TECHNICAL FIELD
The present disclosure relates to a technology capable of compensating for a frequency error a quadrature relaxation oscillator, and more particularly, to a quadrature relaxation oscillator using a frequency error compensation loop, which can generate a signal at a desired frequency by using a resistor and a capacitor which are less insensitive to a PVT (Process, Voltage, Temperature) variation, generate a signal at a desired frequency by compensating for an error from design, which occurs depending on a circuit mismatch due to a characteristic of a semiconductor process, through a feedback loop, and remove noise.
In general, an oscillator is widely used in various power supply devices or driving devices, and roughly classified into a tuned oscillator and a relaxation oscillator referred to as a charge/discharge oscillator, depending on an implementation method.
The relaxation oscillator refers to an oscillator that generates a signal at a desired frequency by using electrical characteristics of a resistor and a capacitor, and includes a resistor, a capacitor and a comparator.
Basically, the relaxation oscillator repeats an operation of comparing a charge voltage of the capacitor to a reference voltage through the comparator while charging the capacitor, and discharging and recharging the capacitor when output logic is changed according to the comparison result.
At this time, an undesired delay occurs in the comparator, and thus causes a frequency error. Recently, circuits using a feedback loop have been suggested in order to compensate for such a delay of the comparator. Such a feedback loop uses an amplifier, and employs a chopping scheme for removing low-frequency noise of the amplifier.
In the relaxation amplifier according to the related art, however, a frequency error may be caused by an offset voltage of the comparator and the amplifier, which are generated by a mismatch in process, and a delay which occurs in the comparator.
Furthermore, in the relaxation amplifier according to the related art, the amplifier used for the comparator and the feedback loop may generate low-frequency noise which is responsible for a frequency error and disturbs a stable oscillation operation.
An object of the present invention is to provide a technique for preventing an offset voltage of a comparator and an amplifier, which is caused by a mismatch in process in a quadrature relaxation oscillator, and a frequency different from a target frequency, which is caused by a delay in the comparator.
Another object of the present invention is to provide a technique for removing low-frequency noise generated by a comparator and an amplifier used for a feedback loop.
In accordance with an embodiment, a quadrature relaxation oscillator using a frequency error compensation loop may include: a charge control unit configured to provide a charge path or discharge path for generating an I clock signal and a Q clock signal at a corresponding phase of a first phase, a second phase, a third phase and a fourth phase; a charge unit configured to output a first charge/discharge voltage and a second charge/discharge voltage while being charged with a supply voltage supplied through the charge path or discharged through the discharge path; a reference voltage generation unit configured to apply a frequency compensation method to output a first upper reference voltage, a second upper reference voltage, a first lower reference voltage and a second lower reference voltage, wherein the reference voltage generation unit compares the first and second charge/discharge voltages to an upper reference voltage and a lower reference voltage, respectively, at phases that the levels of the first and second charge/discharge voltages are stopped, and outputs the first and second upper reference voltages and the first and second lower reference voltages which are synchronized with the first and second charge/discharge voltages; a comparison unit configured to compare the first charge/discharge voltage to the first upper and lower reference voltages and compare the second charge/discharge voltage to the second upper and lower reference voltages, and output logic signals corresponding to the respective comparison results; and an S-R latch unit configured to latch the logic signals and output the latched signals as the I clock signal and the Q clock signal, respectively.
In accordance with the present invention, the quadrature relaxation oscillator can effectively prevent an offset voltage of a comparator and an amplifier, which is caused by a mismatch in process in the quadrature relaxation oscillator, and a frequency different from a target frequency, which is caused by a delay in the comparator.
Furthermore, the quadrature relaxation oscillator can remove low-frequency noise generated by the comparator and the amplifier used for a feedback loop, thereby contributing to a stable oscillation operation.
Furthermore, the quadrature relaxation oscillator can generate frequencies having a quadrature phase quadrature phase relationship with each other, and thus double efficiency in terms of energy.
Furthermore, the frequency compensation method applied to the present invention can remove a frequency error caused by a mismatch in process which occurs outside a resistor and a capacitor, and efficiently remove low-frequency noise and chopping noise which are generated in a circuit.
Hereafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
The charge control unit 110 provides a charge path or discharge path for generating I clock signals CLKI and CLKIB and Q clock signals CLKQ and CLKQB at a corresponding phase among first to fourth phases Φ0 to Φ3. For this operation, the charge control unit 110 includes a first charge control unit 111 and a second charge control unit 112.
The first charge control unit 111 includes a PMOS transistor MP1 and an NMOS transistor MN1. The PMOS transistor MP1 provides a charge path to supply a supply voltage VDD as a charge voltage at the first phase Φ0, and the NMOS transistor MN1 provides a discharge path to discharge the charge unit 120 which has been charged, at the third phase Φ2.
The second charge control unit 112 includes a PMOS transistor MP2 and an NMOS transistor MN2. The PMOS transistor MP2 provides a charge path to supply the supply voltage VDD as a charge voltage at the second phase Φ1, and the NMOS transistor MN2 provides a discharge path to discharge the charge unit 120 which has been charged, at the fourth phase Φ3.
The charge unit 120 outputs first and second charge/discharge voltages Vo1 and Vo2 while charged with the supply voltage VDD supplied through the charge path of the charge control unit 110 or discharged through the discharge path of the charge control unit 110. For this operation, the charge unit 120 includes a first charge unit 121 and a second charge unit 122.
The first charge unit 121 includes a resistor R1 and a capacitor C1 which are coupled in series between a first charge/discharge node N1 of the first charge control unit 111 and a ground terminal, and outputs the first charge/discharge voltage Vo1.
The second charge unit 122 includes a resistor R2 and a capacitor C2 which are coupled in series between a second charge/discharge node N2 of the second charge control unit 112 and a ground terminal, and outputs the second charge/discharge voltage Vo2.
The reference voltage generation unit 130 generates and outputs first and second upper reference voltages Vrefup1 and Vrefup2 and first and second lower reference voltages Vrefdn1 and Vrefdn2. However, a frequency error may occur in the relaxation oscillator 100 due to a delay or offset voltage in first to fourth comparators CP1 to CP4. In order to prevent such a frequency error, the reference voltage generation unit 130 includes a frequency error compensation loop that compares the first and second charge/discharge voltages Vo1 and Vo2 to upper and lower reference voltages Vup and Vdn, respectively, at a phase where the levels of the first and second charge/discharge voltages Vo1 and Vo2 are stopped, and outputs the first and second upper reference voltages Vrefup1 and Vrefup2 and the first and second lower reference voltages Vrefdn1 and Vrefdn2 which are synchronized with the first and second charge/discharge voltages Vo1 and Vo2.
The comparison unit 140 compares the first charge/discharge voltage Vo1 to the first upper and lower reference voltages Vrefup1 and Vrefdn1, compares the second charge/discharge voltage Vo2 to the second upper and lower reference voltages Vrefup2 and Vrefdn2, and outputs logic signals according to the respective comparison results. For this operation, the comparison unit 140 includes a first comparison unit 141 and a second comparison unit 142.
The first comparison unit 141 includes the first and second comparators CP1 and CP2 that compare the first charge/discharge voltage Vo1 to the first upper and lower reference voltages Vrefup1 and Vrefdn1, and output logic signals according to the respective comparison results.
The second comparison unit 142 includes the third and fourth comparators CP3 and CP4 that compare the second charge/discharge voltage Vo2 to the second upper and lower reference voltages Vrefup2 and Vrefdn2, and output logic signals according to the respective comparison results.
The S-R latch unit 150 latches the logic signals supplied from the comparison unit 140, and outputs the latched signals as the I clock signals CLKI and CLKIB and the Q clock signals CLKQ and CLKQB. The I clock signals CLKI and CLKIB are exactly out of phase with each other, and the Q clock signals CLKQ and CLKQB are also exactly out of phase with each other. For this configuration, the S-R latch unit 150 includes a first S-R latch 151 and a second S-R latch 152.
The first S-R latch 151 receives the logic signal outputted from the first comparator CP1 of the first comparison unit 141 through a set terminal S thereof, receives the logic signal outputted from the second comparator CP2 through a reset terminal R thereof, and outputs the I clock signals CLKI and CLKIB.
The second S-R latch 152 receives the logic signal outputted from the third comparator CP3 of the second comparison unit 142 through a set terminal S thereof, receives the logic signal outputted from the fourth comparator CP4 through a reset terminal R thereof, and outputs the Q clock signals CLKQ and CLKQB.
Referring to the waveform diagram of
First, a ‘low’ voltage is supplied to the gate of the PMOS transistor MP1 of the first charge control unit 111 at the first phase Φ0, such that the PMOS transistor MP1 is turned on and the other transistors MN1, MP2 and MN2 are maintained in an off state. Therefore, the capacitor C1 starts to be charged with the supply voltage VDD through the PMOS transistor MP1, the first charge/discharge node N1 and the resistor R1. Thus, the first charge/discharge voltage Vo1 of the capacitor C1 of the first charge unit 121 starts to rise as illustrated in
At the second phase Φ1, a ‘low’ voltage is supplied to the gate of the PMOS transistor MP2 of the second charge control unit 112, such that the PMOS transistor MP2 is turned on and the other transistors MP1, MN1 and MN2 are maintained in an off state. Therefore, the capacitor C2 starts to be charged with the supply voltage VDD through the PMOS transistor MP2, the second charge/discharge node N2 and the resistor R2. Thus, the second charge/discharge voltage Vo2 of the capacitor C2 of the second charge unit 122 starts to rise as illustrated in
At the third phase Φ2, a ‘high’ voltage is supplied to the gate of the NMOS transistor MN1 of the first charge control unit 111, such that the NMOS transistor MN1 is turned on and the other transistors MP1, MP2 and MN2 are maintained in an off state. Thus, the charge voltage of the capacitor C1 starts to be discharged to the ground terminal through the resistor R1, the first charge/discharge node N1 and the NMOS transistor MN1. Thus, the first charge/discharge voltage Vo1 of the capacitor C1 of the first charge unit 121 starts to fall as illustrated in
At the fourth phase Φ3, a ‘high’ voltage is supplied to the gate of the NMOS transistor MN2 of the second charge control unit 112, such that the NMOS transistor MN2 is turned on and the other transistors MP1, MN1 and MP2 are maintained in an off state. Thus, the charge voltage of the capacitor C2 starts to be discharged to the ground terminal through the resistor R2, the second charge/discharge node N2 and the NMOS transistor MN2. Thus, the second charge/discharge voltage Vo2 of the capacitor C2 of the second charge unit 122 starts to fall as illustrated in
Even after that, the relaxation oscillator 100 periodically repeats the above-described operations at the respective phases Φ0 to Φ3, and thus generates the I clock signal CLKI and the Q clock signal CLKQ which have a quadrature phase relationship with each other.
However, an undesired delay occurring in the first to fourth comparators CP1 to CP4 and an offset voltage generated by a mismatch in process cause a frequency error. That is, when a delay occurs in the first to fourth comparators CP1 to CP4, the first charge/discharge voltage Vo1 may bounce slightly more than a difference between the first upper and lower reference voltages Vrefup1 and Vrefdn1 and the second charge/discharge voltage Vo2 may bounce slightly more than a difference between the second upper and lower reference voltages Vrefup2 and Vrefdn2. In this state, when the relaxation oscillator 100 oscillates, a frequency error may occur. Furthermore, the first and second charge/discharge voltages Vo1 and Vo2 may bounce with a difference corresponding to an offset voltage of the first to fourth comparators CP1 to CP4. In this case, a frequency error may occur.
Therefore, in the embodiment of the present invention, the reference voltage generation unit 130 compensates for a frequency error and outputs the first and second upper reference voltages Vrefup1 and Vrefup2 and the first and second lower reference voltages Vrefdn1 and Vrefdn2, in order to remove the frequency error caused by the first to fourth comparators CP1 to CP4.
The first frequency error compensation loop 310 includes a first sampling unit 311, a first amplifier 312, a first sub amplifier 313 and a first error compensation unit 314. The first sampling unit 311 selects and samples the first charge/discharge voltage Vo1 and the upper reference voltage Vup at the second phase Φ1, and selects and samples the second charge/discharge voltage Vo2 and the upper reference voltage Vup at the third phase Φ2. The first amplifier 312 is a trans-conductance amplifier that converts and amplifies the voltage sampled by the first sampling unit 311 into an output current. The first sub amplifier 313 adjusts an output voltage of the first amplifier 312 to a similar level to the first upper reference voltage Vrefup1. The first error compensation unit 314 updates the first and second upper reference voltages Vrefup1 and Vrefup2 with the output current of the first amplifier 312, after the output voltage of the first amplifier 312 is adjusted to a similar level to the first upper reference voltage Vrefup1.
The second frequency error compensation loop 320 includes a second sampling unit 321, a second amplifier 322, a second sub amplifier 323 and a second error compensation unit 324. The second sampling unit 321 selects and samples the first charge/discharge voltage Vo1 and the lower reference voltage Vdn at the fourth phase Φ3, and selects and samples the second charge/discharge voltage Vo2 and the lower reference voltage Vdn at the first phase Φ0. The second amplifier 322 converts and amplifies the voltage sampled by the second sampling unit 321 into a current output. The second sub amplifier 323 adjusts an output voltage of the second amplifier 322 to a similar level to the first lower reference voltage Vrefdn1. The second error compensation unit 324 updates the first and second lower reference voltages Vrefdn1 and Vrefdn2 with the output current of the second amplifier 322, after the output voltage of the second amplifier 322 is adjusted to a similar level to the first and second lower reference voltages Vrefdn1 and Vrefdn2.
The reference voltage generation circuit 330 outputs the upper reference voltage Vup and the lower reference voltage Vdn. For this operation, the reference voltage generation circuit 330 includes resistors R11 to R13 coupled in series between a supply voltage VDD and a ground voltage GND, outputs the upper reference voltage Vup at a connection point between the resistors R11 and R12, and outputs the lower reference voltage Vdn at a connection point between the resistors R12 and R13.
The switching control signal generation unit 340 outputs switching control signals Φ0s to Φ3s for controlling switching operations of switches included in the first and second frequency error compensation loops 310 and 320.
The process in which the first frequency error compensation loop 310 compensates for a frequency error and outputs the first and second upper reference voltages Vrefup1 and Vrefup2 synchronized with the first and second charge/discharge voltages Vo1 and Vo2 will be described below based on the first to fourth phases Φ0 to Φ3. The following descriptions will be based on an example in which the first switching control signal Φ0s is outputted at the first phase Φ0, the second switching control signal 01s is outputted at the second phase Φ1, the third switching control signal Φ2s is outputted at the third phase Φ2, and the fourth switching control signal Φ3s is outputted at the fourth phase Φ3.
First, at the first phase Φ0, a switch S5 is turned on by the first switching control signal Φ0s, such that an output terminal of the first sub amplifier 313 is coupled to an output terminal of the first amplifier 312 through the switch S5. Therefore, an output voltage of the first amplifier 312 and an output voltage of the first sub amplifier 313 have a similar level to the level of the first upper reference voltage Vrefup1.
Since the output terminal of the first amplifier 312 has high impedance, the output terminal of the first amplifier 312 has a voltage value close to the supply voltage VDD or the ground voltage GND in most situations. Furthermore, an undesired parasitic capacitor component is present in the output terminal of the first amplifier 312. Thus, when a switch S7 is turned on by the second switching control signal Φ1s at the next second phase Φ1, the first upper reference voltage Vrefup1 is significantly changed by charge sharing.
In order to minimize such a change, the switch S7 is turned on at the first phase Φ0 such that the output voltage of the first amplifier 312 and the output voltage of the first sub amplifier 313 have a similar level to the level of the first upper reference voltage Vrefup1, before the output terminal of the first amplifier 312 is coupled to the first upper reference voltage Vrefup1.
At the second phase Φ1, switches S1, S3 and S7 are turned on by the second switching control signal Φ1s. Thus, the first charge/discharge voltage Vo1 is supplied to a capacitor Cs1 through the switch S1 and sampled in the capacitor Cs1, and the upper reference voltage Vup is supplied to a capacitor Cs2 through the switch S3 and sampled in the capacitor Cs2.
Therefore, the first amplifier 312 outputs a current proportional to a difference between the first charge/discharge voltage Vo1 sampled in the capacitor Cs1 and the upper reference voltage Vup sampled in the capacitor Cs2, in order to update the first upper reference voltage Vrefup1.
At the third phase Φ2, switches S2, S4 and S6 are turned on by the third switching control signal Φ2s. Thus, the upper reference voltage Vup is supplied to the capacitor Cs1 through the switch S2 and sampled in the capacitor Cs1, and the second charge/discharge voltage Vo2 is supplied to the capacitor Cs2 through the switch S4 and sampled in the capacitor Cs2. Furthermore, the output terminal of the first sub amplifier 313 is coupled to the output terminal of the first amplifier 312 through the switch S6. Therefore, the output voltage of the first amplifier 312 and the output voltage of the first sub amplifier 313 have a similar level to the level of the first upper reference voltage Vrefup1.
Finally, at the fourth phase Φ3, a switch S8 is turned on by the fourth switching control signal Φ3s. The first amplifier 312 outputs a current proportional to a difference between the upper reference voltage Vup sampled in the capacitor Cs1 and the second charge/discharge voltage Vo2 sampled in the capacitor Cs2 through the switch S8, in order to update the second upper reference voltage Vrefup2.
The second frequency error compensation loop 320 updates the first and second lower reference voltages Vrefdn1 and Vrefdn2 through the same process as the first frequency error compensation loop 310.
In the end, the reference voltage generation unit 130 adjusts the voltage levels of the output terminals of the first amplifier 312 and the first sub amplifier 313 to similar levels to the voltages of the capacitors Cs1 and Cs2 through the above-described process, before the first and second lower reference voltages Vrefdn1 and Vrefdn2 are updated through the second amplifier 322 and the second sub amplifier 323, which makes it possible to minimize an influence by charge sharing. Furthermore, since a valid gain of the first amplifier 312 is considerably increased through the above-described process, the current used in the first amplifier 312 can be significantly reduced.
As illustrated in
As illustrated in
Since outputs of the first and second amplifiers 312 and 322 are single ended outputs, the first and second amplifiers 312 and 322 are designed in such a manner that the direction of an active load is changed to provide a chopping function.
(a) of the
In
At this time, the first and second charge/discharge voltages Vo1 and Vo2 become (Vo1, Φ1=Vup−Vos1) and (Vo2, Φ2=Vup+Vos1), respectively. That is, as illustrated in the waveform diagram of (b) of the
When the amplitudes of the first and second charge/discharge voltages Vo1 and Vo2 increase together as the first and second charge/discharge voltages Vo1 and Vo2 have an offset voltage in the same direction, the frequency error increases as illustrated in a dotted graph of
The reason why the frequency compensation method can remove the influence by the offset voltages Vos1 and Vos2 of the first and second amplifiers 312 and 322 is that, when the offset voltages Vos1 and Vos2 of the first and second amplifiers 312 and 322 occur, delay times of the first and second charge/discharge voltages Vo1 and Vo2 are increased once and decreased once by delay amounts corresponding to the offset voltages Vos1 and Vos2.
For example, when the offset voltage Vos1 occurs in the first amplifier 312 for generating the first and second upper reference voltages Vrefup1 and Vrefup2, the time of the first phase Φ0 is increased, but the time of the second phase Φ1 is decreased. Furthermore, when the offset voltage Vos2 occurs in the second amplifier 322 for generating the first and second lower reference voltages Vrefdn1 and Vrefdn2, the time of the third phase Φ2 is increased, but the time of the fourth phase Φ3 is decreased.
More specifically, when the compensation for the offset voltage Vos1 of the first amplifier 312 is performed, any one of the first and second charge/discharge voltages Vo1 and Vo2 oscillates at a voltage higher by the offset voltage Vos1 than the upper reference voltage Vup, and the other one oscillates at a voltage lower by the offset voltage Vos1 than the upper reference voltage Vup. At this time, since it takes a longer time as the one charge/discharge voltage oscillates at a voltage higher by the offset voltage Vos1, the time of the corresponding phase is increased. Furthermore, when the other charge/discharge voltage oscillates at a voltage lower by the offset voltage Vos1, the other charge/discharge voltage may rise less by the offset voltage Vos1. Thus, the time of the corresponding phase is decreased. At this time, since the offset voltages when the charge/discharge voltages oscillate at high and low voltages are offset voltages generated by the same first amplifier 312, the offset voltages have similar values. Thus, while the amounts of time which are increased and decreased at the respective phases become similar to each other, the offset voltages are effectively offset.
For this reason, when the time of any one of the phases Φ0 and Φ1 at which the first and second charge/discharge voltages Vo1 and Vo2 rise is increased, the time of the other phase is decreased. Similarly, when the time of any one of the phases Φ2 and Φ3 at which the first and second charge/discharge voltages Vo1 and Vo2 fall is increased, the time of the other phase is decreased. At this time, the increase or decrease in the time is decided by the signs of the offset voltages Vos1 and Vos2 of the first and second amplifiers 312 and 322.
Such a frequency compensation method serves to reduce low-frequency noise of the first and second amplifiers 312 and 322 as well as the offset voltages of the first and second amplifiers 312 and 322. When the offset voltages Vos1 and Vos2 of the first and second amplifiers 312 and 322 are changed to low-frequency voltages by low-frequency noise, a comparison voltage is updated through a feedback loop, which makes it possible to prevent a change in frequency of the first and second amplifiers 312 and 322 by the low-frequency noise.
In order to remove the low-frequency noise of the amplifier, the chopping scheme increases an output voltage once and decreases the output voltage once in the case that an offset voltage occurs in an amplifier, thereby removing an influence by the offset voltage. At this time, when a low frequency is generated, a capacitor having a considerably large capacity needs to be used to remove noise caused by chopping. However, the frequency compensation method applied to the present invention divides each of the outputs of the first and second amplifiers 312 and 322 into two parts, thereby preventing a phenomenon that the output bounces due to a chopping frequency. Therefore, noise by the chopping frequency does not occur.
For example, when the offset compensation for the first amplifier 312 is performed, one of the first and second charge/discharge voltages Vo1 and Vo2 oscillates at a voltage higher by the offset voltage Vos1, and the other one oscillates as a voltage lower by the offset voltage Vos1. This graph is represented by W/compensation. Furthermore, when the offset compensation is not performed, both of the first and second charge/discharge voltages Vo1 and Vo2 oscillate at a voltage lower or higher by the offset voltage Vos1. This graph is represented by W/O compensation.
While various embodiments have been described above, it will be understood to those skilled in the art that the embodiments described are by way of example only. Accordingly, the disclosure described herein should not be limited based on the described embodiments.
Number | Date | Country | Kind |
---|---|---|---|
10-2016-0170156 | Dec 2016 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2017/013867 | 11/30/2017 | WO | 00 |