Reference is now made to the drawings in which identical or similar parts are designated by the same reference numerals throughout.
An exemplary right quad shoe 10 of a pair of quad shoes for use on outdoor flat surfaces includes a boot 12 having a sole 14 and a heel 16. Sole 14 has a sole forward area 18 and a sole rearward area 20. Sole 14 has a sole bottom 22 and heel 16 has a heel bottom 24. Heel 16 is secured to sole bottom 22 at sole rearward area 20. Sole bottom 22 and heel bottom 24 are in general alignment with an imaginary horizontal plane 26. Boot 12 is a traditional boot known in the art of roller skates including sole 14 being stiff and thick and made of a stiff, or hard, leather or stiff hard leather-like material, such as molded polymer of vinyl chloride or polyvinyl chloride.
A metal support plate 28 is secured to sole forward area 18 and heel bottom 24. A forward truck 30A and a rearward truck 30B are transversely mounted to support plate 28 at sole forward area 18 and at sole rearward area 20 by front and rear bolts 32A and 32B, respectively. Forward truck 30A is located in the area below the ball of the foot of the wearer and rearward truck 30B is located in the area below heel 16. Front bottom bolt 32A secures forward truck 30A to support plate 28. Rear bottom bolt 32B secures rearward truck 30B to support plate 28. Both forward truck 30A and rearward truck 30B are double action trucks.
Two rivets 33 secure forward area 18 of support plate 28 to sole 14 and two rivets 33 secure rearward area 20 of support plate 28 to heel 16. Front and rear axles 34A and 34B are rotationally mounted through forward truck 30A and rearward truck 30B, respectively. A toe stop 36 is secured to support plate 28. Axles 34A and 34B are preferably solid axles with external threads at the ends. A pair of left and right front wheels, 38A and 38B, respectively, are mounted to front axle 34A; and a pair of left and right rear wheels 40A and 40B, respectively, are mounted to rear axle 34B. Each wheel 38A,B and 40A,B is provided with a plastic hub 42 molded with seven plastic spokes 44. Hub 42 can alternatively be made of a lightweight metal such as aluminum. A lock nut 46 at the axle ends holds wheels 38A,B and 40A,B to axles 34A,B, and also holds axles 34A,B to trucks 30A,B.
Each wheel 38A,B and 40A,B includes a tire 48 having a rim 50 that has a rim outer surface, or profile, 52 configured as a semi-circle in cross-section as seen in
Each of front wheels 38A,B and each of rear wheels 40A,B has a rim apex 54 that is at least as high as imaginary horizontal plane 26.
An expository alternative quad skate 56 analogous to quad skate 10 is shown in
The diameter of the wheels of quad skate 10 vary in the general range of 100 millimeters up to 135 millimeters or greater for skaters who wear larger boots. It may be also noted children with smaller feet would skate on a quad skate 10 configured identically but with proportionally smaller wheels. In theory 175 millimeter wheels would be possible for a skater who wears a size 20 boot. Also, a 90 millimeter wheel would be suitable for a child who wears a size 3 or 4 boot due to horizontal size limitations between the front and rear axles.
Each of front wheels 36A,B and rear wheels 38A,B is a thin-width wheel having a width in the general range of 24 to 25 millimeters.
Forward and rearward trucks 30A and 30B comprise forward and rearward truck castings that define first and second borings, respectively, within which front and rear axles 34A and 34B are respectively rotationally positioned. As seen in
The principles and description of a mating left quad skate are analogous to right quad skate 10 as set forth herein.
The aluminum truck castings 30A and 30B of the present invention must be at least 4 inches wide. Axles 34A and 34B are inserted thru the center of truck castings 34A and 34B. The length of axles 34A and 34B is in the range of 6 inches. Therefore 1.25 inch of axles 34A and 34B protrude from each end of truck casting 30A,B.
In general, the tire area 48 of each wheel 38A,B and 40A,B preferably has a durometer hardness factor in the range of 74A to 88A. The durometer reading is a measure of the hardness of the material that makes up wheel's tire. The higher the hardness, the harder the wheel. In addition, the harder the wheel, the longer it lasts, but the less it absorbs shock and vibration when skating. Most wheels on the market range from 74A (softest) to 88A (hardest), where the letter A denotes the durometer scale. However, recreational skaters are normally interested in a narrower range from 78A to 82A. This hardness range provides good control and a smooth roll for trail skating.
Although the present invention has been described in some detail by way of illustration and example for purposes of clarity and understanding, it will, of course, be understood that various changes and modifications may be made in the form, details, and arrangements of the parts without departing from the scope of the invention set forth in the following claims.