Quadratic program solver for MPC using variable ordering

Information

  • Patent Grant
  • 11687047
  • Patent Number
    11,687,047
  • Date Filed
    Tuesday, September 28, 2021
    3 years ago
  • Date Issued
    Tuesday, June 27, 2023
    a year ago
Abstract
A system and approach for storing factors in a quadratic programming solver of an embedded model predictive control platform. The solver may be connected to an optimization model which may be connected to a factorization module. The factorization module may incorporate a memory containing saved factors that may be connected to a factor search mechanism to find a nearest stored factor in the memory. A factor update unit may be connected to the factor search mechanism to obtain the nearest stored factor to perform a factor update. The factorization module may provide variable ordering to reduce a number of factors that need to be stored to permit the factors to be updated at zero floating point operations per unit of time.
Description
BACKGROUND

The present disclosure pertains to control systems and particularly to model predictive control. More particularly, the disclosure pertains to quadratic programming to solvers.


SUMMARY

The disclosure reveals a system and approach for storing factors in a quadratic programming solver of an embedded model predictive control platform. The solver may be connected to an optimization module which may be connected to a factorization module. The factorization module may incorporate a memory containing saved factors that may be connected to a factor search mechanism to find a nearest stored factor in the memory. A factor update unit may be connected to the factor search mechanism to obtain the nearest stored factor to perform a factor update. The factorization module may provide variable ordering to reduce a number of factors that need to be stored to permit the factors to be updated at zero floating point operations per unit of time.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 is a diagram of a formula that illustrates box constrained quadratic programming;



FIG. 2 is a diagram revealing a process incorporating variable ordering used when storing factors;



FIG. 3 is a diagram of a module in a context of an application which is integrated with an operating system and an interface;



FIG. 4 is a diagram of an embedded platform that may contain an MPC with a semi-explicit quadratic programming solver having a factorization unit with saved factors, factor search and factor update modules;



FIGS. 5 and 6 are diagrams that reveal an off-line portion and an on-line portion, respectively, of the present approach;



FIGS. 7 and 8 are diagrams that relate to variable ordering finding;



FIG. 9 is a diagram of a table pertinent to selection of factors for storage;



FIG. 10 is a diagram of an illustrative example of a factor storing scheme; and



FIG. 11 is a diagram of a table representing an illustrative example of an ordering to scheme.





DESCRIPTION

The present system and approach may incorporate one or more processors, computers, controllers, user interfaces, wireless and/or wire connections, and/or the like, in an implementation described and/or shown herein.


This description may provide one or more illustrative and specific examples or ways of implementing the present system and approach. There may be numerous other examples or ways of implementing the system and approach.


The present approach may be used for solving QP for embedded MPC application using factor updating. Advanced control problems may usually be formulated as mathematical optimization. As an example, one may mention the model predictive control (MPC) which may often be formulated as a parametric quadratic programming (QP) issue. In the MPC, it may be necessary to solve the parametric QP problem on-line and therefore there may be a need for reliable and fast numerical solvers for QP.


For standard MPC applications in process control, sampling periods may often be in the order of seconds or minutes. Such sampling periods may be long enough to solve a needed QP problem by using a standard powerful PC. MPC may often be used in other than process control applications, such as automotive and aircraft control systems. In the latter applications, sampling frequencies may be higher and the computational resources appear to be limited (CPU, memory). Therefore, if one would like to utilize the MPC control approach under such conditions, there may be a need for fast and tailored QP solvers for embedded applications with limited CPU power and memory.


The present approach appears suitable for solving small QP optimization problems in MPC applications with simple (or box) constraints. Simple constraints for optimization variables may be defined as their lower and upper bounds, “LB<=X<=UB” where X is an optimization variable, LB and UB are the lower and upper bounds, respectively. It may be used for embedded systems (e.g., automotive, aircraft, and so on).


There may be efficient solvers for solving the QP problems with simple constraints. Two basic algorithm classes may be active set solvers (ASS) and interior point solvers to (IPS). The IPS approaches may be suitable for large-scale problems while the ASS approaches may be faster for small to medium size issues. The QP problems in MPC control may be classified as small to medium size problems and therefore ASS approaches appear to be useable. The solvers may be iterative and work with a set of active constraints in each of the iterations. The set of active constraints may be updated during the iterations. During each iteration of an ASS based solver, most of the computational time may be spent on a computation of the Newton step which is in a complexity of N{circumflex over ( )}3 flops (floating point operations per second).


A basic approach may enable one to add or remove a single constraint in a working set which may not necessarily be efficient in a case where there should be large change in the active set to find the optimum.


There may be a class of ASS algorithms for solving the QP problems with simple constraints based only on a gradient projection. The gradient projection based approaches may enable one to add or remove multiple constraints from a working set in each iteration, which can enable quicker identification of a set of active constraints in the optimum. However, these approaches may use a steepest descent direction which might be inefficient and thus the convergence may be too slow, and therefore many iterations may be needed. On the other hand, each iteration may be very inexpensive since only the gradient has to be evaluated in a complexity of N{circumflex over ( )}2 flops.


Finally, there may also exist a class of algorithms which combines both previously mentioned items. The algorithms may use a gradient projection approach for quick identification of the optimal working set, and use the ASS's Newton step computation to improve the convergency, so as to decrease a number of needed iterations. However, these algorithms may involve a computation of the Newton step with a complexity of N{circumflex over ( )}3 flops in each iteration which can lead to slow computation.


The present approach may enable a decrease of the computation time at each iteration by precomputing some part of the Newton step process in combination with a gradient/Newton projection algorithm or an ASS approach or algorithm. In the ASS based algorithm, a KKT (Karush-Kuhn-Tucker) system for currently active constraints may have to be solved at each iteration by using some factorization (LDL, Cholesky, or the like). Thus, it may be possible to precompute and store all or only some factors (partially or whole) of all potential KKT matrices. During a solution, these (partial) factors may be loaded from memory, the factorization process may be finished and then used in the computation of the Newton step in a standard way.


An issue with this approach is that the number of all possible factors of all possible KKT matrices may grow rapidly with the number of QP variables (as with 2{circumflex over ( )}N). This growth may prevent the use of such algorithm for a relatively large N.


The present approach may be similar to a standard way to precompute some factors and store them and use them in the same way in the solution.


But contrary to the standard way, where the factor is computed from scratch if a combination of active constraints corresponding to an unsaved factor is encountered during the on-line computation; in the present approach, the “nearest factor” may be found in the memory and, after that, updated to obtain a factor which is afterwards used in the computation. The “nearest factor” in this sense may be the factor for which the size of the following set is smallest: {N\S}+{S\N}, where N is a set of indices of inactive constraints for a wanted factor, and S is a set of indices of inactive constraints corresponding to a stored factor. The update process may involve additional computation with complexity of N{circumflex over ( )}2 flops which is not necessarily limiting. Also, this approach may lead to the fact that radically less of the factors have to be stored and thus improve the memory limitation of the standard way.


The present approach may be implemented as a software module and be used as a core optimization solver for MPC control for embedded applications (e.g., automotive or aircraft control systems). The approach may be suitable, namely in combination with a gradient projection based QP solver.


As it was said already, one approach for solving a QP problem originated from MPC may incorporate a use of online solvers based on an active set strategy where for each iteration, the so-called Newton process may be computed for a currently estimated active set of working constraints. This may be done via solving a set of linear equations (KKT conditions) usually by a factorization approach which appears as the most computational complex part of the algorithm.


It may be possible to pre-compute and save virtually all factors of possible to combinations of a working set, and then, during the online phase, only load them from a memory to virtually completely reduce the computation burden associated with factorization. On the other hand, such approach may lead to a significant memory need which grows exponentially with a number of optimization variables.


An approach may be to exploit the fact that for box constrained OP issues, the reduced Hessian (THZ) which needs to be factored, can be obtained only be removing the rows and columns of Hessian H which corresponds to the active constraints.


Then when having the corresponding factor of such reduced Hessian with some active constraints, the factor of a new reduced Hessian for the same active constraints plus an additional one may be easily computed only by cutting off the row and column of the original reduced Hessian, i.e., by an updating process. This updating process appears much less computationally expensive (i.e., O(n{circumflex over ( )}2) instead of O(n{circumflex over ( )}3) FLOPS for a computation from scratch).


However, if a special variable ordering is used, then an updating process may be reduced to 0 FLOPS by only removing the last row and column of the factors.


Thus, a goal may be to find a variable ordering in such a way that only a few factors are stored and loaded from memory when needed and the rest of them are created from them by a “fast updating process” with 0 FLOPS complexity. This may limit the computational complexity of the factorization process and also greatly limit the memory need as compared to a case when all of the factors are stored.


A special variable ordering scheme may divide the factors according their size (number of rows) into groups and try to maximize an overlay of variable indices corresponding to inactive constraints at the beginning between the groups, i.e., to allow a multiple cut-off of rows and columns with 0 FLOPS update.


A first approach may be to precompute some factors off-line and save them and then in the on-line phase, use a factor update of the “nearest” factor for currently inactive constraints W. A factor update process may have a complexity O(n{circumflex over ( )}2) per each change—adding or removing one or more rows and/or columns.


For each saved factor, it may be saved information to which a combination of inactive constraints corresponds (such as S).


A nearest factor may be defined as the one with smallest needed changes in the N that is needed to obtain S, i.e., how many rows have to be removed from/added to the stored factor by a factor update process to obtain a factor for currently inactive constraints (those in the set N).


A second approach may be to use an ordering of variables for each combination of indices in N, such that the update process can be done with zero computational complexity first by removing rows of the saved factor.


Ak, Wk may represent a working set of constraint indices indicating which components of optimization vector are on the limits at a k-th iteration of an algorithm. Nk may represent a set of indices of constraints indicating which components of an optimization vector are free, that is not on a limit at the k-th iteration of the algorithm.



FIG. 1 is a diagram that may regard an issue to be resolved, which can be a box constrained quadratic programming as shown by formula 21 with its constraints, having a positive definite Hessian. Such issue may arise in various situations such as an MPC.



FIG. 2 is a diagram of the, present approach. A feature may incorporate is variable ordering to further reduce the factors that need to be stored allowing them to be updated in 0 FLOPs cost. At symbol 81, a set of factors of a KKT system corresponding to an only set of combinations of currently active constraints, may be precomputed and saved. Other factors may be deduced from the saved set by a factor update scheme according to symbol 82. Variable ordering (i.e., permutation matrix) may be used when storing the factors at symbol 83. Deduction of other factors in zero FLOPs just by row and column removal may be enabled according to symbol 84. A factor update scheme may be used with a non-zero cost in FLOPS to further reduce memory consumption at symbol 85. According to symbol 86, the present approach may be suitable for an active set method or a combination of a Newton step/gradient projection algorithm. The approach may also be suitable for fast embedded model predictive control as noted at symbol 87. The items of symbols 81-87 may or may not be noted in numerical order of the symbols.



FIG. 3 is a diagram of a module 13 in a context of an application 14 which is integrated with an operating system 15 and an interface 16. A user or operator 17 may interact with interface 16.



FIG. 4 is a diagram of an embedded platform 21 that may contain an MPC 16. The present approach may be placed within a higher picture relative to the surrounding systems and main idea can be captured there. The present approach may “live inside” some semi-explicit QP solver and consist of three main parts such as a memory with saved factors and algorithm with a search for a factor and a factor update algorithm.


Controller 22 may incorporate a state observer 23 connected to a semi-explicit QP solver 24. Solver 24 may have a QP optimization module 25 that encompasses a KKT system and matrix 27. Solver 24 may also have a factorization unit 26 connected to QP optimization module 25. Factorization unit 26 may have a memory 28 that contains a saved factors module 31. Saved factors module 31 may be connected to a factor search module 30 that is connected to a factor update module 29. Factor search module 30 and Factor update module may be outside of memory 28 but within factorization unit 26. Modules 31, 30 and 29 are a feature of the present approach.


An output of embedded platform 22 may be connected to a unit 32. Unit 32 may have one or more actuators 33 connected to MPC controller 22 and to a physical plant 34 in unit 22, for instance, an engine and/or an after treatment system. Unit 32 may also have one or more sensors 35 connected to physical plant 34 and to MPC controller 22.



FIG. 5 and FIG. 6 are diagrams that reveal an off-line portion 41 and an on-line portion 42, respectively, of an algorithm for the present platform 21. Off-line portion 41 may incorporate an action to find an ordering of variables at each combination of a working set as indicated in symbol 43. The content of symbol 43 may be a feature of the present approach. To select and compute a set of factors for a given MPC QP issue as indicated in symbol 44 may follow the action of symbol 43. Some set of factors may be computed here and only part of them needs to be stored as noted in symbol 45. Thus, symbol 45, which may follow symbol 44, may indicate an action to store a selected sub-set of pre-computed factors to a memory for on-line portion 42.


On-line portion 42 in a diagram of FIG. 5 may be of a semi-explicit QP solver like that of solver 24 in FIG. 3. Portion 42 may begin at symbol 47 followed by an initialization at symbol 48. Following symbol 48, a question of whether to terminate portion 42 may be asked at symbol 49. If an answer is yes, then portion 42 may stop at symbol 51. If the answer is no, then at symbol 52, a KKT matrix may be built based on a current set of active constraints; a nearest stored factor may be found in the memory and a factor update may be performed. The finding the nearest stored factor in the memory and to performing the factor update are feature of the present approach. After symbol 52, a KKT system may be solved and a solution may be updated at symbol 53. Then a working set of active constraints may be updated at symbol 54 and activity of portion 42 may continue on to symbol 49 where the question of termination may be asked.


The present approach in the diagrams of FIG. 4 through FIG. 6 may also be used for a combined Newton/gradient projection algorithm.



FIG. 7 and FIG. 8 are diagrams that relate to variable ordering finding. They may indicate what is variable ordering and how it effects a factor structure. At each iteration, a KKT system may be solved, an equation 57 and an equation 58 may be solved for the KKT system. The terms relative to the equations may be as the following. Z is base of null space of Jacobian of currently active constraints corresponding to the set of indices W, g is a current gradient, pz, is a Newton step in the free components, P is permutation matrix (variable ordering), and p is a Newton step.


P (variable ordering) may be found such that an overlay of Z′HZ is as large as possible for all combinations of active constraints such that only a subset of all possible factors of Z′HZ needs to be solved. This ordering could be found by brute force optimization or by some heuristics.


A diagram in FIG. 8 may reveal an overlay 61 of a factor 1 over a factor 2. Hence Factor 1 can be deduced from Factor 1 by simply removing last row of Factor 2. Another diagram of FIG. 8 may reveal a table 62 an example of possible ordering of variables within factors 1 and 2 such that for inactive set N=I/W.



FIG. 9 is a diagram of a table 64 relative to selection of factors to store. Table 64 indicates an example of variable ordering for problem with three variables. The arrows may stand for “deduction from”. The circled numbers may be saved. Rest of the numbers may be created by cutting them off (i.e., no FLOPS).


Only large factors (corresponding to large number of inactive constraints) may be stored. Variable ordering may be used inside the factors. Zero flops deduction of other factors may be enabled. For illustrative examples, a factor with an inactive set {1 2} may be deduced from factor {1 2 3} only by removal of last row, and a factor with an inactive set {1 3} may have to be solved or stored since there is no factor which enables a 0 FLOPS deduction.


An objective is to speed-up a solution of a KKT system solution. There may be a use of a factor update of a reduced Hessian and variable ordering. By using “clever” variable ordering, then only a subset of factors for each combination of active set may have to be solved. Rest of factors may be computed with 0 flops (floating point operations) by removal of rows.



FIG. 10 is a diagram that illustrates an example of a factor storing scheme. Triangle 71 represents a saved factor for inactive constraints {1,2,3}. Triangle 72 represents a computed factor for inactive constraints {1,2}. Just the last row is deleted as indicated by the shaded area. Triangle 73 represents a computerized factor for inactive constraints {1}. Just the last two rows and columns are deleted. A sequence may be from triangle 71, though triangle 72 to triangle 73. The diagram reveals a basis for a 0 FLOP fast factor update.



FIG. 11 is a diagram of a table 75 representing an example of an ordering scheme for QP problem with six optimization variables (n=6). Indices may indicate which constraints are inactive. An order may then indicate an ordering of corresponding data in a factor. Arrows 76 may indicate the transitions from one index to a lower index. Circles 77 may indicate the numerals that are saved. Numerals may be created by a cutting off (i.e., no FLOPS). Some numerals (not shown) may be computed by an augmented update.


A nearest factor search may be conducted. In an on-line phase the “nearest” stored factor to the currently active constraints W may have to be found. For each saved factor, it is saved information to which combination of active constraints it corresponds (i.e., S). The nearest factor may be defined as the one with smallest needed changes in the Wk is needed to obtain S, i.e., how many rows has to be removed from/added to stored factor by factor update process to obtain factor for currently active constraints (those in the set W).


To recap, a system for quadratic programming may incorporate an embedded platform comprising a model predictive control (MPC) controller connected to a physical subsystem. The MPC controller may incorporate a state observer and a semi-explicit quadratic programming (QP) solver connected to the state observer. The semi-explicit QP solver may incorporate an optimization module and a factorization module connected to the QP optimization module. The factorization module may incorporate a memory having a saved factors unit, a factor search mechanism connected to the saved factors unit, and a factor update mechanism connected to the factor search mechanism.


The factorization module may provide variable ordering to reduce factors which need to be stored to allow them to be updated at a zero floating-point operations per unit time (FLOPs) cost.


The physical subsystem may incorporate a physical plant, one or more sensors situated at the physical plant and connected to the MPC controller, and one or more actuators attached to the physical plant and connected to the MPC controller. The physical plant may be an internal combustion engine or after-treatment device.


The optimization module may incorporate a Karush-Kuhn-Tucker (KKT) subsystem having a KKT matrix.


An approach for storing factors, may incorporate precomputing a set of factors of a matrix corresponding to an only set of combinations of currently active constraints, saving the set of factors, deducing other factors from one or more factors of the set of factors with a factor update scheme, storing the factors with variable ordering, enabling a deduction of the other factors in zero floating-point operations per unit time (FLOPs) by just a row and/or column removal, and using a factor update with non-zero cost in FLOPs to further reduce memory consumption.


The approach may further incorporate computing an active set based approach using pre-computed factors such as a Newton step/gradient projection approach.


The factor update may be used in embedded model predictive control.


The variable ordering may be accomplished with a permutation matrix.


The matrix may be of a Karush-Kuhn-Tucker (KKT) system.


A process for solving a quadratic programming issue, may incorporate an off-line portion, and an on-line portion. The off-line portion may incorporate finding an ordering of variables at each combination of a working set, selecting and computing a set of factors for a model predictive control (MPC) quadratic programming (QP) issue, and storing a selected subset of the set of factors. The on-line portion may incorporate initializing an on-line process, building a matrix on a current set of constraints, finding a nearest stored factor from the memory, performing a factor update with the nearest stored factor, solving the matrix, and updating a solution for a QP issue.


The process may further incorporate updating a working set of active constraints.


The matrix may be a Karush-Kuhn-Tucker (KKT) matrix.


The process may further incorporate reiterating the on-line portion. The process may further incorporate terminating the on-line portion.


U.S. Pat. No. 8,504,175, issued Aug. 6, 2013, and entitled “Using Model Predictive Control to Optimize Variable Trajectories and System Control”, is hereby incorporated by reference. U.S. Pat. No. 8,924,331, issued Dec. 30, 2014, and entitled “System and Method for Solving Quadratic Programming Problems with Bound Constraints Utilizing a Semi-Explicit Quadratic Programming Solver”, is hereby incorporated by reference.


Any publication or patent document noted herein is hereby incorporated by reference to the same extent as if each individual publication or patent document was specifically and individually indicated to be incorporated by reference.


In the present specification, some of the matter may be of a hypothetical or prophetic nature although stated in another manner or tense.


Although the present system and/or approach has been described with respect to at least one illustrative example, many variations and modifications will become apparent to those skilled in the art upon reading the specification. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the related art to include all such variations and modifications.

Claims
  • 1. A method for storing factors, comprising: precomputing a first set of factors of a matrix corresponding to an only set of combinations of currently active constraints;saving the first set of factors;deducing second factors from one or more factors of the first set of factors with a factor update scheme;storing the first set of factors and the second factors with variable ordering;enabling a deduction of third factors in zero floating-point operations per unit time (FLOPs) by just a row and/or column removal; andusing a factor update with non-zero cost in FLOPs to further reduce memory consumption.
  • 2. The method of claim 1, further comprising computing an active set based method using a Newton step/gradient projection approach.
  • 3. The method of claim 1, wherein the factor update is used in embedded model predictive control.
  • 4. The method of claim 1, wherein the variable ordering is accomplished with a permutation matrix.
  • 5. The method of claim 4, wherein the matrix is of a Karush-Kuhn-Tucker (KKT) system.
Priority Claims (1)
Number Date Country Kind
15179435 Jul 2015 EP regional
Parent Case Info

This application is a continuation of U.S. patent application Ser. No. 16/543,213 filed Aug. 16, 2019, now U.S. Pat. No. 11,144,017, which is a divisional of U.S. patent application Ser. No. 15/215,253 filed Jul. 20, 2016, now U.S. Pat. No. 10,423,131, both of which are hereby incorporated by reference.

US Referenced Citations (528)
Number Name Date Kind
3744461 Davis Jul 1973 A
4005578 McInerney Feb 1977 A
4055158 Marsee Oct 1977 A
4206606 Yamada Jun 1980 A
4252098 Tomczak et al. Feb 1981 A
4359991 Stumpp et al. Nov 1982 A
4383441 Willis et al. May 1983 A
4426982 Lehner et al. Jan 1984 A
4438497 Willis et al. Mar 1984 A
4440140 Kawagoe et al. Apr 1984 A
4456883 Bullis et al. Jun 1984 A
4485794 Kimberley et al. Dec 1984 A
4601270 Kimberley et al. Jul 1986 A
4616308 Morshedi et al. Oct 1986 A
4653449 Kamel et al. Mar 1987 A
4671235 Hosaka Jun 1987 A
4735181 Kaneko et al. Apr 1988 A
4947334 Massey et al. Aug 1990 A
4962570 Hosaka et al. Oct 1990 A
5044337 Williams Sep 1991 A
5076237 Hartman et al. Dec 1991 A
5089236 Clerc Feb 1992 A
5094213 Dudek et al. Mar 1992 A
5095874 Schnaibel et al. Mar 1992 A
5108716 Nishizawa et al. Apr 1992 A
5123397 Richeson Jun 1992 A
5150289 Badavas Sep 1992 A
5186081 Richardson et al. Feb 1993 A
5233829 Komatsu Aug 1993 A
5270935 Dudek et al. Dec 1993 A
5273019 Matthews et al. Dec 1993 A
5282449 Takahashi et al. Feb 1994 A
5293553 Dudek et al. Mar 1994 A
5349816 Sanbayashi et al. Sep 1994 A
5365734 Takeshima Nov 1994 A
5394322 Hansen Feb 1995 A
5394331 Dudek et al. Feb 1995 A
5398502 Watanabe Mar 1995 A
5408406 Mathur et al. Apr 1995 A
5431139 Grutter et al. Jul 1995 A
5452576 Hamburg et al. Sep 1995 A
5477840 Neumann Dec 1995 A
5560208 Halimi et al. Oct 1996 A
5570574 Yamashita et al. Nov 1996 A
5598825 Neumann Feb 1997 A
5609139 Ueda et al. Mar 1997 A
5611198 Lane et al. Mar 1997 A
5682317 Keeler et al. Oct 1997 A
5690086 Kawano et al. Nov 1997 A
5692478 Nogi et al. Dec 1997 A
5697339 Esposito Dec 1997 A
5704011 Hansen et al. Dec 1997 A
5740033 Wassick et al. Apr 1998 A
5746183 Parke et al. May 1998 A
5765533 Nakajima Jun 1998 A
5771867 Amstutz et al. Jun 1998 A
5785030 Paas Jul 1998 A
5788004 Friedmann et al. Aug 1998 A
5842340 Bush et al. Dec 1998 A
5846157 Reinke et al. Dec 1998 A
5893092 Driscoll Apr 1999 A
5917405 Joao Jun 1999 A
5924280 Tarabulski Jul 1999 A
5942195 Lecea et al. Aug 1999 A
5964199 Atago et al. Oct 1999 A
5970075 Wasada Oct 1999 A
5974788 Hepburn et al. Nov 1999 A
5995895 Watt et al. Nov 1999 A
6029626 Bruestle Feb 2000 A
6035640 Kolmanovsky et al. Mar 2000 A
6048620 Zhong et al. Apr 2000 A
6048628 Hilman et al. Apr 2000 A
6055810 Borland et al. May 2000 A
6056781 Wassick et al. May 2000 A
6058700 Yamashita et al. May 2000 A
6067800 Kolmanovsky et al. May 2000 A
6076353 Freudenberg et al. Jun 2000 A
6105365 Deeba et al. Aug 2000 A
6122555 Lu Sep 2000 A
6134883 Kato et al. Oct 2000 A
6153159 Engeler et al. Nov 2000 A
6161528 Akao et al. Dec 2000 A
6170259 Boegner et al. Jan 2001 B1
6171556 Burk et al. Jan 2001 B1
6178743 Hirota et al. Jan 2001 B1
6178749 Kolmanovsky et al. Jan 2001 B1
6208914 Ward et al. Mar 2001 B1
6216083 Ulyanov et al. Apr 2001 B1
6233922 Maloney May 2001 B1
6236956 Mantooth et al. May 2001 B1
6237330 Takahashi et al. May 2001 B1
6242873 Drozdz et al. Jun 2001 B1
6263672 Roby et al. Jul 2001 B1
6273060 Cullen Aug 2001 B1
6279551 Iwano et al. Aug 2001 B1
6312538 Latypov et al. Nov 2001 B1
6314351 Chutorash Nov 2001 B1
6314662 Ellis, III Nov 2001 B1
6314724 Kakuyama et al. Nov 2001 B1
6321538 Hasler et al. Nov 2001 B2
6327361 Harshavardhana et al. Dec 2001 B1
6338245 Shimoda et al. Jan 2002 B1
6341487 Takahashi et al. Jan 2002 B1
6347619 Whiting et al. Feb 2002 B1
6360159 Miller et al. Mar 2002 B1
6360541 Waszkiewicz et al. Mar 2002 B2
6360732 Bailey et al. Mar 2002 B1
6363715 Bidner et al. Apr 2002 B1
6363907 Arai et al. Apr 2002 B1
6379281 Collins et al. Apr 2002 B1
6389203 Jordan et al. May 2002 B1
6425371 Majima Jul 2002 B2
6427436 Allansson et al. Aug 2002 B1
6431160 Sugiyama et al. Aug 2002 B1
6445963 Blevins et al. Sep 2002 B1
6446430 Roth et al. Sep 2002 B1
6453308 Zhao et al. Sep 2002 B1
6463733 Zhao et al. Sep 2002 B1
6463734 Tamura et al. Oct 2002 B1
6466893 Latwesen et al. Oct 2002 B1
6470682 Gray, Jr. Oct 2002 B2
6470862 Isobe et al. Oct 2002 B2
6470886 Jestrabek-Hart Oct 2002 B1
6481139 Weldle Nov 2002 B2
6494038 Kobayashi et al. Dec 2002 B2
6502391 Hirota et al. Jan 2003 B1
6505465 Kanazawa et al. Jan 2003 B2
6510351 Blevins et al. Jan 2003 B1
6512974 Houston et al. Jan 2003 B2
6513495 Franke et al. Feb 2003 B1
6532433 Bharadwaj et al. Mar 2003 B2
6542076 Joao Apr 2003 B1
6546329 Bellinger Apr 2003 B2
6549130 Joao Apr 2003 B1
6550307 Zhang et al. Apr 2003 B1
6553754 Meyer et al. Apr 2003 B2
6560528 Gitlin et al. May 2003 B1
6560960 Nishimura et al. May 2003 B2
6571191 York et al. May 2003 B1
6579206 Liu et al. Jun 2003 B2
6591605 Lewis Jul 2003 B2
6594990 Kuenstler et al. Jul 2003 B2
6601387 Zurawski et al. Aug 2003 B2
6612293 Schweinzer et al. Sep 2003 B2
6615584 Ostertag Sep 2003 B2
6625978 Eriksson et al. Sep 2003 B1
6629408 Murakami et al. Oct 2003 B1
6637382 Brehob et al. Oct 2003 B1
6644017 Takahashi et al. Nov 2003 B2
6647710 Nishiyama et al. Nov 2003 B2
6647971 Vaughan et al. Nov 2003 B2
6651614 Flamig-Vetter et al. Nov 2003 B2
6662058 Sanchez Dec 2003 B1
6666198 Mitsutani Dec 2003 B2
6666410 Boelitz et al. Dec 2003 B2
6671596 Kawashima et al. Dec 2003 B2
6671603 Cari et al. Dec 2003 B2
6672052 Taga et al. Jan 2004 B2
6672060 Buckland et al. Jan 2004 B1
6679050 Takahashi et al. Jan 2004 B1
6687597 Sulatisky et al. Feb 2004 B2
6688283 Jaye Feb 2004 B2
6694244 Meyer et al. Feb 2004 B2
6694724 Tanaka et al. Feb 2004 B2
6705084 Allen et al. Mar 2004 B2
6718254 Hashimoto et al. Apr 2004 B2
6718753 Bromberg et al. Apr 2004 B2
6725208 Hartman et al. Apr 2004 B1
6736120 Surnilla May 2004 B2
6738682 Pasadyn May 2004 B1
6739122 Kitajima et al. May 2004 B2
6742330 Genderen Jun 2004 B2
6743352 Ando et al. Jun 2004 B2
6748936 Kinomura et al. Jun 2004 B2
6752131 Poola et al. Jun 2004 B2
6752135 McLaughlin et al. Jun 2004 B2
6757579 Pasadyn Jun 2004 B1
6758037 Terada et al. Jul 2004 B2
6760631 Berkowitz et al. Jul 2004 B1
6760657 Katoh Jul 2004 B2
6760658 Yasui et al. Jul 2004 B2
6770009 Badillo et al. Aug 2004 B2
6772585 Iihoshi et al. Aug 2004 B2
6775623 Ali et al. Aug 2004 B2
6779344 Hartman et al. Aug 2004 B2
6779512 Mitsutani Aug 2004 B2
6788072 Nagy et al. Sep 2004 B2
6789533 Hashimoto et al. Sep 2004 B1
6792927 Kobayashi Sep 2004 B2
6804618 Junk Oct 2004 B2
6814062 Esteghlal et al. Nov 2004 B2
6817171 Zhu Nov 2004 B2
6823667 Braun et al. Nov 2004 B2
6826903 Yahata et al. Dec 2004 B2
6827060 Huh Dec 2004 B2
6827061 Nytomt et al. Dec 2004 B2
6827070 Fehl et al. Dec 2004 B2
6834497 Miyoshi et al. Dec 2004 B2
6837042 Colignon et al. Jan 2005 B2
6839637 Moteki et al. Jan 2005 B2
6849030 Yamamoto et al. Feb 2005 B2
6857264 Ament Feb 2005 B2
6873675 Kurady et al. Mar 2005 B2
6874467 Hunt et al. Apr 2005 B2
6879906 Makki et al. Apr 2005 B2
6882929 Liang et al. Apr 2005 B2
6904751 Makki et al. Jun 2005 B2
6911414 Kimura et al. Jun 2005 B2
6915779 Sriprakash Jul 2005 B2
6920865 Lyon Jul 2005 B2
6923902 Ando et al. Aug 2005 B2
6925372 Yasui Aug 2005 B2
6925796 Nieuwstadt et al. Aug 2005 B2
6928362 Meaney Aug 2005 B2
6928817 Ahmad Aug 2005 B2
6931840 Strayer et al. Aug 2005 B2
6934931 Plumer et al. Aug 2005 B2
6941744 Tanaka Sep 2005 B2
6945033 Sealy et al. Sep 2005 B2
6948310 Roberts, Jr. et al. Sep 2005 B2
6953024 Linna et al. Oct 2005 B2
6965826 Andres et al. Nov 2005 B2
6968677 Tamura Nov 2005 B2
6971258 Rhodes et al. Dec 2005 B2
6973382 Rodriguez et al. Dec 2005 B2
6978744 Yuasa et al. Dec 2005 B2
6988017 Pasadyn et al. Jan 2006 B2
6990401 Neiss et al. Jan 2006 B2
6996975 Radhamohan et al. Feb 2006 B2
7000379 Makki et al. Feb 2006 B2
7013637 Yoshida Mar 2006 B2
7016779 Bowyer Mar 2006 B2
7028464 Rosel et al. Apr 2006 B2
7039475 Sayyarrodsari et al. May 2006 B2
7047938 Flynn et al. May 2006 B2
7050863 Mehta et al. May 2006 B2
7052434 Makino et al. May 2006 B2
7055311 Beutel et al. Jun 2006 B2
7059112 Bidner et al. Jun 2006 B2
7063080 Kita et al. Jun 2006 B2
7067319 Wills et al. Jun 2006 B2
7069903 Surnilla et al. Jul 2006 B2
7082753 Betta et al. Aug 2006 B2
7085615 Persson et al. Aug 2006 B2
7106866 Astorino et al. Sep 2006 B2
7107978 Itoyama Sep 2006 B2
7111450 Surnilla Sep 2006 B2
7111455 Okugawa et al. Sep 2006 B2
7113835 Boyen et al. Sep 2006 B2
7117046 Boyden et al. Oct 2006 B2
7124013 Yasui Oct 2006 B2
7149590 Martin et al. Dec 2006 B2
7151976 Lin Dec 2006 B2
7152023 Das Dec 2006 B2
7155334 Stewart et al. Dec 2006 B1
7164800 Sun Jan 2007 B2
7165393 Betta et al. Jan 2007 B2
7165399 Stewart Jan 2007 B2
7168239 Ingram et al. Jan 2007 B2
7182075 Shahed et al. Feb 2007 B2
7184845 Sayyarrodsari et al. Feb 2007 B2
7184992 Polyak et al. Feb 2007 B1
7188637 Dreyer et al. Mar 2007 B2
7194987 Mogi Mar 2007 B2
7197485 Fuller Mar 2007 B2
7200988 Yamashita Apr 2007 B2
7204079 Audoin Apr 2007 B2
7212908 Li et al. May 2007 B2
7275374 Stewart et al. Oct 2007 B2
7275415 Rhodes et al. Oct 2007 B2
7277010 Joao Oct 2007 B2
7281368 Miyake et al. Oct 2007 B2
7292926 Schmidt et al. Nov 2007 B2
7302937 Ma et al. Dec 2007 B2
7321834 Chu et al. Jan 2008 B2
7323036 Boyden et al. Jan 2008 B2
7328577 Stewart et al. Feb 2008 B2
7337022 Wojsznis et al. Feb 2008 B2
7349776 Spillane et al. Mar 2008 B2
7383118 Imai et al. Mar 2008 B2
7357125 Kolavennu Apr 2008 B2
7375374 Chen et al. May 2008 B2
7376471 Das et al. May 2008 B2
7380547 Ruiz Jun 2008 B1
7389773 Stewart et al. Jun 2008 B2
7392129 Hill et al. Jun 2008 B2
7397363 Joao Jul 2008 B2
7398082 Schwinke et al. Jul 2008 B2
7398149 Ueno et al. Jul 2008 B2
7400933 Rawlings et al. Jul 2008 B2
7400967 Ueno et al. Jul 2008 B2
7413583 Langer et al. Aug 2008 B2
7415389 Stewart et al. Aug 2008 B2
7418372 Nishira et al. Aug 2008 B2
7430854 Yasui et al. Oct 2008 B2
7433743 Pistikopoulos et al. Oct 2008 B2
7444191 Caldwell et al. Oct 2008 B2
7444193 Cutler Oct 2008 B2
7447554 Cutler Nov 2008 B2
7467614 Stewart et al. Dec 2008 B2
7469177 Samad et al. Dec 2008 B2
7474953 Hulser et al. Jan 2009 B2
7493236 Mock et al. Feb 2009 B1
7505879 Tomoyasu et al. Mar 2009 B2
7505882 Jenny et al. Mar 2009 B2
7515975 Stewart Apr 2009 B2
7522963 Boyden et al. Apr 2009 B2
7536232 Boyden et al. May 2009 B2
7577483 Fan et al. Aug 2009 B2
7587253 Rawlings et al. Sep 2009 B2
7591135 Stewart Sep 2009 B2
7599749 Sayyarrodsari et al. Oct 2009 B2
7599750 Piche Oct 2009 B2
7603185 Stewart et al. Oct 2009 B2
7603226 Henein Oct 2009 B2
7627843 Dozorets et al. Dec 2009 B2
7630868 Turner et al. Dec 2009 B2
7634323 Vermillion et al. Dec 2009 B2
7634417 Boyden et al. Dec 2009 B2
7650780 Hall Jan 2010 B2
7668704 Perchanok et al. Feb 2010 B2
7676318 Allain Mar 2010 B2
7698004 Boyden et al. Apr 2010 B2
7702519 Boyden et al. Apr 2010 B2
7712139 Westendorf et al. May 2010 B2
7721030 Fuehrer et al. May 2010 B2
7725199 Brackney et al. May 2010 B2
7734291 Mazzara, Jr. Jun 2010 B2
7738975 Denison et al. Jun 2010 B2
7743606 Havelena et al. Jun 2010 B2
7748217 Muller Jul 2010 B2
7752840 Stewart Jul 2010 B2
7765792 Rhodes et al. Aug 2010 B2
7779680 Sasaki et al. Aug 2010 B2
7793489 Wang et al. Sep 2010 B2
7798938 Matsubara et al. Sep 2010 B2
7808371 Blanchet et al. Oct 2010 B2
7813884 Chu et al. Oct 2010 B2
7826909 Attarwala Nov 2010 B2
7831318 Bartee et al. Nov 2010 B2
7840287 Wojsznis et al. Nov 2010 B2
7844351 Piche Nov 2010 B2
7844352 Vouzis et al. Nov 2010 B2
7846299 Backstrom et al. Dec 2010 B2
7850104 Havlena et al. Dec 2010 B2
7856966 Saitoh Dec 2010 B2
7860586 Boyden et al. Dec 2010 B2
7861518 Federle Jan 2011 B2
7862771 Boyden et al. Jan 2011 B2
7877239 Grichnik et al. Jan 2011 B2
7878178 Stewart et al. Feb 2011 B2
7891669 Araujo et al. Feb 2011 B2
7904280 Wood Mar 2011 B2
7905103 Larsen et al. Mar 2011 B2
7907769 Sammak et al. Mar 2011 B2
7925399 Comeau Apr 2011 B2
7930044 Attarwala Apr 2011 B2
7933849 Bartee et al. Apr 2011 B2
7958730 Stewart et al. Jun 2011 B2
7970482 Srinivasan et al. Jun 2011 B2
7987145 Baramov Jul 2011 B2
7996140 Stewart et al. Aug 2011 B2
8001767 Kakuya et al. Aug 2011 B2
8019911 Dressler et al. Sep 2011 B2
8025167 Schneider et al. Sep 2011 B2
8032235 Sayyar-Rodsari Oct 2011 B2
8046089 Renfro et al. Oct 2011 B2
8046090 MacArthur et al. Oct 2011 B2
8060290 Stewart et al. Nov 2011 B2
8078291 Pekar et al. Dec 2011 B2
8108790 Morrison, Jr. et al. Jan 2012 B2
8109255 Stewart et al. Feb 2012 B2
8121818 Gorinevsky Feb 2012 B2
8145329 Pekar et al. Mar 2012 B2
8146850 Havlena et al. Apr 2012 B2
8157035 Whitney et al. Apr 2012 B2
8185217 Thiele May 2012 B2
8197753 Boyden et al. Jun 2012 B2
8200346 Thiele Jun 2012 B2
8209963 Kesse et al. Jul 2012 B2
8229163 Coleman et al. Jul 2012 B2
8245501 He et al. Aug 2012 B2
8246508 Matsubara et al. Aug 2012 B2
8265854 Stewart et al. Sep 2012 B2
8281572 Chi et al. Oct 2012 B2
8295951 Crisalle et al. Oct 2012 B2
8311653 Zhan et al. Nov 2012 B2
8312860 Yun et al. Nov 2012 B2
8316235 Boehl et al. Nov 2012 B2
8360040 Stewart et al. Jan 2013 B2
8370052 Lin et al. Feb 2013 B2
8379267 Mestha et al. Feb 2013 B2
8396644 Kabashima et al. Mar 2013 B2
8402268 Dierickx Mar 2013 B2
8418441 He et al. Apr 2013 B2
8453431 Wang et al. Jun 2013 B2
8473079 Havlena Jun 2013 B2
8478506 Grichnik et al. Jul 2013 B2
RE44452 Stewart et al. Aug 2013 E
8504175 Pekar et al. Aug 2013 B2
8505278 Farrell et al. Aug 2013 B2
8543170 Mazzara, Jr. et al. Sep 2013 B2
8555613 Wang et al. Oct 2013 B2
8571689 Machiara et al. Oct 2013 B2
8596045 Tuomivaara et al. Dec 2013 B2
8620461 Kihas Dec 2013 B2
8634940 Macharia et al. Jan 2014 B2
8639925 Schuetze Jan 2014 B2
8649884 MacArthur et al. Feb 2014 B2
8649961 Hawkins et al. Feb 2014 B2
8667288 Yavuz Mar 2014 B2
8694197 Rajagopalan et al. Apr 2014 B2
8700291 Herrmann Apr 2014 B2
8751241 Oesterling et al. Jun 2014 B2
8762026 Wolfe et al. Jun 2014 B2
8763377 Yacoub Jul 2014 B2
8768996 Shokrollahi et al. Jul 2014 B2
8813690 Kumar et al. Aug 2014 B2
8825243 Yang et al. Sep 2014 B2
8839967 Schneider et al. Sep 2014 B2
8867746 Ceskutti et al. Oct 2014 B2
8892221 Kram et al. Nov 2014 B2
8899018 Frazier et al. Dec 2014 B2
8904760 Mital Dec 2014 B2
8924331 Pekar Dec 2014 B2
8983069 Merchan et al. Mar 2015 B2
9100193 Newsome et al. Aug 2015 B2
9141996 Christensen et al. Sep 2015 B2
9170573 Kihas Oct 2015 B2
9175595 Ceynow et al. Nov 2015 B2
9223301 Stewart et al. Dec 2015 B2
9243576 Yu et al. Jan 2016 B2
9253200 Schwarz et al. Feb 2016 B2
9325494 Boehl Apr 2016 B2
9367701 Merchan et al. Jun 2016 B2
9367968 Giraud et al. Jun 2016 B2
9483881 Comeau et al. Nov 2016 B2
9560071 Ruvio et al. Jan 2017 B2
9779742 Newsome, Jr. Oct 2017 B2
11144017 Santin Oct 2021 B2
20020112469 Kanazawa et al. Aug 2002 A1
20040006973 Makki et al. Jan 2004 A1
20040086185 Sun May 2004 A1
20040144082 Mianzo et al. Jul 2004 A1
20040199481 Hartman et al. Oct 2004 A1
20040226287 Edgar et al. Nov 2004 A1
20050171667 Morita Aug 2005 A1
20050187643 Sayyar-Rodsari et al. Aug 2005 A1
20050193739 Brunnell et al. Sep 2005 A1
20050210868 Funabashi Sep 2005 A1
20060047607 Boyden et al. Mar 2006 A1
20060111881 Jackson May 2006 A1
20060137347 Stewart et al. Jun 2006 A1
20060168945 Samad et al. Aug 2006 A1
20060185626 Allen et al. Aug 2006 A1
20060212140 Brackney Sep 2006 A1
20070144149 Kolavennu et al. Jun 2007 A1
20070156259 Baramov et al. Jul 2007 A1
20070240213 Karam et al. Oct 2007 A1
20070261648 Reckels et al. Nov 2007 A1
20070275471 Coward Nov 2007 A1
20080010973 Gimbres Jan 2008 A1
20080103747 Macharia et al. May 2008 A1
20080132178 Chatterjee et al. Jun 2008 A1
20080208778 Sayyar-Rodsari et al. Aug 2008 A1
20080289605 Ito Nov 2008 A1
20090172416 Bosch et al. Jul 2009 A1
20090312998 Berckmans et al. Dec 2009 A1
20100122523 Vosz May 2010 A1
20100126481 Willi et al. May 2010 A1
20100300069 Herrmann et al. Dec 2010 A1
20110056265 Yacoub Mar 2011 A1
20110060424 Havlena Mar 2011 A1
20110125295 Bednasch et al. May 2011 A1
20110131017 Cheng et al. Jun 2011 A1
20110167025 Danai et al. Jul 2011 A1
20110173315 Aguren Jul 2011 A1
20110264353 Atkinson et al. Oct 2011 A1
20110270505 Chaturvedi et al. Nov 2011 A1
20120024089 Couey et al. Feb 2012 A1
20120059782 Pekar Mar 2012 A1
20120109620 Gaikwad et al. May 2012 A1
20120174187 Argon et al. Jul 2012 A1
20130024069 Wang et al. Jan 2013 A1
20130067894 Stewart et al. Mar 2013 A1
20130111878 Pachner et al. May 2013 A1
20130111905 Pekar et al. May 2013 A1
20130131954 Yu et al. May 2013 A1
20130131956 Thibault et al. May 2013 A1
20130158834 Wagner et al. Jun 2013 A1
20130204403 Zheng et al. Aug 2013 A1
20130242706 Newsome, Jr. Sep 2013 A1
20130326232 Lewis et al. Dec 2013 A1
20130326630 Argon Dec 2013 A1
20130338900 Ardanese et al. Dec 2013 A1
20140032189 Hehle et al. Jan 2014 A1
20140034460 Chou Feb 2014 A1
20140171856 McLaughlin et al. Jun 2014 A1
20140258736 Merchan et al. Sep 2014 A1
20140270163 Merchan Sep 2014 A1
20140280301 Kolinsky et al. Sep 2014 A1
20140316683 Whitney et al. Oct 2014 A1
20140318216 Singh Oct 2014 A1
20140343713 Ziegler et al. Nov 2014 A1
20140358254 Chu et al. Dec 2014 A1
20150121071 Schwarz et al. Apr 2015 A1
20150275783 Wong et al. Oct 2015 A1
20150321642 Schwepp et al. Nov 2015 A1
20150324576 Quirant et al. Nov 2015 A1
20150334093 Mueller Nov 2015 A1
20150354877 Burns et al. Dec 2015 A1
20160003180 McNulty et al. Jan 2016 A1
20160043832 Ahn et al. Feb 2016 A1
20160108732 Huang et al. Apr 2016 A1
20160127357 Zibuschka et al. May 2016 A1
20160216699 Pekar et al. Jul 2016 A1
20160239593 Pekar et al. Aug 2016 A1
20160259584 Schlottmann et al. Sep 2016 A1
20160330204 Baur et al. Nov 2016 A1
20160344705 Stumpf et al. Nov 2016 A1
20160362838 Badwe et al. Dec 2016 A1
20160365977 Boutros et al. Dec 2016 A1
20170031332 Santin Feb 2017 A1
20170048063 Mueller Feb 2017 A1
20170126701 Glas et al. May 2017 A1
20170218860 Pachner et al. Aug 2017 A1
20170300713 Fan et al. Oct 2017 A1
20170306871 Fuxman et al. Oct 2017 A1
Foreign Referenced Citations (54)
Number Date Country
102063561 May 2011 CN
102331350 Jan 2012 CN
19628796 Oct 1997 DE
10219382 Nov 2002 DE
102009016509 Oct 2010 DE
102011103346 Aug 2012 DE
0301527 Feb 1989 EP
0877309 Jun 2000 EP
1134368 Sep 2001 EP
1180583 Feb 2002 EP
1221544 Jul 2002 EP
1225490 Jul 2002 EP
1245811 Oct 2002 EP
1273337 Jan 2003 EP
0950803 Sep 2003 EP
1420153 May 2004 EP
1447727 Aug 2004 EP
1498791 Jan 2005 EP
1425642 Nov 2005 EP
1686251 Aug 2006 EP
1399784 Oct 2007 EP
2107439 Oct 2009 EP
2146258 Jan 2010 EP
1794339 Jul 2011 EP
1529941 Nov 2011 EP
2426564 Mar 2012 EP
2543845 Jan 2013 EP
2551480 Jan 2013 EP
2589779 May 2013 EP
2617975 Jul 2013 EP
2267559 Jan 2014 EP
2919079 Sep 2015 EP
2426564 Jan 2018 EP
59190433 Oct 1984 JP
2010282618 Dec 2010 JP
0144629 Jun 2001 WO
0169056 Sep 2001 WO
0232552 Apr 2002 WO
02097540 Dec 2002 WO
02101208 Dec 2002 WO
03023538 Mar 2003 WO
03048533 Jun 2003 WO
03065135 Aug 2003 WO
03078816 Sep 2003 WO
03102394 Dec 2003 WO
2004027230 Apr 2004 WO
2006021437 Mar 2006 WO
2007078907 Jul 2007 WO
2008033800 Mar 2008 WO
2008115911 Sep 2008 WO
2012076838 Jun 2012 WO
2013119665 Aug 2013 WO
2014165439 Oct 2014 WO
2016053194 Apr 2016 WO
Non-Patent Literature Citations (187)
Entry
Delphi, Delphi Diesel NOx Trap (DNT), 3 pages, Feb. 2004.
Diehl et al., “Efficient Numerical Methods for Nonlinear MPC and Moving Horizon Estimation,” Int. Workshop on Assessment and Future Directions of NMPC, 24 pages, Pavia, Italy, Sep. 5-9, 2008.
Ding, “Characterising Combustion in Diesel Engines, Using Parameterised Finite Stage Cylinder Process Models,” 281 pages, Dec. 21, 2011.
Docquier et al., “Combustion Control and Sensors: a Review,” Progress in Energy and Combustion Science, vol. 28, pp. 107-150, 2002.
Dunbar, “Model Predictive Control: Extension to Coordinated Multi-Vehicle Formations and Real-Time Implementation,” CDS Technical Report 01-016, 64 pages, Dec. 7, 2001.
Egnell, “Combustion Diagnostics by Means of Multizone Heat Release Analysis and NO Calculation,” SAE Technical Paper Series 981424, International Spring Fuels and Lubricants Meeting and Exposition, 22 pages, May 4-6, 1998.
Ericson, “NOx Modelling of a Complete Diesel Engine/SCR System,” Licentiate Thesis, 57 pages, 2007.
Finesso et al., “Estimation of the Engine-Out NO2/NOx Ration in a Euro VI Diesel Engine,” SAE International 2013-01-0317, 15 pages, Apr. 8, 2013.
Fleming, “Overview of Automotive Sensors,” IEEE Sensors Journal, vol. 1, No. 4, pp. 296-308, Dec. 2001.
Ford Motor Company, “2012 My OBD System Operation Summary for 6.7L Diesel Engines,” 149 pages, Apr. 21, 2011.
Formentin et al., “NOx Estimation in Diesel Engines Via In-Cylinder Pressure Measurement,” IEEE Transactions on Control Systems Technology, vol. 22, No. 1, pp. 396-403, Jan. 2014.
Galindo, “An On-Engine Method for Dynamic Characterisation of NOx Concentration Sensors,” Experimental Thermal and Fluid Science, vol. 35, pp. 470-476, 2011.
Gamma Technologies, “Exhaust Aftertreatment with GT-Suite,” 2 pages, Jul. 17, 2014.
GM “Advanced Diesel Technology and Emissions,” powertrain technologies—engines, 2 pages, prior to Feb. 2, 2005.
Goodwin, “Researchers Hack A Corvette's Brakes Via Insurance Black Box,” Downloaded from http://www.cnet.com/roadshow/news/researchers-hack-a-corvettes-brakes-via-insurance-black-box/, 2 pages, Aug. 2015.
Greenberg, “Hackers Remotely Kill A Jeep On The Highway—With Me In It,” Downloaded from http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/, 24 pages, Jul. 21, 2015.
Guardiola et al., “A Bias Correction Method for Fast Fuel-to-Air Ratio Estimation in Diesel Engines,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 227, No. 8, pp. 1099-1111, 2013.
Guardiola et al., “A Computationally Efficient Kalman Filter Based Estimator for Updating Look-Up Tables Applied to NOx Estimation in Diesel Engines,” Control Engineering Practice, vol. 21, pp. 1455-1468.
Guerriero et al., “Trajectory Tracking Nonlinear Model Predictive Control for Autonomous Surface Craft,” Proceedings of the European Control Conference, Budapest, Hungary, 6 pages, Aug. 2009.
Guzzella et al., “Introduction to Modeling and Control of Internal Combustion Engine Systems,” 303 pages, 2004.
Guzzella, et al., “Control of Diesel Engines,” IEEE Control Systems Magazine, pp. 53-71, Oct. 1998.
Hahlin, “Single Cylinder ICE Exhaust Optimization,” Master's Thesis, retrieved from https://pure.itu.se/portal/files/44015424/LTU-EX-2013-43970821.pdf, 50 pages, Feb. 1, 2014.
Hammacher Schlemmer, “The Windshield Heads Up Display,” Catalog, p. 47, prior to Apr. 26, 2016.
Havelena, “Componentized Architecture for Advanced Process Management,” Honeywell International, 42 pages, 2004.
Heywood, “Pollutant Formation and Control,” Internal Combustion Engine Fundamentals, pp. 567-667, 1988.
Hiranuma, et al., “Development of DPF System for Commercial Vehicle—Basic Characteristic and Active Regeneration Performance,” SAE Paper No. 2003-01-3182, Mar. 2003.
Hirsch et al., “Dynamic Engine Emission Models,” Automotive Model Predictive Control, Chapter 5, 18 pages, LNCIS 402, 2012.
Hirsch et al., “Grey-Box Control Oriented Emissions Models,” The International Federation of Automatic Control (IFAC), Proceedings of the 17th World Congress, pp. 8514-8519, Jul. 6-11, 2008.
Hockerdal, “EKF-based Adaptation of Look-Up Tables with an Air Mass-Flow Sensor Application,” Control Engineering Practice, vol. 19, 12 pages, 2011.
Honeywell, “Profit Optimizer A Distributed Quadratic Program (DQP) Concepts Reference,” 48 pages, prior to Feb. 2, 2005.
http://nexceris.com/news/nextech-materials/, “NEXTECH Materials is Now NEXCERIS,” 7 pages, printed Oct. 4, 2016.
http://www.arb.ca.gov/msprog/obdprog/hdobdreg.htm, “Heavy-Duty OBD Regulations and Rulemaking,” 8 pages, printed Oct. 4, 2016.
http://www.not2fast.wryday.com/turbo/glossary/turbo_glossary.shtml, “Not2Fast: Turbo Glossary,” 22 pages, printed Oct. 1, 2004.
http://www.tai-cwv.com/sbl106.0.html, “Technical Overview—Advanced Control Solutions,” 6 pages, printed Sep. 9, 2004.
https://www.dieselnet.com/standards/us/obd.php, “Emission Standards: USA: On-Board Diagnostics,” 6 pages, printed Oct. 3, 2016.
https://www.en.wikipedia.org/wiki/Public-key_cryptography, “Public-Key Cryptography,” 14 pages, printed Feb. 26, 2016.
Ishida et al., “An Analysis of the Added Water Effect on NO Formation in D.I. Diesel Engines,” SAE Technical Paper Series 941691, International Off-Highway and Power-Plant Congress and Exposition, 13 pages, Sep. 12-14, 1994.
Ishida et al., “Prediction of NOx Reduction Rate Due to Port Water Injection in a DI Diesel Engine,” SAE Technical Paper Series 972961, International Fall Fuels and Lubricants Meeting and Exposition, 13 pages, Oct. 13-16, 1997.
Jensen, “The 13 Monitors of an OBD System,” http://www.oemoffhighway.com/article/1 0855512/the-13-monito . . . , 3 pages, printed Oct. 3, 2016.
Johansen et al., “Hardware Architecture Design for Explicit Model Predictive Control,” Proceedings of ACC, 6 pages, 2006.
Johansen et al., “Hardware Synthesis of Explicit Model Predictive Controllers,” IEEE Transactions on Control Systems Technology, vol. 15, No. 1, Jan. 2007.
Jonsson, “Fuel Optimized Predictive Following in Low Speed Conditions,” Master's Thesis, 46 pages, Jun. 28, 2003.
Kelly, et al., “Reducing Soot Emissions from Diesel Engines Using One Atmosphere Uniform Glow Discharge Plasma,” SAE Paper No. 2003-01-1183, Mar. 2003.
Keulen et al., “Predictive Cruise Control in Hybrid Electric Vehicles,” World Electric Journal, vol. 3, ISSN 2032-6653, 11 pages, May 2009.
Khair et al., “Emission Formation in Diesel Engines,” Downloaded from https://www.dieselnet.com/tech/diesel_emiform.php, 33 pages, printed Oct. 14, 2016.
Kihas et al., “Chapter 14, Diesel Engine SCR Systems: Modeling Measurements and Control,” Catalytic Reduction Technology (book), Part 1, Chapter 14, prior to Jan. 29, 2016.
Kolmanovsky et al., “Issues in Modeling and Control of Intake Flow in Variable Geometry Turbocharged Engines”, 18th IFIP Conf. System Modeling and Optimization, pp. 436-445, Jul. 1997.
Krause et al., “Effect of Inlet Air Humidity and Temperature on Diesel Exhaust Emissions,” SAE International Automotive Engineering Congress, 8 pages, Jan. 8-12, 1973.
Kulhavy et al. “Emerging Technologies for Enterprise Optimization in the Process Industries,” Honeywell, 12 pages, Dec. 2000.
Lavoie et al., “Experimental and Theoretical Study of Nitric Oxide Formation in Internal Combustion Engines,” Combustion Science and Technology, vol. 1, pp. 313-326, 1970.
“Aftertreatment Modeling of RCCI Engine During Transient Operation,” University of Wisconsin—Engine Research Center, 1 page, May 31, 2014.
“Chapter 14: Pollutant Formation,” Fluent Manual, Release 15.0, Chapter 14, pp. 313-345, prior to Jan. 29, 2016.
“Chapter 21, Modeling Pollutant Formation,” Fluent Manual, Release 12.0, Chapter 21, pp. 21-1-21-54, Jan. 30, 2009.
“J1979 E/E Diagnostic Test Modules,” Proposed Regulation, Vehicle E.E. System Diagnostic Standards Committee, 1 page, Sep. 28, 2010.
“MicroZed Zynq Evaluation and Development and System on Module, Hardware User Guide,” Avnet Electronics Marketing, Version 1.6, Jan. 22, 2015.
“Model Predictive Control Toolbox Release Notes,” The Mathworks, 24 pages, Oct. 2008.
“Model Predictive Control,” Wikipedia, pp. 1-5, Jan. 22, 2009. http://en.wikipedia.org/w/index.php/title=Special:Book&bookcmd=download&collecton_id=641cd1b5da77cc22&writer=rl&return_to=Model predictive control, retrieved Nov. 20, 2012.
“MPC Implementation Methods for the Optimization of the Response of Control Valves to Reduce Variability,” Advanced Application Note 002, Rev. A, 10 pages, 2007.
“SCR, 400-csi Coated Catalyst,” Leading NOx Control Technologies Status Summary, 1 page prior to Feb. 2, 2005.
Actron, “Elite AutoScanner Kit—Enhanced OBD I & II Scan Tool, OBD 1300,” Downloaded from https://actron.com/content/elite-autoscanner-kit-enhanced-obd-i-and-obd-ii-scan-tool?utm_. . . , 5 pages, printed Sep. 27, 2016.
Advanced Petroleum-Based Fuels-Diesel Emissions Control (APBF-DEC) Project, “Quarterly Update,” No. 7, 6 pages, Fall 2002.
Allanson, et al., “Optimizing the Low Temperature Performance and Regeneration Efficiency of the Continuously Regenerating Diesel Particulate Filter System,” SAE Paper No. 2002-01-0428, 8 pages, Mar. 2002.
Amstutz, et al., “EGO Sensor Based Robust Output Control of EGR in Diesel Engines,” IEEE TCST, vol. 3, No. 1, 12 pages, Mar. 1995.
Andersson et al., “A Predictive Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion,” SAE International 2006-01-3329, 10 pages, 2006.
Andersson et al., “A Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion,” SAE Technical Paper Series 2006-01-0195, 2006 SAE World Congress, 13 pages, Apr. 3-6, 2006.
Andersson et al., “Fast Physical NOx Prediction in Diesel Engines, The Diesel Engine: The Low CO2 and Emissions Reduction Challenge,” Conference Proceedings, Lyon, 2006.
Arregle et al., “On Board NOx Prediction in Diesel Engines: A Physical Approach,” Automotive Model Predictive Control, Models Methods and Applications, Chapter 2, 14 pages, 2010.
Asprion, “Optimal Control of Diesel Engines,” PHD Thesis, Diss ETH No. 21593, 436 pages, 2013.
Assanis et al., “A Predictive Ignition Delay Correlation Under Steady-State and Transient Operation of a Direct Injection Diesel Engine,” ASME, Journal of Engineering for Gas Turbines and Power, vol. 125, pp. 450-457, Apr. 2003.
Axehill et al., “A Dual Gradiant Projection Quadratic Programming Algorithm Tailored for Model Predictive Control,” Proceedings of the 47th IEEE Conference on Decision and Control, Cancun Mexico, pp. 3057-3064, Dec. 9-11, 2008.
Axehill et al., “A Dual Gradient Projection Quadratic Programming Algorithm Tailored for Mixed Integer Predictive Control,” Technical Report from Linkopings Universitet, Report No. Li-Th-ISY-R-2833, 58 pages, Jan. 31, 2008.
Baffi et al., “Non-Linear Model Based Predictive Control Through Dynamic Non-Linear Partial Least Squares,” Trans IChemE, vol. 80, Part A, pp. 75-86, Jan. 2002.
Bako et al., “A Recursive Identification Algorithm for Switched Linear/Affine Models,” Nonlinear Analysis: Hybrid Systems, vol. 5, pp. 242-253, 2011.
Barba et al., “A Phenomenological Combustion Model for Heat Release Rate Prediction in High-Speed DI Diesel Engines with Common Rail Injection,” SAE Technical Paper Series 2000-01-2933, International Fall Fuels and Lubricants Meeting Exposition, 15 pages, Oct. 16-19, 2000.
Bemporad et al., “Model Predictive Control Toolbox 3, User's Guide,” Matlab Mathworks, 282 pages, 2008.
Bemporad et al., “The Explicit Linear Quadratic Regulator for Constrained Systems,” Automatica, 38, pp. 3-20, 2002.
Bemporad, “Model Predictive Control Based on Linear Programming—The Explicit Solution,” IEEE Transactions on Automatic Control, vol. 47, No. 12, pp. 1974-1984, Dec. 2002.
Bemporad, “Model Predictive Control Design: New Trends and Tools,” Proceedings of the 45th IEEE Conference on Decision & Control, pp. 6678-6683, Dec. 13-15, 2006.
Bemporad, et al., “Explicit Model Predictive Control,” 1 page, prior to Feb. 2, 2005.
Bertsekas, “On the Goldstein-Levitin-Polyak Gradient Projection Method,” IEEE Transactions on Automatic Control, vol. AC-21, No. 2, pp. 174-184, Apr. 1976.
Bertsekas, “Projected Newton Methods for Optimization Problems with Simple Constraints,” SIAM J. Control and Optimization, vol. 20, No. 2, pp. 221-246, Mar. 1982.
Blanco-Rodriguez, “Modelling and Observation of Exhaust Gas Concentrations for Diesel Engine Control,” Phd Dissertation, 242 pages, Sep. 2013.
Blue Streak Electronics Inc., “Ford Modules,” 1 page, May 12, 2010.
Borrelli et al., “An MPC/Hybrid System Approach to Traction Control,” IEEE Transactions on Control Systems Technology, vol. 14, No. 3, pp. 541-553, May 2006.
Borrelli, “Constrained Optimal Control of Linear and Hybrid Systems,” Lecture Notes in Control and Information Sciences, vol. 290, 2003.
Borrelli, “Discrete Time Constrained Optimal Control,” A Dissertation Submitted to the Swiss Federal Institute of Technology (ETH) Zurich, Diss. ETH No. 14666, 232 pages, Oct. 9, 2002.
Bourn et al., “Advanced Compressor Engine Controls to Enhance Operation, Reliability and Integrity,” Southwest Research Institute, DOE Award No. DE-FC26-03NT41859, SwRI Project No. 03.10198, 60 pages, Mar. 2004.
Catalytica Energy Systems, “Innovative NOx Reduction Solutions for Diesel Engines,” 13 pages, 3rd Quarter, 2003.
Charalampidis et al., “Computationally Efficient Kalman Filtering for a Class of Nonlinear Systems,” IEEE Transactions on Automatic Control, vol. 56, No. 3, pp. 483-491, Mar. 2011.
Chatterjee, et al. “Catalytic Emission Control for Heavy Duty Diesel Engines,” JM, 46 pages, prior to Feb. 2, 2005.
Chew, “Sensor Validation Scheme with Virtual NOx Sensing for Heavy Duty Diesel Engines,” Master's Thesis, 144 pages, 2007.
European Search Report for EP Application No. 11167549.2 dated Nov. 27, 2012.
European Search Report for EP Application No. 12191156.4-1603 dated Feb. 9, 2015.
European Search Report for EP Application No. EP 10175270.7-2302419 dated Jan. 16, 2013.
European Search Report for EP Application No. EP 15152957.5-1807 dated Feb. 10, 2015.
The Extended European Search Report for EP Application No. 15155295.7-1606, dated Aug. 4, 2015.
U.S. Appl. No. 15/005,406, filed Jan. 25, 2016.
U.S. Appl. No. 15/011,445, filed Jan. 29, 2016.
De Oliveira, “Constraint Handling and Stability Properties of Model Predictive Control,” Carnegie Institute of Technology, Department of Chemical Engineering, Paper 197, 64 pages, Jan. 1, 1993.
De Schutter et al., “Model Predictive Control for Max-Min-Plus-Scaling Systems,” Proceedings of the 2001 American Control Conference, Arlington, VA, pp. 319-324, Jun. 2001.
Locker, et al., “Diesel Particulate Filter Operational Characterization,” Coming Incorporated, 10 pages, prior to Feb. 2, 2005.
Lu, “Challenging Control Problems and Engineering Technologies in Enterprise Optimization,” Honeywell Hi-Spec Solutions, 30 pages, Jun. 4-6, 2001.
Maciejowkski, “Predictive Control with Constraints,” Prentice Hall, Pearson Education Limited, 4 pages, 2002.
Manchur et al., “Time Resolution Effects on Accuracy of Real-Time NOx Emissions Measurements,” SAE Technical Paper Series 2005-01-0674, 2005 SAE World Congress, 19 pages, Apr. 11-14, 2005.
Mariethoz et al., “Sensorless Explicit Model Predictive Control of the DC-DC Buck Converter with Inductor Current Limitation,” IEEE Applied Power Electronics Conference and Exposition, pp. 1710-1715, 2008.
Marjanovic, “Towards a Simplified Infinite Horizon Model Predictive Controller,” 6 pages, Proceedings of the 5th Asian Control Conference, 6 pages, Jul. 20-23, 2004.
Mehta, “The Application of Model Predictive Control to Active Automotive Suspensions,” 56 pages, May 17, 1996.
Mohammadpour et al., “A Survey on Diagnostics Methods for Automotive Engines,” 2011 American Control Conference, pp. 985-990, Jun. 29-Jul. 1, 2011.
Moore, “Living with Cooled-EGR Engines,” Prevention Illustrated, 3 pages, Oct. 3, 2004.
Moos, “Catalysts as Sensors—A Promising Novel Approach in Automotive Exhaust Gas Aftertreatment,” http://www.mdpi.com/1424-8220/10/7/6773htm, 10 pages, Jul. 13, 2010.
Murayama et al., “Speed Control of Vehicles with Variable Valve Lift Engine by Nonlinear MPC,” ICROS-SICE International Joint Conference, pp. 4128-4133, 2009.
National Renewable Energy Laboratory (NREL), “Diesel Emissions Control—Sulfur Effects Project (DECSE) Summary of Reports,” U.S. Department of Energy, 19 pages, Feb. 2002.
Olsen, “Analysis and Simulation of the Rate of Heat Release (ROHR) in Diesel Engines,” MSc-Assignment, 105 pages, Jun. 2013.
Ortner et al., “MPC for a Diesel Engine Air Path Using an Explicit Approach for Constraint Systems,” Proceedings of the 2006 IEEE Conference on Control Applications, Munich Germany, pp. 2760-2765, Oct. 4-6, 2006.
Ortner et al., “Predictive Control of a Diesel Engine Air Path,” IEEE Transactions on Control Systems Technology, vol. 15, No. 3, pp. 449-456, May 2007.
Pannacchia et al., “Combined Design of Disturbance Model and Observer for Offset-Free Model Predictive Control,” IEEE Transactions on Automatic Control, vol. 52, No. 6, 6 pages, 2007.
Patrinos et al., “A Global Piecewise Smooth Newton Method for Fast Large-Scale Model Predictive Control,” Tech Report TR2010-02, National Technical University of Athens, 23 pages, 2010.
Payri et al., “Diesel NOx Modeling with a Reduction Mechanism for the Initial NOx Coming from EGR or Re-Entrained Burned Gases,” 2008 World Congress, SAE Technical Paper Series 2008-01-1188, 13 pages, Apr. 14-17, 2008.
Payri et al., “Methodology for Design and Calibration of a Drift Compensation Method for Fuel-to-Air Ratio,” SAE International 2012-01-0717, 13 pages, Apr. 16, 2012.
Pipho et al., “NO2 Formation in a Diesel Engine,” SAE Technical Paper Series 910231, International Congress and Exposition, 15 pages, Feb. 25-Mar. 1, 1991.
Qin et al., “A Survey of Industrial Model Predictive Control Technology,” Control Engineering Practice, 11, pp. 733-764, 2003.
Querel et al., “Control of an SCR System Using a Virtual NOx Sensor,” 7th IFAC Symposium on Advances in Automotive Control, The International Federation of Automotive Control, pp. 9-14, Sep. 4-7, 2013.
Rajamani, “Data-based Techniques to Improve State Estimation in Model Predictive Control,” Ph.D. Dissertation, 257 pages, 2007.
Rawlings, “Tutorial Overview of Model Predictive Control,” IEEE Control Systems Magazine, pp. 38-52, Jun. 2000.
Ricardo Software, “Powertrain Design at Your Fingertips,” retrieved from http://www.ricardo.com/PageFiles/864/WaveFlyerA4_4PP.pdf, 2 pages, downloaded Jul. 27, 2015.
Salvat, et al., “Passenger Car Serial Application of a Particulate Filter System on a Common Rail Direct Injection Engine,” SAE Paper No. 2000-01-0473, 14 pages, Feb. 2000.
Santin et al., “Combined Gradient/Newton Projection Semi-Explicit QP Solver for Problems with Bound Constraints,” 2 pages, prior to Jan. 29, 2016.
Schauffele et al., “Automotive Software Engineering Principles, Processes, Methods, and Tools,” SAE International, 10 pages, 2005.
Schilling et al., “A Real-Time Model for the Prediction of the NOx Emissions in DI Diesel Engines,” Proceedings of the 2006 IEEE International Conference on Control Applications, pp. 2042-2047, Oct. 4-7, 2006.
Schilling, “Model-Based Detection and Isolation of Faults in the Air and Fuel Paths of Common-Rail DI Diesel Engines Equipped with a Lambda and a Nitrogen Oxides Sensor,” Doctor of Sciences Dissertation, 210 pages, 2008.
Shahzad et al., “Preconditioners for Inexact Interior Point Methods for Predictive Control,” 2010 American Control Conference, pp. 5714-5719, Jun. 30-Jul. 2010.
Shamma, et al. “Approximate Set-Valued Observers for Nonlinear Systems,” IEEE Transactions on Automatic Control, vol. 42, No. 5, May 1997.
Signer et al., “European Programme on Emissions, Fuels and Engine Technologies (EPEFE)—Heavy Duty Diesel Study,” International Spring Fuels and Lubricants Meeting, SAE 961074, May 6-8, 1996.
Soltis, “Current Status of NOx Sensor Development,” Workshop on Sensor Needs and Requirements for PEM Fuel Cell Systems and Direct-Injection Engines, 9 pages, Jan. 25-26, 2000.
Stefanopoulou, et al., “Control of Variable Geometry Turbocharged Diesel Engines for Reduced Emissions,” IEEE Transactions on Control Systems Technology, vol. 8, No. 4, pp. 733-745, Jul. 2000.
Stewart et al., “A Model Predictive Control Framework for Industrial Turbodiesel Engine Control,” Proceedings of the 47th IEEE Conference on Decision and Control, 8 pages, 2008.
Stewart et al., “A Modular Model Predictive Controller for Turbodiesel Problems,” First Workshop on Automotive Model Predictive Control, Schloss Muhldorf, Feldkirchen, Johannes Kepler University, Linz, 3 pages, 2009.
Storset et al., “Air Charge Estimation for Turbocharged Diesel Engines,” vol. 1 Proceedings of the American Control Conference, 8 pages, Jun. 28-30, 2000.
Stradling et al., “The Influene of Fuel Properties and Injection Timing on the Exhaust Emissions and Fuel Consumption of an Iveco Heavy-Duty Diesel Engine,” International Spring Fuels and Lubricants Meeting, SAE 971635, May 5-8, 1997.
Takacs et al., “Newton-Raphson Based Efficient Model Predictive Control Applied on Active Vibrating Structures,” Proceeding of the European Control Conference 2009, Budapest, Hungary, pp. 2845-2850, Aug. 23-26, 2009.
The MathWorks, “Model-Based Calibration Toolbox 2.1 Calibrate complex powertrain systems,” 4 pages, prior to Feb. 2, 2005.
The MathWorks, “Model-Based Calibration Toolbox 2.1.2,” 2 pages, prior to Feb. 2, 2005.
Theiss, “Advanced Reciprocating Engine System (ARES) Activities at the Oak Ridge National Lab (ORNL), Oak Ridge National Laboratory,” U.S. Department of Energy, 13 pages, Apr. 14, 2004.
Tondel et al., “An Algorithm for Multi-Parametric Quadratic Programming and Explicit MPC Solutions,” Automatica, 39, pp. 489-497, 2003.
Traver et al., “A Neural Network-Based Virtual NOx Sensor for Diesel Engines,” 7 pages, prior to Jan. 29, 2016.
Tschanz et al., “Cascaded Multivariable Control of the Combustion in Diesel Engines,” The International Federation of Automatic Control (IFAC), 2012 Workshop on Engine and Powertrain Control, Simulation and Modeling, pp. 25-32, Oct. 23-25, 2012.
Tschanz et al., “Control of Diesel Engines Using NOx-Emission Feedback,” International Journal of Engine Research, vol. 14, No. 1, pp. 45-56, 2013.
Tschanz et al., “Feedback Control of Particulate Matter and Nitrogen Oxide Emissions in Diesel Engines,” Control Engineering Practice, vol. 21, pp. 1809-1820, 2013.
Turner, “Automotive Sensors, Sensor Technology Series,” Momentum Press, Unable to Obtain the Entire Book, the Front and Back Covers and Table of Contents are Provided, 2009.
Van Basshuysen et al., “Lexikon Motorentechnik,” (Dictionary of Automotive Technology) published by Vieweg Verlag, Wiesbaden 039936, p. 518, 2004. (English Translation).
The Extended European Search Report for EP Application No. 17151521.6, dated Oct. 23, 2017.
The Extended European Search Report for EP Application No. 17163452.0, dated Sep. 26, 2017.
Greenberg, “Hackers Cut a Corvette's Brakes Via A Common Car Gadget,” downloaded from https://www.wired.com2015/08/hackers-cut-corvettes-brakes-v . . . , 14 pages, Aug. 11, 2015, printed Dec. 11, 2017.
http://www.blackpoolcommunications.com/products/alarm-immo . . . , “OBD Security OBD Port Protection—Alarms & mmobilizers . . . ,” 1 page, printed Jun. 5, 2017.
http://www.cnbc.com/2016/09/20/chinese-company-hacks-tesla-car-remotely.html, “Chinese Company Hacks Tesla Car Remotely,” 3 pages, Sep. 20, 2016.
ISO, “ISO Document No. 13185-2:2015(E),” 3 pages, 2015.
The Extended Search Report for Corresponding EP Application No. 15179435.1-1807, dated Apr. 1, 2016.
Shazad et al; “Preconditioners for Inexact Interior Point Methods for Predictive Control,” 2010 American Control Conference, pp. 5714-5719, Jun. 30-Jul. 2, 2010.
Bartlett et al; “OPShur: A Dual, Active-Set, Schur-Complement Method for Large-Scale and Structured Convex Quadratic Programming,” OPtim Eng 7:5-32, 2006.
Van Den Boom et al., “MPC for Max-Plus-Linear Systems: Closed-Loop Behavior and Tuning,” Proceedings of the 2001 American Control Conference, Arlington, VA, pp. 325-330, Jun. 2001.
Van Helden et al., “Optimization of Urea SCR deNOx Systems for HD Diesel Engines,” SAE International 2004-01-0154, 13 pages, 2004.
Van Keulen et al., “Predictive Cruise Control in Hybrid Electric Vehicles,” World Electric Vehicle Journal vol. 3, ISSN 2032-6653, pp. 1-11, 2009.
Vdo, “UniNOx-Sensor Specification,” Continental Trading GmbH, 2 pages, Aug. 2007.
Vereschaga et al., “Piecewise Affine Modeling of NOx Emission Produced by a Diesel Engine,” 2013 European Control Conference (ECC), pp. 2000-2005, Jul. 17-19, 2013.
Wahlstrom et al., “Modelling Diesel Engines with a Variable-Geometry Turbocharger and Exhaust Gas Recirculation by Optimization of Model Parameters for Capturing Non-Linear System Dynamics,” (Original Publication) Proceedings of the Institution of Mechanical Engineers, Part D, Journal of Automobile Engineering, vol. 225, No. 7, 28 pages, 2011.
Wang et al., “Fast Model Predictive Control Using Online Optimization,” Proceedings of the 17th World Congress, the International Federation of Automatic Control, Seoul, Korea, pp. 6974-6979, Jul. 6-11, 2008.
Wang et al., “PSO-Based Model Predictive Control for Nonlinear Processes,” Advances in Natural Computation, Lecture Notes in Computer Science, vol. 3611/2005, 8 pages, 2005.
Wang et al., “Sensing Exhaust NO2 Emissions Using the Mixed Potential Principal,” SAE 2014-01-1487, 7 pages, Apr. 1, 2014.
Wilhemsson et al., “A Fast Physical NOx Model Implemented on an Embedded System,” Proceedings of the IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling, pp. 207-215, Nov. 30-Dec. 2, 2009.
Wilhemsson et al., “A Physical Two-Zone NOx Model Intended for Embedded Implementation,” SAE 2009-01-1509, 11 pages, 2009.
Winkler et al., “Incorporating Physical Knowledge About the Formation of Nitric Oxides into Evolutionary System Identification,” Proceedings of the 20th European Modeling and Simulation Symposium (EMSS), 6 pages, 2008.
Winkler et al., “On-Line Modeling Based On Genetic Programming,” 12 pages, International Journal on Intelligent Systems Technologies and Applications, Feb. 2007.
Winkler et al., “Using Genetic Programming in Nonlinear Model Identification,” 99 pages, prior to Jan. 29, 2016.
Winkler et al., “Virtual Sensors for Emissions of a Diesel Engine Produced by Evolutionary System Identification,” LNCS, vol. 5717, 8 pages, 2009.
Wong, “Carb Heavy-Duty OBD Update,” California Air Resources Board, SAE OBD TOPTEC, Downloaded from http://www.arb.ca.gov/msprog/obdprog/hdobdreg.htm, 72 pages, Sep. 15, 2005.
Wright, “Applying New Optimization Algorithms to Model Predictive Control,” 5th International Conference on Chemical Process Control, 10 pages, 1997.
Yao et al., “The Use of Tunnel Concentration Profile Data to Determine the Ratio of NO2/NOx Directly Emitted from Vehicles,” HAL Archives, 19 pages, 2005.
Zaman, “Lincoln Motor Company: Case study 2015 Lincoln MKC,” Automotive Electronic Design Fundamentals, Chapter 6, 2015.
Zavala et al., “The Advance-Step NMPC Controller: Optimality, Stability, and Robustness,” Automatica, vol. 45, pp. 86-93, 2009.
Zeilinger et al., “Real-Time MPC—Stability Through Robust MPC Design,” Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, P.R. China, pp. 3980-3986, Dec. 16-18, 2009.
Zeldovich, “The Oxidation of Nitrogen in Combustion and Explosions,” ACTA Physiochimica U.R.S.S., vol. XX1, No. 4, 53 pages, 1946.
Zelenka, et al., “An Active Regeneration as a Key Element for Safe Particulate Trap Use,” SAE Paper No. 2001-0103199, 13 pages, Feb. 2001.
Zhu, “Constrained Nonlinear Model Predictive Control for Vehicle Regulation,” Dissertation, Graduate School of the Ohio State University, 125 pages, 2008.
Zhuiykov et al., “Development of Zirconia-Based Potentiometric NOx Sensors for Automotive and Energy Industries in the Early 21st Century: What Are the Prospects for Sensors?”, Sensors and Actuators B, vol. 121, pp. 639-651, 2007.
Desantes et al., “Development of NOx Fast Estimate Using NOx Sensor,” EAEC 2011 Congress, 2011.
Winkler, “Evolutionary System Identification—Modern Approaches and Practical Applications,” Kepler Universitat Linz, Reihe C: Technik und Naturwissenschaften, Universitatsverlag Rudolf Trauner, 2009.
Smith, “Demonstration of a Fast Response On-Board NOx Sensor for Heavy-Duty Diesel Vehicles,” Technical report, Southwest Research Institute Engine and Vehicle Research Division SwRI Project No. 03-02256 Contract No. 98-302, 2000.
Related Publications (1)
Number Date Country
20220019183 A1 Jan 2022 US
Divisions (1)
Number Date Country
Parent 15215253 Jul 2016 US
Child 16543213 US
Continuations (1)
Number Date Country
Parent 16543213 Aug 2019 US
Child 17487951 US