Quad-sector antenna using circular polarization

Information

  • Patent Grant
  • 10742275
  • Patent Number
    10,742,275
  • Date Filed
    Wednesday, March 5, 2014
    10 years ago
  • Date Issued
    Tuesday, August 11, 2020
    4 years ago
Abstract
Systems and methods for providing a MIMO capable antenna with unique properties are provided herein. In some embodiments, a 4×4 MIMO capable antenna is provided with unique properties. Circular polarization from the antennas ensures that both vertical and horizontal polarizations are energized to the full extent provided by local regulations. A system includes a radio and a plurality of antennas coupled to the radio, the plurality of antennas servicing a broadcast area that has a 360 degree coverage area. Each of the plurality of antennas transmits and receives in an isolated sub-sector of the 360 degree coverage area.
Description
FIELD OF THE INVENTION

The present technology is generally described as providing quad-sector antenna that use circular polarization. According to some embodiments, the present technology is directed to systems and methods for providing a MIMO capable antenna with unique properties. In some embodiments, a 4×4 MIMO capable antenna is provided with unique properties. The use of circular polarization by the antennas ensures that both vertical and horizontal polarizations are energized to the full extent provided by local regulations.


BACKGROUND

MIMO systems in general utilize multiple antennas at both the transmitter and receiver to improve communication performance. While not necessarily scaling linearly with antenna count, MIMO systems allow for the communication of different information on each of a plurality of antennas, generally using the same frequency, allowing a new dimension of scalability in high throughput communication. These MIMO systems exploit the use of spatial, polarization, time and/or frequency diversity to achieve orthogonality between multiple data streams transmitted simultaneously. Advanced downlink multi-user MIMO (MU-MIMO) systems takes advantage of the potential orthogonality between distinct receivers, allowing a single transmitter node to communicate with multiple receiver nodes simultaneously, sending unique data streams per receiver. Uplink MU-MIMO systems are also possible, whereby multiple nodes can simultaneously send unique streams to one or more other nodes. Exemplary systems that utilize MIMO technology include, but are not limited to, Wi-Fi networks, wireless Internet service providers (ISP), worldwide interoperability for microwave access (WiMAX) systems, and 4G long-term evolution (LTE) data transmission systems.


SUMMARY

In some embodiments, the present technology is directed to a MIMO system comprising: (a) a radio; and (b) at least four antennas coupled to the radio, the four antennas servicing a broadcast area that has a 360 degree coverage area, wherein each of the plurality of four antennas transmits and receives in an isolated sub-sector of the 360 degree coverage area.


In some embodiments, the present technology is directed to a MIMO system comprising: (a) a radio; and (b) at least four antennas coupled to the radio, the four antennas servicing a broadcast area that has a 360 degree coverage area, wherein each of the four antennas transmits and receives in a sub-sector of the 360 degree coverage area, wherein adjacent subsectors at least partially overlap one another.


In some embodiments, the present technology is directed to a MIMO system comprising: (a) a radio; and (b) a substrate comprising a plurality of antennas arranged in a linear pattern, each of the plurality of antennas producing a signal that of cardioid pattern, wherein a combination of signals of the plurality of antennas produce a 360 degree coverage area.





BRIEF DESCRIPTION OF THE DRAWINGS

Certain embodiments of the present technology are illustrated by the accompanying figures. It will be understood that the figures are not necessarily to scale and that details not necessary for an understanding of the technology or that render other details difficult to perceive is omitted. It will be understood that the technology is not necessarily limited to the particular embodiments illustrated herein.



FIG. 1 is a schematic diagram of an exemplary MIMO system that is constructed in accordance with the present technology, having antennas that broadcast in a fixed and non-overlapping manner;



FIG. 2 is a perspective view of a linear array of antennas that can be utilized with an exemplary MIMO system that is constructed in accordance with the present technology;



FIG. 3A is a schematic diagram of another exemplary MIMO system that is constructed in accordance with the present technology, having adjacent antennas that have broadcast patterns that at least partially overlap;



FIG. 3B illustrates a broadcast pattern generated by the exemplary MIMO system of FIG. 3A; and



FIG. 4 illustrates an exemplary computing system that is used to implement embodiments according to the present technology.





DESCRIPTION OF EXEMPLARY EMBODIMENTS

While this technology is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail several specific embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the technology and is not intended to limit the technology to the embodiments illustrated.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


It will be understood that like or analogous elements and/or components, referred to herein, is identified throughout the drawings with like reference characters. It will be further understood that several of the figures are merely schematic representations of the present technology. As such, some of the components may have been distorted from their actual scale for pictorial clarity.


In some embodiments, according to the present technology, four arrays of vertically aligned patch antennas provide a 4×4 multiple-input multiple-output (MIMO) capable antenna with unique properties. The circular polarization emitted from the antennas ensures that both vertical and horizontal polarizations are energized to the full extent permitted by local regulations. Alternating between right hand circular polarization (RHCP) and left hand circular polarization (LHCP) at 90-degree intervals facilitates 2×2 MIMO communication to remote clients provided that the azimuthal response of the arrays adequately overlap one another.


In general, circular polarization occurs when elements of an antenna produce an electromagnetic wave (e.g., generated field) that varies rotationally in a direction of propagation. More specifically, circular polarization is comprised of two orthogonal linear polarized waves which are 90 degrees out of phase.


In one embodiment this system operates as an access point (AP). Four channels are implemented in various configurations in some exemplary embodiments. In one access point embodiment, the four channels are connected to four high gain antennas pointed in four different directions. For example, each antenna is positioned facing outward at a 90 degree angle relative to adjacent antennae. A 360 degree pickup (e.g., coverage area) is achieved in this manner, where each antenna broadcasts in an approximately 90 degree coverage area. For example, first and third antennas are disposed 180 degrees out of phase relative to one another and second and fourth antennas are disposed 180 degrees out of phase relative to one another. Generally, the first, second, third, and fourth isolated sub-sectors each occupy approximately 90 degrees of the 360 degree coverage area.


In another access point embodiment, a linear array of elements is created. The linear array is implemented a series feed or a corporate feed using patches, discs, helical coils, etc. The cardioid pattern of the antennas crushes down the vertical axis, when arranged in a linear array, producing a donut pickup pattern that forms a broadcast/pickup area of approximately 360 degrees. Such a pattern is desirable for an access point, which services wireless devices located at any direction around the AP.


Another embodiment comprises a radio that is coupled to four antennas in order to achieve a 360 degree pickup. Thus, in some embodiments the system includes a four sector antenna with a radio combined. Coupling is performed with Ethernet and Power over Ethernet (POE), and the radio is run at one Gigabit/sec, for example.


For example, FIG. 1 illustrates an exemplary MIMO system 100 that comprises a plurality of circularly polarized antennas 110-125, where antenna broadcasts in a fixed direction over a coverage area.


The plurality of circularly polarized antennas 110-125 are coupled electrically and communicatively to a MIMO radio 105. The MIMO radio 105 controls the transmission and/or receiver scheduling for each of the plurality of circularly polarized antennas 110-125, as well as the data that is transmitted. In some embodiments, antenna 110 broadcasts in area 130, antenna 115 broadcasts in area 135, antenna 120 broadcasts in 145, and antenna 125 broadcasts in area 140.


In general, the MIMO radio 105 is configured to control antenna 110 such that it transmits signals using a first and distinct primary polarization, while antenna 115 transmits signals using a secondary polarization that is orthogonal to the primary polarization. Antenna 120 transmits signals using the primary polarization and antenna 125 transmits signals using the secondary polarization. Advantageously, the adjacent antennae coupled to the MIMO radio 105 alternate in their polarization, using either a primary or secondary polarization.


To be sure, each antenna can be categorized as having some angular orientation (e.g., vertical, horizontal, slant 45°, or other angle) as well as polarity of a particular type (e.g., linear, right circular or left circular). The exact orientation of a particular antenna of the present technology can vary anywhere between purely horizontal and purely vertical (and any angle therebetween) as long as the antennas, which are adjacent to this particular antenna, are broadcasting in a manner that is orthogonal thereto.


In a more detailed, but non-limiting example, antenna 110 transmits signals in area 130 in a right handed circular polarization pattern (primary polarization). Antenna 115 transmits signals in area 135 in a left handed circular polarization pattern (secondary and orthogonal polarization). Antenna 120 transmits signals in area 145 in a right handed circular polarization pattern, while antenna 125 transmits signals in area 140 in a right handed circular polarization pattern. It will be understood that polarization, both left handed and right handed occurs both in transmission modes and receive modes for the antennae. This example is merely provided for explaining a non-limiting way of implementing the present technology. Thus while the primary polarization in this example is right handed circularity and the secondary left handed circularity, it will be understood that other permutations can also likewise be utilized. To be sure, the antennas can be configured to broadcast, for example, vertically, horizontally, or in some instances using a slant 45° configuration, such as common 4G LTE systems. Again, the exact orientation of an antenna of the present technology can vary anywhere between purely horizontal and purely vertical (and any angle therebetween) as long as the antennas which are adjacent to this antenna are broadcasting in a manner that is orthogonal thereto.


Other arrangements and configurations of antennae are utilized, although it is advantageous that antennas in a MIMO system can alternate in their polarity with respect to their right-handedness and left-handedness or vertical and horizontal polarity. For example, if an antenna is right handed in its polarization, adjacent antennae, such as antennae that broadcast in adjacent sectors is left handed in their polarization.


Again, each antenna (or a plurality thereof) is vertically polarized or horizontally polarized. The patterns are made tighter (e.g., more directionally focused) in a horizontal direction. However, overlapping the patterns slightly allows for signal pickup from two adjacent sides at locations relatively close to the access point. Such overlapping accomplishes a 2×2 MIMO connection if the signals from the adjacent sides are different polarizations relative to one another. An exemplary overlapping configuration to accomplish a 2×2 MIMO comprises a vertical-horizontal-vertical-horizontal arrangement of antennae around the 360 configuration.


For example, FIG. 3A illustrates an exemplary MIMO system 300 that comprises a plurality of circularly polarized antennas 310-325, where antenna broadcasts in a fixed direction over a coverage area. The sub-sectors over which adjacent antennas broadcast and/or receive at least partially overlap. For example, overlap 350 shows an area of overlapping broadcast patterns between individual sub-sectors. Antennas 310 and 320 are left handed polarized, while antennas 315 and 325 are right handed polarized.


The plurality of circularly polarized antennas 310-325 are coupled electrically and communicatively to a MIMO radio 305. The MIMO radio 305 controls the transmission and/or receiver scheduling for each of the plurality of circularly polarized antennas 310-325, as well as the data that is transmitted. In some embodiments, antenna 310 broadcasts in area 330, antenna 315 broadcasts in area 335, antenna 320 broadcasts in area 340, and antenna 325 broadcasts in area 345. An area is also referred to as a sub-sector of the entire coverage area for the MIMO system 300.


Antenna 310 broadcast area overlaps the broadcast areas 335 and 340 of adjacent antennas. As mentioned above, this overlap of signal area allows for MIMO signal transmission/receipt. It will be understood that the term “broadcast” as a modifier, is understood to be a “coverage” inasmuch as the antennas both broadcast and receive within a “broadcast area”, as controlled by the MIMO radio 305. Thus, a “broadcast area” should be understood as an area that allows for both transmission and receiving of signals, not just transmission or receiving along, although in some embodiments, antennas is dedicated to either transmitting or receiving signals only.


In general, the MIMO radio is configured to control antenna 310 such that it transmits signals using a primary polarization, while antenna 315 transmits signals using a secondary polarization. Antenna 320 transmits signals using the primary polarization and antenna 325 transmits signals using the secondary polarization. Advantageously, the adjacent antennae coupled to the MIMO radio alternate in their polarization, using either a primary or secondary polarization.


In accordance with the present disclosure, antenna 310 transmits signals in area 330 in a left handed circular polarization pattern. Antenna 315 transmits signals in area 335 in a right handed circular polarization pattern. Antenna 320 transmits signals in area 345 in a left handed circular polarization pattern, while antenna 325 transmits signals in area 340 in a right handed circular polarization pattern. It will be understood that polarization, both left handed and right handed occurs both in transmission modes and receive modes for the antennae.


Such a configuration allows radiation in full power extent as permitted by local regulations. For example, under FCC regulations, 47 CFR 15.407 limits the amount of effective isotropic radiated power (EIRP) per polarization orientation for unlicensed radiators. The Unlicensed National Information Infrastructure (U-NII), the upper range (U-NII-3), allows 53 dBm EIRP per polarization in point-to-point applications. In point-to-multipoint applications, U-NII-3 allows 36 dBm EIRP per polarization.


Circular polarization diversity in both transmission and reception, as described above (e.g., RHCP-LHCP-RHCP-LHCP or other similar arrangements), allows for flooding all the polarizations through use of reverse polarization. The flooding provides additional power, for example, 3 dB (or another value) of power. The EIRP appears constant and in some embodiments double the power is achieved.



FIG. 2 illustrates an exemplary array 200 that includes four elements 205-220 that are arranged onto a substrate 225. The elements 205-220 are shown as being clocked at 90 degrees relative to one another, but these elements need not be clocked and only arranged so as to allow for alternating right handed and left handed polarization. While the example provided above contemplates the use of four elements, it will be understood that any number of elements is utilized.



FIG. 3B illustrates a broadcast pattern 355 that is created, for example, by the MIMO system 300 of FIG. 3A. That is, the MIMO radio and its plurality of circularly polarized antennas 310-325 create the broadcast pattern 355. The broadcast pattern 355 of the combined effort of antennas 310-325 is illustrated in contrast with the more irregular broadcast pattern 360 of a single element antenna (not shown).



FIG. 4 illustrates an exemplary computing system 400 (also referenced as system 400) that is used to implement an embodiment of the present technology. The computing system 400 is implemented in, for example, the MIMO radios described above. The computing system 400 of FIG. 4 includes one or more processors 410 and memory 420. Main memory 420 stores, in part, instructions and data for execution by processor 410. Main memory 420 can store the executable code when the system 400 is in operation. The system 400 of FIG. 4 may further include a mass storage device 430, portable storage medium drive(s) 440, output devices 450, user input devices 460, a graphics display 470, and other peripheral devices 480.


The components shown in FIG. 4 are depicted as being connected via a single bus 490. The components are connected through one or more data transport means. Processor unit 410 and main memory 420 is connected via a local microprocessor bus, and the mass storage device 430, peripheral device(s) 480, portable storage device 440, and graphics display 470 is connected via one or more input/output (I/O) buses.


Mass storage device 430, which is implemented with a magnetic disk drive or an optical disk drive, is a non-volatile storage device for storing data and instructions for use by processor unit 410. Mass storage device 430 can store the system software for implementing embodiments of the present technology for purposes of loading that software into main memory 420.


Portable storage device 440 operates in conjunction with a portable non-volatile storage medium, such as a floppy disk, compact disk or digital video disc, to input and output data and code to and from the computing system 400 of FIG. 4. The system software for implementing embodiments of the present technology is stored on such a portable medium and input to the computing system 400 via the portable storage device 440.


Input devices 460 provide a portion of a user interface. Input devices 460 may include an alphanumeric keypad, such as a keyboard, for inputting alphanumeric and other information, or a pointing device, such as a mouse, a trackball, stylus, or cursor direction keys. Additionally, the system 400 as shown in FIG. 4 includes output devices 450. Suitable output devices include speakers, printers, network interfaces, and monitors.


Graphics display 470 may include a liquid crystal display (LCD) or other suitable display device. Graphics display 470 receives textual and graphical information, and processes the information for output to the display device.


Peripherals 480 may include any type of computer support device to add additional functionality to the computing system. Peripheral device(s) 480 may include a modem or a router.


The components contained in the computing system 400 of FIG. 4 are those typically found in computing systems that is suitable for use with embodiments of the present technology and are intended to represent a broad category of such computer components that are well known in the art. Thus, the computing system 400 of FIG. 4 can be a personal computer, hand held computing system, telephone, mobile computing system, workstation, server, minicomputer, mainframe computer, or any other computing system. The computer can also include different bus configurations, networked platforms, multi-processor platforms, etc. Various operating systems can be used including UNIX, Linux, Windows, Macintosh OS, Palm OS, and other suitable operating systems.


Some of the above-described functions are composed of instructions that are stored on storage media (e.g., computer-readable medium). The instructions is retrieved and executed by the processor. Some examples of storage media are memory devices, tapes, disks, and the like. The instructions are operational when executed by the processor to direct the processor to operate in accord with the technology. Those skilled in the art are familiar with instructions, processor(s), and storage media.


It is noteworthy that any hardware platform suitable for performing the processing described herein is suitable for use with the technology. The terms “computer-readable storage medium” and “computer-readable storage media” as used herein refer to any medium or media that participate in providing instructions to a CPU for execution. Such media can take many forms, including, but not limited to, non-volatile media, volatile media and transmission media. Non-volatile media include, for example, optical or magnetic disks, such as a fixed disk. Volatile media include dynamic memory, such as system RAM. Transmission media include coaxial cables, copper wire and fiber optics, among others, including the wires that comprise one embodiment of a bus. Transmission media can also take the form of acoustic or light waves, such as those generated during radio frequency (RF) and infrared (IR) data communications. Common forms of computer-readable media include, for example, a floppy disk, a flexible disk, a hard disk, magnetic tape, any other magnetic medium, a CD-ROM disk, digital video disk (DVD), any other optical medium, any other physical medium with patterns of marks or holes, a RAM, a PROM, an EPROM, an EEPROM, a FLASHEPROM, any other memory chip or data exchange adapter, a carrier wave, or any other medium from which a computer can read.


Various forms of computer-readable media are involved in carrying one or more sequences of one or more instructions to a CPU for execution. A bus carries the data to system RAM, from which a CPU retrieves and executes the instructions. The instructions received by system RAM can optionally be stored on a fixed disk either before or after execution by a CPU.


Computer program code for carrying out operations for aspects of the present invention is written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer is connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection is made to an external computer (for example, through the Internet using an Internet Service Provider).


The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. Exemplary embodiments were chosen and described in order to best explain the principles of the present technology and its practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.


Aspects of the present invention are described above with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions is provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.


These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.


The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.


The flowchart and block diagrams in the figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.


While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. The descriptions are not intended to limit the scope of the technology to the particular forms set forth herein. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments. It should be understood that the above description is illustrative and not restrictive. To the contrary, the present descriptions are intended to cover such alternatives, modifications, and equivalents as is included within the spirit and scope of the technology as defined by the appended claims and otherwise appreciated by one of ordinary skill in the art. The scope of the technology should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.

Claims
  • 1. A MIMO system comprising: a radio; andat least four antennas coupled to the radio, the at least four antennas servicing a broadcast area that has a 360 degree coverage area, wherein each of the at least four antennas transmits and receives in a sub-sector of the 360 degree coverage area, wherein a first of the at least four antennas transmits and receives signals in a first isolated sub-sector using a primary right-handed circular polarization and comprises a first angular orientation, a second of the at least four antennas transmits and receives signals in a second isolated sub-sector using a secondary left-handed circular orthogonal polarization and has a second angular orientation, a third of the at least four antennas transmits and receives signals in a third isolated sub-sector using the primary right-handed circular polarization and has a third angular orientation, and a fourth of the at least four antennas transmits and receives signals in a fourth isolated sub-sector using the secondary left-handed circular orthogonal polarization and has a fourth angular orientation, wherein the first angular orientation and the second angular orientation are selected to allow the first and the second of the at least four antennas to broadcast orthogonally relative to one another, wherein the at least four antennas are capable of providing circular polarization diversity in both transmission and reception allowing the radio to flood all polarizations using reverse polarization to provide additional power, and wherein the first and third of the at least four antennas are disposed 180 degrees out of phase relative to one another and the second and fourth of the at least four antennas are disposed 180 degrees out of phase relative to one another.
  • 2. The MIMO system according to claim 1, wherein the first, second, third, and fourth isolated sub-sectors each occupy approximately 90 degrees of the 360 degree coverage area.
  • 3. The MIMO system according to claim 1, wherein the additional power is approximately double.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the priority benefit of U.S. Provisional Application No. 61/774,323, filed on Mar. 7, 2013, which is hereby incorporated by reference herein in its entirety including all reference cited therein.

US Referenced Citations (354)
Number Name Date Kind
2735993 Humphrey Feb 1956 A
3182129 Clark et al. May 1965 A
D227476 Kennedy Jun 1973 S
4188633 Frazita Feb 1980 A
4402566 Powell et al. Sep 1983 A
D273111 Hirata et al. Mar 1984 S
4543579 Teshirogi Sep 1985 A
4562416 Sedivec Dec 1985 A
4626863 Knop et al. Dec 1986 A
4835538 McKenna et al. May 1989 A
4866451 Chen Sep 1989 A
4893288 Maier et al. Jan 1990 A
4903033 Tsao Feb 1990 A
4986764 Eaby et al. Jan 1991 A
5015195 Piriz May 1991 A
5226837 Cinibulk et al. Jul 1993 A
5231406 Sreenivas Jul 1993 A
D346598 McCay et al. May 1994 S
D355416 McCay et al. Feb 1995 S
5389941 Yu Feb 1995 A
5491833 Hamabe Feb 1996 A
5513380 Ivanov et al. Apr 1996 A
5539361 Davidovitz Jul 1996 A
5561434 Yamazaki Oct 1996 A
D375501 Lee et al. Nov 1996 S
5580264 Aoyama et al. Dec 1996 A
5684495 Dyott et al. Nov 1997 A
D389575 Grasfield et al. Jan 1998 S
5724666 Dent Mar 1998 A
5742911 Dumbrill Apr 1998 A
5746611 Brown et al. May 1998 A
5764696 Barnes Jun 1998 A
5797083 Anderson Aug 1998 A
5831582 Muhlhauser Nov 1998 A
5966102 Runyon Oct 1999 A
5995063 Somoza et al. Nov 1999 A
6014372 Kent et al. Jan 2000 A
6067053 Runyon et al. May 2000 A
6137449 Kildal Oct 2000 A
6140962 Groenenboom Oct 2000 A
6176739 Denlinger et al. Jan 2001 B1
6216266 Eastman et al. Apr 2001 B1
6271802 Clark Aug 2001 B1
6304762 Myers Oct 2001 B1
D455735 Winslow Apr 2002 S
6421538 Byrne Jul 2002 B1
6716063 Bryant et al. Apr 2004 B1
6754511 Halford et al. Jun 2004 B1
6847653 Smiroldo Jan 2005 B1
D501848 Uehara et al. Feb 2005 S
6853336 Asano et al. Feb 2005 B2
6864837 Runyon et al. Mar 2005 B2
6877277 Kussel et al. Apr 2005 B2
6962445 Zimmel et al. Nov 2005 B2
7075492 Chen et al. Jul 2006 B1
D533899 Ohashi et al. Dec 2006 S
7173570 Wensink Feb 2007 B1
7187328 Tanaka et al. Mar 2007 B2
7193562 Shtrom Mar 2007 B2
7212162 Jung et al. May 2007 B2
7212163 Huang May 2007 B2
7245265 Kienzle et al. Jul 2007 B2
7253783 Chiang Aug 2007 B2
7264494 Kennedy et al. Sep 2007 B2
7281856 Grzegorzewska et al. Oct 2007 B2
7292198 Shtrom Nov 2007 B2
7306485 Masuzaki Dec 2007 B2
7316583 Mistarz Jan 2008 B1
7324057 Argaman et al. Jan 2008 B2
D566698 Choi et al. Apr 2008 S
7362236 Hoiness Apr 2008 B2
7369095 Hirtzlin et al. May 2008 B2
7380984 Wuester Jun 2008 B2
7431602 Corona Oct 2008 B2
7498896 Shi Mar 2009 B2
7498996 Shtrom Mar 2009 B2
7507105 Peters et al. Mar 2009 B1
7522095 Wasiewicz et al. Apr 2009 B1
7542717 Green, Sr. et al. Jun 2009 B2
7581976 Liepold et al. Sep 2009 B2
7586891 Masciulli Sep 2009 B1
7616959 Spenik et al. Nov 2009 B2
7646343 Shtrom Jan 2010 B2
7675473 Kienzle et al. Mar 2010 B2
7675474 Shtrom Mar 2010 B2
7726997 Kennedy et al. Jun 2010 B2
7778226 Rayzman et al. Aug 2010 B2
7857523 Masuzaki Dec 2010 B2
7929914 Tegreene Apr 2011 B2
RE42522 Zimmel et al. Jul 2011 E
8009646 Lastinger Aug 2011 B2
8069465 Bartholomay et al. Nov 2011 B1
8111678 Lastinger Feb 2012 B2
8254844 Kuffner Aug 2012 B2
8270383 Lastinger Sep 2012 B2
8275265 Kobyakov et al. Sep 2012 B2
8325695 Lastinger Dec 2012 B2
D674787 Tsuda et al. Jan 2013 S
8345651 Lastinger Jan 2013 B2
8385305 Negus Feb 2013 B1
8425260 Seefried et al. Apr 2013 B2
8482478 Hartenstein Jul 2013 B2
8515434 Narendran et al. Aug 2013 B1
8515495 Shang Aug 2013 B2
D694740 Apostolakis Dec 2013 S
8777660 Chiarelli et al. Jul 2014 B2
8792759 Benton et al. Jul 2014 B2
8827729 Gunreben et al. Sep 2014 B2
8836601 Sanford et al. Sep 2014 B2
8848389 Kawamura et al. Sep 2014 B2
8870069 Bellows Oct 2014 B2
8935122 Stisser Jan 2015 B2
9001689 Hinman et al. Apr 2015 B1
9019874 Choudhury et al. Apr 2015 B2
9077071 Shtrom Jul 2015 B2
9107134 Belser et al. Aug 2015 B1
9130305 Ramos et al. Sep 2015 B2
9161387 Fink et al. Oct 2015 B2
9179336 Fink et al. Nov 2015 B2
9191081 Hinman et al. Nov 2015 B2
D752566 Hinman et al. Mar 2016 S
9295103 Fink et al. Mar 2016 B2
9362629 Hinman et al. Jun 2016 B2
9391375 Bales Jul 2016 B1
9407012 Shtrom Aug 2016 B2
9431702 Hartenstein Aug 2016 B2
9504049 Hinman et al. Nov 2016 B2
9531114 Ramos et al. Dec 2016 B2
9537204 Cheng Jan 2017 B2
9577340 Fakharzadeh et al. Feb 2017 B2
9693388 Fink et al. Jun 2017 B2
9780892 Hinman et al. Oct 2017 B2
9843940 Hinman et al. Dec 2017 B2
9871302 Hinman et al. Jan 2018 B2
9888485 Hinman et al. Feb 2018 B2
9930592 Hinman Mar 2018 B2
9949147 Hinman et al. Apr 2018 B2
9986565 Fink et al. May 2018 B2
9998246 Hinman et al. Jun 2018 B2
10028154 Elson Jul 2018 B2
10090943 Hinman et al. Oct 2018 B2
10096933 Ramos et al. Oct 2018 B2
10117114 Hinman et al. Oct 2018 B2
10186786 Hinman et al. Jan 2019 B2
10200925 Hinman Feb 2019 B2
10257722 Hinman et al. Apr 2019 B2
10425944 Fink et al. Sep 2019 B2
10447417 Hinman et al. Oct 2019 B2
10511074 Eberhardt et al. Dec 2019 B2
10595253 Hinman Mar 2020 B2
10616903 Hinman et al. Apr 2020 B2
20010033600 Yang Oct 2001 A1
20020102948 Stanwood et al. Aug 2002 A1
20020159434 Gosior et al. Oct 2002 A1
20030013452 Hunt et al. Jan 2003 A1
20030027577 Brown et al. Feb 2003 A1
20030169763 Choi et al. Sep 2003 A1
20030222831 Dunlap Dec 2003 A1
20030224741 Sugar et al. Dec 2003 A1
20040002357 Benveniste Jan 2004 A1
20040029549 Fikart Feb 2004 A1
20040110469 Judd et al. Jun 2004 A1
20040120277 Holur et al. Jun 2004 A1
20040155819 Martin et al. Aug 2004 A1
20040196812 Barber Oct 2004 A1
20040196813 Ofek Oct 2004 A1
20040240376 Wang et al. Dec 2004 A1
20040242274 Corbett Dec 2004 A1
20050012665 Runyon et al. Jan 2005 A1
20050032479 Miller et al. Feb 2005 A1
20050058111 Hung Mar 2005 A1
20050124294 Wentink Jun 2005 A1
20050143014 Li et al. Jun 2005 A1
20050195758 Chitrapu Sep 2005 A1
20050227625 Diener Oct 2005 A1
20050254442 Proctor, Jr. et al. Nov 2005 A1
20050271056 Kaneko Dec 2005 A1
20050275527 Kates Dec 2005 A1
20060025072 Pan Feb 2006 A1
20060072518 Pan et al. Apr 2006 A1
20060098592 Proctor, Jr. et al. May 2006 A1
20060099940 Pfleging et al. May 2006 A1
20060132359 Chang Jun 2006 A1
20060132602 Muto et al. Jun 2006 A1
20060172578 Parsons Aug 2006 A1
20060187952 Kappes et al. Aug 2006 A1
20060211430 Persico Sep 2006 A1
20060276073 McMurray et al. Dec 2006 A1
20070001910 Yamanaka et al. Jan 2007 A1
20070019664 Benveniste Jan 2007 A1
20070035463 Hirabayashi Feb 2007 A1
20070060158 Medepalli et al. Mar 2007 A1
20070132643 Durham et al. Jun 2007 A1
20070173199 Sinha Jul 2007 A1
20070173260 Love et al. Jul 2007 A1
20070202809 Lastinger et al. Aug 2007 A1
20070210974 Chiang Sep 2007 A1
20070223701 Emeott et al. Sep 2007 A1
20070238482 Rayzman et al. Oct 2007 A1
20070255797 Dunn et al. Nov 2007 A1
20070268848 Khandekar et al. Nov 2007 A1
20080109051 Splinter et al. May 2008 A1
20080112380 Fischer May 2008 A1
20080192707 Xhafa et al. Aug 2008 A1
20080218418 Gillette Sep 2008 A1
20080231541 Teshirogi et al. Sep 2008 A1
20080242342 Rofougaran Oct 2008 A1
20090046673 Kaidar Feb 2009 A1
20090052362 Meier et al. Feb 2009 A1
20090059794 Frei Mar 2009 A1
20090075606 Shtrom Mar 2009 A1
20090096699 Chiu et al. Apr 2009 A1
20090232026 Lu Sep 2009 A1
20090233475 Mildon et al. Sep 2009 A1
20090291690 Guvenc et al. Nov 2009 A1
20090315792 Miyashita et al. Dec 2009 A1
20100029282 Stamoulis et al. Feb 2010 A1
20100039340 Brown Feb 2010 A1
20100046650 Jongren et al. Feb 2010 A1
20100067505 Fein et al. Mar 2010 A1
20100085950 Sekiya et al. Apr 2010 A1
20100091818 Sen et al. Apr 2010 A1
20100103065 Shtrom et al. Apr 2010 A1
20100103066 Shtrom et al. Apr 2010 A1
20100136978 Cho et al. Jun 2010 A1
20100151877 Lee et al. Jun 2010 A1
20100167719 Sun Jul 2010 A1
20100171665 Nogami Jul 2010 A1
20100171675 Borja et al. Jul 2010 A1
20100189005 Bertani et al. Jul 2010 A1
20100202613 Ray et al. Aug 2010 A1
20100210147 Hauser Aug 2010 A1
20100216412 Rofougaran Aug 2010 A1
20100225529 Landreth Sep 2010 A1
20100238083 Malasani Sep 2010 A1
20100304680 Kuffner Dec 2010 A1
20100311321 Norin Dec 2010 A1
20100315307 Syed et al. Dec 2010 A1
20100322219 Fischer et al. Dec 2010 A1
20110006956 McCown Jan 2011 A1
20110028097 Memik et al. Feb 2011 A1
20110032159 Wu et al. Feb 2011 A1
20110044186 Jung et al. Feb 2011 A1
20110090129 Weily et al. Apr 2011 A1
20110103309 Wang et al. May 2011 A1
20110111715 Buer et al. May 2011 A1
20110112717 Resner May 2011 A1
20110133996 Alapuranen Jun 2011 A1
20110170424 Safavi Jul 2011 A1
20110172916 Pakzad et al. Jul 2011 A1
20110182260 Sivakumar et al. Jul 2011 A1
20110182277 Shapira Jul 2011 A1
20110194644 Liu et al. Aug 2011 A1
20110206012 Youn et al. Aug 2011 A1
20110241969 Zhang et al. Oct 2011 A1
20110243291 McAllister et al. Oct 2011 A1
20110256874 Hayama et al. Oct 2011 A1
20110291914 Lewry et al. Dec 2011 A1
20120008542 Koleszar et al. Jan 2012 A1
20120040700 Gomes et al. Feb 2012 A1
20120057533 Junell et al. Mar 2012 A1
20120093091 Kang et al. Apr 2012 A1
20120115487 Josso May 2012 A1
20120134280 Rotvold et al. May 2012 A1
20120140651 Nicoara et al. Jun 2012 A1
20120238201 Du et al. Sep 2012 A1
20120263145 Marinier et al. Oct 2012 A1
20120282868 Hahn Nov 2012 A1
20120299789 Orban et al. Nov 2012 A1
20120314634 Sekhar Dec 2012 A1
20130003645 Shapira et al. Jan 2013 A1
20130005350 Campos et al. Jan 2013 A1
20130023216 Moscibroda et al. Jan 2013 A1
20130044028 Lea Feb 2013 A1
20130064161 Hedayat et al. Mar 2013 A1
20130082899 Gomi Apr 2013 A1
20130095747 Moshfeghi Apr 2013 A1
20130128858 Zou et al. May 2013 A1
20130176902 Wentink et al. Jul 2013 A1
20130182652 Tong et al. Jul 2013 A1
20130195081 Merlin et al. Aug 2013 A1
20130210457 Kummetz Aug 2013 A1
20130223398 Li Aug 2013 A1
20130234898 Leung et al. Sep 2013 A1
20130271319 Trerise Oct 2013 A1
20130286950 Pu Oct 2013 A1
20130286959 Lou et al. Oct 2013 A1
20130288735 Guo Oct 2013 A1
20130301438 Li et al. Nov 2013 A1
20130322276 Pelletier et al. Dec 2013 A1
20130322413 Pelletier et al. Dec 2013 A1
20140024328 Balbien et al. Jan 2014 A1
20140051357 Steer et al. Feb 2014 A1
20140098748 Chan et al. Apr 2014 A1
20140113676 Hamalainen et al. Apr 2014 A1
20140145890 Ramberg et al. May 2014 A1
20140154895 Poulsen et al. Jun 2014 A1
20140185494 Yang et al. Jul 2014 A1
20140191918 Cheng et al. Jul 2014 A1
20140198867 Sturkovich et al. Jul 2014 A1
20140206322 Dimou et al. Jul 2014 A1
20140225788 Schulz et al. Aug 2014 A1
20140233613 Fink et al. Aug 2014 A1
20140235244 Hinman Aug 2014 A1
20140253402 Hinman et al. Sep 2014 A1
20140254700 Hinman et al. Sep 2014 A1
20140256166 Ramos et al. Sep 2014 A1
20140320306 Winter Oct 2014 A1
20140320377 Cheng et al. Oct 2014 A1
20140328238 Seok et al. Nov 2014 A1
20140355578 Fink et al. Dec 2014 A1
20140355584 Fink et al. Dec 2014 A1
20150002335 Hinman Jan 2015 A1
20150002354 Knowles Jan 2015 A1
20150015435 Shen et al. Jan 2015 A1
20150116177 Powell et al. Apr 2015 A1
20150156642 Sobczak et al. Jun 2015 A1
20150215952 Hinman et al. Jul 2015 A1
20150256275 Hinman et al. Sep 2015 A1
20150263816 Hinman et al. Sep 2015 A1
20150319584 Fink et al. Nov 2015 A1
20150321017 Perryman et al. Nov 2015 A1
20150325945 Ramos et al. Nov 2015 A1
20150327272 Fink et al. Nov 2015 A1
20150365866 Hinman et al. Dec 2015 A1
20160119018 Lindgren et al. Apr 2016 A1
20160149634 Kalkunte May 2016 A1
20160149635 Hinman et al. May 2016 A1
20160211583 Lee et al. Jul 2016 A1
20160240929 Hinman et al. Aug 2016 A1
20160338076 Hinman et al. Nov 2016 A1
20160365666 Ramos et al. Dec 2016 A1
20160366601 Hinman et al. Dec 2016 A1
20170048647 Jung et al. Feb 2017 A1
20170201028 Eberhardt et al. Jul 2017 A1
20170238151 Fink et al. Aug 2017 A1
20170294975 Hinman et al. Oct 2017 A1
20180034166 Hinman Feb 2018 A1
20180035317 Hinman et al. Feb 2018 A1
20180083365 Hinman et al. Mar 2018 A1
20180084563 Hinman et al. Mar 2018 A1
20180160353 Hinman Jun 2018 A1
20180192305 Hinman et al. Jul 2018 A1
20180199345 Fink et al. Jul 2018 A1
20180241491 Hinman et al. Aug 2018 A1
20190006789 Ramos et al. Jan 2019 A1
20190182686 Hinman et al. Jun 2019 A1
20190214699 Eberhardt et al. Jul 2019 A1
20190215745 Hinman Jul 2019 A1
20190273326 Sanford et al. Sep 2019 A1
20200015231 Fink et al. Jan 2020 A1
20200036465 Hinman et al. Jan 2020 A1
20200067164 Eberhardt et al. Feb 2020 A1
20200083614 Sanford et al. Mar 2020 A1
Foreign Referenced Citations (13)
Number Date Country
303453662 Nov 2015 CN
105191204 Dec 2015 CN
105191204 May 2019 CN
002640177 Feb 2015 EP
3491697 Jun 2019 EP
WO2014137370 Sep 2014 WO
WO2014138292 Sep 2014 WO
WO2014193394 Dec 2014 WO
WO2015112627 Jul 2015 WO
WO2017123558 Jul 2017 WO
WO2018022526 Feb 2018 WO
WO2019136257 Jul 2019 WO
WO2019168800 Sep 2019 WO
Non-Patent Literature Citations (30)
Entry
Final Office Action, dated Oct. 17, 2016, U.S. Appl. No. 14/639,976, filed Mar. 5, 2015.
Non-Final Office Action, dated Oct. 26, 2016, U.S. Appl. No. 15/139,225, filed Apr. 26, 2016.
Notice of Allowance, dated Jul. 26, 2016, U.S. Appl. No. 14/325,307, filed Jul. 7, 2014.
Notice of Allowance, dated Aug. 16, 2016, U.S. Appl. No. 14/802,829, filed Jul. 17, 2015.
International Search Report and Written Opinion of the International Search Authority dated Jul. 1, 2014 in Patent Cooperation Treaty Application No. PCT/US2014/020880, filed Mar. 5, 2014.
Non-Final Office Action, dated Sep. 15, 2016, U.S. Appl. No. 14/183,375, filed Feb. 18, 2014.
Non-Final Office Action, dated Sep. 30, 2016, U.S. Appl. No. 14/657,942, filed Mar. 13, 2015.
Final Office Action, dated Oct. 12, 2016, U.S. Appl. No. 14/741,423, filed Jun. 16, 2015.
“International Search Report” and “Written Opinion of the International Search Authority,” dated May 23, 2019 in Patent Cooperation Treaty Application No. PCT/US2019/019462, filed Feb. 25, 2019, 8 pages.
Teshirogi, Tasuku et al., “Wideband Circularly Polarized Array Antenna with Sequential Rotations and Phase Shift of Elements,” Proceedings of the International Symposium on Antennas and Propagation, 1985, pp. 117-120.
“Sector Antennas,” Radiowaves.com, [online], [retrieved Oct. 10, 2019], Retrieved from the Internet: <URL:https://www.radiowaves.com/en/products/sector-antennas>, 4 pages.
KP Performance Antennas Search Results for Antennas, Sector, Single, [online], KPPerformance.com [retrieved Oct. 10, 2019], Retrieved from the Internet: <URL:https://www.kpperformance.com/search?Category=Antennas&Rfpsan99design=Sector&Rfpsan99option=Single&view_type=grid>, 6 pages.
Notice of Allowance dated Sep. 8, 2015 in Chinese Design Patent Application 201530058063.8, filed Mar. 11, 2015.
“Notice of Allowance,” Chinese Patent Application No. 201580000078.6, dated Feb. 11, 2019, 2 pages.
“International Search Report” and “Written Opinion of the International Search Authority,” dated Mar. 22, 2019 in Patent Cooperation Treaty Application No. PCT/US2019/012358, filed Jan. 4, 2019, 9 pages.
FCC Regulations, 47 CFR § 15.407, 63 FR 40836, Jul. 31, 1998, as amended at 69 FR 2687, Jan. 20, 2004; 69 FR 54036, Sep. 7, 2004; pp. 843-846.
Weisstein, Eric, “Electric Polarization”, Wolfram Reasearch [online], Retrieved from the Internet [retrieved Mar. 23, 2017] <URL:http://scienceworld.wolfram.com/physics/ElectricPolarization.html>, 2007, 1 page.
Liu, Lingjia et al., “Downlink MIMO in LTE-Advanced: SU-MIMO vs. MU-MIMO,” IEEE Communications Magazine, Feb. 2012, pp. 140-147.
“International Search Report” and “Written Opinion of the International Searching Authority,” Patent Cooperation Treaty Application No. PCT/US2017/012884, dated Apr. 6, 2017, 9 pages.
International Search Report and Written Opinion of the International Search Authority dated Nov. 26, 2013 in Patent Cooperation Treaty Application No. PCT/US2013/047406, filed Jun. 24, 2013.
International Search Report and Written Opinion of the International Search Authority dated Aug. 9, 2013 in Patent Cooperation Treaty Application No. PCT/US2013/043436, filed May 30, 2013.
“Office Action,” Chinese Patent Application No. 201580000078.6, dated Nov. 3, 2017, 5 pages [10 pages including translation].
“International Search Report” and “Written Opinion of the International Searching Authority,” Patent Cooperation Treaty Application No. PCT/US2017/043560, dated Nov. 16, 2017, 11 pages.
International Search Report and Written Opinion of the International Search Authority dated Jun. 29, 2015 in Patent Cooperation Treaty Application No. PCT/US2015/012285, filed Jan. 21, 2015.
Hinman et al., U.S. Appl. No. 61/774,632, filed Mar. 7, 2013.
First Official Notification dated Jun. 15, 2015 in Chinese Design Patent Application 201530058063.8, filed Mar. 11, 2015.
“Office Action,” Chinese Patent Application No. 201580000078.6, dated Jul. 30, 2018, 5 pages [11 pages including translation].
“Office Action,” Chinese Patent Application No. 201580000078.6, dated Oct. 31, 2018, 3 pages [6 pages including translation].
“Partial Supplemental European Search Report,” European Patent Application No. 17835073.2, dated Feb. 13, 2020, 17 pages.
“Wireless Access Point,” Wikipedia.org, Jan. 6, 2020 [retrieved on Feb. 3, 2020], Retrieved from the Internet: <https://en.wikipedia.org/wiki/Wireless_access_point>, 5 pages.
Related Publications (1)
Number Date Country
20140253378 A1 Sep 2014 US
Provisional Applications (1)
Number Date Country
61774323 Mar 2013 US