QUALITY OF SERVICE (QOS) MANAGEMENT WITH NETWORK-BASED MEDIA PROCESSING (NBMP)

Information

  • Patent Application
  • 20210105338
  • Publication Number
    20210105338
  • Date Filed
    December 17, 2020
    4 years ago
  • Date Published
    April 08, 2021
    3 years ago
Abstract
Various embodiments herein provide techniques for quality of service (QoS) mapping procedures relying on network-based media processing (NBMP) application program interfaces (APIs). Embodiments may address the variety of QoS demands for a wide range of edge media processing workloads enabled by NBMP, e.g., so that edge compute capabilities of 5G networks can be leveraged to handle these various media processing workflows. Other embodiments may be described and claimed.
Description
FIELD

Embodiments relate generally to the technical field of wireless communications.


BACKGROUND

Moving Picture Entertainment Group (MPEG) defined the Network-Based Media Processing (NBMP) specification in ISO/IEC 23090-8 to provide interfaces, media/metadata formats, APIs and workflows for intelligent edge media processing, that includes workloads such as encode, decode, transcode, pre/post processing, stitch, render/display, analysis, etc. NBMP is currently being adopted in 3GPP services, e.g., 3GPP Framework for Live Uplink Streaming (FLUS) service in 3GPP Technical Standard (TS) 26.238.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments will be readily understood by the following detailed description in conjunction with the accompanying drawings. To facilitate this description, like reference numerals designate like structural elements. Embodiments are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings.



FIG. 1 illustrates an example network-based media processing (NBMP) architecture and interfaces, in accordance with various embodiments.



FIG. 2 illustrates a control plane and a media plane in NBMP, in accordance with various embodiments.



FIG. 3 illustrates an example policy and charging control (PCC) architecture supporting NBMP-enabled end-to-end quality-of-service (QoS) provisioning, in accordance with various embodiments.



FIG. 4A illustrates a non-roaming 5G policy framework architecture (service based representation), in accordance with various embodiments.



FIG. 4B illustrates a non-roaming 5G policy framework architecture (reference point representation), in accordance with various embodiments.



FIG. 5 illustrates a non-roaming 4G policy framework architecture (reference point representation), in accordance with various embodiments.



FIG. 6 illustrates an example architecture of a system of a network, in accordance with various embodiments.



FIG. 7 illustrates an example architecture of a system including a first core network, in accordance with various embodiments.



FIG. 8 illustrates an example architecture of a system including a second core network, in accordance with various embodiments.



FIG. 9 illustrates an example of infrastructure equipment in accordance with various embodiments.



FIG. 10 illustrates an example of a computer platform in accordance with various embodiments.



FIG. 11 illustrates example components of baseband circuitry and radio front end modules in accordance with various embodiments.



FIG. 12 is a block diagram illustrating components, according to some example embodiments, able to read instructions from a machine-readable or computer-readable medium (e.g., a non-transitory machine-readable storage medium) and perform any one or more of the methodologies discussed herein.



FIG. 13 is a flowchart of a process in accordance with various embodiments.



FIG. 14 is a flowchart of another process in accordance with various embodiments.





DETAILED DESCRIPTION

The following detailed description refers to the accompanying drawings. The same reference numbers may be used in different drawings to identify the same or similar elements. In the following description, for purposes of explanation and not limitation, specific details are set forth such as particular structures, architectures, interfaces, techniques, etc. in order to provide a thorough understanding of the various aspects of various embodiments. However, it will be apparent to those skilled in the art having the benefit of the present disclosure that the various aspects of the various embodiments may be practiced in other examples that depart from these specific details. In certain instances, descriptions of well-known devices, circuits, and methods are omitted so as not to obscure the description of the various embodiments with unnecessary detail. For the purposes of the present document, the phrase “A or B” means (A), (B), or (A and B).


Moving Picture Entertainment Group (MPEG) defined the Network-Based Media Processing (NBMP) specification in ISO/IEC 23090-8 to provide interfaces, media/metadata formats, APIs and workflows for intelligent edge media processing, that includes workloads such as encode, decode, transcode, pre/post processing, stitch, render/display, analysis, etc. NBMP is currently being adopted in 3GPP services, e.g., 3GPP Framework for Live Uplink Streaming (FLUS) service in 3GPP Technical Standard (TS) 26.238. When NBMP is being used to allocate compute resources for edge processing, it is also necessary to provide sufficient quality of service (QoS) tailored for the requirements of the negotiated edge media processing workloads. Toward this goal, this disclosure provides new NBMP-aware QoS derivation and mapping procedures.


Various embodiments herein provide techniques to address the variety of QoS demands for a wide range of edge media processing workloads enabled by NBMP, so that edge compute capabilities of 5G networks can be leveraged to handle these various media processing workflows.


With continued growth of media services including immersive virtual reality (VR)/augmented reality (AR)/X reality (XR) applications, the computation and processing demand on client devices has increased drastically. Availability of edge computing provides the opportunity to offload compute intensive processing from the client to the network, which not only lowers the computational burden on client devices, but also helps toward device power savings and realization of high-end media experiences across a wide range of device types regardless of their processing capabilities. To achieve such offloading of media processing from client to network, MPEG defined the Network Based Media Processing specification in ISO/IEC 23090-8 to provide interfaces, media/metadata formats, APIs and workflows for intelligent edge media processing, that includes workloads such as encode, decode, transcode, pre/post processing, stitch, render/display, analysis, etc. FIG. 1 depicts an example of the NBMP architecture and interfaces.


NBMP Source describes the requested media processing and provides information about the nature and format of their media data. NBMP Workflow Manager establishes the media processing workflow and informs the NBMP Source that the workflow is ready, and that media processing can start. The Media Source(s) can then start transmitting their media to the network for processing. The Workflow manager is responsible for the selection of the media processing Functions and instantiating them as tasks based on the Workflow Description that is received from the NBMP Source. Relevant edge media workloads enabled by NBMP include 360 video stitching, transcoding and 6DoF (Six degrees of freedom) media pre-rendering.


NBMP defines APIs between NBMP Source and Workflow Manager, Workflow Manager and Task(s), and an API to discover appropriate Function(s). NBMP is media format, codec and protocol agnostic.


NBMP can be split into a control plane and a media plane, as shown in FIG. 2.

    • The control plane covers the following APIs (REST resources):
      • Workflow API is used by NBMP Source to create and control a media processing workflow
      • Function Discovery API provides the means for Workflow Manager and/or NBMP Source to discover media processing Functions that can be loaded as part of a media processing Workflow.
      • Task API is used by the Workflow Manager to configure and monitor a Task at runtime.
    • On the media plane, NBMP defines the media formats, the metadata, and the supplementary information formats between the NBMP Source and the Task, as well as between the Tasks themselves.
      • Workflow Description Document (WDD), Task Description Document (TDD) and Function Description Document (FDD) as JSON objects.


NBMP is currently being adopted in 3GPP services, e.g., 3GPP Framework for Live Uplink Streaming (FLUS) service in 3GPP TS 26.238. For example, NBMP capabilities can be relevant to 3GPP FLUS, in which videos captured by one or multiple omnidirectional cameras (without built-in stitching) may be sent separately to the cloud or edge via an uplink connection, where they may be stitched to create 360 videos and then encoded and encapsulated for live distribution.


Low latency, high throughput networks such as 5G could allow instantaneous access to remotely stored data while offering a local computing experience similar to a data center based system. Such a high capacity network with low latency characteristics also enables responsive interactive feedback, real-time cloud based perception, rendering, and real-time delivery of the display content. With such an edge-based approach, it is sufficient to use low-cost thin client devices with minimal built-in functions. For VR and AR, these include the display screen, speakers for output, vision positioning and hand-controller sensors for input. The thin client simply uses the network to pass inputs to processing functions at the cloud or edge, and receives the necessary images to display.


When NBMP is being used to allocate compute resources for edge processing, it is also necessary to provide sufficient QoS tailored for the requirements of the negotiated edge media processing workloads. Current QoS mapping mechanisms of the policy and charging control (PCC) architecture for 3GPP networks in 3GPP TS 29.213 for EPC and in 3GPP TS 29.513 for 5GC does not have mechanisms to handle QoS delivery and service adaptation for NBMP-enabled media workloads. Toward this goal, this disclosure provides new NBMP-aware QoS derivation and mapping procedures.



FIG. 3 depicts an example PCC architecture delivering end-to-end QoS support for NBMP-enabled with the added new capability to parse or interpret the NBMP APIs and NBMP objects in order to gain information on the media workload requirements and derive QoS accordingly. Namely the following NBMP APIs and objects may be used for the QoS derivation: Workflow API, Function Discovery APIs and Task APIs as well as, Workflow Description Document (WDD), Task Description Document (TDD) and Function Description Document (FDD) as JSON objects.


In the current PCC architecture, the application function (AF) interacts with the applications requiring dynamic policy and charging control. Hence, in order to provide QoS for NBMP-enabled services, the AF should have the ability to extract media workload information from the NBMP APIs, map it into the appropriate audio-video parameters (AVPs), and provide the AVPs, to the policy control function (PCF) over the N5 interface, if the AF is trusted, in case of 5GC and to the policy and charging rules function (PCRF) over the Rx reference point in case of EPC. For the case that AF is not trusted, the AF provides the AVPs to the PCF/PCRF via NEF.


The PCF/PCRF combines the media-related session information from the AVPs received over the Rx reference point with user-specific policies data from subscription profile repository (SPR) to form session-level policy decisions and provides those to the policy and charging enforcement functions inside of 5GC and EPC.


The NBMP handlers between the UE and the AF exchange information including configuration, Client Assistance, Monitoring and Assertion.


The idea is essentially to enforce a different QoS policy and different QoS bearer/flow configurations depending on the various kinds of media workloads negotiated by NBMP, e.g.,

    • enforce QoS policy 1 if NBMP negotiates network-based 360 video stitching with corresponding DL/UL QoS configurations and bearer/flow characteristics, and
    • enforce QoS policy 2 if NBMP negotiates network-based point cloud rendering with corresponding DL/UL QoS configurations and bearer/flow characteristics, etc.


It is here assumed that the NBMP-related media workflow information can be conveyed to the application function so that it is aware of the media processing operations to be executed by the network, e.g., via NBMP-based API and objects, or via some other means.


The 3GPP PCC architecture for 5G core (5GC) is depicted in FIGS. 4A-4B as per 3GPP TS 29.513 depicting the above-mentioned Application Function (AF) and Policy Control Function (PCF).


The 3GPP PCC architecture for 4G evolved packet core (EPC) is depicted in FIG. 5 as per 3GPP TS 29.213 depicting the above-mentioned Application Function (AF) and Policy and Charging Rules Function (PCRF).


The following description provides examples for the NBMP reference template, e.g., based on FIGS. 2 and 3.


In particular, the resultant REST resources including workflow, task, function resources can be provisioned as AVPs to the PCF/PCRF (as service consumer) in the 3GPP network and combined with QoS policies or service subscriptions, e.g. for enforcing/monitoring QoS and security.


Furthermore, the resultant REST resources can also be used by the NBMP performing QoS mapping/translating before provisioning QoS parameters to the PCF/PCRF. For example, for the NBMP:

    • to determine tasks splitting policies, e.g. for cloud rendering, edge rendering, or UE rendering, in corresponding QoS flows of the application, e.g. requiring 360VRstiticher Function, m-360VRstitcher Function with multiple processing entities, and the Point Cloud Generator Function.
    • to provision REST resource information to network management orchestrator for further determining whether or not to create, modify, or delegate virtual network functions or instances for the application.


Table 1 below presents an example NBMP reference template of the 360VRstitcher Function.












TABLE 1






Parameter




Descriptor
Name
Type
Description







General
ID
String
Provided by the Function Repository



Name
String
“360-vr-stitcher”



Description
String
“Equirectangular 360 VR stitcher”



Brand
String
”urn:mpeg:nbmp:2019:functions:vr360stitcher”



input-ports
Map
Collection of named input media streams





(1 . . . n inputs)



output-ports
Map
Contains at least one media and one optional





metadata





“media:” media output





“metadata”: metadta output


Input
Media
Object
image or video



Parameters





Metadata
Object
Metadata schema



Parameters

“Camera”: Intrinsic parameters (type,





width, height, focal, principal_point,





distortion) from camera calibration





result


Output
Media
Object
Image or video



Parameters





Metadata
Object
N/A



Parameters




Processing
Keywords
array
number of keywords





”360vrstitching”





”equirectangular stitching”


Requirements
QoS
Object




Requirements





Processing
Object




Requirements





Security
Object




Requirements




Configuration
Parameters
array
Function parameters





Cameras





Schema: See Section B.2.1.3.1 of





NBMP spec ISO/IEC 23090-8





Stitching parameters





Schema: See Section B.2.1.3.2 of





NBMP spec ISO/IEC 23090-8


ClientAssistance
client-
Boolean




assistance-





flag





Device
String




Capabilities





User
String




Preferences




Monitoring
Variable
array



Assertion
Assertions
Object









Table 2 below presents another example NBMP reference template of the m-360VRstitcher Function with multiple processing entities.












TABLE 2






Parameter




Descriptor
Name
Type
Description







General
ID
String
Provided by the Function Repository



Name
String
“m-360VRStitcher”



Description
String
“360 VR stitcher with multiple processing





entities”



Brand
String
“urn:mpeg:nbmp:2019:functions: m-





360VRStitcher”



InputPorts
Map
Collection of named input media streams





(1 . . . n inputs), and metadata





“media”: media input





“metadata”: metadata input



OutputPorts
Map
Contains at least one media and one optional





metadata





“media”: media output





“metadata”: metadata output


Input
Media
Object
(Encoded) images or videos to be stitched



Parameters

Provides input media capabilities of this m-





360VRstitcher





Stream Schema: CMAF, OMAF,





ISOBMFF





Media Stream Id: n/a





Codec type: AVC, HEVC, VVC





Media Type: Video, Image





Codec clock rate: 60fps





Protocol: n/a





Origination: n/a



Metadata
Object
Provides input metadata capabilities of this m-



Parameters

360VRstitcher





Metadata Schema: MORE, MPEG-V





Metadata Stream Id: n/a





MetadataDictionary: MORE, MPEG-V





Protocol: n/a





MetadataIngestFormat: JSON, ISOBMFF,





XML





Origination: URL of the Metadata stream


Output
Media
Object
Provides output media capabilities of this m-



Parameters

360VRstitcher





Stream Schema: OMAF





Media Stream Id: n/a





Codec type: AVC, HEVC, VVC





Media Type: Video, Image





Codec clock rate: 60fps





Protocol: MPEG-DASH, MPEG-MMT,





MPEG2-T S





Origination: n/a



Metadata
Object
Provides output metadata capabilities of this m-



Parameters

360VRstitcher





Metadata, Schema: MPEG-I Metadata





MORE





Metadata Stream Id: n/a





MetadataDictionary: MPEG-I Metadata,





MORE





Protocol: n/a





MetadataIngestFormat: JSON, ISOBMFF,





XML





Origination: URL of the Metadata stream


Processing
Keywords
array
Number of keywords





”m-360vrstitching”





”m-360 stitching”



TaskCon-

Linking information between different tasks in the



nectionMap

static workflow





<OutputTask.OutputPort,InputTask.InputPort>





Decoding[0 . . . n].outputFrame,





FeaturepointExtraction[0 . . . n].inputFrame





FeaturepointExtraction[0 . . . n].outputFea-





tureArray,





CameraParameterExtraction.inputFeature





Array





CameraParameterExtraction.outputCam-





eraParameters,





Projection.inputCameraParameters





Decoding[0 . . . n].outputFrame,





Projection[0 . . . n].inputFrame





CameraParameterExtraction.outputCam-





eraParameters,





SeamInformationExtraction.inputCam-





eraParameters





Projection[0 . . . n].outputFrame,





SeamInformationExtraction.inputFrame





SeamInformationExtraction.out-





putSeamMasks,





BlendingandPostProcessing.inputSeamMasks





Projection[0 . . . n].outputFrame,





BlendingandPostProcessing.inputFrame





BlendingandPostProcessing.outputFrame,





Encoding.inputFrame


Requirements
QoS
Object
All input videos must be synchronized



Require-





ments





Processing
Object
Processing requirements:



Require-

Hardware-requirements:



ments

GPU: 4





CPU Cores: 8





Deployment-requirements:





Location: <network-edge>



Security
Object
n/a



Require-





ments




Configuration
Parameters
Array
Function parameters





Media parameters (codec, chroma, fps,





gop, resolution)





Feature parameters (feature extraction





method, # of feature points, feature point





position, optional feature correspondence)





Camera parameters (intrinsic & extrinsic





parameters: focal length, principal point,





and skew coefficient, translation and





rotation from camera calibration result)





Projection parameters (projection type)





Stitching parameters (seam positions and





seam masks)





Cloud parameters (# of threads, # of GPUs





to be used)


ClientAs-
clientAs-
Boolean



sistance
sistanceFlag





Device
String




Capabilities





User
String




Preferences




Monitoring
Variable
Array



Assertion
Assertions
Object









Table below presents yet another example NBMP reference template of the Point Cloud Generator Function.













TABLE 3









Must



Parameter


Follow


Descriptor
Name
Type
Value
?







General
ID
String
Returned by the creation operation
N



Name
String
NBMP Point Cloud Generator
Y





Function




Description
String
Point cloud modelling, point cloud
Y





generator




Brand
String
urn:mpeg:nbmp:2019:func-
Y





tions:pcgenerator




input-ports
Map
Number_of_inputs-1 (>=2)
Y





<Port: i, Stream: i>




output-ports
Map
Mandatory: <Port: 1 , Stream: 1>
Y





Optional: <Port: 2, Stream: 2>



Input
Media
Object
Mandatory parameters for each
Y



Parameters

stream:






Media_stream_id,






Bandwidth,






Codec,






Media Type: at least one Video






media,






Clock rate,






Sample Duration in clock rate units,






Protocol,






Origination




Metadata
Object
Metadata_stream_id,
N



Parameters

Media Type: timed metadata track,






Clock rate,






Sample Duration in clock rate,






Protocol,






Origination



Output
Media
Object
Mandatory parameters for each
Y



Parameters

stream:






Media_stream_id,






Bandwidth,






Codec: raw






Media Type: at least one Point Cloud






media,






Clock rate,






Sample Duration in clock rate units,






Protocol,






Origination




Metadata
Object

N



Parameters






Publish Format
String
ply
Y


Processing
Keywords
Array
NBMP Point Cloud Generator,
Y





NBMP Point Cloud Modeling




URL
String
URL depends on location
N


Requirements
QoS
Object
Depends on application
N



Requirements






Processing
Object
Depends on input videos, e.g.
N



Requirements

minimum of 1vCPU and 2GB of






RAM to process1080 p @ 25 Hz




Security
Object
Depends on application
N



Requirements





Configuration
Parameters
Array
The following Parameters are
Y





mandatory:






Number_of_Inputs: integer






Camera parameters






Point cloud modeling parameters



ClientAssist-
client-assistance-
Boolean
N/A
N


ance
flag






Device
String
N/A
N



Capabilities






User Preferences
String
N/A
N


Monitoring
Variable
Array
N/A
N


Assertion
Assertions
Object
N/A
N









Table 4 below presents an example NBMP reference template of the Point Cloud Encoder Function.













TABLE 4






Parameter


Must


Descriptor
Name
Type
Value
Follow ?







General
ID
String
Returned by the creation operation
N



Name
String
NBMP Point Cloud Encoder
Y





Function




Description
String
Point cloud encoder, V-PCC point
Y





cloud encoder




Brand
String
urn:mpeg:nbmp:2019:functions:pcen
Y





coder




input-ports
Map
Mandatory: <Port: 1 , Stream: 1>
Y





Optional: <Port: 2, Stream: 2>




output-ports
Map
Mandatory: <Port: 1 , Stream: 1>
Y





Optional: <Port: 2, Stream: 2>



Input
Media
Object
Mandatory Parameters:
Y



Parameters

Media_stream_id,






Bandwidth,






Codec: raw






Media Type: at least one Point Cloud






media,






Clock rate,






Sample Duration in clock rate units,






Protocol,






Origination




Metadata
Object

N



Parameters





Output
Media
Object
Mandatory Parameters for each
Y



Parameters

stream:






Media_stream_id,






Bandwidth,






Codec: V-PCC






Media Type: at least one V-PCC






Video media,






Clock rate,






Sample Duration in clock rate units,






Protocol,






Origination




Metadata
Object

N



Parameters






Publish Format
String
V-PCC ISOBMFF file
Y


Processing
Keywords
Array
NBMP Point Cloud Encoder, NBMP
Y





V-PCC Encoder




URL
String
URL depends on location
N


Requirements
QoS
Object
Depends on application
N



Requirements






Processing
Object
Depends on input videos, e.g.
N



Requirements

minimum of 1vCPU and 2GB of






RAM to process 1080 p @ 25 Hz




Security
Object
Depends on application
N



Requirements





Configuration
Parameters
Array
The following Parameters are
Y





mandatory:






V-PCC encoding parameters[1]



ClientAssist-
client-assistance-
Boolean
N/A
N


ance
flag






Device
String
N/A
N



Capabilities






User Preferences
String
N/A
N


Monitoring
Variable
Array
N/A
N


Assertion
Assertions
Object
N/A
N









Table 5 below presents an example NBMP reference template of the generic media processing using application defined Media Packet Marking policies for handling per packet QoS.




















Must



Parameter


Follow


Descriptor
Name
Type
Value
?







General
ID
String
Returned by the creation operation
N



Name
String
NBMP Generic Media Handling
Y





Function




Description
String
Media encoder
Y



input-ports
Map
Mandatory: <Port: 1 , Stream: 1>
Y





Optional: <Port: 2, Stream: 2>




output-ports
Map
Mandatory: <Port: 1 , Stream: 1>
Y





Optional: <Port: 2, Stream: 2>



Input
Media
Object
Mandatory Parameters:
Y



Parameters

Media_id,






Bandwidth,






Codec: raw






Media Type: application defined.






Clock rate,






Sample Duration in clock rate units,






Protocol,






Origination




Metadata
Object

N



Parameters





Output
Media
Object
Mandatory Parameters for each
Y



Parameters

media type






Media_stream_id,






Bandwidth,






Codec: application defined.






Media Type: application defined.






Clock rate,






Sample Duration in clock rate units,






Protocol,




Metadata
Object
Application defined packet marking
N



Parameters

descriptive policies, e.g. 0-lossless,






1-10{circumflex over ( )}-1, 2-10{circumflex over ( )}-2, 3-10{circumflex over ( )}-3, 4-don't






care, etc . . .




Publish Format
String

Y


Processing
Keywords
Array
NBMP Media stream Encoder,
Y





NBMP MS-Packet Marker




URL
String
URL depends on location
N


Requirements
QoS
Object
Depends on application
N



Requirements






Processing
Object
Depends on input media of the
N



Requirements

application, e.g. minimum of






1vCPU and 2GB of RAM to






process 1080 p @ 25 Hz




Security
Object
Depends on application
N



Requirements





Configuration
Parameters
Array
The following Parameters are
Y





mandatory:






Application defined Media encoding






parameters



ClientAssist-
client-assistance-
Boolean
N/A
N


ance
flag






Device
String
N/A
N



Capabilities






User Preferences
String
N/A
N


Monitoring
Variable
Array
N/A
N


Assertion
Assertions
Object
N/A
N









Systems and Implementations


FIG. 6 illustrates an example architecture of a system 600 of a network, in accordance with various embodiments. The following description is provided for an example system 600 that operates in conjunction with the LTE system standards and 5G or NR system standards as provided by 3GPP technical specifications. However, the example embodiments are not limited in this regard and the described embodiments may apply to other networks that benefit from the principles described herein, such as future 3GPP systems (e.g., Sixth Generation (6G)) systems, IEEE 802.16 protocols (e.g., WMAN, WiMAX, etc.), or the like.


As shown by FIG. 6, the system 600 includes UE 601a and UE 601b (collectively referred to as “UEs 601” or “UE 601”). In this example, UEs 601 are illustrated as smartphones (e.g., handheld touchscreen mobile computing devices connectable to one or more cellular networks), but may also comprise any mobile or non-mobile computing device, such as consumer electronics devices, cellular phones, smartphones, feature phones, tablet computers, wearable computer devices, personal digital assistants (PDAs), pagers, wireless handsets, desktop computers, laptop computers, in-vehicle infotainment (IVI), in-car entertainment (ICE) devices, an Instrument Cluster (IC), head-up display (HUD) devices, onboard diagnostic (OBD) devices, dashtop mobile equipment (DME), mobile data terminals (MDTs), Electronic Engine Management System (EEMS), electronic/engine control units (ECUs), electronic/engine control modules (ECMs), embedded systems, microcontrollers, control modules, engine management systems (EMS), networked or “smart” appliances, MTC devices, M2M, IoT devices, and/or the like.


In some embodiments, any of the UEs 601 may be IoT UEs, which may comprise a network access layer designed for low-power IoT applications utilizing short-lived UE connections. An IoT UE can utilize technologies such as M2M or MTC for exchanging data with an MTC server or device via a PLMN, ProSe or D2D communication, sensor networks, or IoT networks. The M2M or MTC exchange of data may be a machine-initiated exchange of data. An IoT network describes interconnecting IoT UEs, which may include uniquely identifiable embedded computing devices (within the Internet infrastructure), with short-lived connections. The IoT UEs may execute background applications (e.g., keep-alive messages, status updates, etc.) to facilitate the connections of the IoT network.


The UEs 601 may be configured to connect, for example, communicatively couple, with an or RAN 610. In embodiments, the RAN 610 may be an NG RAN or a 5G RAN, an E-UTRAN, or a legacy RAN, such as a UTRAN or GERAN. As used herein, the term “NG RAN” or the like may refer to a RAN 610 that operates in an NR or 5G system 600, and the term “E-UTRAN” or the like may refer to a RAN 610 that operates in an LTE or 4G system 600. The UEs 601 utilize connections (or channels) 603 and 604, respectively, each of which comprises a physical communications interface or layer (discussed in further detail below).


In this example, the connections 603 and 604 are illustrated as an air interface to enable communicative coupling, and can be consistent with cellular communications protocols, such as a GSM protocol, a CDMA network protocol, a PTT protocol, a POC protocol, a UMTS protocol, a 3GPP LTE protocol, a 5G protocol, a NR protocol, and/or any of the other communications protocols discussed herein. In embodiments, the UEs 601 may directly exchange communication data via a ProSe interface 605. The ProSe interface 605 may alternatively be referred to as a SL interface 605 and may comprise one or more logical channels, including but not limited to a PSCCH, a PSSCH, a PSDCH, and a PSBCH.


The UE 601b is shown to be configured to access an AP 606 (also referred to as “WLAN node 606,” “WLAN 606,” “WLAN Termination 606,” “WT 606” or the like) via connection 607. The connection 607 can comprise a local wireless connection, such as a connection consistent with any IEEE 802.11 protocol, wherein the AP 606 would comprise a wireless fidelity (Wi-Fi®) router. In this example, the AP 606 is shown to be connected to the Internet without connecting to the core network of the wireless system (described in further detail below). In various embodiments, the UE 601b, RAN 610, and AP 606 may be configured to utilize LWA operation and/or LWIP operation. The LWA operation may involve the UE 601b in RRC_CONNECTED being configured by a RAN node 611a-b to utilize radio resources of LTE and WLAN. LWIP operation may involve the UE 601b using WLAN radio resources (e.g., connection 607) via IPsec protocol tunneling to authenticate and encrypt packets (e.g., IP packets) sent over the connection 607. IPsec tunneling may include encapsulating the entirety of original IP packets and adding a new packet header, thereby protecting the original header of the IP packets.


The RAN 610 can include one or more AN nodes or RAN nodes 611a and 611b (collectively referred to as “RAN nodes 611” or “RAN node 611”) that enable the connections 603 and 604. As used herein, the terms “access node,” “access point,” or the like may describe equipment that provides the radio baseband functions for data and/or voice connectivity between a network and one or more users. These access nodes can be referred to as BS, gNBs, RAN nodes, eNBs, NodeBs, RSUs, TRxPs or TRPs, and so forth, and can comprise ground stations (e.g., terrestrial access points) or satellite stations providing coverage within a geographic area (e.g., a cell). As used herein, the term “NG RAN node” or the like may refer to a RAN node 611 that operates in an NR or 5G system 600 (for example, a gNB), and the term “E-UTRAN node” or the like may refer to a RAN node 611 that operates in an LTE or 4G system 600 (e.g., an eNB). According to various embodiments, the RAN nodes 611 may be implemented as one or more of a dedicated physical device such as a macrocell base station, and/or a low power (LP) base station for providing femtocells, picocells or other like cells having smaller coverage areas, smaller user capacity, or higher bandwidth compared to macrocells.


In some embodiments, all or parts of the RAN nodes 611 may be implemented as one or more software entities running on server computers as part of a virtual network, which may be referred to as a CRAN and/or a virtual baseband unit pool (vBBUP). In these embodiments, the CRAN or vBBUP may implement a RAN function split, such as a PDCP split wherein RRC and PDCP layers are operated by the CRAN/vBBUP and other L2 protocol entities are operated by individual RAN nodes 611; a MAC/PHY split wherein RRC, PDCP, RLC, and MAC layers are operated by the CRAN/vBBUP and the PHY layer is operated by individual RAN nodes 611; or a “lower PHY” split wherein RRC, PDCP, RLC, MAC layers and upper portions of the PHY layer are operated by the CRAN/vBBUP and lower portions of the PHY layer are operated by individual RAN nodes 611. This virtualized framework allows the freed-up processor cores of the RAN nodes 611 to perform other virtualized applications. In some implementations, an individual RAN node 611 may represent individual gNB-DUs that are connected to a gNB-CU via individual F1 interfaces (not shown by FIG. 6). In these implementations, the gNB-DUs may include one or more remote radio heads or RFEMs (see, e.g., FIG. 9), and the gNB-CU may be operated by a server that is located in the RAN 610 (not shown) or by a server pool in a similar manner as the CRAN/vBBUP. Additionally or alternatively, one or more of the RAN nodes 611 may be next generation eNBs (ng-eNBs), which are RAN nodes that provide E-UTRA user plane and control plane protocol terminations toward the UEs 601, and are connected to a 5GC (e.g., CN 820 of FIG. 8) via an NG interface (discussed infra).


In V2X scenarios one or more of the RAN nodes 611 may be or act as RSUs. The term “Road Side Unit” or “RSU” may refer to any transportation infrastructure entity used for V2X communications. An RSU may be implemented in or by a suitable RAN node or a stationary (or relatively stationary) UE, where an RSU implemented in or by a UE may be referred to as a “UE-type RSU,” an RSU implemented in or by an eNB may be referred to as an “eNB-type RSU,” an RSU implemented in or by a gNB may be referred to as a “gNB-type RSU,” and the like. In one example, an RSU is a computing device coupled with radio frequency circuitry located on a roadside that provides connectivity support to passing vehicle UEs 601 (vUEs 601). The RSU may also include internal data storage circuitry to store intersection map geometry, traffic statistics, media, as well as applications/software to sense and control ongoing vehicular and pedestrian traffic. The RSU may operate on the 5.9 GHz Direct Short Range Communications (DSRC) band to provide very low latency communications required for high speed events, such as crash avoidance, traffic warnings, and the like. Additionally or alternatively, the RSU may operate on the cellular V2X band to provide the aforementioned low latency communications, as well as other cellular communications services. Additionally or alternatively, the RSU may operate as a Wi-Fi hotspot (2.4 GHz band) and/or provide connectivity to one or more cellular networks to provide uplink and downlink communications. The computing device(s) and some or all of the radiofrequency circuitry of the RSU may be packaged in a weatherproof enclosure suitable for outdoor installation, and may include a network interface controller to provide a wired connection (e.g., Ethernet) to a traffic signal controller and/or a backhaul network.


Any of the RAN nodes 611 can terminate the air interface protocol and can be the first point of contact for the UEs 601. In some embodiments, any of the RAN nodes 611 can fulfill various logical functions for the RAN 610 including, but not limited to, radio network controller (RNC) functions such as radio bearer management, uplink and downlink dynamic radio resource management and data packet scheduling, and mobility management.


In embodiments, the UEs 601 can be configured to communicate using OFDM communication signals with each other or with any of the RAN nodes 611 over a multicarrier communication channel in accordance with various communication techniques, such as, but not limited to, an OFDMA communication technique (e.g., for downlink communications) or a SC-FDMA communication technique (e.g., for uplink and ProSe or sidelink communications), although the scope of the embodiments is not limited in this respect. The OFDM signals can comprise a plurality of orthogonal subcarriers.


In some embodiments, a downlink resource grid can be used for downlink transmissions from any of the RAN nodes 611 to the UEs 601, while uplink transmissions can utilize similar techniques. The grid can be a time-frequency grid, called a resource grid or time-frequency resource grid, which is the physical resource in the downlink in each slot. Such a time-frequency plane representation is a common practice for OFDM systems, which makes it intuitive for radio resource allocation. Each column and each row of the resource grid corresponds to one OFDM symbol and one OFDM subcarrier, respectively. The duration of the resource grid in the time domain corresponds to one slot in a radio frame. The smallest time-frequency unit in a resource grid is denoted as a resource element. Each resource grid comprises a number of resource blocks, which describe the mapping of certain physical channels to resource elements. Each resource block comprises a collection of resource elements; in the frequency domain, this may represent the smallest quantity of resources that currently can be allocated. There are several different physical downlink channels that are conveyed using such resource blocks.


According to various embodiments, the UEs 601 and the RAN nodes 611 communicate data (for example, transmit and receive) data over a licensed medium (also referred to as the “licensed spectrum” and/or the “licensed band”) and an unlicensed shared medium (also referred to as the “unlicensed spectrum” and/or the “unlicensed band”). The licensed spectrum may include channels that operate in the frequency range of approximately 400 MHz to approximately 3.8 GHz, whereas the unlicensed spectrum may include the 5 GHz band.


To operate in the unlicensed spectrum, the UEs 601 and the RAN nodes 611 may operate using LAA, eLAA, and/or feLAA mechanisms. In these implementations, the UEs 601 and the RAN nodes 611 may perform one or more known medium-sensing operations and/or carrier-sensing operations in order to determine whether one or more channels in the unlicensed spectrum is unavailable or otherwise occupied prior to transmitting in the unlicensed spectrum. The medium/carrier sensing operations may be performed according to a listen-before-talk (LBT) protocol.


LBT is a mechanism whereby equipment (for example, UEs 601 RAN nodes 611, etc.) senses a medium (for example, a channel or carrier frequency) and transmits when the medium is sensed to be idle (or when a specific channel in the medium is sensed to be unoccupied). The medium sensing operation may include CCA, which utilizes at least ED to determine the presence or absence of other signals on a channel in order to determine if a channel is occupied or clear. This LBT mechanism allows cellular/LAA networks to coexist with incumbent systems in the unlicensed spectrum and with other LAA networks. ED may include sensing RF energy across an intended transmission band for a period of time and comparing the sensed RF energy to a predefined or configured threshold.


Typically, the incumbent systems in the 5 GHz band are WLANs based on IEEE 802.11 technologies. WLAN employs a contention-based channel access mechanism, called CSMA/CA. Here, when a WLAN node (e.g., a mobile station (MS) such as UE 601, AP 606, or the like) intends to transmit, the WLAN node may first perform CCA before transmission. Additionally, a backoff mechanism is used to avoid collisions in situations where more than one WLAN node senses the channel as idle and transmits at the same time. The backoff mechanism may be a counter that is drawn randomly within the CWS, which is increased exponentially upon the occurrence of collision and reset to a minimum value when the transmission succeeds. The LBT mechanism designed for LAA is somewhat similar to the CSMA/CA of WLAN. In some implementations, the LBT procedure for DL or UL transmission bursts including PDSCH or PUSCH transmissions, respectively, may have an LAA contention window that is variable in length between X and Y ECCA slots, where X and Y are minimum and maximum values for the CWSs for LAA. In one example, the minimum CWS for an LAA transmission may be 9 microseconds (μs); however, the size of the CWS and a MCOT (for example, a transmission burst) may be based on governmental regulatory requirements.


The LAA mechanisms are built upon CA technologies of LTE-Advanced systems. In CA, each aggregated carrier is referred to as a CC. A CC may have a bandwidth of 1.4, 3, 5, 10, 15 or 20 MHz and a maximum of five CCs can be aggregated, and therefore, a maximum aggregated bandwidth is 100 MHz. In FDD systems, the number of aggregated carriers can be different for DL and UL, where the number of UL CCs is equal to or lower than the number of DL component carriers. In some cases, individual CCs can have a different bandwidth than other CCs. In TDD systems, the number of CCs as well as the bandwidths of each CC is usually the same for DL and UL.


CA also comprises individual serving cells to provide individual CCs. The coverage of the serving cells may differ, for example, because CCs on different frequency bands will experience different pathloss. A primary service cell or PCell may provide a PCC for both UL and DL, and may handle RRC and NAS related activities. The other serving cells are referred to as SCells, and each SCell may provide an individual SCC for both UL and DL. The SCCs may be added and removed as required, while changing the PCC may require the UE 601 to undergo a handover. In LAA, eLAA, and feLAA, some or all of the SCells may operate in the unlicensed spectrum (referred to as “LAA SCells”), and the LAA SCells are assisted by a PCell operating in the licensed spectrum. When a UE is configured with more than one LAA SCell, the UE may receive UL grants on the configured LAA SCells indicating different PUSCH starting positions within a same subframe.


The PDSCH carries user data and higher-layer signaling to the UEs 601. The PDCCH carries information about the transport format and resource allocations related to the PDSCH channel, among other things. It may also inform the UEs 601 about the transport format, resource allocation, and HARQ information related to the uplink shared channel. Typically, downlink scheduling (assigning control and shared channel resource blocks to the UE 601b within a cell) may be performed at any of the RAN nodes 611 based on channel quality information fed back from any of the UEs 601. The downlink resource assignment information may be sent on the PDCCH used for (e.g., assigned to) each of the UEs 601.


The PDCCH uses CCEs to convey the control information. Before being mapped to resource elements, the PDCCH complex-valued symbols may first be organized into quadruplets, which may then be permuted using a sub-block interleaver for rate matching. Each PDCCH may be transmitted using one or more of these CCEs, where each CCE may correspond to nine sets of four physical resource elements known as REGs. Four Quadrature Phase Shift Keying (QPSK) symbols may be mapped to each REG. The PDCCH can be transmitted using one or more CCEs, depending on the size of the DCI and the channel condition. There can be four or more different PDCCH formats defined in LTE with different numbers of CCEs (e.g., aggregation level, L=1, 2, 4, or 8).


Some embodiments may use concepts for resource allocation for control channel information that are an extension of the above-described concepts. For example, some embodiments may utilize an EPDCCH that uses PDSCH resources for control information transmission. The EPDCCH may be transmitted using one or more ECCEs. Similar to above, each ECCE may correspond to nine sets of four physical resource elements known as an EREGs. An ECCE may have other numbers of EREGs in some situations.


The RAN nodes 611 may be configured to communicate with one another via interface 612. In embodiments where the system 600 is an LTE system (e.g., when CN 620 is an EPC 720 as in FIG. 7), the interface 612 may be an X2 interface 612. The X2 interface may be defined between two or more RAN nodes 611 (e.g., two or more eNBs and the like) that connect to EPC 620, and/or between two eNBs connecting to EPC 620. In some implementations, the X2 interface may include an X2 user plane interface (X2-U) and an X2 control plane interface (X2-C). The X2-U may provide flow control mechanisms for user data packets transferred over the X2 interface, and may be used to communicate information about the delivery of user data between eNBs. For example, the X2-U may provide specific sequence number information for user data transferred from a MeNB to an SeNB; information about successful in sequence delivery of PDCP PDUs to a UE 601 from an SeNB for user data; information of PDCP PDUs that were not delivered to a UE 601; information about a current minimum desired buffer size at the SeNB for transmitting to the UE user data; and the like. The X2-C may provide intra-LTE access mobility functionality, including context transfers from source to target eNBs, user plane transport control, etc.; load management functionality; as well as inter-cell interference coordination functionality.


In embodiments where the system 600 is a 5G or NR system (e.g., when CN 620 is an 5GC 820 as in FIG. 8), the interface 612 may be an Xn interface 612. The Xn interface is defined between two or more RAN nodes 611 (e.g., two or more gNBs and the like) that connect to 5GC 620, between a RAN node 611 (e.g., a gNB) connecting to 5GC 620 and an eNB, and/or between two eNBs connecting to 5GC 620. In some implementations, the Xn interface may include an Xn user plane (Xn-U) interface and an Xn control plane (Xn-C) interface. The Xn-U may provide non-guaranteed delivery of user plane PDUs and support/provide data forwarding and flow control functionality. The Xn-C may provide management and error handling functionality, functionality to manage the Xn-C interface; mobility support for UE 601 in a connected mode (e.g., CM-CONNECTED) including functionality to manage the UE mobility for connected mode between one or more RAN nodes 611. The mobility support may include context transfer from an old (source) serving RAN node 611 to new (target) serving RAN node 611; and control of user plane tunnels between old (source) serving RAN node 611 to new (target) serving RAN node 611. A protocol stack of the Xn-U may include a transport network layer built on Internet Protocol (IP) transport layer, and a GTP-U layer on top of a UDP and/or IP layer(s) to carry user plane PDUs. The Xn-C protocol stack may include an application layer signaling protocol (referred to as Xn Application Protocol (Xn-AP)) and a transport network layer that is built on SCTP. The SCTP may be on top of an IP layer, and may provide the guaranteed delivery of application layer messages. In the transport IP layer, point-to-point transmission is used to deliver the signaling PDUs. In other implementations, the Xn-U protocol stack and/or the Xn-C protocol stack may be same or similar to the user plane and/or control plane protocol stack(s) shown and described herein.


The RAN 610 is shown to be communicatively coupled to a core network—in this embodiment, core network (CN) 620. The CN 620 may comprise a plurality of network elements 622, which are configured to offer various data and telecommunications services to customers/subscribers (e.g., users of UEs 601) who are connected to the CN 620 via the RAN 610. The components of the CN 620 may be implemented in one physical node or separate physical nodes including components to read and execute instructions from a machine-readable or computer-readable medium (e.g., a non-transitory machine-readable storage medium). In some embodiments, NFV may be utilized to virtualize any or all of the above-described network node functions via executable instructions stored in one or more computer-readable storage mediums (described in further detail below). A logical instantiation of the CN 620 may be referred to as a network slice, and a logical instantiation of a portion of the CN 620 may be referred to as a network sub-slice. NFV architectures and infrastructures may be used to virtualize one or more network functions, alternatively performed by proprietary hardware, onto physical resources comprising a combination of industry-standard server hardware, storage hardware, or switches. In other words, NFV systems can be used to execute virtual or reconfigurable implementations of one or more EPC components/functions.


Generally, the application server 630 may be an element offering applications that use IP bearer resources with the core network (e.g., UMTS PS domain, LTE PS data services, etc.). The application server 630 can also be configured to support one or more communication services (e.g., VoIP sessions, PTT sessions, group communication sessions, social networking services, etc.) for the UEs 601 via the EPC 620.


In embodiments, the CN 620 may be a 5GC (referred to as “5GC 620” or the like), and the RAN 610 may be connected with the CN 620 via an NG interface 613. In embodiments, the NG interface 613 may be split into two parts, an NG user plane (NG-U) interface 614, which carries traffic data between the RAN nodes 611 and a UPF, and the S1 control plane (NG-C) interface 615, which is a signaling interface between the RAN nodes 611 and AMFs. Embodiments where the CN 620 is a 5GC 620 are discussed in more detail with regard to FIG. 8.


In embodiments, the CN 620 may be a 5G CN (referred to as “5GC 620” or the like), while in other embodiments, the CN 620 may be an EPC). Where CN 620 is an EPC (referred to as “EPC 620” or the like), the RAN 610 may be connected with the CN 620 via an S1 interface 613. In embodiments, the S1 interface 613 may be split into two parts, an S1 user plane (S1-U) interface 614, which carries traffic data between the RAN nodes 611 and the S-GW, and the S1-MME interface 615, which is a signaling interface between the RAN nodes 611 and MMEs.



FIG. 7 illustrates an example architecture of a system 700 including a first CN 720, in accordance with various embodiments. In this example, system 700 may implement the LTE standard wherein the CN 720 is an EPC 720 that corresponds with CN 620 of FIG. 6. Additionally, the UE 701 may be the same or similar as the UEs 601 of FIG. 6, and the E-UTRAN 710 may be a RAN that is the same or similar to the RAN 610 of FIG. 6, and which may include RAN nodes 611 discussed previously. The CN 720 may comprise MMEs 721, an S-GW 722, a P-GW 723, a HSS 724, and a SGSN 725.


The MMEs 721 may be similar in function to the control plane of legacy SGSN, and may implement MM functions to keep track of the current location of a UE 701. The MMEs 721 may perform various MM procedures to manage mobility aspects in access such as gateway selection and tracking area list management. MM (also referred to as “EPS MM” or “EMM” in E-UTRAN systems) may refer to all applicable procedures, methods, data storage, etc. that are used to maintain knowledge about a present location of the UE 701, provide user identity confidentiality, and/or perform other like services to users/subscribers. Each UE 701 and the MME 721 may include an MM or EMM sublayer, and an MM context may be established in the UE 701 and the MME 721 when an attach procedure is successfully completed. The MM context may be a data structure or database object that stores MM-related information of the UE 701. The MMEs 721 may be coupled with the HSS 724 via an S6a reference point, coupled with the SGSN 725 via an S3 reference point, and coupled with the S-GW 722 via an S11 reference point.


The SGSN 725 may be a node that serves the UE 701 by tracking the location of an individual UE 701 and performing security functions. In addition, the SGSN 725 may perform Inter-EPC node signaling for mobility between 2G/3G and E-UTRAN 3GPP access networks; PDN and S-GW selection as specified by the MMEs 721; handling of UE 701 time zone functions as specified by the MMEs 721; and MME selection for handovers to E-UTRAN 3GPP access network. The S3 reference point between the MMEs 721 and the SGSN 725 may enable user and bearer information exchange for inter-3GPP access network mobility in idle and/or active states.


The HSS 724 may comprise a database for network users, including subscription-related information to support the network entities' handling of communication sessions. The EPC 720 may comprise one or several HSSs 724, depending on the number of mobile subscribers, on the capacity of the equipment, on the organization of the network, etc. For example, the HSS 724 can provide support for routing/roaming, authentication, authorization, naming/addressing resolution, location dependencies, etc. An S6a reference point between the HSS 724 and the MMEs 721 may enable transfer of subscription and authentication data for authenticating/authorizing user access to the EPC 720 between HSS 724 and the MMEs 721.


The S-GW 722 may terminate the S1 interface 613 (“S1-U” in FIG. 7) toward the RAN 710, and routes data packets between the RAN 710 and the EPC 720. In addition, the S-GW 722 may be a local mobility anchor point for inter-RAN node handovers and also may provide an anchor for inter-3GPP mobility. Other responsibilities may include lawful intercept, charging, and some policy enforcement. The S11 reference point between the S-GW 722 and the MMEs 721 may provide a control plane between the MMEs 721 and the S-GW 722. The S-GW 722 may be coupled with the P-GW 723 via an S5 reference point.


The P-GW 723 may terminate an SGi interface toward a PDN 730. The P-GW 723 may route data packets between the EPC 720 and external networks such as a network including the application server 630 (alternatively referred to as an “AF”) via an IP interface 625 (see e.g., FIG. 6). In embodiments, the P-GW 723 may be communicatively coupled to an application server (application server 630 of FIG. 6 or PDN 730 in FIG. 7) via an IP communications interface 625 (see, e.g., FIG. 6). The S5 reference point between the P-GW 723 and the S-GW 722 may provide user plane tunneling and tunnel management between the P-GW 723 and the S-GW 722. The S5 reference point may also be used for S-GW 722 relocation due to UE 701 mobility and if the S-GW 722 needs to connect to a non-collocated P-GW 723 for the required PDN connectivity. The P-GW 723 may further include a node for policy enforcement and charging data collection (e.g., PCEF (not shown)). Additionally, the SGi reference point between the P-GW 723 and the packet data network (PDN) 730 may be an operator external public, a private PDN, or an intra operator packet data network, for example, for provision of IMS services. The P-GW 723 may be coupled with a PCRF 726 via a Gx reference point.


PCRF 726 is the policy and charging control element of the EPC 720. In a non-roaming scenario, there may be a single PCRF 726 in the Home Public Land Mobile Network (HPLMN) associated with a UE 701's Internet Protocol Connectivity Access Network (IP-CAN) session. In a roaming scenario with local breakout of traffic, there may be two PCRFs associated with a UE 701's IP-CAN session, a Home PCRF (H-PCRF) within an HPLMN and a Visited PCRF (V-PCRF) within a Visited Public Land Mobile Network (VPLMN). The PCRF 726 may be communicatively coupled to the application server 730 via the P-GW 723. The application server 730 may signal the PCRF 726 to indicate a new service flow and select the appropriate QoS and charging parameters. The PCRF 726 may provision this rule into a PCEF (not shown) with the appropriate TFT and QCI, which commences the QoS and charging as specified by the application server 730. The Gx reference point between the PCRF 726 and the P-GW 723 may allow for the transfer of QoS policy and charging rules from the PCRF 726 to PCEF in the P-GW 723. An Rx reference point may reside between the PDN 730 (or “AF 730”) and the PCRF 726.



FIG. 8 illustrates an architecture of a system 800 including a second CN 820 in accordance with various embodiments. The system 800 is shown to include a UE 801, which may be the same or similar to the UEs 601 and UE 701 discussed previously; a (R)AN 810, which may be the same or similar to the RAN 610 and RAN 710 discussed previously, and which may include RAN nodes 611 discussed previously; and a DN 803, which may be, for example, operator services, Internet access or 3rd party services; and a 5GC 820. The 5GC 820 may include an AUSF 822; an AMF 821; a SMF 824; a NEF 823; a PCF 826; a NRF 825; a UDM 827; an AF 828; a UPF 802; and a NSSF 829.


The UPF 802 may act as an anchor point for intra-RAT and inter-RAT mobility, an external PDU session point of interconnect to DN 803, and a branching point to support multi-homed PDU session. The UPF 802 may also perform packet routing and forwarding, perform packet inspection, enforce the user plane part of policy rules, lawfully intercept packets (UP collection), perform traffic usage reporting, perform QoS handling for a user plane (e.g., packet filtering, gating, UL/DL rate enforcement), perform Uplink Traffic verification (e.g., SDF to QoS flow mapping), transport level packet marking in the uplink and downlink, and perform downlink packet buffering and downlink data notification triggering. UPF 802 may include an uplink classifier to support routing traffic flows to a data network. The DN 803 may represent various network operator services, Internet access, or third party services. DN 803 may include, or be similar to, application server 630 discussed previously. The UPF 802 may interact with the SMF 824 via an N4 reference point between the SMF 824 and the UPF 802.


The AUSF 822 may store data for authentication of UE 801 and handle authentication-related functionality. The AUSF 822 may facilitate a common authentication framework for various access types. The AUSF 822 may communicate with the AMF 821 via an N12 reference point between the AMF 821 and the AUSF 822; and may communicate with the UDM 827 via an N13 reference point between the UDM 827 and the AUSF 822. Additionally, the AUSF 822 may exhibit an Nausf service-based interface.


The AMF 821 may be responsible for registration management (e.g., for registering UE 801, etc.), connection management, reachability management, mobility management, and lawful interception of AMF-related events, and access authentication and authorization. The AMF 821 may be a termination point for the an N11 reference point between the AMF 821 and the SMF 824. The AMF 821 may provide transport for SM messages between the UE 801 and the SMF 824, and act as a transparent proxy for routing SM messages. AMF 821 may also provide transport for SMS messages between UE 801 and an SMSF (not shown by FIG. 8). AMF 821 may act as SEAF, which may include interaction with the AUSF 822 and the UE 801, receipt of an intermediate key that was established as a result of the UE 801 authentication process. Where USIM based authentication is used, the AMF 821 may retrieve the security material from the AUSF 822. AMF 821 may also include a SCM function, which receives a key from the SEA that it uses to derive access-network specific keys. Furthermore, AMF 821 may be a termination point of a RAN CP interface, which may include or be an N2 reference point between the (R)AN 810 and the AMF 821; and the AMF 821 may be a termination point of NAS (N1) signalling, and perform NAS ciphering and integrity protection.


AMF 821 may also support NAS signalling with a UE 801 over an N3 IWF interface. The N3IWF may be used to provide access to untrusted entities. N3IWF may be a termination point for the N2 interface between the (R)AN 810 and the AMF 821 for the control plane, and may be a termination point for the N3 reference point between the (R)AN 810 and the UPF 802 for the user plane. As such, the AMF 821 may handle N2 signalling from the SMF 824 and the AMF 821 for PDU sessions and QoS, encapsulate/de-encapsulate packets for IPSec and N3 tunneling, mark N3 user-plane packets in the uplink, and enforce QoS corresponding to N3 packet marking taking into account QoS requirements associated with such marking received over N2. N3IWF may also relay uplink and downlink control-plane NAS signalling between the UE 801 and AMF 821 via an N1 reference point between the UE 801 and the AMF 821, and relay uplink and downlink user-plane packets between the UE 801 and UPF 802. The N3IWF also provides mechanisms for IPsec tunnel establishment with the UE 801. The AMF 821 may exhibit an Namf service-based interface, and may be a termination point for an N14 reference point between two AMFs 821 and an N17 reference point between the AMF 821 and a 5G-EIR (not shown by FIG. 8).


The UE 801 may need to register with the AMF 821 in order to receive network services. RM is used to register or deregister the UE 801 with the network (e.g., AMF 821), and establish a UE context in the network (e.g., AMF 821). The UE 801 may operate in an RM-REGISTERED state or an RM-DEREGISTERED state. In the RM-DEREGISTERED state, the UE 801 is not registered with the network, and the UE context in AMF 821 holds no valid location or routing information for the UE 801 so the UE 801 is not reachable by the AMF 821. In the RM-REGISTERED state, the UE 801 is registered with the network, and the UE context in AMF 821 may hold a valid location or routing information for the UE 801 so the UE 801 is reachable by the AMF 821. In the RM-REGISTERED state, the UE 801 may perform mobility Registration Update procedures, perform periodic Registration Update procedures triggered by expiration of the periodic update timer (e.g., to notify the network that the UE 801 is still active), and perform a Registration Update procedure to update UE capability information or to re-negotiate protocol parameters with the network, among others.


The AMF 821 may store one or more RM contexts for the UE 801, where each RM context is associated with a specific access to the network. The RM context may be a data structure, database object, etc. that indicates or stores, inter alia, a registration state per access type and the periodic update timer. The AMF 821 may also store a 5GC MM context that may be the same or similar to the (E)MM context discussed previously. In various embodiments, the AMF 821 may store a CE mode B Restriction parameter of the UE 801 in an associated MM context or RM context. The AMF 821 may also derive the value, when needed, from the UE's usage setting parameter already stored in the UE context (and/or MM/RM context).


CM may be used to establish and release a signaling connection between the UE 801 and the AMF 821 over the N1 interface. The signaling connection is used to enable NAS signaling exchange between the UE 801 and the CN 820, and comprises both the signaling connection between the UE and the AN (e.g., RRC connection or UE-N3IWF connection for non-3GPP access) and the N2 connection for the UE 801 between the AN (e.g., RAN 810) and the AMF 821. The UE 801 may operate in one of two CM states, CM-IDLE mode or CM-CONNECTED mode. When the UE 801 is operating in the CM-IDLE state/mode, the UE 801 may have no NAS signaling connection established with the AMF 821 over the N1 interface, and there may be (R)AN 810 signaling connection (e.g., N2 and/or N3 connections) for the UE 801. When the UE 801 is operating in the CM-CONNECTED state/mode, the UE 801 may have an established NAS signaling connection with the AMF 821 over the N1 interface, and there may be a (R)AN 810 signaling connection (e.g., N2 and/or N3 connections) for the UE 801. Establishment of an N2 connection between the (R)AN 810 and the AMF 821 may cause the UE 801 to transition from CM-IDLE mode to CM-CONNECTED mode, and the UE 801 may transition from the CM-CONNECTED mode to the CM-IDLE mode when N2 signaling between the (R)AN 810 and the AMF 821 is released.


The SMF 824 may be responsible for SM (e.g., session establishment, modify and release, including tunnel maintain between UPF and AN node); UE IP address allocation and management (including optional authorization); selection and control of UP function; configuring traffic steering at UPF to route traffic to proper destination; termination of interfaces toward policy control functions; controlling part of policy enforcement and QoS; lawful intercept (for SM events and interface to LI system); termination of SM parts of NAS messages; downlink data notification; initiating AN specific SM information, sent via AMF over N2 to AN; and determining SSC mode of a session. SM may refer to management of a PDU session, and a PDU session or “session” may refer to a PDU connectivity service that provides or enables the exchange of PDUs between a UE 801 and a data network (DN) 803 identified by a Data Network Name (DNN). PDU sessions may be established upon UE 801 request, modified upon UE 801 and 5GC 820 request, and released upon UE 801 and 5GC 820 request using NAS SM signaling exchanged over the N1 reference point between the UE 801 and the SMF 824. Upon request from an application server, the 5GC 820 may trigger a specific application in the UE 801. In response to receipt of the trigger message, the UE 801 may pass the trigger message (or relevant parts/information of the trigger message) to one or more identified applications in the UE 801. The identified application(s) in the UE 801 may establish a PDU session to a specific DNN. The SMF 824 may check whether the UE 801 requests are compliant with user subscription information associated with the UE 801. In this regard, the SMF 824 may retrieve and/or request to receive update notifications on SMF 824 level subscription data from the UDM 827.


The SMF 824 may include the following roaming functionality: handling local enforcement to apply QoS SLAB (VPLMN); charging data collection and charging interface (VPLMN); lawful intercept (in VPLMN for SM events and interface to LI system); and support for interaction with external DN for transport of signalling for PDU session authorization/authentication by external DN. An N16 reference point between two SMFs 824 may be included in the system 800, which may be between another SMF 824 in a visited network and the SMF 824 in the home network in roaming scenarios. Additionally, the SMF 824 may exhibit the Nsmf service-based interface.


The NEF 823 may provide means for securely exposing the services and capabilities provided by 3GPP network functions for third party, internal exposure/re-exposure, Application Functions (e.g., AF 828), edge computing or fog computing systems, etc. In such embodiments, the NEF 823 may authenticate, authorize, and/or throttle the AFs. NEF 823 may also translate information exchanged with the AF 828 and information exchanged with internal network functions. For example, the NEF 823 may translate between an AF-Service-Identifier and an internal 5GC information. NEF 823 may also receive information from other network functions (NFs) based on exposed capabilities of other network functions. This information may be stored at the NEF 823 as structured data, or at a data storage NF using standardized interfaces. The stored information can then be re-exposed by the NEF 823 to other NFs and AFs, and/or used for other purposes such as analytics. Additionally, the NEF 823 may exhibit an Nnef service-based interface.


The NRF 825 may support service discovery functions, receive NF discovery requests from NF instances, and provide the information of the discovered NF instances to the NF instances. NRF 825 also maintains information of available NF instances and their supported services. As used herein, the terms “instantiate,” “instantiation,” and the like may refer to the creation of an instance, and an “instance” may refer to a concrete occurrence of an object, which may occur, for example, during execution of program code. Additionally, the NRF 825 may exhibit the Nnrf service-based interface.


The PCF 826 may provide policy rules to control plane function(s) to enforce them, and may also support unified policy framework to govern network behaviour. The PCF 826 may also implement an FE to access subscription information relevant for policy decisions in a UDR of the UDM 827. The PCF 826 may communicate with the AMF 821 via an N15 reference point between the PCF 826 and the AMF 821, which may include a PCF 826 in a visited network and the AMF 821 in case of roaming scenarios. The PCF 826 may communicate with the AF 828 via an N5 reference point between the PCF 826 and the AF 828; and with the SMF 824 via an N7 reference point between the PCF 826 and the SMF 824. The system 800 and/or CN 820 may also include an N24 reference point between the PCF 826 (in the home network) and a PCF 826 in a visited network. Additionally, the PCF 826 may exhibit an Npcf service-based interface.


The UDM 827 may handle subscription-related information to support the network entities' handling of communication sessions, and may store subscription data of UE 801. For example, subscription data may be communicated between the UDM 827 and the AMF 821 via an N8 reference point between the UDM 827 and the AMF. The UDM 827 may include two parts, an application FE and a UDR (the FE and UDR are not shown by FIG. 8). The UDR may store subscription data and policy data for the UDM 827 and the PCF 826, and/or structured data for exposure and application data (including PFDs for application detection, application request information for multiple UEs 801) for the NEF 823. The Nudr service-based interface may be exhibited by the UDR 221 to allow the UDM 827, PCF 826, and NEF 823 to access a particular set of the stored data, as well as to read, update (e.g., add, modify), delete, and subscribe to notification of relevant data changes in the UDR. The UDM may include a UDM-FE, which is in charge of processing credentials, location management, subscription management and so on. Several different front ends may serve the same user in different transactions. The UDM-FE accesses subscription information stored in the UDR and performs authentication credential processing, user identification handling, access authorization, registration/mobility management, and subscription management. The UDR may interact with the SMF 824 via an N10 reference point between the UDM 827 and the SMF 824. UDM 827 may also support SMS management, wherein an SMS-FE implements the similar application logic as discussed previously. Additionally, the UDM 827 may exhibit the Nudm service-based interface.


The AF 828 may provide application influence on traffic routing, provide access to the NCE, and interact with the policy framework for policy control. The NCE may be a mechanism that allows the 5GC 820 and AF 828 to provide information to each other via NEF 823, which may be used for edge computing implementations. In such implementations, the network operator and third party services may be hosted close to the UE 801 access point of attachment to achieve an efficient service delivery through the reduced end-to-end latency and load on the transport network. For edge computing implementations, the 5GC may select a UPF 802 close to the UE 801 and execute traffic steering from the UPF 802 to DN 803 via the N6 interface. This may be based on the UE subscription data, UE location, and information provided by the AF 828. In this way, the AF 828 may influence UPF (re)selection and traffic routing. Based on operator deployment, when AF 828 is considered to be a trusted entity, the network operator may permit AF 828 to interact directly with relevant NFs. Additionally, the AF 828 may exhibit an Naf service-based interface.


The NSSF 829 may select a set of network slice instances serving the UE 801. The NSSF 829 may also determine allowed NSSAI and the mapping to the subscribed S-NSSAIs, if needed. The NSSF 829 may also determine the AMF set to be used to serve the UE 801, or a list of candidate AMF(s) 821 based on a suitable configuration and possibly by querying the NRF 825. The selection of a set of network slice instances for the UE 801 may be triggered by the AMF 821 with which the UE 801 is registered by interacting with the NSSF 829, which may lead to a change of AMF 821. The NSSF 829 may interact with the AMF 821 via an N22 reference point between AMF 821 and NSSF 829; and may communicate with another NSSF 829 in a visited network via an N31 reference point (not shown by FIG. 8). Additionally, the NSSF 829 may exhibit an Nnssf service-based interface.


As discussed previously, the CN 820 may include an SMSF, which may be responsible for SMS subscription checking and verification, and relaying SM messages to/from the UE 801 to/from other entities, such as an SMS-GMSC/IWMSC/SMS-router. The SMS may also interact with AMF 821 and UDM 827 for a notification procedure that the UE 801 is available for SMS transfer (e.g., set a UE not reachable flag, and notifying UDM 827 when UE 801 is available for SMS).


The CN 120 may also include other elements that are not shown by FIG. 8, such as a Data Storage system/architecture, a 5G-EIR, a SEPP, and the like. The Data Storage system may include a SDSF, an UDSF, and/or the like. Any NF may store and retrieve unstructured data into/from the UDSF (e.g., UE contexts), via N18 reference point between any NF and the UDSF (not shown by FIG. 8). Individual NFs may share a UDSF for storing their respective unstructured data or individual NFs may each have their own UDSF located at or near the individual NFs. Additionally, the UDSF may exhibit an Nudsf service-based interface (not shown by FIG. 8). The 5G-EIR may be an NF that checks the status of PEI for determining whether particular equipment/entities are blacklisted from the network; and the SEPP may be a non-transparent proxy that performs topology hiding, message filtering, and policing on inter-PLMN control plane interfaces.


Additionally, there may be many more reference points and/or service-based interfaces between the NF services in the NFs; however, these interfaces and reference points have been omitted from FIG. 8 for clarity. In one example, the CN 820 may include an Nx interface, which is an inter-CN interface between the MME (e.g., MME 721) and the AMF 821 in order to enable interworking between CN 820 and CN 720. Other example interfaces/reference points may include an N5g-EIR service-based interface exhibited by a 5G-EIR, an N27 reference point between the NRF in the visited network and the NRF in the home network; and an N31 reference point between the NSSF in the visited network and the NSSF in the home network.



FIG. 9 illustrates an example of infrastructure equipment 900 in accordance with various embodiments. The infrastructure equipment 900 (or “system 900”) may be implemented as a base station, radio head, RAN node such as the RAN nodes 611 and/or AP 606 shown and described previously, application server(s) 630, and/or any other element/device discussed herein. In other examples, the system 900 could be implemented in or by a UE.


The system 900 includes application circuitry 905, baseband circuitry 910, one or more radio front end modules (RFEMs) 915, memory circuitry 920, power management integrated circuitry (PMIC) 925, power tee circuitry 930, network controller circuitry 935, network interface connector 940, satellite positioning circuitry 945, and user interface 950. In some embodiments, the device 900 may include additional elements such as, for example, memory/storage, display, camera, sensor, or input/output (I/O) interface. In other embodiments, the components described below may be included in more than one device. For example, said circuitries may be separately included in more than one device for CRAN, vBBU, or other like implementations.


Application circuitry 905 includes circuitry such as, but not limited to one or more processors (or processor cores), cache memory, and one or more of low drop-out voltage regulators (LDOs), interrupt controllers, serial interfaces such as SPI, I2C or universal programmable serial interface module, real time clock (RTC), timer-counters including interval and watchdog timers, general purpose input/output (I/O or IO), memory card controllers such as Secure Digital (SD) MultiMediaCard (MMC) or similar, Universal Serial Bus (USB) interfaces, Mobile Industry Processor Interface (MIPI) interfaces and Joint Test Access Group (JTAG) test access ports. The processors (or cores) of the application circuitry 905 may be coupled with or may include memory/storage elements and may be configured to execute instructions stored in the memory/storage to enable various applications or operating systems to run on the system 900. In some implementations, the memory/storage elements may be on-chip memory circuitry, which may include any suitable volatile and/or non-volatile memory, such as DRAM, SRAM, EPROM, EEPROM, Flash memory, solid-state memory, and/or any other type of memory device technology, such as those discussed herein.


The processor(s) of application circuitry 905 may include, for example, one or more processor cores (CPUs), one or more application processors, one or more graphics processing units (GPUs), one or more reduced instruction set computing (RISC) processors, one or more Acorn RISC Machine (ARM) processors, one or more complex instruction set computing (CISC) processors, one or more digital signal processors (DSP), one or more FPGAs, one or more PLDs, one or more ASICs, one or more microprocessors or controllers, or any suitable combination thereof. In some embodiments, the application circuitry 905 may comprise, or may be, a special-purpose processor/controller to operate according to the various embodiments herein. As examples, the processor(s) of application circuitry 905 may include one or more Intel Pentium®, Core®, or Xeon® processor(s); Advanced Micro Devices (AMD) Ryzen® processor(s), Accelerated Processing Units (APUs), or Epyc® processors; ARM-based processor(s) licensed from ARM Holdings, Ltd. such as the ARM Cortex-A family of processors and the ThunderX2® provided by Cavium™, Inc.; a MIPS-based design from MIPS Technologies, Inc. such as MIPS Warrior P-class processors; and/or the like. In some embodiments, the system 900 may not utilize application circuitry 905, and instead may include a special-purpose processor/controller to process IP data received from an EPC or 5GC, for example.


In some implementations, the application circuitry 905 may include one or more hardware accelerators, which may be microprocessors, programmable processing devices, or the like. The one or more hardware accelerators may include, for example, computer vision (CV) and/or deep learning (DL) accelerators. As examples, the programmable processing devices may be one or more a field-programmable devices (FPDs) such as field-programmable gate arrays (FPGAs) and the like; programmable logic devices (PLDs) such as complex PLDs (CPLDs), high-capacity PLDs (HCPLDs), and the like; ASICs such as structured ASICs and the like; programmable SoCs (PSoCs); and the like. In such implementations, the circuitry of application circuitry 905 may comprise logic blocks or logic fabric, and other interconnected resources that may be programmed to perform various functions, such as the procedures, methods, functions, etc. of the various embodiments discussed herein. In such embodiments, the circuitry of application circuitry 905 may include memory cells (e.g., erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), flash memory, static memory (e.g., static random access memory (SRAM), anti-fuses, etc.)) used to store logic blocks, logic fabric, data, etc. in look-up-tables (LUTs) and the like.


The baseband circuitry 910 may be implemented, for example, as a solder-down substrate including one or more integrated circuits, a single packaged integrated circuit soldered to a main circuit board or a multi-chip module containing two or more integrated circuits. The various hardware electronic elements of baseband circuitry 910 are discussed infra with regard to FIG. 11.


User interface circuitry 950 may include one or more user interfaces designed to enable user interaction with the system 900 or peripheral component interfaces designed to enable peripheral component interaction with the system 900. User interfaces may include, but are not limited to, one or more physical or virtual buttons (e.g., a reset button), one or more indicators (e.g., light emitting diodes (LEDs)), a physical keyboard or keypad, a mouse, a touchpad, a touchscreen, speakers or other audio emitting devices, microphones, a printer, a scanner, a headset, a display screen or display device, etc. Peripheral component interfaces may include, but are not limited to, a nonvolatile memory port, a universal serial bus (USB) port, an audio jack, a power supply interface, etc.


The radio front end modules (RFEMs) 915 may comprise a millimeter wave (mmWave) RFEM and one or more sub-mmWave radio frequency integrated circuits (RFICs). In some implementations, the one or more sub-mmWave RFICs may be physically separated from the mmWave RFEM. The RFICs may include connections to one or more antennas or antenna arrays (see e.g., antenna array 1111 of FIG. 11 infra), and the RFEM may be connected to multiple antennas. In alternative implementations, both mmWave and sub-mmWave radio functions may be implemented in the same physical RFEM 915, which incorporates both mmWave antennas and sub-mmWave.


The memory circuitry 920 may include one or more of volatile memory including dynamic random access memory (DRAM) and/or synchronous dynamic random access memory (SDRAM), and nonvolatile memory (NVM) including high-speed electrically erasable memory (commonly referred to as Flash memory), phase change random access memory (PRAM), magnetoresistive random access memory (MRAM), etc., and may incorporate the three-dimensional (3D) cross-point (XPOINT) memories from Intel® and Micron®. Memory circuitry 920 may be implemented as one or more of solder down packaged integrated circuits, socketed memory modules and plug-in memory cards.


The PMIC 925 may include voltage regulators, surge protectors, power alarm detection circuitry, and one or more backup power sources such as a battery or capacitor. The power alarm detection circuitry may detect one or more of brown out (under-voltage) and surge (over-voltage) conditions. The power tee circuitry 930 may provide for electrical power drawn from a network cable to provide both power supply and data connectivity to the infrastructure equipment 900 using a single cable.


The network controller circuitry 935 may provide connectivity to a network using a standard network interface protocol such as Ethernet, Ethernet over GRE Tunnels, Ethernet over Multiprotocol Label Switching (MPLS), or some other suitable protocol. Network connectivity may be provided to/from the infrastructure equipment 900 via network interface connector 940 using a physical connection, which may be electrical (commonly referred to as a “copper interconnect”), optical, or wireless. The network controller circuitry 935 may include one or more dedicated processors and/or FPGAs to communicate using one or more of the aforementioned protocols. In some implementations, the network controller circuitry 935 may include multiple controllers to provide connectivity to other networks using the same or different protocols.


The positioning circuitry 945 includes circuitry to receive and decode signals transmitted/broadcasted by a positioning network of a global navigation satellite system (GNSS). Examples of navigation satellite constellations (or GNSS) include United States' Global Positioning System (GPS), Russia's Global Navigation System (GLONASS), the European Union's Galileo system, China's BeiDou Navigation Satellite System, a regional navigation system or GNSS augmentation system (e.g., Navigation with Indian Constellation (NAVIC), Japan's Quasi-Zenith Satellite System (QZSS), France's Doppler Orbitography and Radio-positioning Integrated by Satellite (DORIS), etc.), or the like. The positioning circuitry 945 comprises various hardware elements (e.g., including hardware devices such as switches, filters, amplifiers, antenna elements, and the like to facilitate OTA communications) to communicate with components of a positioning network, such as navigation satellite constellation nodes. In some embodiments, the positioning circuitry 945 may include a Micro-Technology for Positioning, Navigation, and Timing (Micro-PNT) IC that uses a master timing clock to perform position tracking/estimation without GNSS assistance. The positioning circuitry 945 may also be part of, or interact with, the baseband circuitry 910 and/or RFEMs 915 to communicate with the nodes and components of the positioning network. The positioning circuitry 945 may also provide position data and/or time data to the application circuitry 905, which may use the data to synchronize operations with various infrastructure (e.g., RAN nodes 611, etc.), or the like.


The components shown by FIG. 9 may communicate with one another using interface circuitry, which may include any number of bus and/or interconnect (IX) technologies such as industry standard architecture (ISA), extended ISA (EISA), peripheral component interconnect (PCI), peripheral component interconnect extended (PCIx), PCI express (PCIe), or any number of other technologies. The bus/IX may be a proprietary bus, for example, used in a SoC based system. Other bus/IX systems may be included, such as an I2C interface, an SPI interface, point to point interfaces, and a power bus, among others.



FIG. 10 illustrates an example of a platform 1000 (or “device 1000”) in accordance with various embodiments. In embodiments, the computer platform 1000 may be suitable for use as UEs 601, 701, 801, application servers 630, and/or any other element/device discussed herein. The platform 1000 may include any combinations of the components shown in the example. The components of platform 1000 may be implemented as integrated circuits (ICs), portions thereof, discrete electronic devices, or other modules, logic, hardware, software, firmware, or a combination thereof adapted in the computer platform 1000, or as components otherwise incorporated within a chassis of a larger system. The block diagram of FIG. 10 is intended to show a high level view of components of the computer platform 1000. However, some of the components shown may be omitted, additional components may be present, and different arrangement of the components shown may occur in other implementations.


Application circuitry 1005 includes circuitry such as, but not limited to one or more processors (or processor cores), cache memory, and one or more of LDOs, interrupt controllers, serial interfaces such as SPI, I2C or universal programmable serial interface module, RTC, timer-counters including interval and watchdog timers, general purpose I/O, memory card controllers such as SD MMC or similar, USB interfaces, MIPI interfaces, and JTAG test access ports. The processors (or cores) of the application circuitry 1005 may be coupled with or may include memory/storage elements and may be configured to execute instructions stored in the memory/storage to enable various applications or operating systems to run on the system 1000. In some implementations, the memory/storage elements may be on-chip memory circuitry, which may include any suitable volatile and/or non-volatile memory, such as DRAM, SRAM, EPROM, EEPROM, Flash memory, solid-state memory, and/or any other type of memory device technology, such as those discussed herein.


The processor(s) of application circuitry 905 may include, for example, one or more processor cores, one or more application processors, one or more GPUs, one or more RISC processors, one or more ARM processors, one or more CISC processors, one or more DSP, one or more FPGAs, one or more PLDs, one or more ASICs, one or more microprocessors or controllers, a multithreaded processor, an ultra-low voltage processor, an embedded processor, some other known processing element, or any suitable combination thereof. In some embodiments, the application circuitry 905 may comprise, or may be, a special-purpose processor/controller to operate according to the various embodiments herein.


As examples, the processor(s) of application circuitry 1005 may include an Intel® Architecture Core™ based processor, such as a Quark™, an Atom™, an i3, an i5, an i7, or an MCU-class processor, or another such processor available from Intel® Corporation, Santa Clara, Calif. The processors of the application circuitry 1005 may also be one or more of Advanced Micro Devices (AMD) Ryzen® processor(s) or Accelerated Processing Units (APUs); A5-A9 processor(s) from Apple® Inc., Snapdragon™ processor(s) from Qualcomm® Technologies, Inc., Texas Instruments, Inc.® Open Multimedia Applications Platform (OMAP)™ processor(s); a MIPS-based design from MIPS Technologies, Inc. such as MIPS Warrior M-class, Warrior I-class, and Warrior P-class processors; an ARM-based design licensed from ARM Holdings, Ltd., such as the ARM Cortex-A, Cortex-R, and Cortex-M family of processors; or the like. In some implementations, the application circuitry 1005 may be a part of a system on a chip (SoC) in which the application circuitry 1005 and other components are formed into a single integrated circuit, or a single package, such as the Edison™ or Galileo™ SoC boards from Intel® Corporation.


Additionally or alternatively, application circuitry 1005 may include circuitry such as, but not limited to, one or more a field-programmable devices (FPDs) such as FPGAs and the like; programmable logic devices (PLDs) such as complex PLDs (CPLDs), high-capacity PLDs (HCPLDs), and the like; ASICs such as structured ASICs and the like; programmable SoCs (PSoCs); and the like. In such embodiments, the circuitry of application circuitry 1005 may comprise logic blocks or logic fabric, and other interconnected resources that may be programmed to perform various functions, such as the procedures, methods, functions, etc. of the various embodiments discussed herein. In such embodiments, the circuitry of application circuitry 1005 may include memory cells (e.g., erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), flash memory, static memory (e.g., static random access memory (SRAM), anti-fuses, etc.)) used to store logic blocks, logic fabric, data, etc. in look-up tables (LUTs) and the like.


The baseband circuitry 1010 may be implemented, for example, as a solder-down substrate including one or more integrated circuits, a single packaged integrated circuit soldered to a main circuit board or a multi-chip module containing two or more integrated circuits. The various hardware electronic elements of baseband circuitry 1010 are discussed infra with regard to FIG. 11.


The RFEMs 1015 may comprise a millimeter wave (mmWave) RFEM and one or more sub-mmWave radio frequency integrated circuits (RFICs). In some implementations, the one or more sub-mmWave RFICs may be physically separated from the mmWave RFEM. The RFICs may include connections to one or more antennas or antenna arrays (see e.g., antenna array 1111 of FIG. 11 infra), and the RFEM may be connected to multiple antennas. In alternative implementations, both mmWave and sub-mmWave radio functions may be implemented in the same physical RFEM 1015, which incorporates both mmWave antennas and sub-mmWave.


The memory circuitry 1020 may include any number and type of memory devices used to provide for a given amount of system memory. As examples, the memory circuitry 1020 may include one or more of volatile memory including random access memory (RAM), dynamic RAM (DRAM) and/or synchronous dynamic RAM (SDRAM), and nonvolatile memory (NVM) including high-speed electrically erasable memory (commonly referred to as Flash memory), phase change random access memory (PRAM), magnetoresistive random access memory (MRAM), etc. The memory circuitry 1020 may be developed in accordance with a Joint Electron Devices Engineering Council (JEDEC) low power double data rate (LPDDR)-based design, such as LPDDR2, LPDDR3, LPDDR4, or the like. Memory circuitry 1020 may be implemented as one or more of solder down packaged integrated circuits, single die package (SDP), dual die package (DDP) or quad die package (Q17P), socketed memory modules, dual inline memory modules (DIMMs) including microDIMMs or MiniDIMMs, and/or soldered onto a motherboard via a ball grid array (BGA). In low power implementations, the memory circuitry 1020 may be on-die memory or registers associated with the application circuitry 1005. To provide for persistent storage of information such as data, applications, operating systems and so forth, memory circuitry 1020 may include one or more mass storage devices, which may include, inter alia, a solid state disk drive (SSDD), hard disk drive (HDD), a micro HDD, resistance change memories, phase change memories, holographic memories, or chemical memories, among others. For example, the computer platform 1000 may incorporate the three-dimensional (3D) cross-point (XPOINT) memories from Intel® and Micron®.


Removable memory circuitry 1023 may include devices, circuitry, enclosures/housings, ports or receptacles, etc. used to couple portable data storage devices with the platform 1000. These portable data storage devices may be used for mass storage purposes, and may include, for example, flash memory cards (e.g., Secure Digital (SD) cards, microSD cards, xD picture cards, and the like), and USB flash drives, optical discs, external HDDs, and the like.


The platform 1000 may also include interface circuitry (not shown) that is used to connect external devices with the platform 1000. The external devices connected to the platform 1000 via the interface circuitry include sensor circuitry 1021 and electro-mechanical components (EMCs) 1022, as well as removable memory devices coupled to removable memory circuitry 1023.


The sensor circuitry 1021 include devices, modules, or subsystems whose purpose is to detect events or changes in its environment and send the information (sensor data) about the detected events to some other a device, module, subsystem, etc. Examples of such sensors include, inter alia, inertia measurement units (IMUs) comprising accelerometers, gyroscopes, and/or magnetometers; microelectromechanical systems (MEMS) or nanoelectromechanical systems (NEMS) comprising 3-axis accelerometers, 3-axis gyroscopes, and/or magnetometers; level sensors; flow sensors; temperature sensors (e.g., thermistors); pressure sensors; barometric pressure sensors; gravimeters; altimeters; image capture devices (e.g., cameras or lensless apertures); light detection and ranging (LiDAR) sensors; proximity sensors (e.g., infrared radiation detector and the like), depth sensors, ambient light sensors, ultrasonic transceivers; microphones or other like audio capture devices; etc.


EMCs 1022 include devices, modules, or subsystems whose purpose is to enable platform 1000 to change its state, position, and/or orientation, or move or control a mechanism or (sub)system. Additionally, EMCs 1022 may be configured to generate and send messages/signalling to other components of the platform 1000 to indicate a current state of the EMCs 1022. Examples of the EMCs 1022 include one or more power switches, relays including electromechanical relays (EMRs) and/or solid state relays (SSRs), actuators (e.g., valve actuators, etc.), an audible sound generator, a visual warning device, motors (e.g., DC motors, stepper motors, etc.), wheels, thrusters, propellers, claws, clamps, hooks, and/or other like electro-mechanical components. In embodiments, platform 1000 is configured to operate one or more EMCs 1022 based on one or more captured events and/or instructions or control signals received from a service provider and/or various clients.


In some implementations, the interface circuitry may connect the platform 1000 with positioning circuitry 1045. The positioning circuitry 1045 includes circuitry to receive and decode signals transmitted/broadcasted by a positioning network of a GNSS. Examples of navigation satellite constellations (or GNSS) include United States' GPS, Russia's GLONASS, the European Union's Galileo system, China's BeiDou Navigation Satellite System, a regional navigation system or GNSS augmentation system (e.g., NAVIC), Japan's QZSS, France's DORIS, etc.), or the like. The positioning circuitry 1045 comprises various hardware elements (e.g., including hardware devices such as switches, filters, amplifiers, antenna elements, and the like to facilitate OTA communications) to communicate with components of a positioning network, such as navigation satellite constellation nodes. In some embodiments, the positioning circuitry 1045 may include a Micro-PNT IC that uses a master timing clock to perform position tracking/estimation without GNSS assistance. The positioning circuitry 1045 may also be part of, or interact with, the baseband circuitry 910 and/or RFEMs 1015 to communicate with the nodes and components of the positioning network. The positioning circuitry 1045 may also provide position data and/or time data to the application circuitry 1005, which may use the data to synchronize operations with various infrastructure (e.g., radio base stations), for turn-by-turn navigation applications, or the like


In some implementations, the interface circuitry may connect the platform 1000 with Near-Field Communication (NFC) circuitry 1040. NFC circuitry 1040 is configured to provide contactless, short-range communications based on radio frequency identification (RFID) standards, wherein magnetic field induction is used to enable communication between NFC circuitry 1040 and NFC-enabled devices external to the platform 1000 (e.g., an “NFC touchpoint”). NFC circuitry 1040 comprises an NFC controller coupled with an antenna element and a processor coupled with the NFC controller. The NFC controller may be a chip/IC providing NFC functionalities to the NFC circuitry 1040 by executing NFC controller firmware and an NFC stack. The NFC stack may be executed by the processor to control the NFC controller, and the NFC controller firmware may be executed by the NFC controller to control the antenna element to emit short-range RF signals. The RF signals may power a passive NFC tag (e.g., a microchip embedded in a sticker or wristband) to transmit stored data to the NFC circuitry 1040, or initiate data transfer between the NFC circuitry 1040 and another active NFC device (e.g., a smartphone or an NFC-enabled POS terminal) that is proximate to the platform 1000.


The driver circuitry 1046 may include software and hardware elements that operate to control particular devices that are embedded in the platform 1000, attached to the platform 1000, or otherwise communicatively coupled with the platform 1000. The driver circuitry 1046 may include individual drivers allowing other components of the platform 1000 to interact with or control various input/output (I/O) devices that may be present within, or connected to, the platform 1000. For example, driver circuitry 1046 may include a display driver to control and allow access to a display device, a touchscreen driver to control and allow access to a touchscreen interface of the platform 1000, sensor drivers to obtain sensor readings of sensor circuitry 1021 and control and allow access to sensor circuitry 1021, EMC drivers to obtain actuator positions of the EMCs 1022 and/or control and allow access to the EMCs 1022, a camera driver to control and allow access to an embedded image capture device, audio drivers to control and allow access to one or more audio devices.


The power management integrated circuitry (PMIC) 1025 (also referred to as “power management circuitry 1025”) may manage power provided to various components of the platform 1000. In particular, with respect to the baseband circuitry 1010, the PMIC 1025 may control power-source selection, voltage scaling, battery charging, or DC-to-DC conversion. The PMIC 1025 may often be included when the platform 1000 is capable of being powered by a battery 1030, for example, when the device is included in a UE 601, 701, 801.


In some embodiments, the PMIC 1025 may control, or otherwise be part of, various power saving mechanisms of the platform 1000. For example, if the platform 1000 is in an RRC_Connected state, where it is still connected to the RAN node as it expects to receive traffic shortly, then it may enter a state known as Discontinuous Reception Mode (DRX) after a period of inactivity. During this state, the platform 1000 may power down for brief intervals of time and thus save power. If there is no data traffic activity for an extended period of time, then the platform 1000 may transition off to an RRC Idle state, where it disconnects from the network and does not perform operations such as channel quality feedback, handover, etc. The platform 1000 goes into a very low power state and it performs paging where again it periodically wakes up to listen to the network and then powers down again. The platform 1000 may not receive data in this state; in order to receive data, it must transition back to RRC_Connected state. An additional power saving mode may allow a device to be unavailable to the network for periods longer than a paging interval (ranging from seconds to a few hours). During this time, the device is totally unreachable to the network and may power down completely. Any data sent during this time incurs a large delay and it is assumed the delay is acceptable.


A battery 1030 may power the platform 1000, although in some examples the platform 1000 may be mounted deployed in a fixed location, and may have a power supply coupled to an electrical grid. The battery 1030 may be a lithium ion battery, a metal-air battery, such as a zinc-air battery, an aluminum-air battery, a lithium-air battery, and the like. In some implementations, such as in V2X applications, the battery 1030 may be a typical lead-acid automotive battery.


In some implementations, the battery 1030 may be a “smart battery,” which includes or is coupled with a Battery Management System (BMS) or battery monitoring integrated circuitry. The BMS may be included in the platform 1000 to track the state of charge (SoCh) of the battery 1030. The BMS may be used to monitor other parameters of the battery 1030 to provide failure predictions, such as the state of health (SoH) and the state of function (SoF) of the battery 1030. The BMS may communicate the information of the battery 1030 to the application circuitry 1005 or other components of the platform 1000. The BMS may also include an analog-to-digital (ADC) convertor that allows the application circuitry 1005 to directly monitor the voltage of the battery 1030 or the current flow from the battery 1030. The battery parameters may be used to determine actions that the platform 1000 may perform, such as transmission frequency, network operation, sensing frequency, and the like.


A power block, or other power supply coupled to an electrical grid may be coupled with the BMS to charge the battery 1030. In some examples, the power block XS30 may be replaced with a wireless power receiver to obtain the power wirelessly, for example, through a loop antenna in the computer platform 1000. In these examples, a wireless battery charging circuit may be included in the BMS. The specific charging circuits chosen may depend on the size of the battery 1030, and thus, the current required. The charging may be performed using the Airfuel standard promulgated by the Airfuel Alliance, the Qi wireless charging standard promulgated by the Wireless Power Consortium, or the Rezence charging standard promulgated by the Alliance for Wireless Power, among others.


User interface circuitry 1050 includes various input/output (I/O) devices present within, or connected to, the platform 1000, and includes one or more user interfaces designed to enable user interaction with the platform 1000 and/or peripheral component interfaces designed to enable peripheral component interaction with the platform 1000. The user interface circuitry 1050 includes input device circuitry and output device circuitry. Input device circuitry includes any physical or virtual means for accepting an input including, inter alia, one or more physical or virtual buttons (e.g., a reset button), a physical keyboard, keypad, mouse, touchpad, touchscreen, microphones, scanner, headset, and/or the like. The output device circuitry includes any physical or virtual means for showing information or otherwise conveying information, such as sensor readings, actuator position(s), or other like information. Output device circuitry may include any number and/or combinations of audio or visual display, including, inter alia, one or more simple visual outputs/indicators (e.g., binary status indicators (e.g., light emitting diodes (LEDs)) and multi-character visual outputs, or more complex outputs such as display devices or touchscreens (e.g., Liquid Chrystal Displays (LCD), LED displays, quantum dot displays, projectors, etc.), with the output of characters, graphics, multimedia objects, and the like being generated or produced from the operation of the platform 1000. The output device circuitry may also include speakers or other audio emitting devices, printer(s), and/or the like. In some embodiments, the sensor circuitry 1021 may be used as the input device circuitry (e.g., an image capture device, motion capture device, or the like) and one or more EMCs may be used as the output device circuitry (e.g., an actuator to provide haptic feedback or the like). In another example, NFC circuitry comprising an NFC controller coupled with an antenna element and a processing device may be included to read electronic tags and/or connect with another NFC-enabled device. Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a USB port, an audio jack, a power supply interface, etc.


Although not shown, the components of platform 1000 may communicate with one another using a suitable bus or interconnect (IX) technology, which may include any number of technologies, including ISA, EISA, PCI, PCIx, PCIe, a Time-Trigger Protocol (TTP) system, a FlexRay system, or any number of other technologies. The bus/IX may be a proprietary bus/IX, for example, used in a SoC based system. Other bus/IX systems may be included, such as an I2C interface, an SPI interface, point-to-point interfaces, and a power bus, among others.



FIG. 11 illustrates example components of baseband circuitry 1110 and radio front end modules (RFEM) 1115 in accordance with various embodiments. The baseband circuitry 1110 corresponds to the baseband circuitry 910 and 1010 of FIGS. 9 and 10, respectively. The RFEM 1115 corresponds to the RFEM 915 and 1015 of FIGS. 9 and 10, respectively. As shown, the RFEMs 1115 may include Radio Frequency (RF) circuitry 1106, front-end module (FEM) circuitry 1108, antenna array 1111 coupled together at least as shown.


The baseband circuitry 1110 includes circuitry and/or control logic configured to carry out various radio/network protocol and radio control functions that enable communication with one or more radio networks via the RF circuitry 1106. The radio control functions may include, but are not limited to, signal modulation/demodulation, encoding/decoding, radio frequency shifting, etc. In some embodiments, modulation/demodulation circuitry of the baseband circuitry 1110 may include Fast-Fourier Transform (FFT), precoding, or constellation mapping/demapping functionality. In some embodiments, encoding/decoding circuitry of the baseband circuitry 1110 may include convolution, tail-biting convolution, turbo, Viterbi, or Low Density Parity Check (LDPC) encoder/decoder functionality. Embodiments of modulation/demodulation and encoder/decoder functionality are not limited to these examples and may include other suitable functionality in other embodiments. The baseband circuitry 1110 is configured to process baseband signals received from a receive signal path of the RF circuitry 1106 and to generate baseband signals for a transmit signal path of the RF circuitry 1106. The baseband circuitry 1110 is configured to interface with application circuitry 905/1005 (see FIGS. 9 and 10) for generation and processing of the baseband signals and for controlling operations of the RF circuitry 1106. The baseband circuitry 1110 may handle various radio control functions.


The aforementioned circuitry and/or control logic of the baseband circuitry 1110 may include one or more single or multi-core processors. For example, the one or more processors may include a 3G baseband processor 1104A, a 4G/LTE baseband processor 1104B, a 5G/NR baseband processor 1104C, or some other baseband processor(s) 1104D for other existing generations, generations in development or to be developed in the future (e.g., sixth generation (6G), etc.). In other embodiments, some or all of the functionality of baseband processors 1104A-D may be included in modules stored in the memory 1104G and executed via a Central Processing Unit (CPU) 1104E. In other embodiments, some or all of the functionality of baseband processors 1104A-D may be provided as hardware accelerators (e.g., FPGAs, ASICs, etc.) loaded with the appropriate bit streams or logic blocks stored in respective memory cells. In various embodiments, the memory 1104G may store program code of a real-time OS (RTOS), which when executed by the CPU 1104E (or other baseband processor), is to cause the CPU 1104E (or other baseband processor) to manage resources of the baseband circuitry 1110, schedule tasks, etc. Examples of the RTOS may include Operating System Embedded (OSE)™ provided by Enea®, Nucleus RTOS™ provided by Mentor Graphics®, Versatile Real-Time Executive (VRTX) provided by Mentor Graphics®, ThreadX™ provided by Express Logic®, FreeRTOS, REX OS provided by Qualcomm®, OKL4 provided by Open Kernel (OK) Labs®, or any other suitable RTOS, such as those discussed herein. In addition, the baseband circuitry 1110 includes one or more audio digital signal processor(s) (DSP) 1104F. The audio DSP(s) 1104F include elements for compression/decompression and echo cancellation and may include other suitable processing elements in other embodiments.


In some embodiments, each of the processors 1104A-1104E include respective memory interfaces to send/receive data to/from the memory 1104G. The baseband circuitry 1110 may further include one or more interfaces to communicatively couple to other circuitries/devices, such as an interface to send/receive data to/from memory external to the baseband circuitry 1110; an application circuitry interface to send/receive data to/from the application circuitry 905/1005 of FIGS. 9-11); an RF circuitry interface to send/receive data to/from RF circuitry 1106 of FIG. 11; a wireless hardware connectivity interface to send/receive data to/from one or more wireless hardware elements (e.g., Near Field Communication (NFC) components, Bluetooth®/Bluetooth® Low Energy components, Wi-Fi® components, and/or the like); and a power management interface to send/receive power or control signals to/from the PMIC 1025.


In alternate embodiments (which may be combined with the above described embodiments), baseband circuitry 1110 comprises one or more digital baseband systems, which are coupled with one another via an interconnect subsystem and to a CPU subsystem, an audio subsystem, and an interface subsystem. The digital baseband subsystems may also be coupled to a digital baseband interface and a mixed-signal baseband subsystem via another interconnect subsystem. Each of the interconnect subsystems may include a bus system, point-to-point connections, network-on-chip (NOC) structures, and/or some other suitable bus or interconnect technology, such as those discussed herein. The audio subsystem may include DSP circuitry, buffer memory, program memory, speech processing accelerator circuitry, data converter circuitry such as analog-to-digital and digital-to-analog converter circuitry, analog circuitry including one or more of amplifiers and filters, and/or other like components. In an aspect of the present disclosure, baseband circuitry 1110 may include protocol processing circuitry with one or more instances of control circuitry (not shown) to provide control functions for the digital baseband circuitry and/or radio frequency circuitry (e.g., the radio front end modules 1115).


Although not shown by FIG. 11, in some embodiments, the baseband circuitry 1110 includes individual processing device(s) to operate one or more wireless communication protocols (e.g., a “multi-protocol baseband processor” or “protocol processing circuitry”) and individual processing device(s) to implement PHY layer functions. In these embodiments, the PHY layer functions include the aforementioned radio control functions. In these embodiments, the protocol processing circuitry operates or implements various protocol layers/entities of one or more wireless communication protocols. In a first example, the protocol processing circuitry may operate LTE protocol entities and/or 5G/NR protocol entities when the baseband circuitry 1110 and/or RF circuitry 1106 are part of mmWave communication circuitry or some other suitable cellular communication circuitry. In the first example, the protocol processing circuitry would operate MAC, RLC, PDCP, SDAP, RRC, and NAS functions. In a second example, the protocol processing circuitry may operate one or more IEEE-based protocols when the baseband circuitry 1110 and/or RF circuitry 1106 are part of a Wi-Fi communication system. In the second example, the protocol processing circuitry would operate Wi-Fi MAC and logical link control (LLC) functions. The protocol processing circuitry may include one or more memory structures (e.g., 1104G) to store program code and data for operating the protocol functions, as well as one or more processing cores to execute the program code and perform various operations using the data. The baseband circuitry 1110 may also support radio communications for more than one wireless protocol.


The various hardware elements of the baseband circuitry 1110 discussed herein may be implemented, for example, as a solder-down substrate including one or more integrated circuits (ICs), a single packaged IC soldered to a main circuit board or a multi-chip module containing two or more ICs. In one example, the components of the baseband circuitry 1110 may be suitably combined in a single chip or chipset, or disposed on a same circuit board. In another example, some or all of the constituent components of the baseband circuitry 1110 and RF circuitry 1106 may be implemented together such as, for example, a system on a chip (SoC) or System-in-Package (SiP). In another example, some or all of the constituent components of the baseband circuitry 1110 may be implemented as a separate SoC that is communicatively coupled with and RF circuitry 1106 (or multiple instances of RF circuitry 1106). In yet another example, some or all of the constituent components of the baseband circuitry 1110 and the application circuitry 905/1005 may be implemented together as individual SoCs mounted to a same circuit board (e.g., a “multi-chip package”).


In some embodiments, the baseband circuitry 1110 may provide for communication compatible with one or more radio technologies. For example, in some embodiments, the baseband circuitry 1110 may support communication with an E-UTRAN or other WMAN, a WLAN, a WPAN. Embodiments in which the baseband circuitry 1110 is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry.


RF circuitry 1106 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium. In various embodiments, the RF circuitry 1106 may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network. RF circuitry 1106 may include a receive signal path, which may include circuitry to down-convert RF signals received from the FEM circuitry 1108 and provide baseband signals to the baseband circuitry 1110. RF circuitry 1106 may also include a transmit signal path, which may include circuitry to up-convert baseband signals provided by the baseband circuitry 1110 and provide RF output signals to the FEM circuitry 1108 for transmission.


In some embodiments, the receive signal path of the RF circuitry 1106 may include mixer circuitry 1106a, amplifier circuitry 1106b and filter circuitry 1106c. In some embodiments, the transmit signal path of the RF circuitry 1106 may include filter circuitry 1106c and mixer circuitry 1106a. RF circuitry 1106 may also include synthesizer circuitry 1106d for synthesizing a frequency for use by the mixer circuitry 1106a of the receive signal path and the transmit signal path. In some embodiments, the mixer circuitry 1106a of the receive signal path may be configured to down-convert RF signals received from the FEM circuitry 1108 based on the synthesized frequency provided by synthesizer circuitry 1106d. The amplifier circuitry 1106b may be configured to amplify the down-converted signals and the filter circuitry 1106c may be a low-pass filter (LPF) or band-pass filter (BPF) configured to remove unwanted signals from the down-converted signals to generate output baseband signals. Output baseband signals may be provided to the baseband circuitry 1110 for further processing. In some embodiments, the output baseband signals may be zero-frequency baseband signals, although this is not a requirement. In some embodiments, mixer circuitry 1106a of the receive signal path may comprise passive mixers, although the scope of the embodiments is not limited in this respect.


In some embodiments, the mixer circuitry 1106a of the transmit signal path may be configured to up-convert input baseband signals based on the synthesized frequency provided by the synthesizer circuitry 1106d to generate RF output signals for the FEM circuitry 1108. The baseband signals may be provided by the baseband circuitry 1110 and may be filtered by filter circuitry 1106c.


In some embodiments, the mixer circuitry 1106a of the receive signal path and the mixer circuitry 1106a of the transmit signal path may include two or more mixers and may be arranged for quadrature downconversion and upconversion, respectively. In some embodiments, the mixer circuitry 1106a of the receive signal path and the mixer circuitry 1106a of the transmit signal path may include two or more mixers and may be arranged for image rejection (e.g., Hartley image rejection). In some embodiments, the mixer circuitry 1106a of the receive signal path and the mixer circuitry 1106a of the transmit signal path may be arranged for direct downconversion and direct upconversion, respectively. In some embodiments, the mixer circuitry 1106a of the receive signal path and the mixer circuitry 1106a of the transmit signal path may be configured for super-heterodyne operation.


In some embodiments, the output baseband signals and the input baseband signals may be analog baseband signals, although the scope of the embodiments is not limited in this respect. In some alternate embodiments, the output baseband signals and the input baseband signals may be digital baseband signals. In these alternate embodiments, the RF circuitry 1106 may include analog-to-digital converter (ADC) and digital-to-analog converter (DAC) circuitry and the baseband circuitry 1110 may include a digital baseband interface to communicate with the RF circuitry 1106.


In some dual-mode embodiments, a separate radio IC circuitry may be provided for processing signals for each spectrum, although the scope of the embodiments is not limited in this respect.


In some embodiments, the synthesizer circuitry 1106d may be a fractional-N synthesizer or a fractional N/N+1 synthesizer, although the scope of the embodiments is not limited in this respect as other types of frequency synthesizers may be suitable. For example, synthesizer circuitry 1106d may be a delta-sigma synthesizer, a frequency multiplier, or a synthesizer comprising a phase-locked loop with a frequency divider.


The synthesizer circuitry 1106d may be configured to synthesize an output frequency for use by the mixer circuitry 1106a of the RF circuitry 1106 based on a frequency input and a divider control input. In some embodiments, the synthesizer circuitry 1106d may be a fractional N/N+1 synthesizer.


In some embodiments, frequency input may be provided by a voltage controlled oscillator (VCO), although that is not a requirement. Divider control input may be provided by either the baseband circuitry 1110 or the application circuitry 905/1005 depending on the desired output frequency. In some embodiments, a divider control input (e.g., N) may be determined from a look-up table based on a channel indicated by the application circuitry 905/1005.


Synthesizer circuitry 1106d of the RF circuitry 1106 may include a divider, a delay-locked loop (DLL), a multiplexer and a phase accumulator. In some embodiments, the divider may be a dual modulus divider (DMD) and the phase accumulator may be a digital phase accumulator (DPA). In some embodiments, the DMD may be configured to divide the input signal by either N or N+1 (e.g., based on a carry out) to provide a fractional division ratio. In some example embodiments, the DLL may include a set of cascaded, tunable, delay elements, a phase detector, a charge pump and a D-type flip-flop. In these embodiments, the delay elements may be configured to break a VCO period up into Nd equal packets of phase, where Nd is the number of delay elements in the delay line. In this way, the DLL provides negative feedback to help ensure that the total delay through the delay line is one VCO cycle.


In some embodiments, synthesizer circuitry 1106d may be configured to generate a carrier frequency as the output frequency, while in other embodiments, the output frequency may be a multiple of the carrier frequency (e.g., twice the carrier frequency, four times the carrier frequency) and used in conjunction with quadrature generator and divider circuitry to generate multiple signals at the carrier frequency with multiple different phases with respect to each other. In some embodiments, the output frequency may be a LO frequency (fLO). In some embodiments, the RF circuitry 1106 may include an IQ/polar converter.


FEM circuitry 1108 may include a receive signal path, which may include circuitry configured to operate on RF signals received from antenna array 1111, amplify the received signals and provide the amplified versions of the received signals to the RF circuitry 1106 for further processing. FEM circuitry 1108 may also include a transmit signal path, which may include circuitry configured to amplify signals for transmission provided by the RF circuitry 1106 for transmission by one or more of antenna elements of antenna array 1111. In various embodiments, the amplification through the transmit or receive signal paths may be done solely in the RF circuitry 1106, solely in the FEM circuitry 1108, or in both the RF circuitry 1106 and the FEM circuitry 1108.


In some embodiments, the FEM circuitry 1108 may include a TX/RX switch to switch between transmit mode and receive mode operation. The FEM circuitry 1108 may include a receive signal path and a transmit signal path. The receive signal path of the FEM circuitry 1108 may include an LNA to amplify received RF signals and provide the amplified received RF signals as an output (e.g., to the RF circuitry 1106). The transmit signal path of the FEM circuitry 1108 may include a power amplifier (PA) to amplify input RF signals (e.g., provided by RF circuitry 1106), and one or more filters to generate RF signals for subsequent transmission by one or more antenna elements of the antenna array 1111.


The antenna array 1111 comprises one or more antenna elements, each of which is configured convert electrical signals into radio waves to travel through the air and to convert received radio waves into electrical signals. For example, digital baseband signals provided by the baseband circuitry 1110 is converted into analog RF signals (e.g., modulated waveform) that will be amplified and transmitted via the antenna elements of the antenna array 1111 including one or more antenna elements (not shown). The antenna elements may be omnidirectional, direction, or a combination thereof. The antenna elements may be formed in a multitude of arranges as are known and/or discussed herein. The antenna array 1111 may comprise microstrip antennas or printed antennas that are fabricated on the surface of one or more printed circuit boards. The antenna array 1111 may be formed in as a patch of metal foil (e.g., a patch antenna) in a variety of shapes, and may be coupled with the RF circuitry 1106 and/or FEM circuitry 1108 using metal transmission lines or the like.


Processors of the application circuitry 905/1005 and processors of the baseband circuitry 1110 may be used to execute elements of one or more instances of a protocol stack. For example, processors of the baseband circuitry 1110, alone or in combination, may be used execute Layer 3, Layer 2, or Layer 1 functionality, while processors of the application circuitry 905/1005 may utilize data (e.g., packet data) received from these layers and further execute Layer 4 functionality (e.g., TCP and UDP layers). As referred to herein, Layer 3 may comprise a RRC layer, described in further detail below. As referred to herein, Layer 2 may comprise a MAC layer, an RLC layer, and a PDCP layer, described in further detail below. As referred to herein, Layer 1 may comprise a PHY layer of a UE/RAN node, described in further detail below.



FIG. 12 is a block diagram illustrating components, according to some example embodiments, able to read instructions from a machine-readable or computer-readable medium (e.g., a non-transitory machine-readable storage medium) and perform any one or more of the methodologies discussed herein. Specifically, FIG. 12 shows a diagrammatic representation of hardware resources 1200 including one or more processors (or processor cores) 1210, one or more memory/storage devices 1220, and one or more communication resources 1230, each of which may be communicatively coupled via a bus 1240. For embodiments where node virtualization (e.g., NFV) is utilized, a hypervisor 1202 may be executed to provide an execution environment for one or more network slices/sub-slices to utilize the hardware resources 1200.


The processors 1210 may include, for example, a processor 1212 and a processor 1214. The processor(s) 1210 may be, for example, a central processing unit (CPU), a reduced instruction set computing (RISC) processor, a complex instruction set computing (CISC) processor, a graphics processing unit (GPU), a DSP such as a baseband processor, an ASIC, an FPGA, a radio-frequency integrated circuit (RFIC), another processor (including those discussed herein), or any suitable combination thereof.


The memory/storage devices 1220 may include main memory, disk storage, or any suitable combination thereof. The memory/storage devices 1220 may include, but are not limited to, any type of volatile or nonvolatile memory such as dynamic random access memory (DRAM), static random access memory (SRAM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), Flash memory, solid-state storage, etc.


The communication resources 1230 may include interconnection or network interface components or other suitable devices to communicate with one or more peripheral devices 1204 or one or more databases 1206 via a network 1208. For example, the communication resources 1230 may include wired communication components (e.g., for coupling via USB), cellular communication components, NFC components, Bluetooth® (or Bluetooth® Low Energy) components, Wi-Fi® components, and other communication components.


Instructions 1250 may comprise software, a program, an application, an applet, an app, or other executable code for causing at least any of the processors 1210 to perform any one or more of the methodologies discussed herein. The instructions 1250 may reside, completely or partially, within at least one of the processors 1210 (e.g., within the processor's cache memory), the memory/storage devices 1220, or any suitable combination thereof. Furthermore, any portion of the instructions 1250 may be transferred to the hardware resources 1200 from any combination of the peripheral devices 1204 or the databases 1206. Accordingly, the memory of processors 1210, the memory/storage devices 1220, the peripheral devices 1204, and the databases 1206 are examples of computer-readable and machine-readable media.


Example Procedures

In some embodiments, the electronic device(s), network(s), system(s), chip(s) or component(s), or portions or implementations thereof, of FIGS. 6-12, or some other figure herein, may be configured to perform one or more processes, techniques, or methods as described herein, or portions thereof. One such process 1300 is depicted in FIG. 13. For example, the process may include, at 1302, receiving, by policy and charging enforcement function (PCEF) circuitry, one or more policy decisions from a policy control function (PCF) circuitry. The process may further include, at 1304, creating, by the PCEF circuitry based on the one or more policy decisions, quality-of-service (Qos) bearers or flows for a remote device to receive or transmit a multimedia stream with a QoS based on the one or more policy decisions. The process may further include, at 1306, obtaining, by application function circuitry, session information including media workload information based on one or more network-based media processing (NBMP) application program interfaces (APIs) or objects to derive QoS parameters for the bearer or flow pertaining to the reception or transmission of the multimedia stream at the remote device.


In some embodiments, one or more of aspects of the process 1300 of FIG. 13 may be performed by a content server or a portion thereof (e.g., baseband circuitry of the content server). For example, in some embodiments, one or more aspects of the process 1300 of FIG. 13 may be performed by functional entities AF, PCRF, and/or PCEF/BBERF depicted in FIG. 3.



FIG. 14 illustrates another example process 1400 in accordance with some embodiments. For example, the process 1400 may include, at 1402, mapping application layer information of one or more network-based media processing (NBMP) application program interfaces (APIs) and/or objects, associated with a multimedia stream, with a first quality of service parameter (QoS) parameter for a core network of a network. The process 1400 may further include, at 1404, mapping the application layer information of the one or more NMBP APIs and/or objects with a second QoS parameter for a radio access network of the network. The process 1400 may further include, at 1406, sending session information based on the one or more NBMP APIs or objects to a remote server to receive the multimedia stream from the remote server or transmit the multimedia stream to the remote server at a QoS according to at least one of the first QoS parameter or the second QoS parameter.


In some embodiments, one or more of aspects of the process 1400 of FIG. 14 may be performed by a user equipment (UE) or a portion thereof (e.g., baseband circuitry of the UE). For example, in some embodiments, one or more aspects of the process 1400 of FIG. 14 may be performed by functional entities application circuitry (e.g., NBMP handler), IP BS manager, translation/mapping function, and/or access-specific BS manager of the UE depicted in FIG. 3.


For one or more embodiments, at least one of the components set forth in one or more of the preceding figures may be configured to perform one or more operations, techniques, processes, and/or methods as set forth in the example section below. For example, the baseband circuitry as described above in connection with one or more of the preceding figures may be configured to operate in accordance with one or more of the examples set forth below. For another example, circuitry associated with a UE, base station, network element, etc. as described above in connection with one or more of the preceding figures may be configured to operate in accordance with one or more of the examples set forth below in the example section.


EXAMPLES

Example 1 may include an apparatus, comprising:

    • an application function module to interact with an application on a remote device that utilizes dynamic policy control to receive or transmit multimedia stream;
    • a policy control function (PCF) module coupled to the application function module, wherein the PCF module implements policy control decisions; and
    • a policy and charging enforcement function (PCEF) module coupled to the PCF module, wherein the PCEF module enforces policy decisions received from the PCF and creates QoS bearers or flows for the remote device to receive and/or transmit a multimedia stream at a QoS configured by the PCF;
    • wherein the application function module obtains session information including media workload information based on NBMP APIs and objects to derive the QoS parameters for the bearer or flow pertaining to the reception of the multimedia stream at the remote device and/or transmission of the multimedia stream from the remote device.


Example 2 may include the apparatus of example 1 or some other example herein, wherein the NBMP APIs and objects include Workflow API, Function Discovery APIs and Task APIs as well as, Workflow Description Document (WDD), Task Description Document (TDD) and Function Description Document (FDD) as JSON objects.


Example 3 may include the apparatus of example 1 or some other example herein, wherein the application function module extracts session information pertaining to the multimedia stream and provides the session information to the PCF module.


Example 4 may include the apparatus of example 1 or some other example herein, wherein the decisions implemented by the PCF module are based at least in part on a configuration in the PCF module that defines a policy applied to a network service, subscription information for the remote device, information about the network service received from the application function module, information about an access network of the network service, or combinations thereof.


Example 5 may include the apparatus of example 1 or some other example herein, wherein the PCF module combines session information received from the application function and information received from the PCEF module with subscription information for the remote device to provide session level policy decisions to the PCEF module.


Example 6 may include the apparatus of example 1 or some other example herein, wherein the remote device determines quality of service parameters for a core network or a radio access network, or combinations thereof, and provides the quality of service parameters to the application function.


Example 7 may include the apparatus of example 1 or some other example herein, wherein different quality of service parameters are determined by the application function and/or PCF for different workloads negotiated by NBMP APIs and objects.


Example 8 may include the apparatus of example 1 or some other example herein, wherein dedicated QoS classes are determined by the application function and/or PCF for different workloads negotiated by NBMP APIs and objects.


Example 9 may include the apparatus of example 1 or some other example herein, wherein workloads determined by NBMP APIs and objects include media encoding, decoding, transcoding, pre/post processing, stitching, render/display, and analytics.


Example 10 may include an apparatus, comprising:


an application module including a media workload handler based on NBMP APIs and objects for receiving and/or transmitting a multimedia stream over a network;


a first mapping module to map application layer information of the NBMP APIs and objects with a quality of service parameter for a core network of the network; and


a second mapping module to map application layer information of the NBMP APIs and objects with a quality of service parameter for a radio access network of the network;


wherein the application module provides session information based on the NBMP APIs and objects to an application function module of a remote server to receive and/or transmit the multimedia stream from/to the remote server at a quality of service specified in the quality of service parameter for the core network, or the quality of service parameter for the radio access network, or combinations thereof.


Example 11 may include the apparatus of example 10 or some other example herein, wherein the application module controls the remote server to deliver and/or receive the multimedia stream to/from the remote device.


Example 12 may include the apparatus of example 10 or some other example herein, wherein the quality of service parameter for the core network comprises a DiffServ/DSPC parameter, an InteServ/FlowSpecs parameter, or combinations thereof


Example 13 may include the apparatus of example 10 or some other example herein, wherein the quality of service parameter for the radio access network comprises a quality of service class identifier.


Example 14 may include the apparatus of example 10 or some other example herein, wherein the NBMP APIs and objects include Workflow API, Function Discovery APIs and Task APIs as well as, Workflow Description Document (WDD), Task Description Document (TDD) and Function Description Document (FDD) as JSON objects.


Example 15 may include the apparatus of example 10 or some other example herein, wherein different quality of service parameters are determined by the application function and/or PCF for different workloads negotiated by NBMP APIs and objects.


Example 16 may include the apparatus of example 10 or some other example herein, wherein dedicated QoS classes are determined by the application function and/or PCF for different workloads negotiated by NBMP APIs and objects.


Example 17 may include the apparatus of example 10 or some other example herein, wherein workloads determined by NBMP APIs and objects include media encoding, decoding, transcoding, pre/post processing, stitching, render/display, and analytics.


Example 18 may include a method, comprising:


parsing a media workload handler based on NBMP APIs and objects for a multimedia stream received/transmitted over a network;


mapping application layer information of the media workload based on NBMP APIs and objects with a quality of service parameter for a core network of the network;


mapping application layer information of the media workload based on NBMP APIs and objects with a quality of service parameter for a radio access network of the network; and


providing session information to an application function module of a remote server for transmission and/or reception of a multimedia stream at a quality of service specified in the quality of service parameter for the core network, or the quality of service parameter for the radio access network, or combinations thereof.


Example 19 may include the method of example 18 or some other example herein, wherein the NBMP APIs and objects include Workflow API, Function Discovery APIs and Task APIs as well as, Workflow Description Document (WDD), Task Description Document (TDD) and Function Description Document (FDD) as JSON objects.


Example 20 may include the method of example 18 or some other example herein, wherein the quality of service parameter for the core network comprises a DiffServ/DSPC parameter, an InteServ/FlowSpecs parameter, or combinations thereof.


Example 21 may include the method of example 18 or some other example herein, wherein the quality of service parameter for the radio access network comprises a quality of service class identifier.


Example 22 may include the method of example 18 or some other example herein, wherein different quality of service parameters are determined by the application function and/or PCF for different workloads negotiated by NBMP APIs and objects.


Example 23 may include the method of example 18 or some other example herein, wherein dedicated QoS classes are determined by the application function and/or PCF for different workloads negotiated by NBMP APIs and objects.


Example 24 may include the method of example 18 or some other example herein, wherein workloads determined by NBMP APIs and objects include media encoding, decoding, transcoding, pre/post processing, stitching, render/display, and analytics.


Example 25 may include a method, comprising:


receiving, by policy and charging enforcement function (PCEF) circuitry, one or more policy decisions from a policy control function (PCF) circuitry;


creating, by the PCEF circuitry based on the one or more policy decisions, quality-of-service (Qos) bearers or flows for a remote device to receive or transmit a multimedia stream with a QoS based on the one or more policy decisions; and


obtaining, by application function circuitry, session information including media workload information based on one or more network-based media processing (NBMP) application program interfaces (APIs) or objects to derive QoS parameters for the bearer or flow pertaining to the reception or transmission of the multimedia stream at the remote device.


Example 26 may include the method of example 25 or some other example herein, wherein the NBMP APIs include one or more of Workflow API, Function Discovery APIs, and/or Task APIs, and wherein the NBMP objects include one or more of Workflow Description Document (WDD), Task Description Document (TDD), and/or Function Description Document (FDD) as JSON objects.


Example 27 may include the method of example 25-26 or some other example herein, further comprising extracting, by the application function circuitry, session information pertaining to the multimedia stream and providing the session information to the PCF circuitry.


Example 28 may include the method of example 25-27 or some other example herein, further comprising determining the one or more policy decisions by the PCF circuitry, wherein the one or more policy decisions are determined based on one or more of a configuration in the PCF circuitry that defines a policy applied to a network service, subscription information for the remote device, information about the network service received from the application function circuitry, and/or information about an access network of the network service.


Example 29 may include the method of example 25-28 or some other example herein, further comprising combining, by the PCF circuitry, session information received from the application function circuitry and information received from the PCEF circuitry with subscription information for the remote device to provide the one or more policy decisions to the PCEF circuitry.


Example 30 may include the method of example 25-29 or some other example herein, further comprising receiving, by the application function circuitry from the remote device, QoS parameters for a core network or a radio access network, or combinations thereof.


Example 31 may include the method of example 25-30 or some other example herein, wherein different QoS parameters are determined by the application function circuitry and/or PCF circuitry for different workloads negotiated by NBMP APIs and objects.


Example 32 may include the method of example 25-31 or some other example herein, wherein dedicated QoS classes are determined by the application function circuitry and/or PCF circuitry for different workloads negotiated by NBMP APIs and objects.


Example 33 may include the method of example 25-32 or some other example herein, wherein workloads determined by NBMP APIs and/or objects include one or more of media encoding, decoding, transcoding, pre/post processing, stitching, render/display, and/or analytics.


Example 34 may include the method of example 25-33 or some other example herein, wherein the method is performed by a content server, or a portion thereof.


Example 35 may include a method, comprising:


mapping application layer information of one or more network-based media processing (NBMP) application program interfaces (APIs) and/or objects, associated with a multimedia stream, with a first quality of service parameter (QoS) parameter for a core network of a network;


mapping the application layer information of the one or more NMBP APIs and/or objects with a second QoS parameter for a radio access network of the network; and


sending session information based on the one or more NBMP APIs or objects to a remote server to receive the multimedia stream from the remote server or transmit the multimedia stream to the remote server at a QoS according to at least one of the first QoS parameter or the second QoS parameter.


Example 36 may include the method of example 35 or some other example herein, further comprising controlling the remote server to transmit and/or receive the multimedia stream.


Example 37 may include the method of example 35-36 or some other example herein, wherein the first QoS parameter for the core network includes one or more of a DiffServ/DSPC parameter, an InteServ/FlowSpecs parameter, and/or or a combination thereof.


Example 38 may include the method of example 35-37 or some other example herein, wherein the second QoS parameter for the radio access network includes a QoS class identifier.


Example 39 may include the method of example 35-38 or some other example herein, wherein the NBMP APIs include one or more of a Workflow API, Function Discovery APIs and Task APIs, and/or wherein the NBMP objects include one or more of Workflow Description Document (WDD), Task Description Document (TDD) and Function Description Document (FDD) as JSON objects.


Example 40 may include the method of example 35-39 or some other example herein, wherein different quality of service parameters are determined for different workloads negotiated by the NBMP APIs and/or objects.


Example 41 may include the method of example 35-40 or some other example herein, wherein dedicated QoS classes are determined for different workloads negotiated by the NBMP APIs and/or objects.


Example 42 may include the method of example 35-41 or some other example herein, wherein workloads determined by NBMP APIs and/or objects include one or more of media encoding, decoding, transcoding, pre/post processing, stitching, render/display, and/or analytics.


Example 43 may include the method of example 35-42 or some other example herein, wherein the method is performed by a user equipment (UE) or a portion thereof.


Example 44 may include a method, comprising:


parsing a media workload based on one or more network-based media processing (NBMP) application program interfaces (APIs) and/or objects for a multimedia stream received and/or transmitted over a network;


mapping application layer information of the media workload based on the one or more NBMP APIs and/or objects with a first quality of service (QoS) parameter for a core network of the network;


mapping application layer information of the media workload based on the one or more NBMP APIs and/or objects with a second QoS parameter for a radio access network of the network; and


providing session information to a remote server for transmission and/or reception of a multimedia stream associated with the media workload at a QoS based on the first QoS parameter and/or the second QoS parameter.


Example 45 may include the method of example 44 or some other example herein, wherein the NBMP APIs include one or more of Workflow API, Function Discovery APIs and Task APIs, and wherein the NBMP objects include one or more of Workflow Description Document (WDD), Task Description Document (TDD) and Function Description Document (FDD) as JSON objects.


Example 46 may include the method of example 44-45 or some other example herein, wherein the first QoS parameter for the core network include one or more of a DiffServ/DSPC parameter, and/or an InteServ/FlowSpecs parameter.


Example 47 may include the method of example 44-46 or some other example herein, wherein the second QoS parameter for the radio access network includes a quality of service class identifier.


Example 48 may include the method of example 44-47 or some other example herein, wherein different quality of service parameters are determined for different workloads based on the one or more NBMP APIs and/or objects.


Example 49 may include the method of example 44-48 or some other example herein, wherein dedicated QoS classes are determined for different workloads based on the one or more NBMP APIs and/or objects.


Example 50 may include the method of example 44-49 or some other example herein, wherein workloads determined by the one or more NBMP APIs and/or objects include one or more of media encoding, decoding, transcoding, pre/post processing, stitching, render/display, and analytics.


Example 51 may include the method of example 44-50 or some other example herein, wherein the method is performed by a user equipment (UE) or a portion thereof.


Example 52 may include an apparatus comprising means to perform one or more elements of a method described in or related to any of examples 1-51, or any other method or process described herein.


Example 53 may include one or more non-transitory computer-readable media comprising instructions to cause an electronic device, upon execution of the instructions by one or more processors of the electronic device, to perform one or more elements of a method described in or related to any of examples 1-51, or any other method or process described herein.


Example 54 may include an apparatus comprising logic, modules, or circuitry to perform one or more elements of a method described in or related to any of examples 1-51, or any other method or process described herein.


Example 55 may include a method, technique, or process as described in or related to any of examples 1-51, or portions or parts thereof.


Example 56 may include an apparatus comprising: one or more processors and one or more computer-readable media comprising instructions that, when executed by the one or more processors, cause the one or more processors to perform the method, techniques, or process as described in or related to any of examples 1-51, or portions thereof.


Example 57 may include a signal as described in or related to any of examples 1-51, or portions or parts thereof.


Example 58 may include a datagram, packet, frame, segment, protocol data unit (PDU), or message as described in or related to any of examples 1-51, or portions or parts thereof, or otherwise described in the present disclosure.


Example 59 may include a signal encoded with data as described in or related to any of examples 1-51, or portions or parts thereof, or otherwise described in the present disclosure.


Example 60 may include a signal encoded with a datagram, packet, frame, segment, protocol data unit (PDU), or message as described in or related to any of examples 1-51, or portions or parts thereof, or otherwise described in the present disclosure.


Example 61 may include an electromagnetic signal carrying computer-readable instructions, wherein execution of the computer-readable instructions by one or more processors is to cause the one or more processors to perform the method, techniques, or process as described in or related to any of examples 1-51, or portions thereof.


Example 62 may include a computer program comprising instructions, wherein execution of the program by a processing element is to cause the processing element to carry out the method, techniques, or process as described in or related to any of examples 1-51, or portions thereof.


Example 63 may include a signal in a wireless network as shown and described herein.


Example 64 may include a method of communicating in a wireless network as shown and described herein.


Example 65 may include a system for providing wireless communication as shown and described herein.


Example 66 may include a device for providing wireless communication as shown and described herein.


Any of the above-described examples may be combined with any other example (or combination of examples), unless explicitly stated otherwise. The foregoing description of one or more implementations provides illustration and description, but is not intended to be exhaustive or to limit the scope of embodiments to the precise form disclosed. Modifications and variations are possible in light of the above teachings or may be acquired from practice of various embodiments.


Abbreviations

For the purposes of the present document, the following abbreviations may apply to the examples and embodiments discussed herein.


















3GPP
Third Generation




Partnership Project



4G
Fourth Generation



5G
Fifth Generation



5GC
5G Core network



ACK
Acknowledgement



AF
Application




Function



AM
Acknowledged




Mode



AMBR
Aggregate




Maximum Bit Rate



AMF
Access and




Mobility




Management




Function



AN
Access Network



ANR
Automatic




Neighbour Relation



AP
Application




Protocol, Antenna




Port, Access Point



API
Application




Programming Interface



APN
Access Point Name



ARP
Allocation and




Retention Priority



ARQ
Automatic Repeat




Request



AS
Access Stratum



ASN.1
Abstract Syntax




Notation One



AUSF
Authentication




Server Function



AWGN
Additive




White Gaussian




Noise



BAP
Backhaul




Adaptation Protocol



BCH
Broadcast Channel



BER
Bit Error Ratio



BFD
Beam Failure




Detection



BLER
Block Error Rate



BPSK
Binary Phase Shift




Keying



BRAS
Broadband Remote




Access Server



BSS
Business Support




System



BS
Base Station



BSR
Buffer Status




Report



BW
Bandwidth



BWP
Bandwidth Part



C-RNTI
Cell Radio




Network Temporary




Identity



CA
Carrier




Aggregation,




Certification




Authority



CAPEX
CAPital




EXpenditure



CBRA
Contention Based




Random Access



CC
Component Carrier,




Country Code,




Cryptographic




Checksum



CCA
Clear Channel




Assessment



CCE
Control Channel




Element



CCCH
Common Control




Channel



CE
Coverage




Enhancement



CDM
Content Delivery




Network



CDMA
Code-




Division Multiple




Access



CFRA
Contention Free




Random Access



CG
Cell Group



CI
Cell Identity



CID
Cell-ID (e.g.,




positioning




method)



CIM
Common




Information Model



CIR
Carrier to




Interference Ratio



CK
Cipher Key



CM
Connection




Management, Conditional




Mandatory



CMAS
Commercial




Mobile Alert Service



CMD
Command



CMS
Cloud Management




System



CO
Conditional




Optional



CoMP
Coordinated Multi-




Point



CORESET
Control




Resource Set



COTS
Commercial Off-




The-Shelf



CP
Control Plane,




Cyclic Prefix, Connection




Point



CPD
Connection Point




Descriptor



CPE
Customer Premise




Equipment



CPICH
Common Pilot




Channel



CQI
Channel Quality




Indicator



CPU
CSI processing




unit, Central Processing




Unit



C/R
Command/Response




field bit



CRAN
Cloud Radio




Access Network,




Cloud RAN



CRB
Common Resource




Block



CRC
Cyclic Redundancy




Check



CRI
Channel-State




Information Resource




Indicator, CSI-RS




Resource Indicator



C-RNTI
Cell RNTI



CS
Circuit Switched



CSAR
Cloud Service




Archive



CSI
Channel-State




Information



CSI-IM
CSI




Interference




Measurement



CSI-RS
CSI




Reference Signal



CSI-RSRP
CSI




reference signal




received power



CSI-RSRQ
CSI




reference signal




received quality



CSI-SINR
CSI signal-




to-noise and interference




ratio



CSMA
Carrier Sense




Multiple Access



CSMA/CA
CSMA with




collision avoidance



CSS
Common Search




Space, Cell-specific




Search Space



CTS
Clear-to-Send



CW
Codeword



CWS
Contention




Window Size



D2D
Device-to-Device



DC
Dual Connectivity,




Direct Current



DCI
Downlink Control




Information



DF
Deployment




Flavour



DL
Downlink



DMTF
Distributed




Management Task Force



DPDK
Data Plane




Development Kit



DM-RS,
DMRS




Demodulation




Reference Signal



DN
Data network



DRB
Data Radio Bearer



DRS
Discovery




Reference Signal



DRX
Discontinuous




Reception



DSL
Domain Specific




Language. Digital




Subscriber Line



DSLAM
DSL Access




Multiplexer



DwPTS
Downlink




Pilot Time Slot



E-LAN
Ethernet




Local Area Network



E2E
End-to-End



ECCA
extended clear




channel assessment,




extended CCA



ECCE
Enhanced Control




Channel Element,




Enhanced CCE



ED
Energy Detection



EDGE
Enhanced Datarates




for GSM Evolution




(GSM Evolution)



EGMF
Exposure




Governance




Management




Function



EGPRS
Enhanced




GPRS



EIR
Equipment Identity




Register



eLAA
enhanced Licensed




Assisted Access,




enhanced LAA



EM
Element Manager



eMBB
Enhanced Mobile




Broadband



EMS
Element




Management System



eNB
evolved NodeB, E-




UTRAN Node B



EN-DC
E-UTRA-




NR Dual




Connectivity



EPC
Evolved Packet




Core



EPDCCH
enhanced PDCCH,




enhanced




Physical Downlink




Control Cannel



EPRE
Energy per




resource element



EPS
Evolved Packet




System



EREG
enhanced REG,




enhanced resource




element groups



ETSI
European




Telecommunications




Standards Institute



ETWS
Earthquake and




Tsunami Warning




System



eUICC
embedded UICC,




embedded Universal




Integrated Circuit Card



E-UTRA
Evolved




UTRA



E-UTRAN
Evolved




UTRAN



EV2X
Enhanced V2X



F1AP
F1 Application




Protocol



F1-C
F1 Control plane




interface



F1-U
F1 User plane




interface



FACCH
Fast




Associated Control




CHannel



FACCH/F
Fast




Associated Control




Channel/Full rate



FACCH/H
Fast




Associated Control




Channel/Half rate



FACH
Forward Access




Channel



FAUSCH
Fast Uplink




Signalling Channel



FB
Functional Block



FBI
Feedback




Information



FCC
Federal




Communications




Commission



FCCH
Frequency




Correction CHannel



FDD
Frequency Division




Duplex



FDM
Frequency Division




Multiplex



FDMA
Frequency Division




Multiple Access



FE
Front End



FEC
Forward Error




Correction



FFS
For Further Study



FFT
Fast Fourier




Transformation



feLAA
further enhanced




Licensed Assisted




Access, further




enhanced LAA



FN
Frame Number



FPGA
Field-




Programmable Gate




Array



FR
Frequency Range



G-RNTI
GERAN Radio Network




Temporary Identity



GERAN GSM
Radio



EDGE RAN, GSM
Access Network



EDGE




GGSN
Gateway GPRS




Support Node



GLONASS
GLObal'naya




NAvigatsionnaya




Sputnikovaya




Sistema (Engl.:




Global Navigation




Satellite System)



gNB
Next Generation




NodeB



gNB-CU
gNB-




centralized unit, Next




Generation NodeB




centralized unit



gNB-DU
gNB-




distributed unit, Next




Generation NodeB




distributed unit



GNSS
Global Navigation




Satellite System



GPRS
General Packet




Radio Service



GSM
Global System for




Mobile




Communications,




Groupe




Spécial




Mobile



GTP
GPRS Tunneling




Protocol



GTP-UGPRS
Tunnelling Protocol




for User Plane



GTS
Go To Sleep Signal




(related to WUS)



GUMMEI
Globally




Unique MME Identifier



GUTI
Globally Unique




Temporary




UE Identity



HARQ
Hybrid ARQ,




Hybrid Automatic




Repeat Request



HANDO
Handover



HFN
HyperFrame




Number



HHO
Hard Handover



HLR
Home Location




Register



HN
Home Network



HO
Handover



HPLMN
Home




Public Land Mobile




Network



HSDPA
High Speed




Downlink Packet




Access



HSN
Hopping Sequence




Number



HSPA
High Speed Packet




Access



HSS
Home Subscriber




Server



HSUPA
High Speed




Uplink Packet Access



HTTP
Hyper Text




Transfer Protocol



HTTPS
Hyper Text




Transfer Protocol




Secure (https is




http/1.1 over SSL,




i.e. port 443)



I-Block
Information




Block



ICCID
Integrated Circuit




Card Identification



IAB
Integrated Access




and Backhaul



ICIC
Inter-Cell




Interference




Coordination



ID
Identity, identifier



IDFT
Inverse Discrete




Fourier Transform



IE
Information




element



IBE
In-Band Emission



IEEE
Institute of




Electrical and Electronics




Engineers



IEI
Information




Element Identifier



IEIDL
Information




Element Identifier




Data Length



IETF
Internet




Engineering Task




Force



IF
Infrastructure



IM
Interference




Measurement,




Intermodulation, IP




Multimedia



IMC
IMS Credentials



IMEI
International




Mobile Equipment




Identity



IMGI
International




mobile group identity



IMPI
IP Multimedia




Private Identity



IMPU
IP Multimedia




PUblic identity



IMS
IP Multimedia




Subsystem



IMSI
International




Mobile Subscriber




Identity



IoT
Internet of Things



IP
Internet Protocol




Ipsec IP Security,




Internet




Protocol




Security



IP-CAN
IP-




Connectivity Access




Network



IP-M
IP Multicast



IPv4
Internet Protocol




Version 4



IPv6
Internet Protocol




Version 6



IR
Infrared



IS
In Sync



IRP
Integration




Reference Point



ISDN
Integrated Services




Digital Network



ISIM
IM Services




Identity Module



ISO
International




Organisation for




Standardisation



ISP
Internet Service




Provider



IWF
Interworking-




Function



I-WLAN
Interworking WLAN




Constraint length of




the convolutional code,




USIM Individual key



kB
Kilobyte (1000




bytes)



kbps
kilo-bits per second



Kc
Ciphering key



Ki
Individual




subscriber




authentication key



KPI
Key Performance




Indicator



KQI
Key Quality




Indicator



KSI
Key Set Identifier



ksps
kilo-symbols per




second



KVM
Kernel Virtual




Machine



L1
Layer 1 (physical




layer)



L1-RSRP
Layer 1




reference signal




received power



L2
Layer 2 (data link




layer)



L3
Layer 3 (network




layer)



LAA
Licensed Assisted




Access



LAN
Local Area




Network



LBT
Listen Before Talk



LCM
LifeCycle




Management



LCR
Low Chip Rate



LCS
Location Services



LCID
Logical




Channel ID



LI
Layer Indicator



LLC
Logical Link




Control, Low Layer




Compatibility



LPLMN
Local




PLMN



LPP
LTE Positioning




Protocol



LSB
Least Significant




Bit



LTE
Long Term




Evolution



LWA
LTE-WLAN




aggregation



LWIP
LTE/WLAN Radio




Level Integration with




IPsec Tunnel



LTE
Long Term




Evolution



M2M
Machine-to-




Machine



MAC
Medium Access




Control (protocol




layering context)



MAC
Message




authentication code




(security/encryption




context)



MAC-A
MAC used




for authentication and




key agreement (TSG




TWG3 context)



MAC-IMAC
used for data




integrity of




signalling messages




(TSGT WG3 context)



MANO
Management and




Orchestration



MBMS
Multimedia




Broadcast and Multicast




Service



MBSFN
Multimedia




Broadcast multicast




service Single Frequency




Network



MCC
Mobile Country




Code



MCG
Master Cell Group



MCOT
Maximum Channel




Occupancy Time



MCS
Modulation and




coding scheme



MDAF
Management Data




Analytics Function



MDAS
Management Data




Analytics Service



MDT
Minimization of




Drive Tests



ME
Mobile Equipment



MeNB
master eNB



MER
Message Error




Ratio



MGL
Measurement Gap




Length



MGRP
Measurement Gap




Repetition Period



MIB
Master Information




Block, Management




Information Base



MIMO
Multiple Input




Multiple Output



MLC
Mobile Location




Centre



MM
Mobility




Management



MME
Mobility




Management Entity



MN
Master Node



MO
Measurement




Object, Mobile




Originated



MPBCH
MTC




Physical Broadcast




CHannel



MPDCCH
MTC




Physical Downlink




Control CHannel



MPDSCH
MTC




Physical Downlink




Shared CHannel



MPRACH
MTC




Physical Random




Access CHannel



MPUSCH
MTC




Physical Uplink Shared




Channel



MPLS
MultiProtocol




Label Switching



MS
Mobile Station



MSB
Most Significant




Bit



MSC
Mobile Switching




Centre



MSI
Minimum System




Information, MCH




Scheduling




Information



MSID
Mobile Station




Identifier



MSIN
Mobile Station




Identification




Number



MSISDN
Mobile




Subscriber ISDN




Number



MT
Mobile Terminated,




Mobile Termination



MTC
Machine-Type




Communications



mMTCmassive
MTC,




massive Machine-




Type Communications



MU-MIMO
Multi User




MIMO



MWUS
MTC wake-




up signal, MTC




WUS



NACK
Negative




Acknowledgement



NAI
Network Access




Identifier



NAS
Non-Access




Stratum, Non-Access




Stratum layer



NCT
Network




Connectivity Topology



NC-JT
Non-




Coherent Joint




Transmission



NEC
Network Capability




Exposure



NE-DC
NR-E-




UTRA Dual




Connectivity



NEF
Network Exposure




Function



NF
Network Function



NFP
Network




Forwarding Path



NFPD
Network




Forwarding Path




Descriptor



NFV
Network Functions




Virtualization



NFVI
NFV Infrastructure



NFVO
NFV Orchestrator



NG
Next Generation,




Next Gen



NGEN-DC
NG-RAN




E-UTRA-NR Dual




Connectivity



NM
Network Manager



NMS
Network




Management System



N-PoP
Network Point of




Presence



NMIB, N-MIB
Narrowband MIB



NPBCH
Narrowband




Physical Broadcast




CHannel



NPDCCH
Narrowband




Physical




Downlink




Control CHannel



NPDSCH
Narrowband




Physical Downlink




Shared CHannel



NPRACH
Narrowband




Physical Random




Access CHannel



NPUSCH
Narrowband




Physical Uplink




Shared CHannel



NPSS
Narrowband




Primary




Synchronization




Signal



NSSS
Narrowband




Secondary




Synchronization




Signal



NR
New Radio,




Neighbour Relation



NRF
NF Repository




Function



NRS
Narrowband




Reference Signal



NS
Network Service



NSA
Non-Standalone




operation mode



NSD
Network Service




Descriptor



NSR
Network Service




Record



NSSAI
Network Slice




Selection




Assistance




Information



S-NNSAI
Single-




NSSAI



NSSF
Network Slice




Selection Function



NW
Network



NWUS
Narrowband wake-




up signal, Narrowband




WUS



NZP
Non-Zero Power



O&M
Operation and




Maintenance



ODU2
Optical channel




Data Unit-type 2



OFDM
Orthogonal




Frequency Division




Multiplexing



OFDMA
Orthogonal




Frequency Division




Multiple Access



OOB
Out-of-band



OOS
Out of Sync



OPEX
OPerating EXpense



OSI
Other System




Information



OSS
Operations Support




System



OTA
over-the-air



PAPR
Peak-to-Average




Power Ratio



PAR
Peak to Average




Ratio



PBCH
Physical Broadcast




Channel



PC
Power Control,




Personal Computer



PCC
Primary




Component Carrier,




Primary CC



PCell
Primary Cell



PCI
Physical Cell ID,




Physical Cell




Identity



PCEF
Policy and




Charging




Enforcement




Function



PCF
Policy Control




Function



PCRF
Policy Control and




Charging Rules




Function



PDCP
Packet Data




Convergence Protocol,




Packet Data




Convergence




Protocol layer



PDCCH
Physical




Downlink Control




Channel



PDCP
Packet Data




Convergence Protocol



PDN
Packet Data




Network, Public Data




Network



PDSCH
Physical




Downlink Shared




Channel



PDU
Protocol Data Unit



PEI
Permanent




Equipment Identifiers



PFD
Packet Flow




Description



P-GW PDN
Gateway



PHICH
Physical




hybrid-ARQ indicator




channel



PHY
Physical layer



PLMN
Public Land Mobile




Network



PIN
Personal




Identification Number



PM
Performance




Measurement



PMI
Precoding Matrix




Indicator



PNF
Physical Network




Function



PNFD
Physical Network




Function Descriptor



PNFR
Physical Network




Function Record



POC
PTT over Cellular




PP, PTP Point-to-




Point



PPP
Point-to-Point




Protocol



PRACH
Physical




RACH



PRB
Physical resource




block



PRG
Physical resource




block group



ProSe
Proximity Services,




Proximity-Based




Service



PRS
Positioning




Reference Signal



PRR
Packet Reception




Radio



PS
Packet Services



PSBCH
Physical




Sidelink Broadcast




Channel



PSDCH
Physical




Sidelink Downlink




Channel



PSCCH
Physical




Sidelink Control




Channel



PSSCH
Physical




Sidelink Shared




Channel



PSCell
Primary SCell



PSS
Primary




Synchronization




Signal



PSTN
Public Switched




Telephone Network



PT-RS
Phase-tracking




reference signal



PTT
Push-to-Talk



PUCCH
Physical




Uplink Control




Channel



PUSCH
Physical




Uplink Shared




Channel



QAM
Quadrature




Amplitude Modulation



QCI
QoS class of




identifier



QCL
Quasi co-location



QFI
QoS Flow ID, QoS




Flow Identifier



QoS
Quality of Service



QPSK
Quadrature




(Quaternary) Phase Shift




Keying



QZSS
Quasi-Zenith




Satellite System



RA-RNTI
Random




Access RNTI



RAB
Radio Access




Bearer, Random




Access Burst



RACH
Random Access




Channel



RADIUS
Remote




Authentication Dial In




User Service



RAN
Radio Access




Network



RAND
RANDom number




(used for




authentication)



RAR
Random Access




Response



RAT
Radio Access




Technology



RAU
Routing Area




Update



RB
Resource block,




Radio Bearer



RBG
Resource block




group



REG
Resource Element




Group



Rel
Release



REQ
REQuest



RF
Radio Frequency



RI
Rank Indicator



RIV
Resource indicator




value



RL
Radio Link



RLC
Radio Link




Control, Radio Link




Control layer



RLC AM
RLC




Acknowledged Mode



RLC UM
RLC




Unacknowledged Mode



RLF
Radio Link Failure



RLM
Radio Link




Monitoring



RLM-RS
Reference




Signal for RLM



RM
Registration




Management



RMC
Reference




Measurement Channel



RMSI
Remaining MSI,




Remaining Minimum




System Information



RN
Relay Node



RNC
Radio Network




Controller



RNL
Radio Network




Layer



RNTI
Radio Network




Temporary Identifier



ROHC
RObust Header




Compression



RRC
Radio Resource




Control, Radio




Resource Control layer



RRM
Radio Resource




Management



RS
Reference Signal



RSRP
Reference Signal




Received Power



RSRQ
Received Quality




Reference Signal



RSSI
Received Signal




Strength Indicator



RSU
Road Side Unit



RSTD
Reference Signal




Time difference



RTP
Real Time Protocol



RTS
Ready-To-Send



RTT
Round Trip Time



Rx
Reception,




Receiving, Receiver



S1AP
S1 Application




Protocol



S1-MME
S1 for the




control plane



S1-U
S1 for the user




plane



S-GW
Serving Gateway



S-RNTI
SRNC




Radio Network




Temporary Identity



S-TMSI
SAE




Temporary Mobile




Station Identifier



SA
Standalone




operation mode



SAE
System




Architecture Evolution



SAP
Service Access




Point



SAPD
Service Access




Point Descriptor



SAPI
Service Access




Point Identifier



SCC
Secondary




Component Carrier,




Secondary CC



SCell
Secondary Cell



SC-FDMA
Single




Carrier Frequency




Division Multiple




Access



SCG
Secondary Cell




Group



SCM
Security Context




Management



SCS
Subcarrier Spacing



SCTP
Stream Control




Transmission




Protocol



SDAP
Service Data




Adaptation Protocol,




Service Data Adaptation




Protocol layer



SDL
Supplementary




Downlink



SDNF
Structured Data




Storage Network




Function



SDP
Session Description




Protocol



SDSF
Structured Data




Storage Function



SDU
Service Data Unit



SEAF
Security Anchor




Function



SeNB
secondary eNB



SEPP
Security Edge




Protection Proxy



SFI
Slot format




indication



SFTD
Space-Frequency




Time Diversity, SFN and




frame timing difference



SFN
System Frame




Number



SgNB
Secondary gNB



SGSN
Serving GPRS




Support Node



S-GW
Serving Gateway



SI
System Information



SI-RNTI
System




Information RNTI



SIB
System Information




Block



SIM
Subscriber Identity




Module



SIP
Session Initiated




Protocol



SiP
System in Package



SL
Sidelink



SLA
Service Level




Agreement



SM
Session




Management



SMF
Session




Management Function



SMS
Short Message




Service



SMSF
SMS Function



SMTC
SSB-based




Measurement Timing




Configuration



SN
Secondary Node,




Sequence Number



SoC
System on Chip



SON
Self-Organizing




Network



SpCell
Special Cell



SP-CSI-RNTI
Semi-




Persistent CSI RNTI



SPS
Semi-Persistent




Scheduling



SQN
Sequence number



SR
Scheduling Request



SRB
Signalling Radio




Bearer



SRS
Sounding




Reference Signal



SS
Synchronization




Signal



SSB
Synchronization




Signal Block, SS/PBCH




Block



SSBRI
SS/PBCH Block




Resource Indicator,




Synchronization




Signal Block




Resource Indicator



SSC
Session and Service




Continuity



SS-RSRP
Synchronization




Signal based Reference




Signal Received




Power



SS-RSRQ
Synchronization




Signal based Reference




Signal Received




Quality



SS-SINR
Synchronization




Signal based Signal to




Noise and Interference




Ratio



SSS
Secondary




Synchronization




Signal



SSSG
Search Space Set




Group



SSSIF
Search Space Set




Indicator



SST
Slice/Service Types



SU-MIMO
Single User




MIMO



SUL
Supplementary




Uplink



TA
Timing Advance,




Tracking Area



TAC
Tracking




Area Code



TAG
Timing Advance




Group



TAU
Tracking Area




Update



TB
Transport Block



TBS
Transport Block




Size



TBD
To Be Defined



TCI
Transmission




Configuration Indicator



TCP
Transmission




Communication




Protocol



TDD
Time Division




Duplex



TDM
Time Division




Multiplexing



TDMA
Time Division




Multiple Access



TE
Terminal




Equipment



TEID
Tunnel End Point




Identifier



TFT
Traffic Flow




Template



TMSI
Temporary Mobile




Subscriber Identity



TNL
Transport Network




Layer



TPC
Transmit Power




Control



TPMI
Transmitted




Precoding Matrix




Indicator



TR
Technical Report



TRP, TRxP
Transmission




Reception Point



TRS
Tracking Reference




Signal



TRx
Transceiver



TS
Technical




Specifications,




Technical Standard



TTI
Transmission Time




Interval



Tx
Transmission,




Transmitting,




Transmitter



U-RNTI
UTRAN




Radio Network




Temporary Identity



UART
Universal




Asynchronous




Receiver and




Transmitter



UCI
Uplink Control




Information



UE
User Equipment



UDM
Unified Data




Management



UDP
User Datagram




Protocol



UDSF
Unstructured Data




Storage Network




Function



UICC
Universal




Integrated Circuit




Card



UL
Uplink



UM
Unacknowledged




Mode



UML
Unified Modelling




Language



UMTS
Universal Mobile




Telecommunications




System



UP
User Plane



UPF
User Plane




Function



URI
Uniform Resource




Identifier



URL
Uniform Resource




Locator



URLLC
Ultra-




Reliable and Low




Latency



USB
Universal Serial




Bus



USIM
Universal




Subscriber Identity Module



USS
UE-specific search




space



UTRA
UMTS Terrestrial




Radio Access



UTRAN
Universal




Terrestrial Radio




Access Network



UwPTS
Uplink Pilot




Time Slot



V2I
Vehicle-to-




Infrastruction



V2P
Vehicle-to-




Pedestrian



V2V
Vehicle-to-Vehicle



V2X
Vehicle-to-




everything



VIM
Virtualized




Infrastructure Manager



VL
Virtual Link,



VLAN
Virtual LAN,




Virtual Local Area




Network



VM
Virtual Machine



VNF
Virtualized




Network Function



VNFFG
VNF




Forwarding Graph



VNFFGD
VNF




Forwarding Graph




Descriptor



VNFM
VNF Manager



VoIP
Voice-over-IP,




Voice-over-Internet




Protocol



VPLMN
Visited




Public Land Mobile




Network



VPN
Virtual Private




Network



VRB
Virtual Resource




Block



WiMAX
Worldwide




Interoperability for




Microwave Access



WLAN
Wireless Local




Area Network



WMAN
Wireless




Metropolitan Area




Network



WPAN
Wireless Personal




Area Network



X2-C
X2-Control plane



X2-U
X2-User plane



XML
eXtensible Markup




Language



XRES
EXpected user




RESponse



XOR
eXclusive OR



ZC
Zadoff-Chu



ZP
Zero Power










Terminology

For the purposes of the present document, the following terms and definitions are applicable to the examples and embodiments discussed herein.


The term “circuitry” as used herein refers to, is part of, or includes hardware components such as an electronic circuit, a logic circuit, a processor (shared, dedicated, or group) and/or memory (shared, dedicated, or group), an Application Specific Integrated Circuit (ASIC), a field-programmable device (FPD) (e.g., a field-programmable gate array (FPGA), a programmable logic device (PLD), a complex PLD (CPLD), a high-capacity PLD (HCPLD), a structured ASIC, or a programmable SoC), digital signal processors (DSPs), etc., that are configured to provide the described functionality. In some embodiments, the circuitry may execute one or more software or firmware programs to provide at least some of the described functionality. The term “circuitry” may also refer to a combination of one or more hardware elements (or a combination of circuits used in an electrical or electronic system) with the program code used to carry out the functionality of that program code. In these embodiments, the combination of hardware elements and program code may be referred to as a particular type of circuitry.


The term “processor circuitry” as used herein refers to, is part of, or includes circuitry capable of sequentially and automatically carrying out a sequence of arithmetic or logical operations, or recording, storing, and/or transferring digital data. The term “processor circuitry” may refer to one or more application processors, one or more baseband processors, a physical central processing unit (CPU), a single-core processor, a dual-core processor, a triple-core processor, a quad-core processor, and/or any other device capable of executing or otherwise operating computer-executable instructions, such as program code, software modules, and/or functional processes. The terms “application circuitry” and/or “baseband circuitry” may be considered synonymous to, and may be referred to as, “processor circuitry.”


The term “interface circuitry” as used herein refers to, is part of, or includes circuitry that enables the exchange of information between two or more components or devices. The term “interface circuitry” may refer to one or more hardware interfaces, for example, buses, I/O interfaces, peripheral component interfaces, network interface cards, and/or the like.


The term “user equipment” or “UE” as used herein refers to a device with radio communication capabilities and may describe a remote user of network resources in a communications network. The term “user equipment” or “UE” may be considered synonymous to, and may be referred to as, client, mobile, mobile device, mobile terminal, user terminal, mobile unit, mobile station, mobile user, subscriber, user, remote station, access agent, user agent, receiver, radio equipment, reconfigurable radio equipment, reconfigurable mobile device, etc. Furthermore, the term “user equipment” or “UE” may include any type of wireless/wired device or any computing device including a wireless communications interface.


The term “network element” as used herein refers to physical or virtualized equipment and/or infrastructure used to provide wired or wireless communication network services. The term “network element” may be considered synonymous to and/or referred to as a networked computer, networking hardware, network equipment, network node, router, switch, hub, bridge, radio network controller, RAN device, RAN node, gateway, server, virtualized VNF, NFVI, and/or the like.


The term “computer system” as used herein refers to any type interconnected electronic devices, computer devices, or components thereof. Additionally, the term “computer system” and/or “system” may refer to various components of a computer that are communicatively coupled with one another. Furthermore, the term “computer system” and/or “system” may refer to multiple computer devices and/or multiple computing systems that are communicatively coupled with one another and configured to share computing and/or networking resources.


The term “appliance,” “computer appliance,” or the like, as used herein refers to a computer device or computer system with program code (e.g., software or firmware) that is specifically designed to provide a specific computing resource. A “virtual appliance” is a virtual machine image to be implemented by a hypervisor-equipped device that virtualizes or emulates a computer appliance or otherwise is dedicated to provide a specific computing resource.


The term “resource” as used herein refers to a physical or virtual device, a physical or virtual component within a computing environment, and/or a physical or virtual component within a particular device, such as computer devices, mechanical devices, memory space, processor/CPU time, processor/CPU usage, processor and accelerator loads, hardware time or usage, electrical power, input/output operations, ports or network sockets, channel/link allocation, throughput, memory usage, storage, network, database and applications, workload units, and/or the like. A “hardware resource” may refer to compute, storage, and/or network resources provided by physical hardware element(s). A “virtualized resource” may refer to compute, storage, and/or network resources provided by virtualization infrastructure to an application, device, system, etc. The term “network resource” or “communication resource” may refer to resources that are accessible by computer devices/systems via a communications network. The term “system resources” may refer to any kind of shared entities to provide services, and may include computing and/or network resources. System resources may be considered as a set of coherent functions, network data objects or services, accessible through a server where such system resources reside on a single host or multiple hosts and are clearly identifiable.


The term “channel” as used herein refers to any transmission medium, either tangible or intangible, which is used to communicate data or a data stream. The term “channel” may be synonymous with and/or equivalent to “communications channel,” “data communications channel,” “transmission channel,” “data transmission channel,” “access channel,” “data access channel,” “link,” “data link,” “carrier,” “radiofrequency carrier,” and/or any other like term denoting a pathway or medium through which data is communicated. Additionally, the term “link” as used herein refers to a connection between two devices through a RAT for the purpose of transmitting and receiving information.


The terms “instantiate,” “instantiation,” and the like as used herein refers to the creation of an instance. An “instance” also refers to a concrete occurrence of an object, which may occur, for example, during execution of program code.


The terms “coupled,” “communicatively coupled,” along with derivatives thereof are used herein. The term “coupled” may mean two or more elements are in direct physical or electrical contact with one another, may mean that two or more elements indirectly contact each other but still cooperate or interact with each other, and/or may mean that one or more other elements are coupled or connected between the elements that are said to be coupled with each other. The term “directly coupled” may mean that two or more elements are in direct contact with one another. The term “communicatively coupled” may mean that two or more elements may be in contact with one another by a means of communication including through a wire or other interconnect connection, through a wireless communication channel or ink, and/or the like.


The term “information element” refers to a structural element containing one or more fields. The term “field” refers to individual contents of an information element, or a data element that contains content.


The term “SMTC” refers to an SSB-based measurement timing configuration configured by SSB-MeasurementTimingConfiguration.


The term “SSB” refers to an SS/PBCH block.


The term “a “Primary Cell” refers to the MCG cell, operating on the primary frequency, in which the UE either performs the initial connection establishment procedure or initiates the connection re-establishment procedure.


The term “Primary SCG Cell” refers to the SCG cell in which the UE performs random access when performing the Reconfiguration with Sync procedure for DC operation.


The term “Secondary Cell” refers to a cell providing additional radio resources on top of a Special Cell for a UE configured with CA.


The term “Secondary Cell Group” refers to the subset of serving cells comprising the PSCell and zero or more secondary cells for a UE configured with DC.


The term “Serving Cell” refers to the primary cell for a UE in RRC_CONNECTED not configured with CA/DC there is only one serving cell comprising of the primary cell.


The term “serving cell” or “serving cells” refers to the set of cells comprising the Special Cell(s) and all secondary cells for a UE in RRC_CONNECTED configured with CA/.


The term “Special Cell” refers to the PCell of the MCG or the PSCell of the SCG for DC operation; otherwise, the term “Special Cell” refers to the Pcell.

Claims
  • 1. An apparatus comprising: policy and charging enforcement function (PCEF) circuitry to: receive one or more policy decisions from a policy control function (PCF) circuitry; andcreate, based on the one or more policy decisions, quality-of-service (Qos) bearers or flows for a remote device to receive or transmit a multimedia stream with a QoS based on the one or more policy decisions; andapplication function circuitry to obtain session information including media workload information based on one or more network-based media processing (NBMP) application program interfaces (APIs) or objects to derive QoS parameters for the bearer or flow pertaining to the reception or transmission of the multimedia stream at the remote device.
  • 2. The apparatus of claim 1, wherein the NBMP APIs include one or more of a Workflow API, a Function Discovery API, or a Task API, and wherein the NBMP objects include one or more of a Workflow Description Document (WDD), a Task Description Document (TDD), or a Function Description Document (FDD) as JSON objects.
  • 3. The apparatus of claim 1, wherein the application function circuitry is further to extract session information pertaining to the multimedia stream and provide the session information to the PCF.
  • 4. The apparatus of claim 1, further comprising the PCF circuitry to determine the one or more policy decisions, wherein the one or more policy decisions are determined based on one or more of: a configuration in the PCF circuitry that defines a policy applied to a network service;subscription information for the remote device;information about the network service received from the application function circuitry; orinformation about an access network of the network service.
  • 5. The apparatus of claim 1, further comprising the PCF circuitry, wherein the PCF circuitry is to combine session information received from the application function circuitry and information received from the PCEF circuitry with subscription information for the remote device to provide the one or more policy decisions to the PCEF circuitry.
  • 6. The apparatus of claim 1, wherein the application function circuitry is further to receive, from the remote device, QoS parameters for one or more of a core network or a radio access network.
  • 7. The apparatus of claim 1, wherein different QoS parameters or QoS classes are determined by the application function circuitry and/or PCF circuitry for different workloads negotiated by NBMP APIs and objects.
  • 8. The apparatus of claim 1, wherein workloads determined by the NBMP APIs or objects include one or more of media encoding, decoding, transcoding, pre-processing, post-processing, stitching, rendering, or analytics.
  • 9. One or more non-transitory, computer-readable media (NTCRM) having instructions, stored thereon, that when executed by one or more processors cause a user equipment (UE) to: map application layer information of one or more network-based media processing (NBMP) application program interfaces (APIs) or objects, associated with a multimedia stream, with a first quality of service parameter (QoS) parameter for a core network of a network;map the application layer information of the one or more NMBP APIs or objects with a second QoS parameter for a radio access network of the network; andsend session information based on the one or more NBMP APIs or objects to a remote server to receive the multimedia stream from the remote server or transmit the multimedia stream to the remote server at a QoS according to at least one of the first QoS parameter or the second QoS parameter.
  • 10. The one or more NTCRM of claim 9, wherein the instructions, when executed, further cause the UE to control the remote server to transmit or receive the multimedia stream.
  • 11. The one or more NTCRM of claim 9, wherein the NBMP APIs include one or more of a Workflow API, a Function Discovery API, or a Task API, or wherein the NBMP objects include one or more of a Workflow Description Document (WDD), a Task Description Document (TDD), or a Function Description Document (FDD) as JSON objects.
  • 12. The one or more NTCRM of claim 9, wherein different QoS parameters or QoS classes are determined for different workloads negotiated by the NBMP APIs or objects.
  • 13. The one or more NTCRM of claim 9, wherein workloads determined by the NBMP APIs or objects include one or more of media encoding, decoding, transcoding, pre-processing, post-processing, stitching, rendering, or analytics.
  • 14. One or more non-transitory, computer-readable media (NTCRM) having instructions, stored thereon, that when executed by one or more processors cause a user equipment (UE) to: parse a media workload based on one or more network-based media processing (NBMP) application program interfaces (APIs) or objects for a multimedia stream received or transmitted over a network;map application layer information of the media workload based on the one or more NBMP APIs and/or objects with a first quality of service (QoS) parameter for a core network of the network;map application layer information of the media workload based on the one or more NBMP APIs and/or objects with a second QoS parameter for a radio access network of the network; andprovide session information to a remote server for transmission or reception of a multimedia stream associated with the media workload at a QoS based on one or more of the first QoS parameter or the second QoS parameter.
  • 15. The one or more NTCRM of claim 14, wherein the NBMP APIs include one or more of a Workflow API, a Function Discovery API, or a Task API, and wherein the NBMP objects include one or more of a Workflow Description Document (WDD), a Task Description Document (TDD), or a Function Description Document (FDD) as JSON objects.
  • 16. The one or more NTCRM of claim 14, wherein the first QoS parameter for the core network include one or more of a DiffServ/DSPC parameter or an InteServ/FlowSpecs parameter.
  • 17. The one or more NTCRM of claim 14, wherein the second QoS parameter for the radio access network includes a quality of service class identifier.
  • 18. The one or more NTCRM of claim 14, wherein different quality of service parameters are determined for different workloads based on the one or more NBMP APIs or objects.
  • 19. The one or more NTCRM of claim 14, wherein dedicated QoS classes are determined for different workloads based on the one or more NBMP APIs or objects.
  • 20. The one or more NTCRM of claim 14, wherein workloads determined by the NBMP APIs or objects include one or more of media encoding, decoding, transcoding, pre-processing, post-processing, stitching, rendering, or analytics.
CROSS REFERENCE TO RELATED APPLICATION

The present application claims priority to U.S. Provisional Patent Application No. 62/957,617, which was filed Jan. 6, 2020; the disclosure of which is hereby incorporated by reference.

Provisional Applications (1)
Number Date Country
62957617 Jan 2020 US