The present invention generally relates to magnetically operated switches, and more particularly relates to a quadrupole magnetic coded switch.
Various types of switches have been implemented to provide protection to both systems and personnel. Such switches, when provided, ensure that electrical power is available to at least certain portions of a system only when certain components are in predetermined positions with respect to each other. For example, one or more switches may be included in a system to ensure that separately driven parts of the system do not collide with each other.
Such switches may also be used to provide electrical power to energize one portion of a system only when a second portion is out of the path of a first portion. These switches may also be used to ensure that a machine or system operator is not within the vicinity of certain parts of a machine or system, such as in cutting, grinding, forging, or punching machines or systems, before power is made available to drive these parts.
The above-described switches have been variously implemented and configured. In many instances, these switches are mechanically or magnetically operated devices. While reliable, presently known mechanically and magnetically operated switches do exhibit certain drawbacks. For example, presently known mechanically and magnetically operated switches may be readily overridden by an operator in the interest of faster machine or system operation.
Hence there is a need for a tamper resistant switch and/or a switch that is not readily overridden, to ensure adequate levels of safety margin for machines and machine operators. The instant invention addresses at least this need.
In one embodiment, a quadrupole magnetic coded switch includes a switch housing, an actuator, one or more switch dipole magnets, and a plurality of magnetically operated switch circuits. The actuator housing is movable relative to the switch housing. The plurality of actuator dipole magnets are coupled to the actuator housing and are movable therewith. The one or more switch dipole magnets are coupled to the switch housing. The one or more switch dipole magnets and the plurality of actuator dipole magnets are arranged to generate a quadrupole magnetic field. Each magnetically operated switch circuit is disposed within the switch housing and is configured to transition between a plurality of switch positions in response to relative movement of the actuator housing and the switch housing.
In another embodiment, a quadrupole magnetic coded switch includes a switch housing, an actuator, one or more switch dipole magnets, and a plurality of reed switches. The actuator housing is movable relative to the switch housing. The plurality of actuator dipole magnets are coupled to the actuator housing and are movable therewith. The one or more switch dipole magnets are coupled to the switch housing. The one or more switch dipole magnets and the plurality of actuator dipole magnets are arranged to generate a quadrupole magnetic field. Each reed switch is disposed within the switch housing and is configured to transition between two switch positions when the actuator housing and switch housing are moved toward, and are within a first predetermined distance of, each other, and when the actuator housing and switch housing are moved away from, and are at least a second predetermined distance from, each other.
In yet another embodiment, a quadrupole magnetic coded switch includes a switch housing, an actuator, one or more switch dipole magnets, and a magnetically operated switch circuits. The actuator housing is movable relative to the switch housing. The plurality of actuator dipole magnets are coupled to the actuator housing and are movable therewith. The one or more switch dipole magnets are coupled to the switch housing. The one or more switch dipole magnets and the plurality of actuator dipole magnets are arranged to generate a quadrupole magnetic field. The magnetically operated switch circuit is disposed within the switch housing and is configured to move from an open position to a closed position when the actuator housing and switch housing are moved toward, and are within a first predetermined distance of, each other. The magnetically operated switch circuit is also configured to move from the closed position to the open position when the actuator housing and switch housing are the moved away from, and are at least a second predetermined distance from, each other. The first predetermined distance is less than the second predetermined distance.
Furthermore, other desirable features and characteristics of the present invention will become apparent from the subsequent detailed description, taken in conjunction with the accompanying drawings and this background.
The present invention will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and
The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. As used herein, the word “exemplary” means “serving as an example, instance, or illustration.” Thus, any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments. All of the embodiments described herein are exemplary embodiments provided to enable persons skilled in the art to make or use the invention and not to limit the scope of the invention which is defined by the claims. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary, or the following detailed description.
A functional schematic diagram of an embodiment of a quadrupole magnetic coded switch is depicted in
The switch assembly 104 includes a switch housing 112, a dipole magnet 114, which is referred to herein as a switch dipole magnet, and a plurality of magnetically operated switch circuits 116. The switch dipole magnet 114 is coupled to the switch housing 112. As will also be described further below, the switch assembly 104 may, in other embodiments, include more than one switch dipole magnet 114. As with the actuator dipole magnets 108, although the switch dipole magnets 114 are preferably implemented using permanent magnets, electromagnets could also be used.
The magnetically operated switch circuits 116 are disposed within the switch housing 112 and, as will be described momentarily, are each configured to selectively transition between a plurality of switch positions in response to relative movement of the actuator housing 106 and the switch housing 112. The magnetically operated switch circuits 116, at least in the depicted embodiment, each include one or more sets of switch contacts 118 that are each movable between open states and closed states. Although the number of magnetically operated switch circuits 116 and associated sets of switch contacts 118 may vary, in the depicted embodiment the switch assembly 104 includes three switch circuits 116-1, 116-2, 116-3, with each magnetically operated switch circuit 116 having two sets of switch contacts 118-1, 118-2. It will be appreciated that the magnetically operated switch circuits 116 may be implemented using any one of numerous types of switches. For example, the magnetically operated switch circuits 116 may be implemented using various types and combinations of switches and sensor including, but not limited to, AMR (anisotropic magneto-resistance), GMR (giant magneto-resistance), Hall sensors, or reed switches, just to name a few. In the depicted embodiments, however, the magnetically operated switch circuits 116 are each implemented using a plurality of reed switches. In this regard, the particular configuration of reed switches that are used (e.g., Form A, Form B, Form C, etc.) may also vary.
No matter the specific number of actuator dipole magnets 108 and switch dipole magnets 114, the actuator dipole magnets 108 and switch dipole magnets 114 are arranged to generate a quadrupole magnetic field. Moreover, the magnetically operated switch circuits 116 are disposed in the switch housing 112 to transition between the plurality of switch positions based on the relative strength of the quadrupole magnetic field. In particular, the magnetically operated switch circuits 116 are configured to transition between the switch positions when the actuator housing 106 and switch housing 112 are moved toward, and are within a first predetermined distance of, each other. The magnetically operated switch circuits 116 are additionally configured to transition between the switch positions when the actuator housing 106 and switch housing 112 are moved away from, and are at least a second predetermined distance from, each other.
It is noted that in the particular embodiment depicted in
Before proceeding further, it is noted that the terms normally closed (NC) and normally open (NO), as used herein, are associated with a magnetically operated switch circuit 116 when the actuator housing 106 is within the first predetermined distance (d1) of the switch housing 112. It will thus be appreciated that, in using this convention, magnetically operated switch circuits 116-1, 116-2 are both NC switch circuits and magnetically operated switch circuit 116-3 is a NO switch circuit.
Preferably, the actuator assembly 102 is movable relative to the switch assembly 104. Thus, in most embodiments the actuator housing 106 is coupled to a movable portion of a particular device, system, or machine such as, for example, a machine guard, a door, or any one of numerous other movable portions. Concomitantly, the switch housing 112 is preferably coupled to a stationary portion of the same particular device, system, or machine as the actuator housing 106. Moreover, an electrical potential is preferably applied across the magnetically operated switch circuits 116. Thus, when the magnetically operated switch circuits 116 are in the open state, electrical current will not flow through the magnetically operated switch circuits 116, whereas in the closed state, electrical current will flow through the magnetically operated switch circuits 116.
It was noted above that the configuration and number of actuator dipole magnets 108 and switch dipole magnets 114 may vary. It was additionally noted that the specific number of sets of switch contacts 118 that comprise each of the magnetically operated switch circuits 116 may vary. For example, in two exemplary alternative embodiments, one of which is depicted in
In addition to configuration and numerical variations described above and depicted in
Not only may the configuration and number of actuator magnets 108, switch magnets 114, and magnetically operated switch circuits 116 within individual quadrupole magnetic coded switches vary, but the number of quadrupole magnetic coded switches that are used may vary. For example, a device, system, or machine may include two or more the quadrupole magnetic coded switches, some or all of which may or may not be electrically connected together.
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment of the invention. It being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
2912540 | Sawicki | Nov 1959 | A |
4039985 | Shlesinger et al. | Aug 1977 | A |
4186362 | Kondo et al. | Jan 1980 | A |
4210889 | Holce | Jul 1980 | A |
4331013 | Jaulmes | May 1982 | A |
4438430 | Young et al. | Mar 1984 | A |
4812674 | Sue et al. | Mar 1989 | A |
4943791 | Holce et al. | Jul 1990 | A |
4945340 | Brill | Jul 1990 | A |
5233322 | Posey | Aug 1993 | A |
5233323 | Burkett et al. | Aug 1993 | A |
5239202 | Hostetler | Aug 1993 | A |
5293523 | Posey | Mar 1994 | A |
5633626 | Cawthorne | May 1997 | A |
5929731 | Jackson, Jr. | Jul 1999 | A |
6348861 | Li | Feb 2002 | B1 |
6963281 | Buckley | Nov 2005 | B2 |
7019607 | Busch | Mar 2006 | B2 |
7782163 | Schmid et al. | Aug 2010 | B2 |
7999644 | Nakayama et al. | Aug 2011 | B2 |
Number | Date | Country | |
---|---|---|---|
20110291778 A1 | Dec 2011 | US |