The embodiments are generally directed to eavesdrop detection to secure communications. Specifically, the embodiments leverage quantum systems to combine classical and quantum bits (qubits) in a single data stream, within the same message, allowing for eavesdrop detection based on detection of changes to the state of qubits within the message during transport.
The current main focus of quantum communications is to use properties unique to quantum systems to securely transmit sensitive information. The quantum properties that set it apart from classical properties include true randomness, which makes for unbreakable encryption, the inability for adversaries to copy information, and sophisticated eavesdrop detection. It also requires specialized knowledge and equipment to detect and intercept quantum data, making it harder for people to do.
Quantum communications are enabled by a powerful property of quantum systems, called entanglement. Entanglement is the quantum phenomenon that inherently links the states of two particles, caused either by the particles’ proximity to each other, the particles being generated together, or the particles interacting. Once entangled, the particles’ states are dependent upon each other, thus interacting with one will immediately cause a response across the entire entangled system. Experimental validation of maintaining entanglement across long distances has been demonstrated for over 30 years, enabling quantum communications as a field.
Quantum communications, like classical communications, depend on the bit rate of available transmission and reception technology. Early limits on bit rate in quantum communications propelled Quantum key distribution (QKD) into the most widely adopted quantum cryptographic primitive due to the low bit rate required. However, due to the classical exchange and constant shifting implementations, security risks continue to arise. Another drawback to QKD is that it only provides eavesdropped detection on the quantum channel, where the key, and the information to be secure, is transmitted.
With the enabling technology for quantum communications becoming more robust, other types of communication paradigms have been experimentally proven. Quantum secure direct communication (QSDC) is another encryption method with direct, point to point communication that does not need a classical line in the loop. QSDC, however, is not security proved, requires high bit rates and dark fibre, and is very sensitive to noise, which makes it difficult to tell the difference between destructive noise yielding environmentally driven quantum state collapse, and an eavesdropper.
There remain numerous opportunities to merge aspects of quantum communication science with classical communications to improve transmission security.
In a first non-limiting embodiment, a secure communication system includes: an optical transmitter; a single photon emitter; a photonic transmission line; wherein the optical transmitter prepares a classical data bit message and the single photon emitter prepares quantum bits in a predetermined orientation and salts the classical data bit message with the prepared quantum bits in accordance with a predetermined pattern resulting in a quantum augmented classical data bit message which is transmitted over the photonic transmission line.
In a second non-limiting embodiment, a process for securing a classical data bit message, includes: generating a classical data bit message and encrypting the classical data bit message; preparing quantum bits in a predetermined orientation; salting the encrypted classical data bit message with the prepared quantum bits in accordance with a predetermined salting pattern resulting in a quantum augmented classical data bit message; transmitting the quantum augmented classical data bit message over a photonic transmission line; receiving the transmitted quantum augmented classical data bit message at a dual quantum bit and classical bit receiver; and processing the quantum augmented classical data bit message to determine i. if the quantum augmented classical data bit message was intercepted by an eavesdropper during transmission; and ii. decode the quantum augmented classical data bit message to ascertain the message.
Example embodiments will become more fully understood from the detailed description given herein below and the accompanying drawings, wherein like elements are represented by like reference characters, which are given by way of illustration only and thus are not limitative of the example embodiments herein.
As shown in
Referring to
Referring to
Referring to
With respect to determining if an eavesdropper is present, ff all bits arrive according to the salting key within tolerance of error due to the more fragile state of quantum bits, the line is clean (
The known orientation of the salted bits does not decrease the effectiveness of this eavesdrop detection as this knowledge does not compromise Quanary or reduce its effectiveness. The key advantage to sending quantum bits is that they themselves do not contain any information if simply detected; the information is gained from the correlation of the state sent and the state received. Quanary is the first demonstration of a hybrid classical-quantum encrypted data stream, and the quantum nature of the salted bits is not apparent to the transmitter’s classical detection. Detecting the quantum photons immediately, unavoidably alerts the receiver without the transmitter knowing. The decoy qubits contain no important information, leaving the eavesdropper with encrypted data with an extra layer or encryption that looks like random bits.
A critical feature of successful implementation of Quanary is the ability to detect an eavesdropper on the transmission line. The experimental set-up of
In accordance with
One skilled in the art will appreciate that optimal detection methods may be experimentally investigated and tested and may include, e.g., machine learning and statistical detection. By way of example, using Channel 1 and Channel 2 data generated using the system of
First, a new algorithm was developed where we cap the running sum (“Cap running sum” algo) so that it does not continue to collect in an unbounded fashion. The effect of this is that the running sum triggers the CUSUM alarm as normal, but when the attack ends, it is a much shorter descent down to non-attack status. In other words, our approach proceeds as follows:
In order to mitigate this issue, we analyze the first differences of the data. The first difference is the change in counts between successive time steps, i.e., yt = xt - xt-1. Unlike with the raw channel data, we see that the first differences are much more stable, which allowed us to develop an attack detection method. To do this, we first notice that the non-attack data have much larger first differences than the attack data. For example, in
We transform these insights into an attack detection scheme where we count how often the first difference has a “large” value in the last N steps. Channels that are not being attacked consistently have “large” values whereas channels that are being attacked do not consistently have “large” values. More concretely, our attack detection scheme is as follows:
We evaluated this approach on the Channel 1 and Channel 2 data from October 28th, October 31st, and November 2nd. The results of this approach are shown in
A more detailed example of a hybrid classical-quantum encrypted data stream referenced above is described below. Initially, a quantum salting key determining the placement of the transmission’s decoy qubits amongst the classical bits is agreed upon between the sender (transmitter) and receiver. In an exemplary quantum salting key, or shared secret, 1 s represent classical data and 0 s represent quantum data. A quantum state is agreed upon for the qubits. Since the qubits are primarily used for eavesdropping detection, it doesn’t matter what the state is or how easy it is to guess. In this specific example, all the qubits Alice sends are 0 s and the quantum salting key between Alice and Bob is as follows:
Next, a message is generated and encrypted using classical methods, such as AES-256.
Qubits are then prepared in the agreed-upon states, entangling photons via polarization or superposition, which is known to those skilled in the art. Note that the decoy qubits are added to the stream after standard encoding and are detected before decoding. This means that the qubits may be added to most standard block encryptions, with qubits inserted around blocks.
Following the agreed-upon salting key, the quantum bits (Q*) are interjected among the classical message’s bits (e.g., 206, 93, 121 et seq.) as the message is being sent/transmitted:
Bob’s receiver detects the quantum states of the Q* to determine the presence of a potential eavesdropper. If all the Os sent by Alice arrive at Bob, then there is no eavesdropper, as shown:
However, an eavesdropper’s detection of the qubits collapses them to classical states, which will be randomly distributed as Os and 1 s. If the eavesdropper disturbs all the qubits. Bob will receive a random distribution of 1 s and 0 s. If the eavesdropper does not disturb all qubits, there will be more of the original qubits, but disturbance will still be detectable, as shown:
As mentioned previously, noisy environments create interactions with data which can also collapse quantum systems, so there are known, industry-standard analysis methods used in the detection to ensure the detected eavesdropper is real and not background noise: e.g., quality of photon generation, error correction and metrology may be used to ensure that our data and our measurement methods are accurate enough to detect the eavesdropper.
While the specific embodiments described above implement entanglement, the application of Quanary is modular and extensible to other types of quantum properties, such as superposition. Superposition is a quantum effect for systems that can be in any number of combinations; those systems are most probably in a state-combination of all possible states. This creates inter-state dependence, similar to entanglement, and experiments have shown that superposition is another viable quantum property for communication use.
The flexibility of Quanary extends to the type of quantum information used for communications; as quantum communications works with either continuous variable (CV) quantum information or discrete variable (DV) quantum information. Continuous variable entanglement applies to such systems as those with inherently equidistant energy levels. Examples include atomic ensembles, or the amplitude of a quantum optical wave or light beams. In these cases, information is stored in continuous variables such as position, momentum, phase, and amplitude. Examples of discrete systems include atoms, quantum dots, and photons; any system with two distinct states such as the polarization of a photon or the energy levels of an atom. Any two energy levels or polarizations can then be chosen to represent a classical bit. Quantum communications has been experimentally proven with both DV and CV. While previous work with DV information was constrained by the difficulty of single photon generation, recent studies have mitigated much of the earlier concerns with this modality, allowing Quanary to integrate more discretely classical data, making it indistinguishable from the classical data for most eavesdroppers. For different use cases, Quanary’s modularity easily allows us to employ CV communications as well.
As quantum systems stabilize, more unique opportunities for communications will arise, and Quanary is designed to be extensible. Quanary’s modularity allows it to be agnostic to the method of encryption and transmission used and enables an agile response to the rapidly changing and developing fields of quantum communications and computing, and cryptography.
The following documents are evidence of the state of the prior art and would be known to one having ordinary skill in the art. The documents are incorporated herein by reference for their teachings:
The embodiments described and claimed herein are not to be limited in scope by the specific examples herein disclosed since these examples are intended as illustrations of several aspects of the embodiments. Any equivalent examples are intended to be within the scope of the embodiments. Indeed, various modifications of the embodiments in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. All references including patents, patent applications and publications cited herein are incorporated herein by reference in their entirety and for all purposes to the same extent as if each individual publication or patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety for all purposes.
The present application claims benefit of priority to U.S. Provisional Pat. Application No. 63/291,709, entitled “A QUANTUM COMMUNICATIONS CAPABILITY FOR EAVESDROP DEFENSE,” filed Dec. 20, 2021, the entirety of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63291709 | Dec 2021 | US |