Waters XTerra C18 column (100×4.6 mm I.D. 3.5 μm particles) at 40° C., with a flow rate of 1.6 mL/min. A gradient elution was performed as follows: from 100% of a solution of ammonium acetate (25 mM) in Water/Acetonitrile 90:10 to a mixture of Acetonitrile/Methanol 50:50 in 7.5 min; from the resulting composition to 100% Acetonitrile in 1.0 min; 100% Acetonitrile for 1.5 min; from 100% Acetonitrile to 100% to 100% of a solution of ammonium acetate (25 mM) in Water/Acetonitrile 90:10 (25 mM) in 3.0 minutes. The standard injection volume was 3 μL. Acquisition ranges were set to 200-400 nm for the UV.
Method D.
The LC measurement was performed using an Acquity UPLC (Waters) system comprising a binary pump, a sample organizer, a column heater (set at 55° C.), a diode-array detector (DAD) and a column as specified in the respective methods below. Flow from the column was split to a MS spectrometer. The MS detector was configured with an electrospray ionization source. Mass spectra were acquired by scanning from 100 to 1000 in 0.18 seconds using a dwell time of 0.02 seconds. The capillary needle voltage was 3.5 kV and the source temperature was maintained at 140° C. Nitrogen was used as the nebulizer gas. Reversed phase UPLC (Ultra Performance Liquid Chromatography) was carried out on a bridged ethylsiloxane/silica hybrid (BEH) C18 column (1.7 μm, 2.1×50 mm, Waters Acquity) with a flow rate of 0.8 mL/min. Two mobile phases (10 mM ammonium acetate in H2O/acetonitrile 95/5; mobile phase B: acetonitrile) were used to run a gradient condition from 95% A and 5% B to 5% A and 95% B in 1.3 minutes and hold for 0.3 minutes. An injection volume of 0.5 μl was used. Cone voltage was 10 V for positive ionization mode and 20 V for negative ionization mode.
Method E
Method F
Description of Biological Assays
Assessment of TLR7 and TLR8 Activity
The ability of compounds to activate human TLR7 and/or TLR8 was assessed in a cellular reporter assay using HEK293 cells transiently transfected with a TLR7 or TLR8 expression vector and NFκB-luc reporter construct.
Briefly, HEK293 cells were grown in culture medium (DMEM supplemented with 10% FCS and 2 mM Glutamine). For transfection of cells in 10 cm dishes, cells were detached with Trypsin-EDTA, transfected with a mix of CMV-TLR7 or TLR8 plasmid (750 ng), NFκB-luc plasmid (375 ng) and a transfection reagent and incubated overnight at 37° C. in a humidified 5% CO2 atmosphere. Transfected cells were then detached with Trypsin-EDTA, washed in PBS and resuspended in medium to a density of 1.67×105 cells/mL. Thirty microliters of cells were then dispensed into each well in 384-well plates, where 10 μL of compound in 4% DMSO was already present. Following 6 hours incubation at 37° C., 5% CO2, the luciferase activity was determined by adding 15 μL of Steady Lite Plus substrate (Perkin Elmer) to each well and readout performed on a ViewLux ultraHTS microplate imager (Perkin Elmer). Dose response curves were generated from measurements performed in quadruplicates. Lowest effective concentrations (LEC) values, defined as the concentration that induces an effect which is at least two fold above the standard deviation of the assay, were determined for each compound.
Compound toxicity was determined in parallel using a similar dilution series of compound with 30 μL per well of cells transfected with the CMV-TLR7 construct alone (1.67×105 cells/mL), in 384-well plates. Cell viability was measured after 6 hours incubation at 37° C., 5% CO2 by adding 15 μL of ATP lite (Perkin Elmer) per well and reading on a ViewLux ultraHTS microplate imager (Perkin Elmer). Data was reported as CO50.
In parallel, a similar dilution series of compound was used (10 μL of compound in 4% DMSO) with 30 μL per well of cells transfected with NFκB-luc reporter construct alone (1.67×105 cells/mL). Six hours after incubation at 37° C., 5% CO2, the luciferase activity was determined by adding 15 μl of Steady Lite Plus substrate (Perkin Elmer) to each well and readout performed on a ViewLux ultraHTS microplate imager (Perkin Elmer). Counterscreen data is reported as LEC.
Activation of ISRE Promoter Elements
The potential of compounds to induce IFN-I was also evaluated by measuring the activation of interferon-stimulated responsive elements (ISRE) by conditioned media from PBMC. The ISRE element of sequence GAAACTGAAACT (SEQ ID NO: 1) is highly responsive to the STAT1-STAT2-IRF9 transcription factor, activated upon binding of IFN-I to their receptor IFNAR (Clontech, PT3372-5W). The plasmid pISRE-Luc from Clontech (ref. 631913) contains 5 copies of this ISRE element, followed by the firefly luciferase ORF. A HEK293 cell line stably transfected with pISRE-Luc (HEK-ISREluc) was established to profile of the conditioned PBMC cell culture media.
Briefly, PBMCs were prepared from buffy coats of at least two donors using a standard Ficoll centrifugation protocol. Isolated PBMCs were resuspended in RPMI medium supplemented with 10% human AB serum and 2×105 cells/well were dispensed into 384-well plates containing compounds (70 μL total volume). After overnight incubation, 10 μL of supernatant was transferred to 384-well plates containing 5×103 HEK-ISREluc cells/well in 30 μL (plated the day before). Following 24 hours of incubation, activation of the ISRE elements was measured by assaying luciferase activity using 40 μL/well Steady Lite Plus substrate (Perkin Elmer) and measured with ViewLux ultraHTS microplate imager (Perkin Elmer). The stimulating activity of each compound on the HEK-ISREluc cells was reported as LEC value, defined as the compound concentration applied to the PBMCs resulting in a luciferase activity at least two fold above the standard deviation of the assay. The LEC in turn indicates the degree of ISRE activation on transfer of a defined amount of PBMC culture medium. Recombinant interferon α-2a (Roferon-A) was used as a standard control compound.
Number | Date | Country | Kind |
---|---|---|---|
12187994 | Oct 2012 | EP | regional |
This application is a continuation of U.S. patent application Ser. No. 14/434,021 filed on Apr. 7, 2015, which is a 35 U.S.C. § 371 nationalization of PCT application PCT/EP2013/070990 filed Oct. 9, 2013, which claims priority to European patent application EP12187994.4 filed Oct. 10, 2012, which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6028076 | Hirota et al. | Feb 2000 | A |
6329381 | Kurimoto et al. | Dec 2001 | B1 |
6376501 | Isobe et al. | Apr 2002 | B1 |
6458798 | Fujita et al. | Oct 2002 | B1 |
6503908 | Maw | Jan 2003 | B1 |
6583148 | Kelley et al. | Jun 2003 | B1 |
6951866 | Fujita et al. | Oct 2005 | B2 |
7030118 | Lombardo et al. | Apr 2006 | B2 |
7091232 | Chow et al. | Aug 2006 | B2 |
7498409 | Vlach et al. | Mar 2009 | B2 |
7524852 | Arai et al. | Apr 2009 | B2 |
7531547 | Dillon et al. | May 2009 | B2 |
7754728 | Isobe et al. | Jul 2010 | B2 |
7923554 | Hoornaert et al. | Apr 2011 | B2 |
8012964 | Kurimoto et al. | Sep 2011 | B2 |
8022077 | Simmen et al. | Sep 2011 | B2 |
8455458 | Marcum et al. | Jun 2013 | B2 |
8486952 | Boy et al. | Jul 2013 | B2 |
8637525 | Boy et al. | Jan 2014 | B2 |
8916575 | McGowan et al. | Dec 2014 | B2 |
9133192 | McGowan et al. | Sep 2015 | B2 |
9284304 | McGowan et al. | Mar 2016 | B2 |
9365571 | McGowan et al. | Jun 2016 | B2 |
9376448 | Charifson et al. | Jun 2016 | B2 |
9416114 | Gembus et al. | Aug 2016 | B2 |
9422250 | McGowan | Aug 2016 | B2 |
9499549 | McGowan | Nov 2016 | B2 |
9556176 | Bonfanti et al. | Jan 2017 | B2 |
9556199 | McGowan et al. | Jan 2017 | B2 |
9598378 | McGowan et al. | Mar 2017 | B2 |
9663474 | Last et al. | May 2017 | B2 |
9878996 | Silverman et al. | Jan 2018 | B2 |
20050054590 | Averett | Mar 2005 | A1 |
20070225303 | Ogita et al. | Sep 2007 | A1 |
20090285782 | Gao et al. | Nov 2009 | A1 |
20100143299 | Gao et al. | Jun 2010 | A1 |
20140148433 | Follmann et al. | May 2014 | A1 |
20150274676 | McGowan et al. | Oct 2015 | A1 |
20150299221 | Bonfanti et al. | Oct 2015 | A1 |
20150336907 | Gembus et al. | Nov 2015 | A1 |
20160304531 | Bonfanti et al. | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
101784548 | Jul 2010 | CN |
0882727 | Dec 1998 | EP |
0899263 | Mar 1999 | EP |
1552842 | Jun 2003 | EP |
1110951 | Jun 2006 | EP |
1939198 | Jul 2008 | EP |
197-0373 | Sep 2008 | EP |
213-3353 | Dec 2009 | EP |
2138497 | Dec 2009 | EP |
64063582 | Mar 1989 | JP |
2000053653 | Feb 2000 | JP |
2000053654 | Feb 2000 | JP |
2008222557 | Sep 2008 | JP |
2009528989 | Aug 2009 | JP |
2010522151 | Jul 2010 | JP |
2010532353 | Oct 2010 | JP |
WO 9801448 | Jan 1998 | WO |
199808847 | Mar 1998 | WO |
199814448 | Apr 1998 | WO |
199850370 | Nov 1998 | WO |
WO 99028321 | Jun 1999 | WO |
199932122 | Jul 1999 | WO |
199940091 | Aug 1999 | WO |
199941253 | Aug 1999 | WO |
WO 2000006577 | Feb 2000 | WO |
200061562 | Oct 2000 | WO |
2002087513 | Nov 2002 | WO |
2002088080 | Nov 2002 | WO |
2003055890 | Jul 2003 | WO |
2004029054 | Aug 2004 | WO |
2005007672 | Jan 2005 | WO |
2005092892 | Oct 2005 | WO |
2005092893 | Oct 2005 | WO |
2006015985 | Feb 2006 | WO |
2006050843 | May 2006 | WO |
2006117670 | Nov 2006 | WO |
2006120252 | Nov 2006 | WO |
2007034881 | Mar 2007 | WO |
2007056208 | May 2007 | WO |
2007063934 | Jun 2007 | WO |
2007084413 | Jul 2007 | WO |
2007093901 | Aug 2007 | WO |
2008009078 | Jan 2008 | WO |
2008073785 | Jun 2008 | WO |
2008075103 | Jun 2008 | WO |
2008114008 | Sep 2008 | WO |
2008114817 | Sep 2008 | WO |
2008114819 | Sep 2008 | WO |
2008115319 | Sep 2008 | WO |
WO 2008147697 | Dec 2008 | WO |
2009005687 | Jan 2009 | WO |
2009023179 | Feb 2009 | WO |
2009030998 | Mar 2009 | WO |
WO 2009067081 | May 2009 | WO |
2009080836 | Jul 2009 | WO |
2009099650 | Aug 2009 | WO |
WO2009032668 | Sep 2009 | WO |
2009134624 | Nov 2009 | WO |
2010007116 | Jan 2010 | WO |
WO 2010006025 | Jan 2010 | WO |
2010133885 | Nov 2010 | WO |
2011014535 | Feb 2011 | WO |
2011049825 | Apr 2011 | WO |
2011049987 | Apr 2011 | WO |
2011062253 | May 2011 | WO |
2011062372 | May 2011 | WO |
2012066335 | May 2012 | WO |
2012067269 | May 2012 | WO |
2012136834 | Oct 2012 | WO |
2012156498 | Nov 2012 | WO |
2013068438 | May 2013 | WO |
2013117615 | Aug 2013 | WO |
2014053595 | Apr 2014 | WO |
Entry |
---|
Hoffmann J. “The Immune Response of Drosophila” Nature 2003 vol. 426, Issue 6 pp. 33-38. |
Takeda et al “Toll-Like Receptors” Annu Rev Lmmunol 2003 vol. 21 pp. 335-376. |
Ulevitch R. “Therapeutics Targeting the Innate Immune System”, Nature Reviews: Immunology 2004 vol. 4 pp. 512-520. |
International Search Report for Corresponding International Application PCT/EP2013/070990 dated Jan. 17, 2014. |
Vedantham et al “Mechanism of Interferon Action in Hairy Cell Leukemia: A Model of Effective Cancer Biotherapy” Cancer Res 1992 vol. 52 p. 1056. |
Warshakoon et al “Potential Adjuvantic Properties of Innate Immune Stimuli” Hum. Vaccines 2009 vol. 5 pp. 381-394. |
Grimm et al “Toll-Like Receptor (TLR) 7 and TLR8 Expression on CD133+ Cellsin Colorectal Cancer Points to a Specific Role for Inflammation Induced TLRS in Tumourigenesis and Tumour Progression” Eur. J. Cancer 2010, vol. 46 pp. 2849-2857. |
De Clercq et al “(S)-9-(2,3-Dihydroproply)Adenine: An Aliphatic Nucleoside Analog With Broad-Spectrum Antiviral Activity” Science 1978 vol. 200 pp. 563-565. |
Fried et al “Peginterferon-ALFA-2A Plus Ribavirin for Chronic Hepatitis C Virus Infection” Nena/J Med 2002 vol. 347 pp. 975-982. |
Vippagunta et al “Crystalline Solids” Advanced Drug Delivery Reviews 2001, vol. 48 pp. 3-26. |
Ulrich J.“Crystalization” Kirk-Othmer Encyclopedia of Chemical Technology 2002 p. 1-7. |
Ohto et al “Structure and Function of Toll-Like Receptor 8” Microbes and Infection 2014 vol. 16 pp. 273-282. |
Yu et al “Dual Character of Toll-Like Receptor Signaling: Pro Tumorigenic Effects and Anti-Tumor Functions” Biochimica et Biophysica Acta 2013 vol. 1835 pp. 144-154. |
Cecil Textbook of Medicine, Edited by BennetJ.C. and Plum F., 20th Edition 1996 vol. 1 pp. 1004-1010. |
Freshney et al Culture of Animal Cells, a Manual of Basic Technique, Alan R. Liss, Inc.1983, New York p. 4. |
Dermer et al “Another Anniversary for the War on Cancer” Bio/Technology 1994 vol. 12 pp. 320. |
Zhao et al “Toll-Like Receptors and Prostate Cancer” Frontiers in Immunology 2014 vol. 5 pp. 1-6. |
Abdillahi, et al., “Synthesis of a Novel Series of Thieno[3,2-d]pyrimidin-4-(3H)-ones”, Synthesis, vol. 9: pp. 1428-1430 (2010). |
Banker (Editor), “Prodrugs”, Modem Pharmaceutics, Third Edition: pp. 596 (1976). |
Baraldi, et al., “New Strategies for the Synthesis of A3 Adenosine Receptor Antagonists”, Bioorganic & Medicinal Chemistry, vol. 1: pp. 4161-4169 (2003). |
Barker, et al., “A Rapid Conversion of 3-Oxothiolanes into 3-Aminothiophenes”, Synthetic Communications, vol. 32(16): pp. 2565-2568 (2002). |
Bell, et al., “Chemistry of 5-Pyrimidinecarboxaldehydes”, Journal of Heterocyclic Chemistry, vol. 29: pp. 41-44 ( Jan.-Feb. 1983). |
Brittain, et al., “Effects of Pharmaceutical Processing on Drug Polymorphs and Solvates”, Polymorphism in Pharmaceutical Solids, 1999, pp. 331-360, Chapter 8. |
Bruns, et al, “Solubilities of Adenosine Antagonists Determined by Radioreceptor Assay”, Journal of Pharmacy and Pharmacology, vol. 41: pp. 590-594 (1989). |
Chawla, et al., “Challenges in Polymorphism of Pharmaceuticals”, Current Research & Information on Pharmaceutical Sciences, vol. 5(1): pp. 9-12 ( Jan.-Mar. 2004). |
De Nardo, “Toll-Like Receptors: Activation, Signalling and Transcriptional Modulation”, Cytokine, 2015, pp. 181-189, vol. 74. |
Douglas, Jr., “Introduction of Viral Diseases”, Cecil Textbook of Medicine, 20th Edition, vol. 2: pp. 1973-42 (1996). |
Hackam, et al, “Translation of Research Evidence From animals to Humans”, JAMA, vol. 296 (14): pp. 1731-1732 (2006). |
Hood, et al., “Immunoprofiling toll-like receptor ligands Comparison of Immunostimulatory and proinflammatory profiles in ex vivo human blood models”, Human Vaccines, vol. 6(4): pp. 322-335 (Apr. 2010). |
Horscroft, et al., “Antiviral applications of toll-like receptor agonists”, J. Antimicrob. Chemother., pp. 1-13 (Jan. 18, 2016). |
Huddleston, et al., “A Convenient Synthesis of 2-Substituted 3-Hydroxy- and 3-Amino-Thiophens From Derivatives of 2-Choroacrylic Acid”, Synthetic Communications, vol. 9(8): pp. 731-734 (1979). |
Isobe, et al., “Synthesis and Structure-Activity Relationships of 2-Substituted-8-hydroxyadenine Derivatives as Orally Available Interferon Inducers without Emetic Side Effects”, Bioorganic & Medicinal Chemistry, vol. 11: pp. 3641-3647, (2003). |
Jiang, et al., “Synthesis of 4-chlorothieno[3,2-d]pyrimidine”, Chemical Industry and Engineering Progress, vol. 30: pp. 2532-2535, (2011). [With English Abstract]. |
Jordan, “Tamoxifen: A Most Unlikely Pioneering Medicine”, Nature Reviews, vol. 2: pp. 205-213, (Mar. 2003). |
Kanzler, et al., “Therapeutic Targeting of Innate Immunity with Toll-Like Receptor Agonists and Antagonists”, Nature Medicine, vol. 13(5): pp. 552-559 (May 2007). |
Krieger, et al, Enhancement of Hepatitis C Virus RNA Replication by Cell Culture, Journal of Virology, Jan.-May 2001, 4614-1624, 75-10, DE. |
Kurimoto, et al., “Synthesis and Structure—Activity Relationships of 2-Amino-8-hydroxyadenines as Orally Active Interferon Inducing Agents”, Bioorganic & Medicinal Chemistry, vol. 11: pp. 5501-5508 (2003). |
Liu, et al., “Synthesis and Biological Activity of 3-and 5-Amino Derivatives of Pyridine-2Carboxaldehyde Thiosemicarbazone”, J. Med. Chem, Vo. 39: pp. 2586-2593 (1996). |
Lohmann et al, Viral and Cellular Determinants of Hepatitis C Virus RNA Replication in Cell Culture, Journal of Virology, Mar. 2003, pp. 3007-3019, vol. 77, No. 5. |
Lohmann, et al., Replication of Subgenomic Hepatitis C Virus RNAs in a Hepatoma Cell Line, Science, 1999, pp. 110-113, vol. 285. |
Makkouk et al., “The potential use of Toll-Like Receptors (TLR) agonistd and antagonists as prophylactic and/or therapeutic agents”, Immunopharmacology and Immunotoxicology, vol. 31(3): pp. 331-338 (2009). |
Mesguiche, et al., “4-Alkoxy-2,6-diaminopyrimidine Derivatives: Inhibitors of Cyclin Dependent Kinases 1 and 2”, Bioorganic & Medicinal Chemistry Letters, vol. 13: pp. 217-222 (2003). |
Moreau, et al., “Synthesis of cyclic adenosine 5′-diphosphate ribose analogues: a C2′ endo/syn “southern” ribose conformation underlies activity at the sea urchin cADPR receptor”, Organic & Biomolecular Chemistry, vol. 9: pp. 278-290 (2011). |
Musmuca, et al, “Small-Molecule interferon Inducers. Toward the Comprehension of the Molecular Determinants through Ligand-Based Approaches”, J. Chem. Inf. Model., vol. 49: pp. 1777-1786 (2009). |
Newman, et al., “Solid-State Analysis of the Active Pharmaceutical Ingredient in Drug Products”, Drug Discovery Today, Oct. 19, 2003, pp. 898-905, vol. 8(19). |
O'Hara, et al., “Regioselective Synthesis of Imidazo[4,5-g] quinazoline Quinone Nucleosides and Quinazoline Amino Nucleosides. Studies of their Xanthine Oxidase and Purine Nucleoside Phosphorylase Substrate Activity”, J. Org. Chem. vol. 56: pp. 776-785 (1991). |
Thomas, et al., “Investigating Toll-Like Receptor Agonists for Potential to Treat Hepatitis C Virus Infection”, Antimicrobial Agents and Chemotherapy, vol. 51(8): pp. 2969-2978 (Aug. 2007). |
Tran, et al, “Design and optimization of orally active TLR7 agonists for the treatment of hepatitis C virus infection”, Bioorganic & Medicinal Chemistry Letters, vol. 21: pp. 2389-2393 (2011). |
Wermuth, “Molecular Variations Based on Isosteric Replacements”, The Practice of Medicinal Chemistry, 1996, pp. 203-237, Ch. 13. |
Wolff, et al, Burger's Medicinal Chemistry and Drug Discovery, -, 1994, pp. 975-977, 5th Edition, vol. 1. |
Yin, et al., “Synthesis of 2,4-Diaminoquinazolines and Tricyclic Quinazolines by Cascade Reductive Cyclization of Methyl N-Cyano-2-nitrobenzimidates”, J. Org. Chem., vol. 77: pp. 2649-2658 (2012). |
Yu, et al, “Toll-Like Receptor 7 Agonists: Chemical Feature Based”, Plos One, vol. 8 (3): pp. 1-11 e56514, (Mar. 20, 2013). |
International Search Report for Corresponding Application No. PCT/EP2012/056388, dated May 31, 2012. |
International Search Report for Corresponding Application No. PCT/EP2012/059234, dated Nov. 18, 2013. |
Extended European Search Report for Corresponding Application No. EP11166538.6, dated Nov. 22, 2011. |
International Search Report for Corresponding Application No. PCT/EP2012/072090, dated Jan. 4, 2013. |
International Search Report for Corresponding Application No. PCT/EP2013/052372 , dated Apr. 17, 2013. |
International Search Report for Corresponding Application No. PCT/EP2013/064763, dated Aug. 3, 2013. |
International Search Report for Corresponding Application No. PCT/EP2013/066673, dated Sep. 6, 2013. |
International Search Report for Corresponding Application No. PCT/EP2013/070990, dated Jan. 17, 2014. |
International Search Report for Corresponding Application No. PCT/EP2013/070488, dated Nov. 14, 2013. |
International Search Report for Corresponding Application No. PCT/EP2014/053273, dated Mar. 18, 2014. |
International Search Report for Corresponding Application No. PCT/EP2014/056270, dated Jul. 21, 2014. |
International Search Report for Corresponding Application No. PCT/EP2014/060603, dated Jul. 15, 2014. |
International Search Report for Corresponding Application No. PCT/EP2014/063467, dated Nov. 3, 2014. |
International Search Report for Corresponding Application No. PCT/EP2014/066219, dated Nov. 13, 2014. |
Bizanek, et al., Isolation and Structure of an Intrastrand Cross-Link Adduct of Mitomycin C nd DNA, Biochemistry, 1992, pp. 3084-3091, vol. 31. |
McGowan et al., “Novel Pyrimidine Toll-Like Receptor 7 and 8 Dual Agonists to Treat Hepatitis B Virus”, Journal of Medicinal Chemistry, 2016, pp. 7936-7949, vol. 59 No. 17. |
Organic Syntheses Collective, “3-Methylcoumarone”, Organic Syntheses Collective, 1963, pp. 43-46, vol. 4. |
Tomonori, et al., “Ti-Crossed-Claisen Condensation between Carboxylic Ester and Acid Chlorides or Acids: A Highly Selective and General Method for the Preparation of Various β-Keto Esters”, Journal of the American Chemical Society, vol. 127:pp. 2854-2855 (2005). |
Isobe, et al., “Synthesis and Biological Evaluation of Novel 9-Substituted-8-Hydroxyadenine Derivatives as Potent Inferferon Inducers”, J. Med. Chem., vol. 49; pp. 2088-2095 (2006). |
Jurk, et al., “Human TLR7 or TLR8 Independently Confer Responsiveness to the Antiviral Compound R-848”, Nature Immunology, Jun. 2002, pp. 499, vol. 3 (6). |
Kurimoto, et al., “Synthesis and Evaluation of 2-Substituted 8-Hydroxyadenines as Potent Interferon Inducers with Improved Oral Bioavailabilities”, Bioorganic & Medicinal Chemistry, vol. 12; pp. 1091-1099 (2004). |
Lee, et al., “Activation of Anti-Hepatitis C Virus Responses via Toll-Like Receptor 7”, PNAS, vol. 3 (6); pp. 1828-1833 (Feb. 7, 2006). |
Roethle, et al., “Identification and Optimization of Pteridinone Toll-Like Receptor 7 (TLR7) Agonists for the Oral Treatment of Viral Hepatitis”, Journal of Medicinal Chemistry, vol. 56; pp. 7324-73333 (2013). |
Number | Date | Country | |
---|---|---|---|
20170044169 A1 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14434021 | US | |
Child | 15333947 | US |