This relates generally to integrated circuits, and more particularly to techniques for improving the quality factor of parasitic capacitance within an integrated circuit.
Isolation is often desirable for interconnecting electrical systems to exchange data or power between the systems. For example, two systems may be powered by different supply sources that do not share a common ground connection. The two systems may be electrically isolated to prevent current and voltages in one system from negatively impacting the other system, for instance by damaging or interfering with the operation of one or more components of the other system. One form of isolation uses one or more capacitors to provide electrical isolation and to capacitively couple a data signal between the systems. However, capacitor-based isolation solutions often include parasitic capacitance that absorbs signal energy and results in significant signal-path attenuation due to bottom-plate parasitic capacitance that shunts signal energy to a local ground. More particularly, the fabrication of some existing capacitor-based isolation solutions on top of a substrate, such as a semiconductor substrate, produces a parasitic capacitance and series resistance between a bottom plate of an isolation capacitor and a reference terminal, such as ground, which limits the operating frequency for data communications using the isolation capacitor. This leads to poor power efficiency, and large amounts of parasitic capacitance can severely limit bandwidth, leading to limitations in data rates and increased data latency.
Described examples add a substrate element to the substrate. The substrate element includes one or more conductive doped regions of the substrate that overlaps the reference terminal and the bottom plate of the isolation capacitor. The one or more conductive doped regions provides a conductive path from the bottom plate of the isolation capacitor to the reference terminal, which reduces the series resistance associated with the parasitic capacitance, and thereby, improves the quality factor associated with the parasitic capacitance. The improved quality factor reduces dissipative loss through the parasitic capacitance to enable data communications at higher frequencies using the isolation capacitor. Additionally, in described examples, the substrate element is added during the front-end-of-line (“FEOL”) portion or segment of an integrated circuit (“IC”) fabrication process, which limits the impact on the isolation rating of the isolation capacitor.
In one example, an integrated circuit includes a substrate, a reference contact coupled to the substrate, a capacitor over the substrate, and a substrate element. The capacitor includes a first conductive element having an associated parasitic capacitance and a second conductive element electrically isolated from the first conductive element. The substrate element is coupled to the first conductive element by the parasitic capacitance and coupled to the reference contact. The substrate element includes a conductive region in the substrate and aligned with the first conductive element and the reference contact.
In another example, a system includes isolation circuitry including a semiconductor substrate, a reference contact coupled to the semiconductor substrate, an isolation capacitor over the semiconductor substrate, and a conductive doped region in the semiconductor substrate. The isolation capacitor includes a first conductive element having an associated parasitic capacitance and a second conductive element galvanically isolated from the first conductive element. The conductive region is aligned with the first conductive element and the reference contact.
In another example, a method of making an integrated circuit includes forming, in a substrate, a substrate element having a conductive doped region. The method further includes forming, on the substrate, a reference contact that is aligned with and mechanically coupled to the substrate element. The method also includes forming, over the substrate and aligned with the conductive doped region, a capacitor having first and second electrically isolated conductive elements, the first conductive element having an associated parasitic capacitance.
In the drawings, like reference numerals refer to like elements throughout, and the various features are not necessarily drawn to scale. In the description and in the claims, the terms “couple”, “coupled” or “couples” means an indirect or direct electrical or mechanical connection.
Referring initially to
Isolation and resonance circuitry 122a includes a coupling or isolation capacitor C1, a substrate element SE1, and a coil that is illustrated as a filter inductor LF1. In an alternative example, the isolation and resonance circuitry 122a includes LF1 and also includes a filter capacitor CF1 coupled together in parallel. In a further example, the coil is implemented as a transformer instead of the inductor LF1, with or without the inclusion of CF1. In yet another example, LF1 is implemented as a transmission line, with or without the inclusion of CF1.
The capacitor C1 includes a conductive element referred to as a top plate 128t and a conductive element referred to as a bottom plate 128b. The bottom plate 128b of capacitor C1 has an associated parasitic capacitance CP1, and the top plate 128t is electrically isolated from the bottom plate 128b of capacitor C1.
As illustrated, the top plate 128t of capacitor C1 is coupled to one end of the interconnect 134, and the bottom plate 128b of capacitor C1 is coupled to a node 126. Node 126 may represent a connection to other circuitry outside of the system 120, such as a transmit circuit for sending a data signal. Substrate element SE1 is coupled to the bottom plate 128b of capacitor C1 by parasitic capacitance CP1 and is coupled to a first ground connection or reference node 132. Inductor LF1 has one end coupled to the bottom plate 128b of capacitor C1 and has another end coupled to the ground connection 132. When a part of the isolation and resonance circuitry 122a, the capacitor CF1 has one plate coupled to the bottom plate 128b of capacitor C1 and has another plate coupled to the ground connection 132.
Isolation and resonance circuitry 122b includes a coupling or isolation capacitor C2, a substrate element SE2, and a coil that is illustrated as a filter inductor LF2. In an alternative example, the isolation and resonance circuitry 122b includes LF2 and also includes a filter capacitor CF2 coupled together in parallel. In a further example, the coil is implemented as a transformer instead of the inductor LF2, with or without the inclusion of CF2. In yet another example, LF2 is implemented as a transmission line, with or without the inclusion of CF2. Also, in some examples, the circuitry 122a and 122b can be matched or substantially identical. In other examples, the circuitry 122a and 122b can be different.
The capacitor C2 includes a conductive element referred to as a top plate 136t and a conductive element referred to as a bottom plate 136b. The bottom plate 136b of capacitor C2 has an associated parasitic capacitance CP2, and the top plate 136t is electrically isolated from the bottom plate 136b of capacitor C2.
As illustrated, the top plate 136t of capacitor C2 is coupled to the other end of the interconnect 134, and the bottom plate 136b of capacitor C2 is coupled to a node 138. Node 138 may represent a connection to other circuitry outside of the system 120, such as a receive circuit for receiving a data signal. Substrate element SE2 is coupled to the bottom plate 136b of capacitor C2 by parasitic capacitance CP2 and is coupled to a second ground connection or reference node 140. Inductor LF2 has one end coupled to the bottom plate 136b of capacitor C2 and has another end coupled to the ground connection 140. When a part of the isolation and resonance circuitry 122b, the capacitor CF2 has one plate coupled to the bottom plate 136b of capacitor C2 and has another plate coupled to the ground connection 140.
A line 150 indicates separation of two different power domains having different power supplies (not shown) and different ground connections 132, 140. In an example, the power domain to the left of line 150 provides a relatively lower voltage power supply, for instance less than 10 volts. The power domain to the right of line 150 provides a relatively higher voltage power supply, for instance over 100 volts. However, the power supply values may differ in other examples.
As illustrated, capacitors C1 and C2 form an isolation circuit 130 that provides electrical isolation, and in particular a galvanic isolation barrier, while further providing for capacitive coupling of a data signal between the two power domains. A resonant circuit 124a is formed by LF1 and parasitic capacitance CP1 (and capacitor CF1 if used in the circuit 124a). A resonant circuit 124b is formed by LF2 and parasitic capacitance CP2 (and capacitor CF2 if used in the circuit 124b). Resonant circuits 124a and 124b are designed and constructed to resonate at a resonance frequency at or near a carrier frequency for the data signal being coupled across the galvanic isolation barrier. In another example, system 120 does not include LF1, CF1, LF2, and CF2.
The isolation system 120 may be implemented on one or more semiconductor dies or integrated circuit chips, also referred to herein as ICs or IC chips. In one example, the isolation system 120 is part of a single IC. In another example, isolation and resonance circuitry 122a is a part of one IC and isolation and resonance circuitry 122b is a part of a different IC. In another example, circuitry 146 that includes the isolation circuit 130, the parasitic capacitances CP1 and CP2, and the substrate elements SE1 and SE2 are a part of one IC; a second IC includes the inductor LF1 (and capacitor CF1 if used in the circuit); and a third IC includes the inductor LF2 (and capacitor CF2 if used in the circuit). In examples, wherein system 120 does not include the resonant circuits 124a and 124b, the circuit 146 may be a part of a single IC. Alternatively, isolation capacitor C1 (and associated parasitic capacitance CP1) and substrate element SE1 are a part of one IC, and isolation capacitor C2 (and associated parasitic capacitance CP2) and substrate element SE2 are a part of another IC.
During operation of a system or module that includes the isolation system 120, a data input signal DIN having digital data modulated onto a carrier may be received at an input 142 of the system 120. Input 142 is coupled to node 126. The system 120 creates a channel or conduit at the carrier frequency. This channel is used to capacitively couple the data across the galvanic isolation barrier and to generate a data output signal DOUT carrying the data at the carrier frequency. DOUT is generated at an output 144 of the system 120. Output 144 is coupled to node 138.
A challenge is constructing the channel to mitigate energy loss within the channel over a wide range of frequencies. One source of energy loss is the parasitic capacitances CP1 and CP2, wherein the extent of the energy loss depends on a quality factor, Q, associated with each parasitic capacitance. Namely, Q represents the performance efficiency of a given capacitor or effective capacitor, such as a parasitic capacitance. Namely, the higher the Q, the lower the energy loss. Q for a capacitor can be expressed by the following equation:
Q=1/(REQCω), (1)
where REQ is an equivalent series resistance associated with the capacitor; C is the capacitance value; and ω is resonance frequency.
In accordance with equation (1), Q (and hence performance efficiency) decreases as the resonance frequency increases for a given parasitic capacitance CP1 or CP2 within the isolation system 120. Thus, constructing the channel with a higher or improved Q for the parasitic capacitances CP1 and CP2 could mitigate energy loss within the channel at higher resonance and carrier frequencies. Inclusion of the substrate elements SE1 and SE2 within the isolation system 120, in accordance with one or more examples of this description, improves the Q for the parasitic capacitances CP1 and CP2, respectively. More particularly, including the substrate elements SE1 and SE2 improves the Q by decreasing the respective equivalent series resistance associated with the parasitic capacitances CP1 and CP2.
In one particular example, the components illustrated in each of
Referring to
As used herein, a “reference contact” means a structure that is coupled to a substrate and is adapted, for instance through the type of material from which it is made, to be electrically connected to a voltage reference. For instance, the reference contacts 204 are adapted to be electrically connected to a ground connection or reference node, such as ground connections 132 and 140 shown in
When integrated in a system, such as a system represented by the isolation system 120, the reference contacts 204 may be coupled to respective pads (not shown) on a surface 220 of the IC 200. The coupling between the reference contacts 204 and the pads may be through metallic interconnects or vias (not shown) formed through and/or between one or more insulating layers 216 of the IC 200. The pads may be further coupled to ground connections, e.g., represented by 132 or 140 of
The capacitor 210 includes conductive elements 212 and 214, e.g., top and bottom plates respectively, formed over the substrate 202. Due to their construction, conductive elements 212 and 214 may also be referred to as metallic elements. Namely, the conductive elements 212 and 214 are formed in different metal layers, for instance different aluminum layers, formed (e.g., deposited) over the substrate 202 between the one or more insulating layers 216. Accordingly, the one or more insulating layers 216 provide electrical isolation between the conductive elements 212 and 214 of the capacitor 210. The one or more insulating layers 216 may be fabricated using isolations materials, such as silicon oxide (SO), silicon dioxide (SiO2), silicon carbide, etc., formed, inserted, or layered between the metal layers.
The capacitor 210 is constructed to have a capacitance CISO, and a parasitic capacitance CP is associated with the conductive element 214. Moreover, REQ is an equivalent series resistance through the substrate element 218 and associated with CP, which impacts the Q for CP. In one example, CP is at least 5×CISO. In a particular example, CISO is in the range of 20-400 femtofarads (fF), and CP is in the range of 100 fF to 2 picofarads. However these capacitances may be different in other examples.
As illustrated, the conductive element 214 is formed in a second metal layer (“M2”), and the conductive element 212 is formed in a seventh metal layer (“M7”). However, in other examples, the conductive elements 212 and 214 may be formed in other metal layers. The particular layers may depend, at least in part, on a total number of metal layers formed above the substrate 202 from which additional electrical components such as transistors (not shown) and interconnections (not shown) may be formed.
During operation and upon receiving a data signal at the conductive element 214 from circuitry in a first power domain, capacitance CISO capacitively couples the data signal across the isolation barrier provided by the one or more insulating layers 216 and onto the conductive element 212. From the conductive element 212, the data signal may be provided to circuitry in a second power domain. In one example, the data signal is provided from the conductive element (e.g., top plate) 212 of the capacitor 210 to a conductive element (e.g., top plate) of a second coupling capacitor. The data signal is then capacitively coupled across a second isolation barrier onto another conductive element (e.g., bottom plate) of the second coupling capacitor for providing to the circuitry in the second power domain.
The substrate element 218 is constructed to reduce the equivalent series resistance REQ in order to reduce the amount of the data signal that is shunted from the conductive element 214 through the parasitic capacitance CP to a ground connection. Particularly, the substrate element 218 is constructed as or constructed to include a conductive region formed (e.g., implanted or diffused) in the substrate 202 beneath and coupled to the conductive element 214 and the reference contacts 204, which reduces REQ. As illustrated, the substrate element 218 is capacitively coupled to the conductive element 214 by the parasitic capacitance CP and is coupled to the reference contacts 204 by a direct mechanical connection that facilitates the electrical connection. As further illustrated, the substrate element 218 spatially overlaps (extends beyond the border of) both the reference contact 204 and the bottom plate 214 of the capacitor 210. Although a full overlapping is shown, in another example the substrate element 218 partially overlaps (extends beyond at least part of the border of) one or both of the reference contacts 204 and the bottom plate 214 of the capacitor 210. The full or partial overlapping aligns a substrate element with one or more reference contacts and with a bottom plate of a capacitor of an integrated circuit.
As used herein, a “conductive region” or “conductive doped region” means a doped region of a substrate that has a lower resistivity than the substrate and a lower resistivity than a well (e.g., n-well or p-well) formed in the substrate. The lower resistivity is achieved by higher doping concentrations in the conductive doped region than in the region (e.g., the substrate or the well) surrounding the conductive doped region.
In this example, the substrate element 218 is a “uniform” doped region, meaning that the substrate element 218 has the same type (e.g., n-type or p-type) of doping and the same or substantially the same concentration of doping throughout the entirety of the substrate element, within the constraints of the fabrication process. Particularly, the substrate element 218 has a uniform p-type doping shown as a p+ doped region. A p+ doped region is a region that is heavily doped with p-type dopant atoms such as boron as compared to the region surrounding the p+ region, in this case the substrate 202.
In one example, a heavily doped region may have 10,000 or more times the doping concentration than the surrounding region, such as where the heavily doped region is formed in a lightly doped area such as the substrate. In another example, the heavily doped region may have 100 to 1,000 times the doping concentration than the surrounding region, such as where the heavily doped region is formed in a moderately doped region such as a well within the substrate. As used herein, a “well” means a doped region within a substrate normally used as a building block for a transistor formed in the substrate. In a particular example, a lightly doped region, such a substrate region, includes 1 impurity (dopant) atom per 107 atoms; a moderately doped region, such a well region, has 1 impurity (dopant) atom per 105 atoms; and a heavily doped region, such a p+ or n+ region, has 1 impurity (dopant) atom per 103 atoms. However, other relative concentrations may be used for lightly, moderately, and heavily doped regions depending, for instance, on the relative resistances desired for the regions.
In one example, the uniform doped region is a patterned region made as a result of a patterning process, such as photolithography. In another example, the uniform doped region is a non-patterned region resulting from deposition or implantation of doping molecules without any subsequent patterning process being performed on the doped region. In yet another example, the uniform doped region is a silicided region formed by using a silicide formation technique to create an alloy, thereby further increasing the conductivity and, in turn, reducing the equivalent series resistance REQ of the doped region.
In an example where the substrate element 218 is a uniform p+ doped region that is silicided and non-patterned, the equivalent series resistance REQ can be over 40× less than the resistance RSUB of the substrate 202. This can result in a Q for the parasitic capacitance CP that is improved by over 40× as compared to the Q for CP without the substrate element 218. When the substrate element 218 is a uniform p+ doped region that is silicided and patterned, this may result in a slightly higher equivalent series resistance REQ and consequently a slightly lower Q, but with a benefit of a lower parasitic capacitance CP. A lower parasitic capacitance CP allows use of a larger coil (e.g., LF1 or LF2) in the resonant circuit (e.g., 124a or 124b), resulting in lower dissipative losses in the coil.
In one example, the substrate element 318 is patterned. In another example, the substrate element 318 is non-patterned. In yet another example, the substrate element 318 is silicided. Moreover, IC examples having the substrate element 318 as a n+ doped region may generate a comparable equivalent series resistance REQ and resultant Q for parasitic capacitance CP as is generated by IC examples having the substrate element 218 as a p+ doped region.
More specifically, as illustrated, the IC 400 also includes an n-well 426 formed (e.g., implanted or diffused) in the substrate 202 beneath and overlapping at least some portion of the conductive element 214. As further illustrated, the border of the n-well 426 extends beyond the border of the conductive element 214. The doped region 424 is a n+ doped region formed within the n-well 426 beneath the conductive element 214. The doped region 422 is a p+ doped region formed in the substrate 202 outside of the n-well 426 and beneath the reference contacts 204. Accordingly, the doped region 424 overlaps the bottom plate 214 of the capacitor 210, and the doped regions 422 overlap the reference contacts 204. Although full overlapping is shown, in another example, the doped region 424 partially overlaps the bottom plate 214 of the capacitor 210, and/or the doped regions 422 partially overlap the reference contacts 204.
In this example, the equivalent series resistance, associated with CP and that impacts the Q for CP, includes both REQN through the n+ doped region 424 and REQP through the p+ doped region 424. Also, in this example, the border of the n+ doped region 424 is formed as close to the border of the p+ doped region 422 as is allowable by a semiconductor device fabrication process used to construct or manufacture the IC 400. This reduces or prevents an impact of RSUB and RWELL (the resistance of the n-well 426) on the equivalent series resistance associated with CP. In another example, one or both of the doped regions 422 and 424 of the substrate element 418 is patterned. In another example, one or both of the doped regions 422 and 424 of the substrate element 418 is non-patterned. In yet another example, one or both of the doped regions 422 and 424 of the substrate element 418 is silicided.
In a particular example where the substrate element 418 is silicided and non-patterned, the equivalent series resistance (REQN+REQP) can be over 40× less than RSUB and over 30× less than RWELL. This can result in a Q for the parasitic capacitance CP that is improved by over 40× as compared to the Q for CP without the substrate element 418. Patterning one or both of the doped regions 422 or 424 of the substrate element 418 may result in a slightly higher equivalent series resistance (REQN+REQP) and consequently a slightly lower Q, but with a benefit of a lower parasitic capacitance CP.
Moreover, IC examples having the substrate element 418 including both a n+ doped region and a p+ doped region may generate a smaller CP and resultant larger Q for CP than is generated by IC examples having the substrate element 218 as a uniform p+ doped region or the substrate element 318 as a uniform n+ doped region. However, a tradeoff of the larger Q is the introduction of diodes 428 into the IC 400, thereby, complicating the substrate network and diminishing predictability during IC design—as compared to other IC examples 200 and 300.
However, in contrast to the example IC 200 shown in
In one example, one or both of the doped regions 522 and 524 of the substrate element 518 is patterned. In another example, one or both of the doped regions 522 and 524 of the substrate element 518 is non-patterned. In yet another example, one or both of the doped regions 522 and 524 of the substrate element 518 is silicided. Moreover, IC examples having the substrate element 518 as shown in
With further reference to
For example, a point m3 on both line graphs 600 and 602 represents the Q for CP1 measured at a resonant frequency of 10 GHz. When the substrate element SE1 is not a part of the circuitry, the line graph 600 shows that Q=0.845 for the parasitic capacitance CP1. Accordingly, in the absence of the substrate element SE1 and at the frequency of 10 GHz, more than half of the signal energy of DIN that enters the bottom plate 128b of the capacitor C1 is dissipated through CP1 and its associated equivalent series resistance (e.g., REQN+REQP) to the ground connection 132 before the data signal is capacitively coupled to the top plate 128t of C1. If signal dissipation occurs through CP2 and its associated equivalent series resistance (e.g., REQN+REQP) to the ground connection 140, this translates to at least a 6 decibel (“dB”) additional loss of power between DIN and DOUT. By contrast, when the substrate element SE1 is a part of the circuitry, the line graph 602 shows that the Q=55.975 for parasitic capacitance CP1. This represents significantly less added power loss between DIN and DOUT close to 0 dB.
In the illustrated example, the isolation module 900 includes a transmit circuit 902, a receive circuit 950, and the isolation system 120 coupled between the transmit circuit 902 and the receive circuit 950. The transmit circuit 902 includes an input 904 coupled to the input terminal 962 to receive the transmit input signal TX. The receive circuit 950 includes an output 948 coupled to the output terminal 964 to provide the receive data signal RX. In operation, the isolation system 120 conveys the input data signal DIN from the transmit circuit 902 across a galvanic isolation barrier to the receive circuit 950 as the data output signal DOUT. Moreover in this example, the transmit circuit 902 is powered by a first power domain having the ground connection 132. The receive circuit 950 is separately powered by a second power domain relative to the ground connection 140.
As further illustrated, the transmit circuit 902 includes a buffer amplifier 906, an oscillator 916, and a power amplifier circuit 910. The buffer amplifier 906 receives the TX signal from the input 904. The buffer amplifier 906 can be any suitable single ended or differential amplifier circuit, and can provide electrostatic discharge (ESD) protection in certain embodiments. The buffer amplifier 906 includes an output 908 that provides a data signal to modulate a carrier signal in the power amplifier circuit 910.
The power amplifier circuit 910 includes an amplifier 912 and a switching circuit 914. The oscillator 916 includes an output 918 that provides a carrier signal to the power amplifier circuit 910. In one implementation, the carrier signal is a high-frequency sinusoidal signal in the GHz frequency range. The output of the amplifier 912 is modulated by the switching circuit 914 according to the data signal from the buffer amplifier 906 to provide the data input signal DIN to the input 142 of the isolation system 120. In one example, the power amplifier circuit 910 provides the data input signal DIN as a sinusoidal signal with a non-zero amplitude when the TX signal is in a first binary state (e.g., high or “1”). In this example, the data input signal DIN has a fixed amplitude (e.g., 0 V) when the transmit signal TX is in a second binary state (e.g., low or “0”).
The receive circuit 950 receives the data output signal DOUT from the output 144 of the isolation system 120. The receive circuit 950 includes an envelope detector circuit 940 and an ESD protection/buffer circuit 946. The envelope detector circuit 940 includes a rectifier circuit 942 and a comparator circuit 944. In practice, a time varying signal DOUT is received, having non-zero voltage components or transients responsive to polarity changes in the data input signal DIN as a result of the AC coupling by the series-connected coupling capacitors C1 and C2. The rectifier circuit 942 rectifies the received voltage signal to create a DC voltage signal that is compared with a threshold by the comparator circuit 944. In this example, since the data input signal DIN has a non-zero amplitude for binary “1” transmit data and a zero amplitude for binary “0” transmit data, the output of the comparator 944 will be in a first binary state (e.g., high or “1”) when the rectifier 942 output signal exceeds the threshold voltage. Otherwise, the output of the comparator 944 will be in a second binary state (e.g., low or “0”).
The ESD protection/buffer circuit 946 receives the output signal from the comparator 944 and provides the receive data signal RX at the output node 948. In this manner, the isolation module 900 provides the receive data signal RX corresponding to the received transmit data signal TX, and the RX and TX signals are galvanically isolated from one another via the galvanic isolation circuit 130. Moreover, including the substrate elements SE1 and SE2 in the isolation module 900 allows the coupling of DIN across the galvanic isolation barrier at higher carrier frequencies than is possible without the substrate elements SE1 and SE2, including DIN signals in the 10-20 GHz frequency range and higher.
The isolation module 900 may be implemented in one or more ICs. In one example, the isolation module 900 is a part of a single IC. In another example, isolation and resonance circuitry 122a and transmit circuit 902 is a part of one IC, and isolation and resonance circuitry 122b and receive circuit 950 is a part of a different IC. In another example, circuitry 146 that includes the isolation circuit 130, the parasitic capacitances CP1 and CP2, and the substrate elements SE1 and SE2 are a part of one IC; a second IC includes the transmit circuit 902 and may include the inductor LF1; and a third IC includes the receive circuit 950 and may include the inductor LF2.
IC chip 1004a includes the above-described transmit circuit 902, coupling capacitors C1, and isolation and resonance circuitry 122a. IC chip 1004b includes the receive circuit 950, coupling capacitors C2, and isolation and resonant circuitry 124b. As illustrated, top plates 128t of coupling capacitors C1 are exposed at a top side of the IC chip 1004a to allow wire bonding via interconnects 134 for connection to top plates 136t of coupling capacitors C2 that are exposed at a top side of the IC chip 1004a.
In another example, the isolation module 900 is implemented as a single-ended circuit having one coupling capacitor C1 on the IC chip 1004a and one coupling capacitor C2 on the IC chip 1004b. In another example isolation module 900, the IC chip 1004a does not include the transmit circuit 902, and the IC chip 1004b does not include the receive circuit 950. In other examples, the isolation module 900 is a part of a single IC chip 1004, wherein the interconnects 134 may be wire bonds or traces. The module 900 a part of the single IC chip 1004 may be single ended or differential and may or may not include the transmit circuit 902 and the receive circuit 950.
Moreover, in this example, the parasitic capacitances CP1 associated with the bottom plates 128b of capacitors C1 are effectively part of the IC 1004a along with substrate elements SE1. Also, the parasitic capacitances CP2 associated with the bottom plates 136b of capacitors C2 are effectively part of the IC 1004b along with substrate elements SE2. In this regard, in one example, the respective inductors LF1 and LF2 of the resonant circuits 124a, 124b are fabricated on or in the associated IC chips 1004. In another example, the inductors LF1 and LF2 are separate components electrically connected to the IC chips 1004. Similarly, any capacitors of the resonant circuits 124a, 124b, e.g., CF1 and CF2, can be formed on or in the associated ICs 1004, or can be separate components electrically connected therewith.
Block 1102 of method 1100 depicts forming, in a substrate, a substrate element having a conductive doped region. In this example, forming the substrate element occurs during FEOL processing within the semiconductor device fabrication process. The substrate may be a p-type substrate or an n-type substrate. The conductive doped region may include one or more n+ or p+ doped regions.
In one example, the conductive doped region includes a uniform doped region that is a p+ doped region formed in a p-type substrate, for instance as shown in
Block 1104 of method 1100 depicts coupling a reference contact to the substrate element. For example, when the substrate element includes a uniform doped region formed in the substrate, the reference contact is coupled near an outer border of the uniform doped region. In another example, wherein the substrate element includes two doped regions, one of which is formed in a well formed in the substrate, the reference contact is coupled near an outer border of the doped region that is formed external to the well.
Block 1106 of method 1100 depicts forming, over the substrate, a capacitor having first and second electrically isolated conductive elements. The first conductive element has an associated parasitic capacitance coupling the first conductive element to the substrate element. For example, when the substrate element includes a uniform doped region formed in the substrate, a center of the first conductive element is formed over a center of the substrate element. In another example, wherein the substrate element includes two doped regions, one of which is formed in a well formed in the substrate, a center of the well is aligned with a center of the first conductive element. The first conductive element is, thereby, parasitically coupled to the doped region that is formed within the well.
Block 1202 of method 1200 depicts forming, in a substrate, a substrate element having a uniform doped region. The substrate element is formed such that an area of the substrate element will extend beneath both a capacitor and beneath one or more reference contacts that will be formed later in the semiconductor device fabrication process. The substrate element is formed during FEOL processing and includes ion implantation and/or diffusion of dopant atoms into the substrate to generate the uniform doped region.
In one example, n-type dopant atoms or donors, such as phosphorus or arsenic, are used to generate a uniform n+ doped region. In another example, p-type dopant atoms or acceptors, such as boron, are used to generate a uniform p+ doped region. Moreover, the particular dopant atom used, the depth of the doped region, and the density of the dopant atoms within the doped region may be determined, at least in part, based on desired electrical characteristics of the doped region (e.g., desired resistivity), desired CP or Q of the parasitic capacitance, and desired carrier and resonant frequencies during circuit operation.
Block 1204 of method 1200 depicts patterning and/or siliciding the uniform doped region. For instance, determining whether the uniform doped region is patterned and/or silicided may be based, at least in part, on desired electrical characteristics of the doped region (e.g., desired resistivity), desired CP or Q of the parasitic capacitance, and desired carrier and resonant frequencies during circuit operation. For instance, patterning and/or siliciding may be performed at lower frequencies because Q is inherently higher a lower frequencies. Hence, the higher resistivity originating due to the patterning is better tolerated.
Block 1206 of method 1200 depicts forming parallel lateral layers of dielectric material on and above a surface of the substrate, and block 1208 depicts forming parallel lateral metal layers spread between the layers of dielectric material. For example, the layers of dielectric materials and the metal layers are stacked parallel lateral layers on and above a surface of the substrate, from which electrical and other elements and interconnects of the IC may be formed. The layers are stacked such that at least one layer of dielectric material separates each metal layer from each other metal layer. Dielectric materials such as SiO2 may be used to form oxidation layers, for instance through a deposition process. The deposition process may also be used to form the metal layers using a metal such as aluminum or copper.
As the layers of dielectric material and metal layers are formed, method 1200 includes forming therein reference contacts, a capacitor, and metallic interconnects and vias, as depicted by blocks 1210-1214. More particularly, block 1210 depicts forming, one or more reference contacts, e.g., through patterning and removal processing applied to one or more of the layers of dielectric material and metal layers. Namely, a metallic portion of each reference contact is formed in one of the metal layers over a first area of the uniform doped region. This first area of the uniform doped region may be near an outer border of the uniform doped region. In one example, the metallic portion of the reference contact is formed in a M1 metal layer, which is the initial metal layer deposited closest to the surface of the substrate. Accordingly, metal layers M2, M3, etc. denote the second metal layer, third metal layer, and so on, relative to the surface of the substrate and denote increasingly higher metal layers above metal layer M1.
Moreover, forming each reference contact as depicted in block 1210 includes forming a metallic interconnect between the metallic portion of the reference contact and the first area of the uniform doped region. In an example, forming the metallic contact includes creating an opening in the layer of dielectric deposited between M1 and the surface of the substrate. The opening is created below where the metallic portion of the reference contact will be formed. Metal, such as tungsten, is deposited in the opening to create the metallic interconnect and, thereby, the electrical connection between the metallic portion of the reference contact and the substrate element. In one example, the metallic interconnect is directly mechanically connected between the metallic portion of the reference contact and the substrate element.
Block 1212 of method 1200 depicts forming first and second conductive elements of a capacitor in two metal layers above the metal layer in which the metallic portion of the reference contact was formed. In an example, the first and second conductive elements are formed, e.g., through patterning and removal processing applied to metal layers M1 and M7. However, any two suitable upper metal layers may be used. Moreover, the first and second conductive elements are located over a second area of the uniform doped region. For example, centers of the first and second conductive elements and of the uniform doped region are aligned. The first conductive element is formed closest to the substrate element relative to the second conductive element. Accordingly, a parasitic capacitance of the first conductive element couples the first conductive element to the second area of the uniform doped region. The first and second conductive elements may be the same or a different size.
Block 1214 of method 1200 depicts forming electrical connections or vias from the metallic portion of each reference contact and from the second conductive element of the capacitor to the surface of the substrate. Namely, openings are formed from the surface of the substrate to the metallic portion of each reference contact and to the second conductive element. Metal is deposited in the openings, and a metallic pad is formed on the surface of the substrate over each opening to complete the respective vias.
Blocks 1302 and 1304 of method 1300 collectively depict forming, in a substrate, a substrate element having multiple doped regions, for example first and second doped regions. Namely, block 1302 depicts forming a well within the substrate, for instance through ion deposition and diffusion; and method 1304 depicts forming the first doped region within the well and forming the second doped region outside of the well. The substrate element is formed such the first doped region will be located beneath a capacitor, and the second doped region will be located beneath one or more reference contacts that will be formed later in the semiconductor device fabrication process. Moreover, in an example, an outer boundary of the first doped region is formed as close as the semiconductor device fabrication processing allows to an outer boundary of the second doped region.
The substrate element is formed during FEOL processing and includes ion implantation and/or diffusion of dopant atoms into the substrate to generate the first and second doped regions each having different dopant types. In an example, when the first doped region is a n+ doped region, the second doped region is a p+ doped region. In another example, when the first doped region is a p+ doped region, the second doped region is a n+ doped region. Moreover, the particular dopant atom used, the depth of the doped regions and the well, and the density of the dopant atoms within the doped regions may be determined, at least in part, based on desired electrical characteristics of the doped region (e.g., desired resistivity), desired CP or Q of the parasitic capacitance, and desired carrier and resonant frequencies during circuit operation.
Block 1306 of method 1300 depicts patterning and/or siliciding one or both of the doped regions. Determining whether one or both of the doped regions is patterned and/or silicided may be based, at least in part, on one or more of the factors described above by reference to block 1204 of method 1200. Moreover, in an example, blocks 1308 and 1310 of method 1300 depict forming parallel lateral layers of dielectric material and metal layers as described above by reference to respective blocks 1206 and 1208 of method 1200.
As the layers of dielectric material and metal layers are formed, method 1300 includes forming therein reference contacts, a capacitor, and metallic interconnects and vias, as depicted by blocks 1312-1316. More particularly, block 1312 depicts forming, one or more reference contacts, e.g., through patterning and removal processing applied to one or more of the layers of dielectric material and metal layers. Namely, a metallic portion of each reference contact is formed in one of the metal layers, e.g., metal layer M1, over the second doped region. Moreover, forming each reference contact as depicted in block 1312 includes forming a metallic interconnect between the metallic portion of the reference contact and the second doped region.
Block 1314 of method 1300 depicts forming first and second conductive elements of a capacitor in two metal layers, e.g., metal layers M2 and M7, above the metal layer in which the metallic portion of the reference contact was formed. The first and second conductive elements are located over the first doped region. For example, centers of the first and second conductive elements and of the first doped region are aligned. The first conductive element is formed closest to the substrate element relative to the second conductive element. Accordingly, a parasitic capacitance of the first conductive element couples the first conductive element to the first doped region. The first and second conductive elements may be the same or a different size.
Block 1316 of method 1300 depicts forming electrical connections or vias from the metallic portion of each reference contact and from the second conductive element of the capacitor to the surface of the substrate. In an example, the vias are formed using processing described by reference to block 1214 of method 1200.
Modifications are possible in the described embodiments, and other embodiments are possible, within the scope of the claims.
This application claims priority to U.S. Provisional Patent Application No. 63/131,405 filed Dec. 29, 2020, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63131405 | Dec 2020 | US |