CROSS-REFERENCE TO RELATED APPLICATIONS
Radar systems.
FIELD OF INVENTION
The invention related to methods of constructing active quasi-circulators using phase cancellation/combination and coupling directivity techniques to enhance isolation, suppress NF, reduce insertion loss for broadband simultaneous transmit and receive operations in radar and communication systems.
BACKGROUND INFORMATION
The development of broadband active circulators with high-isolation, low insertion and noise figure suppression for simultaneous transmit and receive (STAR) operations would enable radar multifunctional and multi-tasking functionalities for radar systems. The commercial applications are to promote the development of innovative broadband products and services with simultaneous transmit and receive capabilities for next-wave of multi-tasking industrial products in the areas of ultra-high-speed wireless data communications and broadband internet access. Moreover, these STAR features of the active circulator allow easy subassembly of MMIC integrations with reduction of circuit size and reuse of circuitry redundancy which result in cost savings from system architect.
SUMMARY OF INVENTION
It is an object of this invention to enable a device to simultaneously transmit and receive (STAR) signals.
It is a further object of this invention to enable a circulating device to transmit data signals with enhanced broadband high isolation.
It is a further object of this invention to enable a circulating device to receive said signals with further improvement of insertion loss and enhancement of noise figure suppression at the receive port.
This invention is the realization that all these objects can be met with a quadrature-directive quasi-circulator (QDQC) comprising transmit, receive and antenna ports, quadrature hybrids, directional couplers and active components to achieve the said objects.
This invention features a non-reciprocal quasi-active circulator, which consists of quadrature hybrids, directional couplers and active components for enhanced high isolation, low insertion loss, noise figure (NF) suppression for broadband simultaneous transmit and receive operations.
The invention is a three port device in which the antenna port is placed between a transmit port and a receive port. The circulator has input signal from the transmit port circulated to the antenna port and receive signal from the antenna port to the receive port. It is a quasi-circulator that the reverse transmission from the receive port to the transmit port is isolated.
This invention is a 3-port quasi active circulator that uses phase cancellation/combination and coupling directivity techniques for enhanced high isolation, low insertion loss, noise figure (NF) suppression for broadband simultaneous transmit and receive operations. In particular, the device consists of quadrature hybrids, directional couplers and active components such as power amplifiers and low noise amplifiers to form the so-call quadrature-directive quasi circulator (QDQC). The QDQC has input signal from the transmit port directively coupled to the antenna port and receive signal from the antenna port circulated to the receive port, simultaneously. Both the quadrature hybrids and directional couplers can be implemented by active or/and passive components.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1: The building block (passive section) of a proposed quadrature-directive pseudo-circulator (QDQC) that uses both phase combination/cancellation and isolation/directivity techniques.
FIG. 1A: is a representation of a typical directional coupler to be used in this application.
FIG. 2: Performance of the passive section of the QDQC using both phase combination/cancellation and directivity techniques.
FIG. 3: Schematic of the active QDQC (Version 1) using phase cancellation/combination and directivity techniques. The device architecture uses externally integrated active components to achieve quasi circulating performance.
FIG. 4: Performance of the active QDQC using externally integrated PA with measured S-parameters and NF data.
FIG. 5: The simulated NF performance of the QDQC of FIG. 1, that uses externally integrated PA with a behavior model.
FIG. 6: Schematic of an active QDQC using phase cancellation/combination and directivity techniques. The configuration allows internally integrated power amplifiers in the device. The LNA is placed outside the device structure.
FIG. 7: Schematic of an active QDQC circulator using phase cancellation/combination and directivity techniques. The configuration allows internally integrated MMIC power amplifiers with an external driving amplifier to enable higher power handling capability.
FIG. 8: Preliminary trade-off between the coupling factor and the insertion loss of the Ant-to-Rx path of a QDQC. The amplification for the Tx signal for the active circulator is required to be at least 1 dB above the coupling factor.
FIG. 9: Schematic an active QDQC that employs the phase combination/cancellation and coupling directivity techniques. This approach includes a balanced LNA structure to further isolate reflection from the LNA back to the antenna due to impedance mismatch.
DESCRIPTION OF THE PREFERRED EMBODIMENT
The basic building block of the device features three quadrature hybrids and two directional couplers that are arranged in the configuration as shown in FIG. 1. The operation principle of the proposed device is as follows. For the transmit mode of STAR operation, the transmit signal is split into quadrature signals by quadrature hybrid, 1T and then coupled to the antenna port through the directional couplers, 3C, 3D, where the coupling factor and directivity of the couplers determines the power amount and direction of signal flow of the transmit signal to the antenna port. The coupled transmit signals leaving the directional couplers for the antenna port are then recombined constructively in phase by the quadrature hybrid, 1A.
Part of the split transmit signals is terminated by the match loads 4, at the isolation ports of the quadrature hybrid. Due to the non-ideal isolation of the coupler, some small portions of the transmit signals will leak to the receive port where they are recombined destructively in phase at the receive port by the quadrature hybrid, 1R. As a result, the isolation between the transmit and receive port is enhanced by the inherited isolation of the directional coupler in additional to the phase cancellation of the three quadrature hybrid structure. The additional isolation also enhances noise figure (NF) performances at the receive port by further suppressing the transmit signals that leak to the receive port for STAR operations; in particular, this enhancement applied to STAR applications in which the transmit signal is firstly amplified by an external power amplifier with certain noise level.
For the receiving mode of STAR operation, the receive signal is split into quadrature signals from the antenna port, 2A, by the quadrature hybrid, 1A, and then coupled to the receive port, 2R, through two directional couplers, 3C and 3D, where the insertion loss of the receive signals are determined by the coupling and directivity of the couplers. The split receive signals leaving the directional couplers are then recombined constructively in phase by the quadrature hybrid, 1R, at the receive port. Both the transmit and receive modes are operated simultaneously. Matching loads 4 are used for each quadrature hybrid.
FIG. 1A is a graphic representation of the directional couplers indicating the arrangement of the connections. The circuit connections between the directional couplers and the quadrature hybrids of the three-port device are as follows: the INPUT port of the directional couplers, 11, are separately connected to the inner ports of the quadrature hybrid or. Lange coupler at the transmit (TX) port; the COUPLED ports of the directional couplers, 12, are separately connected to the inner ports of the quadrature hybrid or Lange coupler at the Antenna port; the ISOLATED ports of the directional couplers, 13, are separately connected to the inner ports of the quadrature hybrid or Lange coupler at the receive port; the THROUGH ports of the directional couplers, 14, are individually terminated by a matched load, 5. The arrangement of the three quadrature hybrids is in such a way that signal entering the transmit (TX) port will be combined in phase at the Antenna (Ant) port but out of phase at the Receive (Rx) port.
FIG. 2 is a graphic representation of the simulation data for the passive section of a QDQC, as shown in FIG. 1, using both phase combination/cancellation and coupling/directivity techniques for STAR operation. The data show an isolation bandwidth of larger than 10% with 60 dB isolation in the X-band using a coupling factor of 6.5 dB for the directional couplers. Data trace 22 shows the isolation of the structure over the same range as data trace 21.
FIG. 3 is a schematic of an active QDQC (Version 1) using phase cancellation/combination and directivity techniques for STAR operations. The device uses externally integrated active components such as a power amplifier, 31, between the transmit port, 2T and the transmit quadrature hybrid, 1T, and a low noise amplifier between the receive quadrature hybrid, 1R, and the receive port, 2R, to provide quasi circulator operation. The configuration provides a forward transmission of signal from the transmit port to the antenna port, and a forward transmission of signal from the antenna port to the receive port. There is no forward transmission of signal from the receive port to the transmit port and no reverse transmission in all the paths except the transmit to receive path where the signals are cancelled. As a result, the structure provides a quasi circulation operation.
FIG. 4 is a graphic representation of simulation data for the structure in as shown FIG. 3. Data trace 41 shows the gain of the quasi circulator in dB with the power amplifier connected as described in FIG. 3. This is also known as the S21 or forward transmission from Tx port to Ant port. Data trace 42 is the reflected signal S11 at the transmit port. Data trace 43 is the S22 or the reflected signal at the antenna port and data trace 44 is the S33 or reflected signal from the receive port. Data trace 45 represents the S12 or reverse transmission from the antenna port to the transmit port, data trace 46 is the S13 or reverse transmission from the receive port to the transmit port. Data trace 47 is the S31 or forward transmission from the Tx port to the Rx port. Data trace 48 is the measurement of isolation which is defined by S31-S21 or the separation between trace 48 and trace 41. Data trace 49 represents the insertion loss or S32 trace between the antenna port and the receive port.
FIG. 5 is a graphic display of noise figure performance data for the active QDQC (Version 1) using externally an integrated power amplifiers (PAs). The noise figure at the receive port is displayed on the Y-axis as a function of the normalized frequency range in the X-band on the X-axis. This graph shows a relatively low noise figure for normalized frequency up to 1.4 in the X-band. The noise figure in this normalized frequency range in the X-band is less than 3.4 dB.
FIG. 6 is a rendition of another embodiment of the device. In this case two medium power amplifiers, 61, are located downstream from the transmission port quadrature hybrid and another low noise-amplifier is located between the receive quadrature hybrid and the receive port. The purpose of this variation is to provide the transmission power with acceptable noise level and to amplify the receiving signal. The circuit can be implemented in MMIC format.
FIG. 7 is a schematic of an active QDQC as in FIG. 6; however this embodiment has an external driving amplifier 71 to share the power loading of the structure, coupled with the internally integrated MMIC power amplifiers to enable higher power handling capability. The driving amplifier has high gain while the medium power amplifiers have lower gain and noise figure. This setting provides a medium noise figure operation at the receive port while providing sufficient transmit power at the antenna port.
FIG. 8 is graphic display of the trade off of insertion loss between the antenna port and the receive port as a function of the coupling factor of the directional coupler in dB.
FIG. 9 is a schematic of a QDQC (version 4) employing the phase combination/cancellation and coupling directivity techniques. This configuration includes a balanced structure, 91, to provide quasi circulation operation and further isolate reflections from said receive port by two methods. The first method is through the use of two low noise amplifiers 93, which are a unilateral devices directing most of the signal to the receive port and isolating backward transmission. The second method is the use of two balanced Lange or quadrature structures 92, with matching load circuits, 94, to suppress mismatched reflection at the input of the LNA back to the antenna port by loading the reflection signals to the isolation termination, 94, of the hinge coupler, 92.