J. J. O'Shea, et al., Phosphorylation and activation of the Jak-3 Janus Kinase in response to Interleukin-2, Nature, 370, 151 (1994. |
S. M. Russell, et al., Interaction of IL-2Rβ and γc Chains with Jak1 and Jak3: Implications for XSCID and XCID, Science, 266, 10 (1994). |
J. N. Ihle, The Janus Protein Tyrosine Kinase Family and Its Role in Cytokine Signaling, Adv. Immunology, 60, 1, (1995). |
J. N. Ihle, The Janus Protein Tyrosine Kinases in hematopoietic cytokine signaling, Semin. Immunology, 7, 247, (1995). |
T. Musso, et al., Regulation of JAK3 Expression in Human Monocytes: Phosphorylation in Response to Interleukings 2, 4, and 7 _Exp. Med., 181, 1425 (1995). |
R. A. Kirken, et al., Activation of JAK3, but not JAK1, is critical for IL-2-induced proliferation and STAT5 Recruitment by a COOH-terminal region of the IL-2 receptor β-chain, Cytokine, 7 689, (1995). |
M. G. Malabarba, et al., Activation of JAK3, but not JAK1, is Critical to Interleukin-4 (IL4) Stimulated Proliferation and Requires a Membrane-proximal Region of Il4 Receptor α*, J. Biol. Chem., 270, 9630, (1995). |
J. H. Hanke, B. A. Pollok, and P. S. Changelian, Role of tyrosine kinases in lymphocyte activation: Targets for drug intervention, Inflamm. Res., 44, 357, (1995). |
E.E. Eynon, et al., Disruption of Cytokine Signaling in Lymphoid Development: Unique Contributions of the Common Cytokine Gamma Chain and the JAK3 Kinase, J. Interferon Res., 16, 677 (1996). |
S. A. Oakes, et al., Signaling via IL-2 and IL-4 in JAK#-Deficient Severe Combined Immunodeficiency Lyumphocytes: JAK3-Dependent and Independent Pathways, Immunity, 5, 605 (1996). |
L. D. Norangelo, et al, Severe Combined Immune Deficiency due to Defects of the JAK3 Tyrosine Kinase, Prog. Immunodeficienc 6, 61, (1996). |
D. C. Thomis, et al., Peripheral Expression of JAK3 is Required to Maintain T Lymphocyte Function, J. Exp. Med., 185, 197, (199. |
B. H. Nelson, et al., Requirement for an initial signal from the membrane-proximal region of the interleukin 2 receptor γc chain for Janus kinase activation leading to T cell proliferation, Proc. Natl. Acad. Sci. USA, 94, 1878, (1997). |
A. M. Baird, et al., T Cell development and activation in Jak3-deficient mice, J. Leukocyte Biol., 63, 669, (1998). |
K. D. Liu, et al., JAK/STAT signaling by cytokine receptors, Curr. Opin. Immunol. |
W. J. Leonard and J. J. O'Shea, JAKS and STATS: Biological Implications, Annu. Rev. Immunol., 16, 293, (1998). |
F. Candotti, et al., Severe combined immune deficiencies due to defects in the common γ chain-JAK3 signaling pathway, Springe Semin. Immuopathol., 19, 401, (1998). |
R. Malaviya, et al., Targeting Janus Kinase 3 in Mast Cells Prevents Immediate Hypersensitivity Reactions and Anaphylaxis, J. B Chem., 274, 27028 (1999). |
D. C. Thomis, et al., The Jak Family Tyrosine Kinase Jak3 is Required for IL-2 Synthesis by Naïve/Resting CD4+ T Cells, J. Immunol., 163, 5411 (1999). |
E. Chen, et al., Advances in Cytokine Signaling: The Role of Jaks and STATs, Transplantation Proc., 31, 1482 (1999). |
R. Moriggi, et al., Stat5 Activation is Uniquely Associated with Cytokine Signaling in Peripheral T Cells, Immunity, 11, 225 (1995). |
L. H. Wang, et al., JAK3, STAT, and MAPK Signaling Pathways as Novel Molecular Targets for the Tyrphostin AG-490 Regulatio IL-2-Mediated T Cell Response, J. Immunol., 162, 3897, (1999). |
E. A. Sudbeck, et al., Structure-based Design of Specific Inhibitors of Janus Kinase 3 as Apoptosis-inducing Antileukemic Agents, Clin. Cancer Res., 5, 1569, (1999). |
F. M. Uckun, et al., In Vivo Toxicity and Pharmacokinetic features of the Janus Kinase 3 Inhibitor WHI-P131 [40(4'-Hydroxyphen Amino-6,7-Dimethosyquinazoline], Clin. Cancer Research, 5, 2954, (1999). |
E. A. Sudbeck and F. M. Uckun, Recent Advances in JAK3 kinase inhibitors, IDrugs, 2, 1026, (1999). |
R. Malaviya, et al., Genetic and Biochemical Evidence for a Critical Role of Janus Kinase (JAK)-3 in Mast Cell-Mediated Type I Hypersensitivity Reactions, Biochem. Biophys., Res. Commun., 257, 807, (1999). |
V. N. Trieu, et al., A Specific Inhibitor of Janus Kinase-3 Increases Survival in a Transgenic Mouse Model of Amyotropic Lateral Sclerosis, Biochem. Biophys. Res. Commun., 267, 22, (2000). |
X. C. Li, et al., Blocking the Common γ-Chain of Cytokine Receptors Induces T Cell Apoptosis and Long-Term Islet Allog Survival, J. Immunol., 164, 1193 (2000)/. |
R. Malaviya, et al., Treatment of allergic asthma by targeting Janus kinase 3-dependent leukotriene synthesis in mast cells wit (3'-5'-Dibromo-4'hydroxyphenyl)amino-6,7-dimethoxyquinazoline (WHI-P97), J. Pharmacol. Exp. Ther., 295, 912 (2000). |
S. Ghosh, et al., 4-[93-Bromo-4-hydroxypheynl)amino]6,7-dimethoxyquinazolin-1-ium chloride methanol solvate and 4 hydroxyphenyl)amino0-6,7-dimethoxy-1-quinazolinium chloride. Acta Crystallogr., C: Cryst. Struct. Commun., C57, 76 (2001). |
E. A. Skudbeck, et al. An inhibitor of janus kinase 3: 4-(4-hydroxyphenylamino)-6,7-dimethoxyquinazolin-1-ium chloride, A Crystallogr., SectC: Cryst. Struct. Commun., C56, 1282 (2000). |
Traxler, P. M., et al., Protein tyrosine kinase inhibitors in cancer treatment, Exp. Opin. Ther. Patents, (1997), 7 (6): 571-588. |
Traxler, P. M., et al., 4-(phenylamino)pyrrolopyrimidine: Potent and Selective, ATP Site Directed Inhibitors of the EGF-Recpetor Protein Tyrosine Kinase, J. Med. Chem., (1996), 39, 2285-2292. |