This application is based upon and claims the benefit of priority of the prior Japanese Patent Application No. 2012-275540, filed on Dec. 18, 2012, the entire contents of which are incorporated herein by reference.
The embodiments discussed herein are related to a quantizer, a comparator circuit, and a semiconductor integrated circuit.
Lithium-ion secondary batteries or the like are now widely used in wireless electronic devices such as mobile phones. Such electronic devices are equipped, for example, with a circuit for generating a power-on reset (POR) signal to indicate whether a sufficient supply voltage is available or not or with a power management IC (semiconductor integrated circuit) for managing it.
The POR signal generating circuit outputs, for example, a high level “H” when a sufficient supply voltage is available, and otherwise outputs a low level “L”, and therefore it usually includes a comparator circuit that performs voltage comparisons using a given reference voltage.
In the comparator circuit, the difference between the reference voltage (reference signal) and the divided supply voltage (input signal), for example, is amplified by an analog amplifier and converted into an H/L digital-output signal by a subsequent quantizer. The reference voltage here may be generated within the circuit by using, for example, a bandgap reference or the like.
In the case of a quantizer which includes a CMOS inverter, when an inversion of the POR signal occurs with the voltage level of the input signal becoming higher than or lower than that of the reference signal, the output of the amplifier is driven to an intermediate voltage level, and as a result, a shoot-through current flows through the quantizer.
The shoot-through current of the quantizer does not present any problem, when the duration of the shoot-through current is very short or when the amount of electric charge stored at the power supply is large (the stored power resource is sufficient), however, it may present a problem when the amount of electric charge stored at the power supply is very small.
That is, when the amount of electric charge stored at the power supply is very small, all the stored charges may be used as the shoot-through current that flows at the time of the inversion of the quantizer output, making it difficult to ensure normal operation.
In this regard, various types of comparator circuit capable of performing decision-making operations at high speed with low power consumption have been proposed in the prior art.
Patent Document 1: Japanese Laid-open Patent Publication No. 2011-182188
None-Patent Document 1: K. Isono et al., “A 18.9-nA Standby Current Comparator with Adaptive Bias Current Generator,” IEEE Asian Solid-State Circuits Conference, pp. 237-240, Nov. 14-16, 2011
According to an aspect of the embodiments, there is provided a quantizer that inputs an analog signal and outputs a digitized signal. The quantizer includes a shoot-through current detection unit and a feedback unit.
The shoot-through current detection unit is configured to detect a shoot-through current flowing through the quantizer. The feedback unit is configured to control a charge or a discharge of the electric charge stored at an input of the quantizer by using a feedback signal from the shoot-through current detection unit.
The object and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the invention.
First, before proceeding to the detailed description of the quantizer, comparator circuit, and semiconductor integrated circuit according to the present embodiments, examples of the quantizer, comparator circuit, and semiconductor integrated circuit and their associated problems will be described with reference to
As described above, lithium-ion secondary batteries or the like are widely used in wireless electronic devices such as mobile phones. Such electronic devices are equipped with a circuit for generating a power-on reset (POR) signal to indicate whether a sufficient supply voltage is available or not or with a power management IC (semiconductor integrated circuit) for managing it.
The POR signal generating circuit outputs a high level “H” when a sufficient supply voltage is available, and otherwise outputs a low level “L”, and it usually consist of a comparator circuit that performs voltage comparisons using a given reference voltage.
The power management IC includes, for example, a comparator circuit 100 for generating a power-on reset signal POR to indicate whether a sufficient supply voltage VDD is provided or not, and the comparator circuit 100 includes an amplifier 101 and a quantizer 102, as illustrated in
As depicted in
The reference voltage VP may be generated within the circuit by using a bandgap reference or the like. When the input signal voltage VM is higher than the reference voltage VP the POR signal goes to “H”, from which one may see that a sufficient supply voltage VDD is provided.
As illustrated in
The amplifier 101 compares the voltage VM, i.e., the divided supply voltage obtained by the resistors R101 and R102, with the reference voltage VP and produces an analog output voltage (signal Q). The quantizer 102 is an inverter which includes a pMOS transistor M101 and an nMOS transistor M102, and produces a digital output signal XQ (the POR signal) whose voltage level depends on whether the signal voltage Q exceeds the threshold value of the inverter or not.
As illustrated in
Accordingly, the POR signal is driven to “H” during the period from time t11 to time t13. Then, as illustrated in
That is, at times t11 and t13 at which the electric potential between VM and VP is inverted and the inversion of the POR signal occurs, the output-analog signal Q of the amplifier 101 is driven to an intermediate voltage level and, as a result, a shoot-through current I flows through the quantizer 102, thus consuming a large amount of current.
Here, if the duration of the shoot-through current I is very short, or if the amount of electric charge stored at the power supply (VDD) is very large (the stored power resource is sufficient), the comparator circuit depicted in
On the other hand, if the amount of electric charge stored at the power supply VDD is very small (the stored power resource is limited), for example, if the circuit is applied to a micropower supply system such as an energy harvesting system, a problem may occur.
In
More specifically, in the comparator circuit depicted in
In
In
As illustrated in
At this time, as illustrated in
That is, when the electric potential between VM and VP is inverted, a shoot-through current occurs but, in the case of a power supply with a limited power resource, the stored electric charge is discharged through the path of the shoot-through current, resulting in an inability to provide a sufficient amount of electric charge for the inversion to occur. As a result, the supply voltage VDD is driven to an analog intermediate level, and steady-state current flows through the quantizer 102 which is thus put in an equilibrium state.
As a result, the comparator circuit of
In
In normal operation, the tail current It of the amplifier 101 is controlled by the transistor Q74 and the transistor Q71 connected to the transistor Q21 in a current-mirror configuration.
That is, when the output voltage of the amplifier 101 (the voltage at node N11) is driven to an intermediate level, and a shoot-through current Ip occurs in the transistors Q72 and Q73, the current It flowing through the transistor Q71 increases, and this current It is fed back as the tail current It of the amplifier 101.
This increases the driving capability of the amplifier 101, making it possible to change the voltage at node N11 to a high level “H” or low level “L” at high speed, which serves to reduce the effect of the shoot-through current that occurs when the input voltage level inverts.
However, in the above prior art comparator circuit depicted in
Furthermore, when the node N11 is “L”, since the transistor Q72 is turned on, the input (node N13) of the quantizer 102 is held at the biasing intermediate voltage level (the voltage at node N12). As a result, a steady-state current flows through the quantizer 102, increasing the current consumption.
The quantizer, comparator circuit, and semiconductor integrated circuit according to the embodiments of the invention will now be described in detail below with reference to the accompanying drawings.
The following description will be given by focusing primarily on the comparator circuit, but the quantizer of the present embodiment is not limited in its application to a comparator circuit having an amplifier and a quantizer, but may be applied to various circuits that take an analog signal as input and produce a quantized signal for output.
As illustrated in
The quantizer 12 further includes switches M3 and M4 which control the detection operation of the transistors M1 and M2 in response to an output signal SS of the inverter (second inverter) 122, and a current-mirror circuit, M5 to M10, which feeds back the occurrence of a shoot-through current to the input of the inverter 121.
The pair of transistors M1 and M2 corresponds to a shoot-through current detection unit, that is, the transistor M1 corresponds to a first shoot-through current detection element, and the transistor M2 corresponds to a second shoot-through current detection element. On the other hand, the transistor M4 corresponds to a first switch element, and the transistor M3 corresponds to a second switch element.
Further, the current-mirror circuit, M5 to M10, corresponds to a feedback unit, that is, the transistors M5 to M7 correspond to a first feedback element array, and the transistors M8 to M10 correspond to a second feedback element array.
As illustrated in
As a result, the switch (nMOS transistor) M3 is turned off, the switch (pMOS transistor) M4 is turned on, and the inverter 121 is connected to ground (GND) via the transistor M2 and connected directly to the power supply (supply voltage VDD).
When the switch M4 is turned on, the transistor M1 becomes unable to detect the occurrence of a shoot-through current; as a result, the transistors M5 to M7 do not operate, and the quantizer 12 is put in a condition in which only the transistors M2 and M8 to M10 may operate, as illustrated in
That is, as illustrated in
This boost operation accelerates the voltage rise at the node N1 (the signal Q), as depicted in
On the other hand, when the voltage at the node N3 (the output SS) rises to “H” after the voltage at the node N1 (the signal Q) has made a transition to “H”, the switch M3 is turned on, and the switch M4 is turned off. At this time, the inverter 121 is connected to the power supply (VDD) via the transistor Ml and connected directly to ground (GND).
When the switch M3 is turned on, the transistor M2 becomes unable to detect the occurrence of a shoot-through current; as a result, the transistors M8 to M10 do not operate, and the quantizer 12 is put in a condition in which only the transistors M1 and M5 to M7 may operate, as illustrated in
That is, as illustrated in
This boost operation accelerates the voltage fall at the node N1 (the signal Q), as depicted in
As described above, by appropriate switching the circuit to be used from one to the other at the time of the rising and falling of the output signal Q of the amplifier 11, and by boosting and accelerating the charge/discharge action of the input signal (Q) of the quantizer 12, the speed of operation at the time of the occurrence of a shoot-through current may be increased.
When a shoot-through current occurs, the current consumption increases due to the current mirror action, but since the voltage level of the input signal (Q) of the quantizer 12 instantly changes and feedback is applied in the direction that decreases the shoot-through current, the time during which the current consumption increases may be reduced.
Further, the size of each transistor in the quantizer 12 may be suitably selected so that the amount of electric charge which is charged and discharged by the shoot-through current of the inverter 121 and the current mirror action does not exceed the amount of electric charge stored at the power supply VDD.
As illustrated in
In this way, according to the comparator circuit of the first embodiment, since the input node N1 of the quantizer 12 is charged or discharged so as to accelerate the state transition using detection of the occurrence of a shoot-through current, each node in the quantizer quickly makes a transition without staying at the intermediate voltage level.
This prevents the shoot-through current from flowing in a steady-state manner at the time of the rising or falling of the supply voltage VDD, and it thus becomes possible to provide a comparator circuit that may perform accurate operations with low current consumption.
The advantageous effect described above is not limited to the comparator circuit of the first embodiment, but may also be achieved with the comparator circuit of any of the second to fifth embodiments described hereinafter. Further, the comparator circuit of the present embodiments may be extensively applied to semiconductor integrated circuits, including, for example, a power management IC or a circuit for indicating whether a sufficient supply voltage is available or not.
According to the quantizer of the second embodiment, since the amount of shoot-through current may be limited by the resistance value of the resistors R1 and R2, this embodiment is suitable, for example, when designing the circuit by limiting the peak of the shoot-through current.
More specifically, when VDD=2V, and when it is desired to limit the shoot-through current to 1 mA or less, for example, the resistors R1 and R2 may be chosen to have a resistance value of 2 kΩ. In this case, when a shoot-through current of 1 mA flows, if the switch M3 is ON, the node Na instantly changes from 2 V to nearly 0 V, and if the switch M4 is ON, the node Nb instantly changes from 0 V to nearly 2 V.
In this way, according to the quantizer (comparator circuit) of the second embodiment, since the time for instantly stopping the shoot-through current of the inverter 121 may be set, the peak of the shoot-through current may be limited by the resistance value.
The occurrence of the shoot-through current may be detected by detecting the voltage fall at the node Na or the voltage rise at the node Nb; then, by feeding back this voltage change to the node N1 through the current mirror identical to that of the first embodiment, it becomes possible to accelerate the boost operation of the change.
For example, assume that among the transistors M1 and M5 to M7 in
On the other hand, assume that among the transistors M2 and M8 to M10 in
If the constants K1 to K4 which define the mirror ratios of the respective transistors are all set to 1 or larger, the amount of electric charge which is charged and discharged at the node N1 may be increased, and thus the speed of the boost operation may be further enhanced. In practice, however, since the amount of electric charge which is charged and discharged is limited by the power supply capacity (VDD), the mirror ratio constants K1 to K4 are set by considering the operating speed and the amount of electric charge that may be used.
The reference voltage VP may be generated, for example, by an analog reference voltage generating circuit such as a bandgap reference or by a voltage dividing resistor ladder inserted between the power supply VDD and ground GND. In this way, by using the amplifier 11, a minuscule analog potential difference (VP−VM) may be amplified for conversion into a digital value.
As is apparent from a comparison between
The hysteresis generating circuit 13 selects one of the two different reference voltages VP1 and VP2 in accordance with the output signal SS of the inverter 122, and outputs the selected one. That is, in the comparator circuit of the fifth embodiment depicted in
More specifically, as depicted in
Then, the voltage VM gradually decreases and reaches VP at time t30, whereupon a shoot-through current flows through the quantizer 12, and the voltage level of the signal Q is quickly raised to “H” because of the voltage charged from the power supply (VDD).
At this time, since the output SS changes to “H”, the switch SW1 is turned on and the switch SW2 turned off, and the higher reference voltage VP1 is selected as the reference voltage VP for input to the amplifier 11.
In this way, when the input signal voltage VM gradually decreases and becomes equal to the reference voltage VP (at time t30), VP is switched to the higher one to increase the difference between VM and VP, thereby preventing the occurrence of chattering and thus stabilizing the operation of the comparator circuit 1.
Chattering is a phenomenon in which when the signal voltage Q changes, the voltage level of node N1 repeats state transition (“H” to “L” and “L” to “H”) during a certain time, because the input change of the amplifier 11 is slow and the amplifier 11 tries to bring the state of the node N1 back to its previous state, even if the node N1 is charged or discharged by the current mirror.
That is, in the comparator circuit of the fifth embodiment, in order to prevent the occurrence of chattering, feedback control generally known as hysteresis control is employed that applies a voltage change to the input of the amplifier 11 so as to accelerate the change when the change point is reached.
This serves to stabilize the operation of the quantizer 12. In the present embodiment, hysteresis may be provided to the input signal voltage VM, not to the reference voltage VP.
As described above, by detecting the shoot-through current flowing through the quantizer in the comparator circuit, and by feeding back the information to adjust the voltage level at the input terminal of the quantizer, the comparator circuit according to each of the above embodiments may accomplish a transition from one binary value to the other at high speed and may thus reduce the power consumption.
All examples and conditional language provided herein are intended for the pedagogical purposes of aiding the reader in understanding the invention and the concepts contributed by the inventor to further the art, and are not to be construed as limitations to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a showing of the superiority and inferiority of the invention. Although one or more embodiments of the present invention have been described in detail, it should be understood that the various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2012-275540 | Dec 2012 | JP | national |