(a) Field of the Invention
The present invention relates to a quadrature modulator and, more particularly to a quadrature modulator which performs modulation of quadrature (orthogonal) carrier waves with a digital baseband signal to deliver an output digital carrier signal. The present invention also relates to a method for quadrature-modulating carrier waves with a digital baseband signal.
(b) Description of the Related Art
In a wireless transmitter block of a digital cellular phone, for example, orthogonal carrier waves each having a frequency equal to the frequency of the output digital carrier signal are quadrature-modulated with a digital baseband signal which includes information to be transmitted. The modulated carrier waves are then added together to generate the output digital carrier signal, and transmitted through a transmission antenna. This scheme of quadrature modulation is suitable for simplification of the communication system and for reduction of noise in the transmitted carrier signal.
As a practical example of the frequencies used in mobile stations of personal digital cellular (PDC) system prescribed in the standards of cellular phones in Japan, the output frequencies of the local oscillators 401 and 501 are 135 and 795 MHz, respectively. In this case, the frequency of the output digital carrier signal is 930 MHz. The frequencies of spurious signals occurring in the most vicinity of the frequency 930 MHz of the output carrier signal are 945 MHz and 915 MHz. The frequency 945 MHz is seventh-order harmonic of 135 MHz, and the frequency 915 MHz is a frequency difference between the second-order harmonic of 795 MHz and the fifth-order harmonic of 135 MHz.
These spurious signals occur within or in the vicinity of the band of the output digital carrier signal, and are difficult to remove by using filters, acting as interference waves against the adjacent transmission channels or other communication systems.
In operation, the first frequency divider 310 divides the output oscillation frequency from the local oscillator 402 by a factor of two, and the second frequency divider 350 divides the output of the first frequency divider 310 by a factor of two to deliver its output to the frequency mixer 320. The frequency mixer 320 acts for frequency conversion by using the output frequencies from the local oscillator 402 and the second frequency divider 350.
Assuming that the outputs from the local oscillator 402 and the second frequency divider 350 are expressed by VHsinωosct and VLsinωosct/4, respectively, the output LO(t) of the frequency mixer 320 is expressed as follows:
wherein the gain of the double-balanced mixer is assumed at “1” for purpose of simplification.
That is, a pair of angular frequency components 5ωosc/4 and 3ωosc/4 are generated therein.
Assuming that the output digital carrier signal has a frequency of 930 MHz, as in the case of the quadrature modulator of
The BPF 330 removes the image signal having the frequency component of 1550 MHz, passes the carrier frequency component of 930 MHz. The frequency doubler 250 then doubles the output from the BPF 330 to deliver an output frequency of 1860 MHz. The third frequency divider 240 then divides and shifts in phase the output from the frequency doubler 250 to deliver a pair of carrier waves having a frequency of 930 and a phase difference of 90 degrees therebetween. The first and second multipliers 210 and 220 modulates the carrier waves with the digital baseband signal output from the digital signal generator 101 to output modulated signals, which are added in the adder 230 to be delivered as an output digital carrier signal. The frequency of each block in the quadrature modulator of
In the quadrature modulator of
Spurious signals may be generated in the frequency mixer 320 as harmonics of the signal having a ¼-divided frequency of the output frequency of the local oscillator 402 due to the non-linearity of the frequency mixer 320. However, these spurious signals do not act as interference waves against the output carrier signal because the spurious signal among these spurious signals which has a frequency in the vicinity of the carrier frequency has a frequency equal to the carrier frequency itself.
The quadrature modulator of
The quadrature modulator of
Those problems of the quadrature modulator of
In view of the above problems in the conventional techniques, it is an object of the present invention to provide a quadrature modulator having a simplified structure and smaller dimensions, and capable of suppression of the degradation caused by the feed-back of the output carrier signal as encountered in the conventional quadrature modulators.
The present invention provides a quadrature modulator including a local oscillator for oscillating at an oscillation frequency equal to 4/(2N+1) times a carrier frequency where N is a natural number, a frequency conversion block for multiplying the oscillation frequency by a factor of (2N+1)/2, a first frequency divider to divide an output from the frequency conversion block by a factor of two to output a pair of carrier waves having therebetween a phase difference of 90 degrees, first and second multipliers for modulating the carrier waves with a digital baseband signal to output a pair of modulated signals, and an adder for adding the modulated signals together to output a digital carrier signal having the carrier frequency.
In accordance with the present invention, the structure of the quadrature modulator is simplified and the feed-back of the output carrier signal does not affect the modulation accuracy, thereby generating a carrier signal having an accurate carrier frequency substantially without generating interference waves against the adjacent frequency band.
In the present invention where “N” is equal to “1”, the frequency conversion block preferably includes a second frequency divider for dividing the oscillation frequency by a factor of two to generate a divided frequency, a frequency mixer for mixing outputs from the local oscillator and the frequency to generate a first signal having a frequency equal to a sum of the oscillation frequency and the divided frequency.
In the present invention where N is equal to or more than “2”, the frequency conversion block preferably includes a second frequency divider for dividing the oscillation frequency by a factor of two to output another divided frequency, N frequency mixers cascaded from one another for mixing the oscillation frequency and the divided frequency or an output from a preceding one of the frequency mixers to output a first signal having a frequency equal to a sum of the oscillation frequency and the divided frequency or a frequency of another first signal output from the preceding one of the frequency mixers.
The above and other objects, features and advantages of the present invention will be more apparent from the following description, referring to the accompanying drawings.
Now, the present invention is more specifically described with reference to accompanying drawings, wherein similar constituent elements are designated by similar reference numerals.
Referring to
The quadrature modulation block 20 includes a first frequency divider (½-frequency-divider) 24 for dividing the output frequency of the frequency conversion block 30 by a factor of two to deliver orthogonal carrier waves, first and second multipliers 21 and 22 for modulating the orthogonal carrier waves with the baseband signal from the digital signal generator 10, and an adder 23 for adding the outputs from the first and second multipliers 21 and 22 to output the digital carrier signal.
The frequency conversion block 30 includes a second frequency divider (½-frequency-divider) 31 for dividing the oscillation frequency fosc by a factor of two, a frequency mixer 32 for operating for frequency conversion based on the outputs from the second frequency divider 31 and the local oscillator 40 to generate a frequency component equal to the sum of the output frequency fosc/2 of the frequency divider 31 and the output frequency fosc of the local oscillator 40 as well as an image signal component, and a BPF 33 for removing the image signal component from the output from the frequency mixer 32 to pass the carrier frequency component.
In operation, the output frequency fosc of the local oscillator 40 is divided by the second frequency divider 31 into fosc/2. The frequency mixer 32 operates for signal conversion based on the output frequency fosc/2 of the frequency divider 31 and the output frequency fosc of the local oscillator 40. The frequency mixer 32 is implemented by a known double-balanced mixer such as shown in
Assuming that the output waveforms from the local oscillator and the first ½-frequency-divider 31 are expressed by:
VHsinωosct and VLsin(ωosct/2),
respectively (where ωosc=2πfosc), the output LO1(t) of the frequency mixer 32 is expressed as follows:
wherein the gain of the double-balanced mixer is assumed at “1” for the purpose of simplification
That is, the output from the frequency mixer 32 includes the angular frequency components of 3ωosc/2 and ωosc/2, the latter being the image signal component.
Assuming that the frequency of the output digital carrier signal is 930 MHz, as in the case of the conventional quadrature modulator, the local oscillator 40 outputs an oscillation frequency of 1240 MHz to the second frequency divider 31.
The output frequency 620 MHz from the second frequency divider 31 and the output frequency 1240 MHz from the local oscillator 40 generates frequency components of 1860 MHz and 620 MHz in the output from the frequency mixer 32. Thus, the difference in the frequency between the carrier wave and the image signal is 1240 MHz in the output from the frequency mixer 32. The BPF 33 removes the image signal component of 620 MHz to pass the signal component of 1860 MHZ, which is double the frequency of the carrier wave. The first frequency divider 24 divides the input thereof by a factor of two to output orthogonal carrier waves having a frequency of 930 MHz.
The first frequency divider 24 includes a D-type flip-flop acting as a 90° phase shifter. The D-type flip-flop is widely used as the 90° phase shifter because it delivers a master output signal and a slave output signal having therebetween an accurate phase difference of 90 degrees, provided that the clock signal and the inverted clock signal received in the D-type flip-flop have a duty ratio equal to 50%. Due to this characteristic of the D-type flip-flop, accurate orthogonal carrier waves are obtained as the output of the first ½-frequency-divider 24.
The first and second multipliers 21 and 22 modulate the orthogonal carrier waves with the baseband signal output from the digital signal generator 10. The adder 23 adds both the outputs from the first and second multipliers 21 and 22 to deliver the output digital carrier signal.
Referring to
The non-linearity of the frequency mixer 32 may generate spurious signals by frequency conversion of a plurality of harmonics of the oscillation frequency and the frequency divided therefrom into ½. However, the spurious signal among these spurious signals re-siding in the vicinity of the carrier frequency has a frequency equal to the carrier frequency. Thus, signal interference does not occur between the spurious signals and the carrier signal, whereby the feedback of the output carrier signal through the transmission antenna does not degrade the modulation accuracy.
In addition, two ½-frequency-dividers 24 and 31 are sufficient for the quadrature modulator. Further, since the output frequency from the frequency conversion block 30 is double the frequency of the output digital carrier signal, an additional frequency doubler is not needed. This fact also obviates provision of the d.c.-blocking capacitor. Thus, the dimensions of the IC pellet can be reduced.
Referring to
In the present embodiment, the local oscillator 70 oscillates at an oscillation frequency of ⅘ of the output digital carrier signal, and the frequency conversion block 30a multiplies the oscillation frequency by 5/2.
The frequency conversion block 30a includes a second ½-frequency-divider 31, a first frequency mixer 32 for receiving the outputs from the local oscillator 70 and the second ½-frequency-divider 31, a second frequency mixer 34 for receiving the outputs from the local oscillator 70 and the first frequency mixer 32, and a BPF 33 which are cascaded in this order.
The first frequency mixer 32 outputs a signal having angular frequency components of 3ωosc/2 and ωosc/2, as in the case of the first embodiment.
Referring to
The emitters of transistors Q1 and Q2 of the first differential transistor pair are connected together through a capacitor C1. This configuration is similar to the double-balanced mixer of
In the double-balanced mixer of
Assuming that the lower frequency component ωosc/2 of the first frequency mixer 32 is negligible and the outputs from the local oscillator 70 and the first frequency mixer 32 are expressed by:
VHsinωosct and VLsin(3ωosct/2),
respectively, the output LO2(t) of the second frequency mixer 34 is expressed as follows:
wherein the gain of the double balanced mixer is assumed “1” for the purpose of simplification.
That is, the output from the second frequency mixer 34 includes the angular frequency components of 5ωosc/2 and ωosc/2.
The BPF 33 removes the image signal component of ωosc/2 to output a signal component of 5ωosc/2, which is double the carrier frequency, to the first frequency divider 24. The operations of the first frequency-divider 24 and the succeeding stages are similar to those in the first embodiment. The frequency of each stage is shown in
In
In the second embodiment, as in the case of the first embodiment, the spurious signal among the spurious signals which has a frequency component in the vicinity of the carrier frequency has a frequency equal to the carrier frequency itself. Thus, the spurious signals do not act as interference waves against the oscillation frequency fosc.
In addition, the second embodiment has the advantage of smaller dimensions of IC pellet because a d.c.-blocking capacitor is not needed, and there are only two ½-frequency-dividers needed. Further, the feed-back of the output carrier signal through the antenna does not degrade the modulation frequency.
Since the above embodiments are described only for examples, the present invention is not limited to the above embodiments and various modifications or alterations can be easily made therefrom by those skilled in the art without departing from the scope of the present invention.
For example, the quadrature modulator of the present invention can be implemented by a software.
Number | Date | Country | Kind |
---|---|---|---|
2000-025150 | Feb 2000 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3644827 | Landefeld | Feb 1972 | A |
4638180 | Sagawa et al. | Jan 1987 | A |
5434887 | Osaka | Jul 1995 | A |
5535247 | Gailus et al. | Jul 1996 | A |
5717719 | Park et al. | Feb 1998 | A |
6011962 | Lindenmeier et al. | Jan 2000 | A |
6320912 | Baba | Nov 2001 | B1 |
Number | Date | Country |
---|---|---|
10-4437 | Jan 1998 | JP |
Number | Date | Country | |
---|---|---|---|
20010016017 A1 | Aug 2001 | US |