This application claims priority to and the benefit of Korean Patent Application No. 10-2023-0009025, filed on Jan. 20, 2023, in the Korean Intellectual Property Office, the content of which is incorporated by reference herein in its entirety.
One or more embodiments of the present disclosure relate to a quantum dot, a method of manufacturing the same, and a light-emitting device and apparatus including the same.
Quantum dots are nanocrystals of semiconductor materials and exhibit a quantum confinement effect. When quantum dots are excited to an energy excited state (e.g., an excited state) from a ground state after (by) receiving light from an excitation source, they emit energy according to a corresponding energy band gap of themselves. In this regard, even in substantially the same material, the emission wavelength varies depending on the size of quantum dots (e.g., the particle size), and accordingly, by controlling the size of quantum dots, light having the desired or suitable wavelength range may be obtained, and excellent or suitable color purity and high luminescence efficiency may be obtained and achieved. Thus, quantum dots are applicable to one or more suitable devices (e.g., light-emitting devices).
In some embodiments, a quantum dot may be utilized as a material that performs one or more suitable optical functions (for example, a photo-conversion function) in optical members. Quantum dots, as nano-sized semiconductor nanocrystals, may have different energy band gaps by adjusting the size and composition of the nanocrystals, and thus may be to emit light of one or more suitable emission wavelengths.
An optical member including such quantum dots may have the form of (e.g., arranged to be) a thin film, for example, a thin film patterned for each subpixel of a device. Such an optical member may be utilized as a color conversion member of the device including one or more suitable light sources.
The full width at half maximum (FWHM) of the quantum dot including a multi-component compound of the related art may have a relatively wide FWHM because a uniformity of the crystal structure of the quantum dot is difficult to be maintained, a distortion in the energy level may occur due to a surface defect (e.g., the formation of surface states), and a recombination of a donor-acceptor pair (DAP) may generate light (e.g., the FWHM increases as quantum dots becomes more inhomogeneous, in terms of size, shape, defects, etc.).
One or more aspects of embodiments of the present disclosure are directed toward a quantum dot having a relatively narrow full width at half maximum (e.g., and a light-emitting device and apparatus including the quantum dot).
Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the presented embodiments of the disclosure.
According to one or more embodiments of the present disclosure, a quantum dot includes a core represented by Formula 1:
M1aM2bM3cM4aM5e, Formula 1
According to one or more embodiments of the present disclosure, a method of manufacturing a quantum dot includes providing a first mixture, wherein the first mixture includes a first material including M1, a second material including M2, a third material including M3, a fourth material including M4, and a fifth material including M5.
A molar ratio of M1 with respect to (M2+M3) in the first mixture may be about 0.2 to about 1,
According to one or more embodiments of the present disclosure, a light-emitting device includes a first electrode, a second electrode facing the first electrode, and an emission layer between the first electrode and the second electrode, wherein the emission layer includes the quantum dot.
According to one or more embodiments of the present disclosure, an electronic apparatus includes the quantum dot.
The accompanying drawings are included to provide a further understanding of the present disclosure and are incorporated in and constitute a part of the present disclosure. The drawings illustrate embodiments of the present disclosure and, together with the description, serve to explain principles of the present disclosure. The above and other aspects, features, and advantages of certain embodiments of the disclosure will be more apparent from the following description taken in conjunction with the accompanying drawings, in which:
Reference will now be made in more detail to embodiments, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout the present disclosure, and duplicative descriptions thereof may not be provided for conciseness. In this regard, the embodiments of the present disclosure may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, the embodiments of the present disclosure are merely described, by referring to the drawings, to explain aspects of the present disclosure. As utilized herein, the term “and/or” or “or” may include any and all combinations of one or more of the associated listed items. Throughout the disclosure, the expressions such as “at least one of,” “one of,” and “selected from,” when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list. For example, “at least one of a, b or c”, “at least one selected from a, b, and c”, “at least one selected from among a to c”, etc., may indicate only a, only b, only c, both (e.g., simultaneously) a and b, both (e.g., simultaneously) a and c, both (e.g., simultaneously) b and c, all of a, b, and c, or variations thereof. The “/” utilized herein may be interpreted as “and” or as “or” depending on the situation.
Because the present disclosure may have diverse modified embodiments, embodiments are illustrated in the drawings and are described in the detailed description. An effect and a characteristic of the present disclosure, and a method of accomplishing these will be apparent when referring to embodiments described with reference to the drawings. The disclosure may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.
Hereinafter, embodiments of the present disclosure will be described in more detail with reference to the accompanying drawings. The same or corresponding components will be denoted by the same reference numerals, and thus redundant description thereof will not be provided for conciseness.
It will be understood that although the terms “first,” “second,” etc. may be utilized herein to describe one or more suitable components, these components should not be limited by these terms. These components are only utilized to distinguish one component from another.
As utilized herein, the singular forms “a,” “an,” “one,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Further, the use of “may” when describing embodiments of the present disclosure refers to “one or more embodiments of the present disclosure”.
It will be further understood that the terms “comprise(s)/include(s),” “have(has)/having,” and/or “comprising/including” utilized herein specify the presence of stated features or elements, but do not preclude the presence or addition of one or more other features or elements.
In the following embodiments, when one or more suitable components such as layers, films, regions, plates, etc. are said to be “on” another component, this may include not only an embodiment in which other components are “immediately on” or “directly on” the layers, films, regions, or plates, but also an embodiment in which other components may be placed therebetween. In some embodiments, “directly on” may refer to that there are no additional layers, films, regions, plates, etc., between a layer, a film, a region, a plate, etc. and the other part. For example, “directly on” may refer to two layers or two members are disposed without utilizing an additional member such as an adhesive member therebetween. Sizes of elements in the drawings may be exaggerated for convenience of explanation. In other words, because sizes and thicknesses of components in the drawings are arbitrarily illustrated for convenience of explanation, the embodiments of the present disclosure are not limited thereto.
In the present disclosure, the term “Group I metal element” as utilized herein may include copper (Cu), silver (Ag), gold (Au), or a combination thereof. The term “Group III metal element” as utilized herein may include boron (B), aluminum (Al), gallium (Ga), indium (In), thallium (Tl), or a combination thereof. The term “Group VI element” as utilized herein may include oxygen (O), sulfur (S), selenium (Se), tellurium (Te), polonium (Po), or a combination thereof.
In one or more embodiments of the present disclosure, a quantum dot may include a core represented by Formula 1:
M1aM2bM3cM4dM5e, Formula 1
In one or more embodiments, a sum of b and c may be 0 to 1.4 (e.g., larger than 0 and equal to or smaller than 1.4).
In one or more embodiments, a molar ratio of c with respect to a sum of b and c may be 0.28 to 0.6, for example, 0.4 to 0.43.
In one or more embodiments, a sum of d and e may be 2.
In one or more embodiments, a molar ratio of e with respect to d may be about 0.1 to about 4. Accordingly, the emission wavelength may be adjusted. For example, the quantum dot may be to emit red light or light of a color close to red (e.g., near-infrared).
In one or more embodiments, M1 may be copper (Cu).
In one or more embodiments, M2 and M3 may be different from each other. For example, in some embodiments, M2 may be indium (In), and M3 may be gallium (Ga).
In one or more embodiments, M4 and M5 may be different from each other. For example, in some embodiments, M4 may be oxygen (O) or sulfur (S), and M5 may be selenium (Se).
In one or more embodiments, the crystal structure of the quantum dot may be a chalcopyrite structure.
In one or more embodiments, the size of the core may be about 2 nm to about 10 nm, or about 2 nm to about 5 nm, or about 2 nm to about 3 nm.
In one or more embodiments, a full width at half maximum (FWHM) of the photoluminescence peak (e.g., photoluminescence spectrum) of the quantum dot may be 100 nm or less, for example, 70 nm or less, or 60 nm or less. As a result, the color reproducibility of the quantum dot may be improved.
In one or more embodiments, the FWHM of an emission spectrum of the quantum dot may be about 45 nm or less, for example, about 40 nm or less, or about 30 nm or less, and within these ranges, color purity or color reproducibility may be increased. In some embodiments, because the light emitted through the quantum dot is emitted in all directions, the wide viewing angle may be improved.
As the size of the quantum dot is adjusted or the element ratio in the quantum dot compound is controlled or selected, the energy band gap of the quantum dot may be controlled or selected, and thus, light of one or more suitable wavelengths may be obtained in a quantum dot emission layer. Therefore, by utilizing the quantum dot such as the above (utilizing different sizes of quantum dots or different element ratios in the quantum dot compound), a light-emitting device emitting light of one or more suitable wavelengths may be implemented. In one or more embodiments, the size of the quantum dot or element ratio in the quantum dot compound may be controlled or selected to emit red light, green light, and/or blue light. In some embodiments, the quantum dot may be configured to emit white light by a combination of one or more suitable colors of light.
In one or more embodiments, the quantum dot may be to emit red light or near-infrared light. Thus, the photoluminescence wavelength of the quantum dot may be from about 600 nm to about 2,500 nm, for example, from about 550 nm to about 850 nm, for example, from about 565 nm to about 825 nm, or from about 580 nm to about 810 nm.
In one or more embodiments, the quantum dot may further include a shell covering the core. Thus, the quantum dot may not only have a single structure but also a dual core-shell structure. In the case of the quantum dot having a single structure, a concentration of each element included in the corresponding quantum dot may be substantially uniform. For example, the material included in the core and the material included in the shell may be different from each other.
The shell of the quantum dot may act as a protective layer that prevents chemical degeneration of the core to maintain semiconductor characteristics, and/or as a charging layer that imparts electrophoretic characteristics to the quantum dot. The shell may be a single layer or a multi-layer. The interface between the core and the shell may have a concentration gradient in which the concentration of an element existing in the shell decreases toward the center of the core.
Examples of the shell of the quantum dot may be an oxide of metal or non-metal, a semiconductor compound, and a combination thereof. Non-limiting examples of the oxide of metal or non-metal may be a binary compound, such as SiO2, Al2O3, TiO2, ZnO, MnO, Mn2O3, Mn3O4, CuO, FeO, Fe2O3, Fe3O4, CoO, Co3O4, and/or NiO; a ternary compound, such as MgAl2O4, CoFe2O4, NiFe2O4, and/or CoMn2O4; and/or a combination thereof. Non-limiting examples of the semiconductor compound may be, as described herein, Group III-VI semiconductor compounds; Group II-VI semiconductor compounds; Group III-V semiconductor compounds; Group III-VI semiconductor compounds; Group I-III-VI semiconductor compounds; Group IV-VI semiconductor compounds; and/or a combination thereof. For example, the semiconductor compound suitable as the shell may include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnSeS, ZnTeS, GaAs, GaP, GaS, GaSe, AgGaS, AgGaS2, GaSb, HgS, HgSe, HgTe, InAs, InP, InGaP, InSb, AlAs, AlP, AlSb, or a combination thereof.
In one or more embodiments, the shell may include a Group II-VI compound and/or a Group III-VI compound. For example, the Group II-VI compound may include at least one selected from CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, and HgTe, and the Group III-VI compound may include at least one selected from In2S3, In2Se3, Ga2S3, Ga2Se3, InGaS3, and InGaSe3.
In one or more embodiments, the molar ratio of the Group III element may be from about 0.01 to about 0.9 with respect to all elements in the core and the shell, for example, from about 0.05 to about 0.5, or from about 0.1 to about 0.2.
In one or more embodiments, the size of the quantum dot including the shell may be from about 3 nm to about 20 nm, for example, from about 3 nm to about 10 nm, or from about 3 nm to about 5 nm.
In one or more embodiments, the crystal structure of the quantum dot including the shell may be a chalcopyrite structure or an amorphous structure.
In one or more embodiments, the quantum dot may include a core represented by Formula 1. In Formula 1, the Group I metal element may have a small molar ratio (from about 0.4 to about 0.6), and thus, the quantum dot according to one or more embodiments of the present disclosure may show a narrow FWHM. As a result, the quantum dot according to one or more embodiments of the present disclosure may have a high color purity.
Thus, the light-emitting device and apparatus including the quantum dot according to the present disclosure may have improved efficiency.
In one or more embodiments, the shape of the quantum dot is not specifically limited, and may be any shape utilized in the art. For example, the quantum dot may be a substantially spherical, pyramidal, multi-arm, or cubic nanoparticle, a nanotube, a nanowire, a nanofiber, or a nanoplate particle.
In the present disclosure, the quantum dot may refer to a crystal of the semiconductor compound. The quantum dot may be to emit light of one or more suitable emission wavelengths according to the size of the crystal. The quantum dot may be to emit light of one or more suitable emission wavelengths by controlling the element ratio in the quantum dot compound.
A diameter of the quantum dot may be, for example, in a range of about 1 nm to about 10 nm.
The quantum dot may include a Group III-VI semiconductor compound; a Group II-VI semiconductor compound; a Group III-V semiconductor compound; a Group III-VI semiconductor compound; a Group I-III-VI semiconductor compound; a Group IV-VI semiconductor compound; a Group IV element or compound; or a combination thereof.
Non-limiting examples of the Group II-VI semiconductor compound may be a binary compound, such as CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, and/or MgS; a ternary compound, such as CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, and/or MgZnS; a quaternary compound, such as CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, and/or HgZnSTe; or a combination thereof.
Non-limiting examples of the Group III-V semiconductor compound may be a binary compound, such as GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, and/or the like; a ternary compound, such as GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InGaP, InNP, InAlP, InNAs, InNSb, InPAs, InPSb, GaAlNP, and/or the like; a quaternary compound, such as GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb, and/or the like; or a combination thereof. In some embodiments, the Group III-V semiconductor compound may further include a Group II element. Non-limiting examples of the Group III-V semiconductor compound further including a Group II element may be InZnP, InGaZnP, InAlZnP, etc.
Non-limiting examples of the Group III-VI semiconductor compound may include: a binary compound, such as GaS, Ga2S3, GaSe, Ga2Se3, GaTe, InS, InSe, In2Se3, InTe, and/or the like; a ternary compound, such as InGaS3, InGaSe3, and/or the like; or a combination thereof.
Non-limiting examples of the Group I-III-VI compound may include: a ternary compound, such as AgInS, AgInS2, AgInSe2, AgGaS, AgGaS2, AgGaSe2, CuInS, CuInS2, CuInSe2, CuGaS2, CuGaSe2, CuGaO2, AgGaO2, AgAlO2, and/or the like; a quaternary compound, such as AgInGaS2, AgInGaSe2, and/or the like; or a combination thereof.
Non-limiting examples of the Group IV-VI semiconductor compound may be: a binary compound, such as SnS, SnSe, SnTe, PbS, PbSe, and/or PbTe; a ternary compound, such as SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, and/or SnPbTe; a quaternary compound, such as SnPbSSe, SnPbSeTe, and/or SnPbSTe; or a combination thereof.
The Group IV element or compound may include: a single element compound, such as Si and/or Ge; a binary compound, such as SiC and/or SiGe; or a combination thereof.
Each element included in a multi-element compound such as the binary compound, the ternary compound, and the quaternary compound may be present at a substantially uniform concentration or non-substantially uniform concentration in a particle. For example, the Formula may refer to the kind of elements included in the compound, and the element ratio in the compound may be different. For example, AgInGaS2 may refer to AgInxGa1-xS2 (x is an integer from 0 to 1).
Each element included in multi-element compounds such as the binary compound and the ternary compound may exist at a substantially uniform concentration or non-substantially uniform concentration in a particle. For example, the Formula may refer to the kind of elements included in the compound, and the element ratio in the compound may be different.
In the quantum dot according to one or more embodiments, an average thickness of the shell may be less than a radius of the core.
In one or more embodiments, a method of manufacturing a quantum dot may include providing a first mixture, wherein the first mixture may include a first material including M1, a second material including M2, a third material including M3, a fourth material including M4, and a fifth material including M5.
A molar ratio of M1 with respect to (M2+M3) in the first mixture may be about 0.2 to about 1,
In one or more embodiments, a molar ratio of M3 with respect to (M2+M3) in the first mixture may be about 0.3 to about 0.5.
In one or more embodiments, a molar ratio of M3 with respect to (M4+M5) in the first mixture may be about 0.1 to about 0.7.
In one or more embodiments, the quantum dot may include a core represented by Formula 1:
M1aM2bM3cM4dM5e, Formula 1
In one or more embodiments, a method of manufacturing the quantum dot may satisfy at least one selected from among Conditions i) to v).
In one or more embodiments, the quantum dot may be synthesized by a wet chemical process, a metal organic chemical vapor deposition (MOCVD) process, a molecular beam epitaxy (MBE) process, or any similar process.
The wet chemical process is a method including mixing a precursor material with an organic solvent and then growing a quantum dot particle crystal. When the crystal grows, the organic solvent may naturally function as a dispersant coordinated on the surface of the quantum dot, and may control the growth of the crystal.
Therefore, the wet chemical process may control the growth of the quantum dot particle by an easier process and with a lower cost than vapor deposition methods such as MOCVD or MBE.
The method of manufacturing a quantum dot according to one or more embodiments may include copper (Cu), which has a relatively low cost, and may not include (e.g., may exclude) silver (Ag), which has a relatively high cost, as the first material. Therefore, a more economical manufacturing method may be provided.
In one or more embodiments, a grid space (e.g., a lattice space) of the quantum dot including a Cu(InGa)(SSe) (CIGS) quantum dot may be similar to a lattice space (about 5.41 Å) of ZnS than a lattice space of the quantum dot including Ag, such as Ag(InGa)(SSe) (AlGS). For example, the CIGS quantum dot may have a lattice space of about 5.52 Å to about 5.33 Å, and the AlGS quantum dot may have a lattice space of about 5.90 Å to 5.76 Å. Therefore, the ZnS shell may be grown stably on the CIGS crystal core with less lattice strain, which may improve the stability of the quantum dot.
In one or more embodiments, according to the quantum dots generated according to the method of manufacturing the quantum dot may have a narrow FWHM because the Group I metal element has a small molar ratio. Therefore, the quantum dot generated according to the method of manufacturing the quantum dot may have a high color purity.
In one or more embodiments, a light-emitting device may include: a first electrode; a second electrode facing the first electrode; and an emission layer between the first electrode and the second electrode, wherein the emission layer may include the quantum dot.
In one or more embodiments, the quantum dot according to one or more embodiments of the present disclosure may be utilized as a luminescent material capable of emission through electric energy or a color conversion material capable of color conversion by receiving light energy.
When the quantum dot is utilized as a luminescent material, similar to an organic light-emitting diode (OLED), the light-emitting device may include a hole transport region, an emission region, and/or an electron transport region between two electrodes. The quantum dot may be included in at least one selected from the hole transport region, the emission region, and the electron transport region.
In one or more embodiments, the interlayer may include the quantum dot. For example, the emission layer may include the quantum dot.
When the quantum dot is utilized as a color conversion material in a color conversion member, a light source may be arranged near the color conversion member including the quantum dot. The light source may be a backlight, a lamp, a liquid crystal display (LCD) including a backlight, an OLED, a micro OLED, a light-emitting diode (LED), and a micro LED, and the light sources and the color conversion member may be combined to form a display apparatus.
A display apparatus, which is an apparatus that displays an image, may be an organic light-emitting display apparatus, an inorganic light-emitting display apparatus, a quantum dot light-emitting display apparatus, and/or the like.
Hereinafter, a structure of the light-emitting device 30 according to one or more embodiments of the present disclosure and a method of manufacturing the light-emitting device 30 will be described in more detail with reference to
In one or more embodiments, a transmissive layer may include a scatterer. The transmissive layer may include the quantum dot and a scatterer at the same time (e.g., concurrently), and is responsible for improving color conversion and color purity of blue light.
The transmissive layer may include a translucent resin and the scatterer dispersed in the translucent resin. The translucent resin may include any material that has excellent or suitable dispersive characteristics with respect to the scatterer and has translucency, for example, acryl-based resin, imide-based resin, and/or epoxy-based resin.
The scatterer may be a particle having a different refractive index from that of the translucent resin, for example, a light scattering particle. The scatterer may be any material that may form an optical interface to partially scatter transmitted light, for example, a metal oxide particle or an organic particle. Non-limiting examples of the metal oxide may be titanium oxide (TiO2), zirconium oxide (ZrO2), aluminum oxide (Al2O3), indium oxide (In203), zinc oxide (ZnO), and/or tin oxide (SnO2), and non-limiting examples of the organic material may be acryl-based resin and/or urethane-based resin. The scatterer may scatter light in one or more suitable directions regardless of the incidence angle without actually converting the wavelength of incident light. Accordingly, side visibility may be improved.
In
The first electrode 110 may be formed by, for example, depositing or sputtering a material for forming the first electrode 110 on the substrate. When the first electrode 110 is an anode, a material for forming the first electrode 110 may be a high-work function material that facilitates injection of holes.
The first electrode 110 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode. In one or more embodiments, when the first electrode 110 is a transmissive electrode, a material for forming the first electrode 110 may include indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO2), zinc oxide (ZnO), or a combination thereof. In one or more embodiments, when the first electrode 110 is a semi-transmissive electrode or a reflective electrode, a material for forming the first electrode 110 may include magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), or a combination thereof.
The first electrode 110 may have a single-layered structure including (e.g., consisting of) a single layer or a multi-layered structure including a plurality of layers. For example, in some embodiments, the first electrode 110 may have a three-layered structure of ITO/Ag/ITO.
The interlayer 130 may be on the first electrode 110. The interlayer 130 may include an emission layer.
The interlayer 130 may further include a hole transport region between the first electrode 110 and the emission layer, and an electron transport region between the emission layer and the second electrode 150.
For example, the interlayer 130 may include a quantum dot according to one or more embodiments of the present disclosure. The quantum dot is as described herein.
In one or more embodiments, the interlayer 130 may further include metal-containing compounds such as organometallic compounds, inorganic materials such as quantum dots, and/or the like, in addition to one or more suitable organic materials.
In one or more embodiments, the interlayer 130 may include, i) two or more emitting units sequentially stacked between the first electrode 110 and the second electrode 150, and ii) a charge generation layer between the two or more emitting units. When the interlayer 130 includes the emitting units and the charge generation layer as described above, the light-emitting device 30 may be a tandem light-emitting device.
The hole transport region may have: i) a single-layered structure including (e.g., consisting of) a single layer including (e.g., consisting of) a single material, ii) a single-layered structure including (e.g., consisting of) a single layer including (e.g., consisting of) a plurality of different materials, or iii) a multi-layered structure including a plurality of layers including different materials.
The hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron-blocking layer, or a combination thereof.
For example, in some embodiments, the hole transport region may have a multi-layered structure including a hole injection layer/hole transport layer structure, a hole injection layer/hole transport layer/emission auxiliary layer structure, a hole injection layer/emission auxiliary layer structure, a hole transport layer/emission auxiliary layer structure, or a hole injection layer/hole transport layer/electron-blocking layer structure, the constituent layers of each structure being stacked sequentially from the first electrode 110 in each stated order.
In one or more embodiments, the hole transport region may include a compound represented by Formula 201, a compound represented by Formula 202, or a combination thereof:
For example, in some embodiments, each of Formulae 201 and 202 may include at least one selected from groups represented by Formulae CY201 to CY217.
In Formulae CY201 to CY217, R10b and R10c may each be the same as described with respect to R10a, ring CY201 to ring CY204 may each independently be a C3-C20 carbocyclic group or a C1-C20 heterocyclic group, and at least one hydrogen in Formulae CY201 to CY217 may be unsubstituted or substituted with R10a.
In one or more embodiments, ring CY201 to ring CY204 in Formulae CY201 to CY217 may each independently be a benzene group, a naphthalene group, a phenanthrene group, or an anthracene group.
In one or more embodiments, each of Formulae 201 and 202 may include at least one selected from groups represented by Formulae CY201 to CY203.
In one or more embodiments, Formula 201 may include at least one selected from the groups represented by Formulae CY201 to CY203 and at least one selected from the groups represented by Formulae CY204 to CY217.
In one or more embodiments, in Formula 201, xa1 may be 1, R201 may be a group represented by one selected from Formulae CY201 to CY203, xa2 may be 0, and R202 may be a group represented by one selected from Formulae CY204 to CY207.
In one or more embodiments, each of Formulae 201 and 202 may not include (e.g., may exclude) a (e.g., any) group represented by one selected from Formulae CY201 to CY203.
In one or more embodiments, each of Formulae 201 and 202 may not include(e.g., may exclude) a (e.g., any) group represented by one selected from Formulae CY201 to CY203, and may include at least one selected from the groups represented by Formulae CY204 to CY217.
In one or more embodiments, each of Formulae 201 and 202 may not include(e.g., may exclude) a (e.g., any) group represented by one selected from Formulae CY201 to CY217.
In one or more embodiments, the hole transport region may include at least one selected from Compounds HT1 to HT46, 4,4′,4″-[tris(3-methylphenyl)phenylamino] triphenylamine (m-MTDATA), 4,4′,4″-tris(N,N-diphenylamino)triphenylamine (TDATA), 4,4′,4″-tris[N-(2-naphthyl)-N-phenylamino]-triphenylamine (2-TNATA), N, N′-di(naphthalen-1-yl)-N,N′-diphenyl-benzidine (NPB(NPD)), β-NPB, N,N′-bis(3-methylphenyl)-N, N′-diphenyl-[1,1′-biphenyl]-4,4′-diamine (TPD), Spiro-TPD, Spiro-NPB, methylated NPB, 4,4′-cyclohexylidene bis[N,N-bis(4-methylphenyl)benzenamine] (TAPC), 4,4′-bis[N,N′-(3-tolyl)amino]-3,3′-dimethylbiphenyl (HMTPD), 4,4′,4″-tris(N-carbazolyl)triphenylamine (TCTA), polyaniline/dodecylbenzenesulfonic acid (PANI/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphor sulfonic acid (PANI/CSA), polyaniline/poly(4-styrenesulfonate) (PANI/PSS), and/or a combination thereof:
A thickness of the hole transport region may be in a range of about 50 Å to about 10,000 Å, for example, about 100 Å to about 4,000 Å. When the hole transport region includes a hole injection layer, a hole transport layer, or a combination thereof, a thickness of the hole injection layer may be in a range of about 100 Å to about 9,000 Å, for example, about 100 Å to about 1,000 Å, and a thickness of the hole transport layer may be in a range of about 50 Å to about 2,000 Å, for example, about 100 Å to about 1,500 Å. When the thicknesses of the hole transport region, the hole injection layer, and the hole transport layer are within these ranges, satisfactory hole transporting characteristics may be obtained without a substantial increase in driving voltage.
The emission auxiliary layer may increase light-emission efficiency by compensating for an optical resonance distance according to the wavelength of light emitted by the emission layer, and the electron-blocking layer may block or reduce the leakage of electrons from the emission layer to the hole transport region. Materials that may be included in the hole transport region may be included in the emission auxiliary layer and the electron-blocking layer.
p-Dopant
In one or more embodiments, the hole transport region may further include, in addition to these aforementioned materials, a charge-generation material for the improvement of conductive properties of the hole transport region. The charge-generation material may be substantially uniformly or non-uniformly dispersed in the hole transport region (for example, in the form of a single layer including (e.g., consisting of) a charge-generation material).
The charge-generation material may be, for example, a p-dopant.
For example, in some embodiments, the lowest unoccupied molecular orbital (LUMO) energy level of the p-dopant may be −3.5 eV or less.
In one or more embodiments, the p-dopant may include a quinone derivative, a cyano group-containing compound, a compound including element EL1 and element EL2, or a combination thereof.
Non-limiting examples of the quinone derivative may be tetracyanoquinodimethane (TCNQ), 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), etc.
Non-limiting examples of the cyano group-containing compound may be dipyrazino[2,3-f: 2′,3′-h] quinoxaline-2,3,6,7,10,11-hexacarbonitrile (HAT-CN) and/or a compound represented by Formula 221.
In Formula 221,
In the compound including element EL1 and element EL2, element EL1 may be metal, metalloid, or a combination thereof, and element EL2 may be non-metal, metalloid, or a combination thereof.
Non-limiting examples of the metal may be an alkali metal (for example, lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), etc.); an alkaline earth metal (for example, beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), etc.); a transition metal (for example, titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), manganese (Mn), technetium (Tc), rhenium (Re), iron (Fe), ruthenium (Ru), osmium (Os), cobalt (Co), rhodium (Rh), iridium (Ir), nickel (Ni), palladium (Pd), platinum (Pt), copper (Cu), silver (Ag), gold (Au), etc.); a post-transition metal (for example, zinc (Zn), indium (In), tin (Sn), etc.); and/or a lanthanide metal (for example, lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), etc.).
Non-limiting examples of the metalloid may be silicon (Si), antimony (Sb), and/or tellurium (Te).
Non-limiting examples of the non-metal may be oxygen (O) and/or a halogen (for example, F, Cl, Br, I, etc.).
Non-limiting examples of the compound including element EL1 and element EL2 may be metal oxides, metal halides (for example, metal fluoride, metal chloride, metal bromide, or metal iodide), metalloid halides (for example, metalloid fluoride, metalloid chloride, metalloid bromide, or metalloid iodide), metal tellurides, or a combination thereof.
Non-limiting examples of the metal oxide may be tungsten oxides (for example, WO, W2O3, WO2, WO3, W2O5, etc.), vanadium oxides (for example, VO, V2O3, VO2, V2O5, etc.), molybdenum oxides (MoO, Mo2O3, MoO2, MoO3, Mo2O5, etc.), and/or rhenium oxides (for example, ReO3, etc.).
Non-limiting examples of the metal halide may be alkali metal halides, alkaline earth metal halides, transition metal halides, post-transition metal halides, and/or lanthanide metal halides.
Non-limiting examples of the alkali metal halogen may include LiF, NaF, KF, RbF, CsF, LiCl, NaCl, KCl, RbCl, CsCl, LiBr, NaBr, KBr, RbBr, CsBr, LiI, NaI, KI, RbI, and/or CsI.
Non-limiting examples of the alkaline earth metal halide may be BeF2, MgF2, CaF2, SrF2, BaF2, BeCl2, MgCl2, CaCl2, SrCl2, BaCl2, BeBr2, MgBr2, CaBr2, SrBr2, BaBr2, Bel2, MgI2, CaI2, SrI2, and/or BaI2.
Non-limiting examples of the transition metal halide may be titanium halides (for example, TiF4, TiCl4, TiBr4, TiI4, etc.), zirconium halides (for example, ZrF4, ZrCl4, ZrBr4, ZrI4, etc.), hafnium halides (for example, HfF4, HfCl4, HfBr4, HfI4, etc.), vanadium halides (for example, VF3, VCl3, VBr3, VI3, etc.), niobium halides (for example, NbF3, NbCl3, NbBr3, NbI3, etc.), tantalum halides (for example, TaF3, TaCl3, TaBr3, TaI3, etc.), chromium halides (for example, CrF3, CrCl3, CrBr3, CrI3, etc.), molybdenum halides (for example, MoF3, MoCl3, MoBr3, MoI3, etc.), tungsten halides (for example, WF3, WCl3, WBr3, WI3, etc.), manganese halides (for example, MnF2, MnCl2, MnBr2, MnI2, etc.), technetium halides (for example, TcF2, TcCl2, TcBr2, TcI2, etc.), rhenium halides (for example, ReF2, ReCl2, ReBr2, ReI2, etc.), ferrous halides (for example, FeF2, FeCl2, FeBr2, FeI2, etc.), ruthenium halides (for example, RuF2, RuCl2, RuBr2, RuI2, etc.), osmium halides (for example, OsF2, OsCl2, OsBr2, OsI2, etc.), cobalt halides (for example, CoF2, CoCl2, CoBr2, CoI2, etc.), rhodium halides (for example, RhF2, RhCl2, RhBr2, RhI2, etc.), iridium halides (for example, IrF2, IrCl2, IrBr2, IrI2, etc.), nickel halides (for example, NiF2, NiCl2, NiBr2, NiI2, etc.), palladium halides (for example, PdF2, PdCl2, PdBr2, PdI2, etc.), platinum halides (for example, PtF2, PtCl2, PtBr2, PtI2, etc.), cuprous halides (for example, CuF, CuCl, CuBr, CuI, etc.), silver halide (for example, AgF, AgCl, AgBr, AgI, etc.), and/or gold halides (for example, AuF, AuCl, AuBr, AuI, etc.).
Non-limiting examples of the post-transition metal halide may be zinc halide (for example, ZnF2, ZnCl2, ZnBr2, Znl2, etc.), indium halide (for example, InI3, etc.), and/or tin halide (for example, SnI2, etc.).
Non-limiting examples of the lanthanide metal halide may be YbF, YbF2, YbF3, SmF3, YbCl, YbCl2, YbCl3, SmCl3, YbBr, YbBr2, YbBr3, SmBr3, YbI, YbI2, YbI3, and SmI3.
Non-limiting example of the metalloid halide may be antimony halide (for example, SbCl5, etc.).
Non-limiting examples of the metal telluride may be alkali metal tellurides (for example, Li2Te, Na2Te, K2Te, Rb2Te, Cs2Te, etc.), alkaline earth metal tellurides (for example, BeTe, MgTe, CaTe, SrTe, BaTe, etc.), transition metal tellurides (for example, TiTe2, ZrTe2, HfTe2, V2Te3, Nb2Te3, Ta2Te3, Cr2Te3, Mo2Te3, W2Te3, MnTe, TcTe, ReTe, FeTe, RuTe, OsTe, CoTe, RhTe, IrTe, NiTe, PdTe, PtTe, Cu2Te, CuTe, Ag2Te, AgTe, Au2Te, etc.), post-transition metal tellurides (for example, ZnTe, etc.), and/or lanthanide metal tellurides (for example, LaTe, CeTe, PrTe, NdTe, PmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, LuTe, etc.).
When the light-emitting device 30 is a full-color light-emitting device, according to a subpixel, the emission layer may be patterned into a red emission layer, a green emission layer, and/or a blue emission layer. In one or more embodiments, the emission layer may have a stacked structure of two or more layers selected from a red emission layer, a green emission layer, and a blue emission layer, in which the two or more layers contact each other or are separated from each other to emit white light (e.g., combined white light). In one or more embodiments, the emission layer may include two or more materials selected from a red light-emitting material, a green light-emitting material, and a blue light-emitting material, in which the two or more materials are mixed with each other in a single layer to emit white light (e.g., combined white light).
The emission layer may include the quantum dot according to one or more embodiments of the present disclosure.
In some embodiments, the emission layer may further include a host and a dopant in addition to the quantum dot. The dopant may include a phosphorescent dopant, a fluorescent dopant, or a combination thereof.
An amount of the dopant in the emission layer may be from about 0.01 part by weight to about 15 parts by weight based on 100 parts by weight of the host. In some embodiments, the emission layer may include a delayed
fluorescence material. The delayed fluorescence material may act as a host or a dopant in the emission layer.
A thickness of the emission layer may be in a range of about 100 Å to about 1,000 Å, for example, about 200 Å to about 600 Å. When the thickness of the emission layer is within these ranges, excellent or suitable light-emission characteristics may be obtained without a substantial increase in driving voltage.
In one or more embodiments, the host may include a compound represented by Formula 301:
In Formula 301,
For example, in some embodiments, when xb11 in Formula 301 is 2 or more, two or more of Ar301(s) may be linked to each other via a single bond.
In one or more embodiments, the host may include a compound represented by Formula 301-1, a compound represented by Formula 301-2, or a combination thereof:
In Formulae 301-1 and 301-2,
In one or more embodiments, the host may include an alkaline earth metal complex, a post-transition metal complex, or a combination thereof. For example, the host may include a Be complex (for example, Compound H55), an Mg complex, a Zn complex, or a combination thereof.
In one or more embodiments, the host may include at least one selected from among Compounds H1 to H124, 9,10-di(2-naphthyl)anthracene (ADN), 2-methyl-9,10-bis(naphthalen-2-yl)anthracene (MADN), 9,10-di-(2-naphthyl)-2-t-butyl-anthracene (TBADN), 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP), 1,3-di(carbazol-9-yl)benzene (mCP), 1,3,5-tri(carbazol-9-yl)benzene (TCP), and/or a combination thereof:
In one or more embodiments, the phosphorescent dopant may include at least one transition metal as a central metal.
The phosphorescent dopant may include a monodentate ligand, a bidentate ligand, a tridentate ligand, a tetradentate ligand, a pentadentate ligand, a hexadentate ligand, or a combination thereof.
In some embodiments, the phosphorescent dopant may be electrically neutral.
For example, in one or more embodiments, the phosphorescent dopant may include an organometallic compound represented by Formula 401:
For example, in some embodiments, in Formula 402, i) X401 may be nitrogen, and X402 may be carbon, or ii) each of X401 and X402 may be nitrogen.
In one or more embodiments, when xc1 in Formula 402 is 2 or more, two ring A401(s) in two or more of L401(s) may be optionally linked to each other via T402, which is a linking group, and/or two ring A402(s) may be optionally linked to each other via T403, which is a linking group (see Compounds PD1 to PD4 and PD7). T402 and T403 may each be the same as described with respect to T401.
L402 in Formula 401 may be an organic ligand. For example, in some embodiments, L402 may include a halogen, a diketone group (for example, an acetylacetonate group), a carboxylic acid group (for example, a picolinate group), —C(═O), an isonitrile group, —CN group, a phosphorus group (for example, a phosphine group, a phosphite group, etc.), or a combination thereof.
In one or more embodiments, the phosphorescent dopant may include, for example, at least one selected from compounds PD1 to PD39, and/or a combination thereof:
In one or more embodiments, the fluorescent dopant may include an amine group-containing compound, a styryl group-containing compound, or a combination thereof.
For example, in some embodiments, the fluorescent dopant may include a compound represented by Formula 501:
For example, in some embodiments, Ar501 in Formula 501 may be a condensed cyclic group (for example, an anthracene group, a chrysene group, or a pyrene group) in which three or more monocyclic groups are condensed together.
In one or more embodiments, xd4 in Formula 501 may be 2.
For example, in some embodiments, the fluorescent dopant may include: at least one selected from among Compounds FD1 to FD36; 4,4′-bis(2,2-diphenylvinyl)-1,1′-biphenyl (DPVBi); 4,4′-bis[4-(N,N-diphenylamino)styryl]biphenyl (DPAVBi); and/or a combination thereof:
In one or more embodiments, the emission layer may include a delayed fluorescence material.
In the present disclosure, the delayed fluorescence material may be selected from compounds capable of emitting delayed fluorescent light based on a delayed fluorescence emission mechanism.
The delayed fluorescence material included in the emission layer may act as a host or a dopant depending on the type or kind of other materials included in the emission layer.
In one or more embodiments, a difference between a triplet energy level (eV) of the delayed fluorescence material and a singlet energy level (eV) of the delayed fluorescence material may be greater than or equal to 0 eV and less than or equal to 0.5 eV. When the difference between the triplet energy level (eV) of the delayed fluorescence material and the singlet energy level (eV) of the delayed fluorescence material satisfies the above-described range, up-conversion from the triplet state to the singlet state of the delayed fluorescence materials may effectively occur, and thus, the luminescence efficiency of the light-emitting device 30 may be improved.
For example, in some embodiments, the delayed fluorescence material may include i) a material including at least one electron donor (for example, a π electron-rich C3-C60 cyclic group, such as a carbazole group) and at least one electron acceptor (for example, a sulfoxide group, a cyano group, or a Ir electron-deficient nitrogen-containing C1-C60 cyclic group), and/or ii) a material including a C8-C60 polycyclic group in which two or more cyclic groups are condensed while sharing boron (B).
Non-limiting examples of the delayed fluorescence material may include at least one selected from compounds DF1 to DF9:
In one or more embodiments, the electron transport region may have: i) a single-layered structure including (e.g., consisting of) a single layer including (e.g., consisting of) a single material, ii) a single-layered structure including (e.g., consisting of) a single layer including (e.g., consisting of) a plurality of different materials, or iii) a multi-layered structure including a plurality of layers including different materials.
The electron transport region may include a buffer layer, a hole-blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or a combination thereof.
For example, in one or more embodiments, the electron transport region may have an electron transport layer/electron injection layer structure, a hole-blocking layer/electron transport layer/electron injection layer structure, an electron control layer/electron transport layer/electron injection layer structure, or a buffer layer/electron transport layer/electron injection layer structure, the constituting layers of each structure being sequentially stacked from the emission layer in each stated order.
In one or more embodiments, the electron transport region (for example, the buffer layer, the hole-blocking layer, the electron control layer, or the electron transport layer in the electron transport region) may include a metal-free compound including at least one π electron-deficient nitrogen-containing C1-C60 cyclic group.
For example, in some embodiments, the electron transport region may include a compound represented by Formula 601:
For example, in some embodiments, when xe11 in Formula 601 is 2 or more, two or more of Ar601(s) may be linked to each other via a single bond.
In some embodiments, Ar601 in Formula 601 may be a substituted or unsubstituted anthracene group.
In some embodiments, the electron transport region may include a compound represented by Formula 601-1:
For example, xe1 and xe611 to xe613 in Formulae 601 and 601-1 may each independently be 0, 1, or 2.
In one or more embodiments, the electron transport region may include at least one selected from Compounds ET1 to ET45, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen), tris(8-hydroxyquinolinato)aluminum (Alq3), bis(2-methyl-8-quinolinolato-N1,08)-(1,1′-biphenyl-4-olato)aluminum (BAlq), 3-(4-biphenyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole (TAZ), 4-(naphthalen-1-yl)-3,5-diphenyl-4H-1,2,4-triazole (NTAZ), and/or a combination thereof:
A thickness of the electron transport region may be from about 100 Å to about 5,000 Å, for example, about 160 Å to about 4,000 Å. When the electron transport region includes a buffer layer, a hole-blocking layer, an electron control layer, an electron transport layer, or a combination thereof, a thickness of the buffer layer, the hole-blocking layer, or the electron control layer may each independently be from about 20 Å to about 1000 Å, for example, about 30 Å to about 300 Å, and a thickness of the electron transport layer may be from about 100 Å to about 1000 Å, for example, about 150 Å to about 500 Å. When the thicknesses of the buffer layer, the hole-blocking layer, the electron control layer, the electron transport layer, and/or the electron transport layer are within these ranges, satisfactory electron transporting characteristics may be obtained without a substantial increase in driving voltage.
In one or more embodiments, the electron transport region (for example, the electron transport layer in the electron transport region) may further include, in addition to the materials described above, a metal-containing material.
The metal-containing material may include an alkali metal complex, an alkaline earth metal complex, or a combination thereof. A metal ion of the alkali metal complex may be a Li ion, a Na ion, a K ion, a Rb ion, or a Cs ion, and a metal ion of the alkaline earth metal complex may be a Be ion, a Mg ion, a Ca ion, a Sr ion, or a Ba ion. A ligand coordinated with the metal ion of the alkali metal complex or the alkaline earth-metal complex may include a hydroxyquinoline, a hydroxyisoquinoline, a hydroxybenzoquinoline, a hydroxyacridine, a hydroxyphenanthridine, a hydroxyphenyloxazole, a hydroxyphenylthiazole, a hydroxyphenyloxadiazole, a hydroxyphenylthiadiazole, a hydroxyphenylpyridine, a hydroxyphenylbenzimidazole, a hydroxyphenylbenzothiazole, a bipyridine, a phenanthroline, a cyclopentadiene, or a combination thereof.
For example, in some embodiments, the metal-containing material may include a Li complex. The Li complex may include, for example, Compound ET-D1 (LiQ) or ET-D2:
In one or more embodiments, the electron transport region may include an electron injection layer that facilitates the injection of electrons from the second electrode 150. The electron injection layer may directly contact the second electrode 150.
The electron injection layer may have: i) a single-layered structure including (e.g., consisting of) a single layer including (e.g., consisting of) a single material, ii) a single-layered structure including (e.g., consisting of) a single layer including (e.g., consisting of) a plurality of different materials, or iii) a multi-layered structure including a plurality of layers including different materials.
The electron injection layer may include an alkali metal, alkaline earth metal, a rare earth metal, an alkali metal-containing compound, alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth metal complex, a rare earth metal complex, or a combination thereof.
The alkali metal may include Li, Na, K, Rb, Cs, or a combination thereof. The alkaline earth metal may include Mg, Ca, Sr, Ba, or a combination thereof. The rare earth metal may include Sc, Y, Ce, Tb, Yb, Gd, or a combination thereof.
The alkali metal-containing compound, the alkaline earth metal-containing compound, and the rare earth metal-containing compound may respectively be oxides, halides (for example, fluorides, chlorides, bromides, or iodides), or tellurides of the alkali metal, the alkaline earth metal, and the rare earth metal, or a combination thereof.
The alkali metal-containing compound may include: alkali metal oxides, such as Li2O, Cs2O, or K2O; alkali metal halides, such as LiF, NaF, CsF, KF, LiI, NaI, CsI, or KI; or a combination thereof. The alkaline earth metal-containing compound may include an alkaline earth metal compound, such as BaO, SrO, CaO, BaxSr1-xO (wherein x is a real number satisfying the condition of 0<x<1), BaxCa1-xO (wherein x is a real number satisfying the condition of 0<x<1), and/or the like. The rare earth metal-containing compound may include YbF3, ScF3, Sc2O3, Y2O3, Ce2O3, GdF3, TbF3, YbI3, ScI3, TbI3, or a combination thereof. In one or more embodiments, the rare earth metal-containing compound may include lanthanide metal tellurides. Non-limiting examples of the lanthanide metal telluride may be LaTe, CeTe, PrTe, NdTe, PmTe, SmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, LuTe, La2Te3, Ce2Te3, Pr2Te3, Nd2Te3, Pm2Te3, Sm2Te3, Eu2Te3, Gd2Te3, Tb2Te3, Dy2Te3, HO2Te3, Er2Te3, Tm2Te3, Yb2Te3, and/or Lu2Te3.
The alkali metal complex, the alkaline earth-metal complex, and the rare earth metal complex may include i) one of ions of the alkali metal, one of ions of the alkaline earth metal, and one of ions of the rare earth metal, respectively, and ii) a ligand bonded to the metal ion, for example, hydroxyquinoline, hydroxyisoquinoline, hydroxybenzoquinoline, hydroxyacridine, hydroxyphenanthridine, hydroxyphenyloxazole, hydroxyphenylthiazole, hydroxyphenyloxadiazole, hydroxyphenylthiadiazole, hydroxyphenylpyridine, hydroxyphenyl benzimidazole, hydroxyphenylbenzothiazole, bipyridine, phenanthroline, cyclopentadiene, or a combination thereof.
In one or more embodiments, the electron injection layer may include (e.g., consist of) an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth metal complex, a rare earth metal complex, or a combination thereof, as described above. In one or more embodiments, the electron injection layer may further include an organic material (for example, a compound represented by Formula 601).
In some embodiments, the electron injection layer may include (e.g., consist of) i) an alkali metal-containing compound (for example, alkali metal halide) or ii) a) an alkali metal-containing compound (for example, alkali metal halide) and b) an alkali metal, an alkaline earth metal, a rare earth metal, or a combination thereof. For example, in some embodiments, the electron injection layer may be a KI:Yb co-deposited layer, an RbI:Yb co-deposited layer, and/or the like.
When the electron injection layer further includes an organic material, an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth-metal complex, a rare earth metal complex, or a combination thereof may be substantially uniformly or non-uniformly dispersed in a matrix including the organic material.
A thickness of the electron injection layer may be in a range of about 1 Å to about 100 Å, and, for example, about 3 Å to about 90 Å. When the thickness of the electron injection layer is within the ranges described above, satisfactory electron injection characteristics may be obtained without a substantial increase in driving voltage.
The second electrode 150 may be on the interlayer 130 having a structure as described above. In one or more embodiments, the second electrode 150 may be a cathode, which is an electron injection electrode, and as the material for forming the second electrode 150, a metal, an alloy, an electrically conductive compound, or a combination thereof, each having a low-work function, may be utilized.
The second electrode 150 may include lithium (Li), silver (Ag), magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), ytterbium (Yb), silver-ytterbium (Ag—Yb), ITO, IZO, or a combination thereof. The second electrode 150 may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode.
The second electrode 150 may have a single-layered structure or a multi-layered structure including a plurality of layers.
A first capping layer may be located outside (e.g., on) the first electrode 110, and/or a second capping layer may be located outside (e.g., on) the second electrode 150. In one or more embodiments, the light-emitting device 30 may have a structure in which the first capping layer, the first electrode 110, the interlayer 130, and the second electrode 150 are sequentially stacked in the stated order, a structure in which the first electrode 110, the interlayer 130, the second electrode 150, and the second capping layer are sequentially stacked in the stated order, or a structure in which the first capping layer, the first electrode 110, the interlayer 130, the second electrode 150, and the second capping layer are sequentially stacked in the stated order.
In some embodiments, light generated in an emission layer of the interlayer 130 of the light-emitting device 30 may be extracted toward the outside through the first electrode 110 which is a semi-transmissive electrode or a transmissive electrode, and the first capping layer. In some embodiments, light generated in an emission layer of the interlayer 130 of the light-emitting device 30 may be extracted toward the outside through the second electrode 150 which is a semi-transmissive electrode or a transmissive electrode, and the second capping layer.
The first capping layer and the second capping layer may increase external emission efficiency according to the principle of constructive interference. Accordingly, the light extraction efficiency of the light-emitting device 30 may be increased, thereby improving the luminescence efficiency of the light-emitting device 30.
Each of the first capping layer and the second capping layer may include a material having a refractive index of 1.6 or more (e.g., at 589 nm).
The first capping layer and the second capping layer may each independently be an organic capping layer including an organic material, an inorganic capping layer including an inorganic material, or an organic-inorganic composite capping layer including an organic material and an inorganic material.
At least one selected from among the first capping layer and the second capping layer may (e.g., the first capping layer and the second capping layer may each) independently include carbocyclic compounds, heterocyclic compounds, amine group-containing compounds, porphine derivatives, phthalocyanine derivatives, naphthalocyanine derivatives, alkali metal complexes, alkaline earth metal complexes, or a combination thereof. In some embodiments, the carbocyclic compound, the heterocyclic compound, and the amine group-containing compound may be substituted with a substituent including O, N, S, Se, Si, F, Cl, Br, I, or a combination thereof. In one or more embodiments, at least one selected from among the first capping layer and the second capping layer may (e.g., the first capping layer and the second capping layer may each) independently include an amine group-containing compound.
For example, in one or more embodiments, at least one selected from among the first capping layer and the second capping layer may (e.g., the first capping layer and the second capping layer may each) independently include a compound represented by Formula 201, a compound represented by Formula 202, or a combination thereof.
In one or more embodiments, at least one selected from among the first capping layer and the second capping layer may (e.g., the first capping layer and the second capping layer may each) independently include at least one selected from Compounds HT28 to HT33, Compounds CP1 to CP6, β-NPB, and/or a combination thereof:
The above-described quantum dot may be included in one or more suitable films. Accordingly, in one or more embodiments, a film may include the quantum dot described above. The film may be, for example, an optical member (or a light control member) (for example, a color filter, a color conversion member, a capping layer, a light extraction efficiency enhancement layer, a selective light absorbing layer, a polarizing layer, a quantum dot-containing layer, or like), a light-blocking member (for example, a light reflective layer, a light absorbing layer, and/or the like), and/or a protective member (for example, an insulating layer, a dielectric layer, and/or the like).
The light-emitting device may be included in one or more suitable electronic apparatuses. For example, the electronic apparatus including the light-emitting device may be a light-emitting apparatus, an authentication apparatus, and/or the like.
In one or more embodiments, the electronic apparatus (for example, a light-emitting apparatus) may further include, in addition to the light-emitting device, i) a color filter, ii) a color conversion layer, or iii) a color filter and a color conversion layer. The color filter and/or the color conversion layer may be located in at least one direction in which light emitted from the light-emitting device travels. For example, in some embodiments, the light emitted from the light-emitting device may be blue light or white light (e.g., combined white light). For details on the light-emitting device, related description provided above may be referred to. In one or more embodiments, the color conversion layer may include a quantum dot. The quantum dot may be, for example, the quantum dot as described herein.
The electronic apparatus may include a first substrate. The first substrate may include a plurality of subpixel areas, the color filter may include a plurality of color filter areas respectively corresponding to the subpixel areas, and the color conversion layer may include a plurality of color conversion areas respectively corresponding to the subpixel areas.
A pixel defining film may be located among the subpixel areas to define each of the subpixel areas.
The color filter may further include a plurality of color filter areas and light-shielding patterns located among the color filter areas, and the color conversion layer may further include a plurality of color conversion areas and light-shielding patterns located among the color conversion areas.
The plurality of color filter areas (or the plurality of color conversion areas) may include a first area to emit first color light, a second area to emit second color light, and/or a third area to emit third color light, wherein the first color light, the second color light, and/or the third color light may have different maximum emission wavelengths from one another. For example, in some embodiments, the first color light may be red light, the second color light may be green light, and the third color light may be blue light.
For example, in one or more embodiments, the plurality of color filter areas (or the plurality of color conversion areas) may include quantum dots. In detail, the first region may include red quantum dots to emit red light, the second region may include green quantum dots to emit green light, and the third region may include blue quantum dots to emit blue light.
For details on the quantum dot, related descriptions provided herein may be referred to. The first area, the second area, and/or the third area may each include a scatterer.
For example, in one or more embodiments, the light-emitting device may be to emit first light, the first area may be to absorb the first light to emit first-first color light, the second area may be to absorb the first light to emit second-first color light, and the third area may be to absorb the first light to emit third-first color light. In this regard, the first-first color light, the second-first color light, and the third-first color light may have different maximum emission wavelengths. In some embodiments, the first light may be blue light, the first-first color light may be red light, the second-first color light may be green light, and the third-first color light may be blue light.
In one or more embodiments, the electronic apparatus may further include a thin-film transistor, in addition to the light-emitting device as described above. The thin-film transistor may include a source electrode, a drain electrode, and an activation layer, wherein one selected from the source electrode and the drain electrode may be electrically connected to the first electrode or the second electrode of the light-emitting device.
The thin-film transistor may further include a gate electrode, a gate insulating film, and/or the like.
The activation layer may include crystalline silicon, amorphous silicon, an organic semiconductor, an oxide semiconductor, and/or the like.
In one or more embodiments, the electronic apparatus may further include a sealing portion for sealing the light-emitting device. The sealing portion may be located between the color filter and/or the color conversion layer and the light-emitting device. The sealing portion allows light from the light-emitting device to be extracted to the outside, and concurrently (e.g., simultaneously) prevents ambient air and moisture from penetrating into the light-emitting device. The sealing portion may be a sealing substrate including a transparent glass substrate or a plastic substrate. The sealing portion may be a thin-film encapsulation layer including at least one layer of an organic layer and/or an inorganic layer. When the sealing portion is a thin film encapsulation layer, the electronic apparatus may be flexible.
One or more suitable functional layers may be additionally provided and located on the sealing portion, in addition to the color filter and/or the color conversion layer, according to the utilization of the electronic apparatus. Examples of the functional layers may include a touch screen layer, a polarizing layer, and/or the like. The touch screen layer may be a pressure-sensitive touch screen layer, a capacitive touch screen layer, or an infrared touch screen layer. The authentication apparatus may be, for example, a biometric authentication apparatus that authenticates an individual by utilizing biometric information of a living body (for example, fingertips, pupils, etc.).
The authentication apparatus may further include, in addition to the light-emitting device as described above, a biometric information collector.
The electronic apparatus may be applied to one or more of suitable displays, light sources, lighting, personal computers (for example, a mobile personal computer), mobile phones, digital cameras, electronic organizers, electronic dictionaries, electronic game machines, medical instruments (for example, electronic thermometers, sphygmomanometers, blood glucose meters, pulse measurement devices, pulse wave measurement devices, electrocardiogram displays, ultrasonic diagnostic devices, or endoscope displays), fish finders, one or more suitable measuring instruments, meters (for example, meters for a vehicle, an aircraft, and a vessel), projectors, and/or the like.
In one or more embodiments, an optical member may include the quantum dot of the present disclosure.
The optical member may be a color conversion member.
The color conversion member may include a substrate and a pattern layer formed on the substrate.
The substrate may be a substrate constituting the color conversion member, or may be a region of one or more suitable apparatuses (for example, a display apparatus) in which the color conversion member is located. The substrate may be glass, silicon (Si), silicon oxide (SiOx), and/or a polymer substrate, and the polymer substrate may be polyethersulfone (PES) and/or polycarbonate (PC).
The pattern layer may include the quantum dot in the form of a thin film. For example, the pattern layer may be the quantum dot in the form of a thin film.
The color conversion member including the substrate and the pattern layer may further include a partition wall or a black matrix formed between pattern layers. In some embodiments, the color conversion member may further include a color filter to further improve light conversion efficiency.
In one or more embodiments, the color conversion member may include a red pattern layer capable of emitting red light, a green pattern layer capable of emitting green light, a blue pattern layer capable of emitting blue light, or a combination thereof.
The red pattern layer, green pattern layer, and/or blue pattern layer may be implemented by controlling the component, composition, and/or structure of the quantum dot.
In one or more embodiments, an apparatus may include the quantum dot (or an optical member including the quantum dot).
The apparatus may further include a light source, and the quantum dot (or the optical member including the quantum dot) may be located in the path of light emitted from the light source.
The light source may be to emit blue light, red light, green light, or white light. For example, in some embodiments, the light source may be to emit blue light. In some embodiments, light emitted from the light source may be absorbed by the quantum dot.
The light source may be an organic light-emitting device OLED or a light-emitting diode (LED).
Light emitted from the light source may be photoconverted by the quantum dot while passing through the quantum dot. Accordingly, due to the quantum dot, light having a wavelength that is different from that of light emitted from the light source may be emitted.
For example, in one or more embodiments, the quantum dot may be to absorb and convert light emitted from the light source and emit light having a maximum emission wavelength in a range of about 600 nm to about 2,500 nm.
The apparatus may be a display apparatus, a lighting apparatus, and/or the like.
The light-emitting apparatus of
The substrate 100 may be a flexible substrate, a glass substrate, or a metal substrate. A buffer layer 210 may be located on the substrate 100. The buffer layer 210 may prevent or reduce penetration of impurities through the substrate 100 and may provide a flat surface on the substrate 100.
The TFT may be located on the buffer layer 210. The TFT may include an activation layer 220, a gate electrode 240, a source electrode 260, and a drain electrode 270.
The activation layer 220 may include an inorganic semiconductor such as silicon or polysilicon, an organic semiconductor, or an oxide semiconductor, and may include a source region, a drain region, and a channel region.
A gate insulating film 230 for insulating the activation layer 220 from the gate electrode 240 may be located on the activation layer 220, and the gate electrode 240 may be located on the gate insulating film 230.
An interlayer insulating film 250 may be located on the gate electrode 240. The interlayer insulating film 250 may be located between the gate electrode 240 and the source electrode 260 and between the gate electrode 240 and the drain electrode 270, to insulate the electrodes from one another.
The source electrode 260 and the drain electrode 270 may be located on the interlayer insulating film 250. The interlayer insulating film 250 and the gate insulating film 230 may be formed to expose the source region and the drain region of the activation layer 220, and the source electrode 260 and the drain electrode 270 may be located in contact with the exposed portions of the source region and the drain region of the activation layer 220, respectively.
The TFT is electrically connected to the light-emitting device to drive the light-emitting device, and may be covered and protected by a passivation layer 280. The passivation layer 280 may include an inorganic insulating film, an organic insulating film, or a combination thereof. The light-emitting device may be provided on the passivation layer 280. The light-emitting device may include a first electrode 110, an interlayer 130, and a second electrode 150.
The first electrode 110 may be located on the passivation layer 280. The passivation layer 280 may be located to expose a portion of the drain electrode 270, not fully covering the drain electrode 270, and the first electrode 110 may be located to be connected to the exposed portion of the drain electrode 270.
A pixel defining layer 290 including an insulating material may be located on the first electrode 110. The pixel defining layer 290 may expose a certain region of the first electrode 110, and the interlayer 130 may be formed in the exposed region of the first electrode 110. The pixel defining layer 290 may be a polyimide or polyacrylic organic film. In some embodiments, at least some layers of the interlayer 130 may extend beyond the upper portion of the pixel defining layer 290 to be located in the form of a common layer.
The second electrode 150 may be located on the interlayer 130, and a capping layer 170 may be additionally formed on the second electrode 150. The capping layer 170 may be formed to cover the second electrode 150.
The encapsulation portion 300 may be located on the capping layer 170. The encapsulation portion 300 may be located on the light-emitting device to protect the light-emitting device from moisture and/or oxygen. The encapsulation portion 300 may include: an inorganic film including silicon nitride (SiNx), silicon oxide (SiOx), indium tin oxide, indium zinc oxide, or a combination thereof; an organic film including polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyethylene sulfonate, polyoxymethylene, polyarylate, hexamethyldisiloxane, an acrylic resin (for example, polymethyl methacrylate, polyacrylic acid, and/or the like), an epoxy-based resin (for example, aliphatic glycidyl ether (AGE), and/or the like), or a combination thereof; or a combination of the inorganic film(s) and the organic film(s).
The light-emitting apparatus of
Respective layers included in the hole transport region, the emission layer, and respective layers included in the electron transport region may be formed in a certain region by utilizing one or more suitable methods selected from vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) deposition, ink-jet printing, laser-printing, and laser-induced thermal imaging.
When layers constituting the hole transport region, the emission layer, and layers constituting the electron transport region are formed by vacuum deposition, the deposition may be performed at a deposition temperature of about 100° C. to about 500° C., a vacuum degree of about 10-8 torr to about 10-3 torr, and a deposition speed of about 0.01 Å/sec to about 100 Å/sec, depending on a material to be included in a layer to be formed and the structure of a layer to be formed.
The term “C3-C60 carbocyclic group” as utilized herein refers to a cyclic group including (e.g., consisting of) carbon only as a ring-forming atom and having three to sixty carbon atoms, and the term “C1-C60 heterocyclic group” as utilized herein refers to a cyclic group that has one to sixty carbon atoms and further has, in addition to carbon, a heteroatom as a ring-forming atom. The C3-C60 carbocyclic group and the C1-C60 heterocyclic group may each be a monocyclic group including (e.g., consisting of) one ring or a polycyclic group in which two or more rings are condensed with each other. For example, the C1-C60 heterocyclic group has 3 to 61 ring-forming atoms.
The “cyclic group” as utilized herein may include the C3-C60 carbocyclic group, and the C1-C60 heterocyclic group.
The term “π electron-rich C3-C60 cyclic group” as utilized herein refers to a cyclic group that has three to sixty carbon atoms and does not include *—N═*′ as a ring-forming moiety, and the term “π electron-deficient nitrogen-containing C1-C60 cyclic group” as utilized herein refers to a heterocyclic group that has one to sixty carbon atoms and includes *—N═*′ as a ring-forming moiety.
For example,
The terms “the cyclic group, the C3-C60 carbocyclic group, the C1-C60 heterocyclic group, the π electron-rich C3-C60 cyclic group, or the π electron-deficient nitrogen-containing C1-C60 cyclic group” as utilized herein refer to a group condensed to any cyclic group, a monovalent group, or a polyvalent group (for example, a divalent group, a trivalent group, a tetravalent group, etc.) according to the structure of a formula for which the corresponding term is utilized. In one or more embodiments, “a benzene group” may be a benzo group, a phenyl group, a phenylene group, and/or the like, which may be easily understood by one of ordinary skill in the art according to the structure of a formula including the “benzene group.”
Depending on context, in the present disclosure, a divalent group may refer or be a polyvalent group (e.g., trivalent, tetravalent, etc., and not just divalent) per, e.g., the structure of a formula in connection with which of the terms are utilized.
Non-limiting examples of the monovalent C3-C60 carbocyclic group and the monovalent C1-C60 heterocyclic group may be a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group. Non-limiting examples of the divalent C3-C60 carbocyclic group and the divalent C1-C60 heterocyclic group may be a C3-C10 cycloalkylene group, a C1-C10 heterocycloalkylene group, a C3-C10 cycloalkenylene group, a C1-C10 heterocycloalkenylene group, a C6-C60 arylene group, a C1-C60 heteroarylene group, a divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group.
The term “C1-C60 alkyl group” as utilized herein refers to a linear or branched aliphatic hydrocarbon monovalent group that has one to sixty carbon atoms, and non-limiting examples thereof may be a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, a tert-pentyl group, a neopentyl group, an isopentyl group, a sec-pentyl group, a 3-pentyl group, a sec-isopentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, and a tert-decyl group. The term “C1-C60 alkylene group” as utilized herein refers to a divalent group having substantially the same structure as the C1-C60 alkyl group.
The term “C2-C60 alkenyl group” as utilized herein refers to a monovalent hydrocarbon group having at least one carbon-carbon double bond in the middle or at the terminus of a C2-C60 alkyl group, and non-limiting examples thereof may be an ethenyl group, a propenyl group, and a butenyl group. The term “C2-C60 alkenylene group” as utilized herein refers to a divalent group having substantially the same structure as the C2-C60 alkenyl group.
The term “C2-C60 alkynyl group” as utilized herein refers to a monovalent hydrocarbon group having at least one carbon-carbon triple bond in the middle or at the terminus of a C2-C60 alkyl group, and non-limiting examples thereof may include an ethynyl group and a propynyl group. The term “C2-C60 alkynylene group” as utilized herein refers to a divalent group having substantially the same structure as the C2-C60 alkynyl group.
The term “C1-C60 alkoxy group” as utilized herein refers to a monovalent group represented by -OA101 (wherein A101 is a C1-C60 alkyl group), and non-limiting examples thereof may include a methoxy group, an ethoxy group, and an isopropyloxy group.
The term “C3-C10 cycloalkyl group” as utilized herein refers to a monovalent saturated hydrocarbon cyclic group having 3 to 10 carbon atoms, and non-limiting examples thereof may be a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group (or bicyclo[2.2.1]heptyl group), a bicyclo[1.1.1]pentyl group, a bicyclo[2.1.1]hexyl group, and a bicyclo[2.2.2]octyl group. The term “C3-C10 cycloalkylene group” as utilized herein refers to a divalent group having substantially the same structure as the C3-C10 cycloalkyl group.
The term “C1-C10 heterocycloalkyl group” as utilized herein refers to a monovalent cyclic group of 1 to 10 carbon atoms, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms, and non-limiting examples may be a 1,2,3,4-oxatriazolidinyl group, a tetrahydrofuranyl group, and a tetrahydrothiophenyl group. The term “C1-C10 heterocycloalkylene group” as utilized herein refers to a divalent group having substantially the same structure as the C1-C10 heterocycloalkyl group.
The term “C3-C10 cycloalkenyl group” utilized herein refers to a monovalent cyclic group that has three to ten carbon atoms and at least one carbon-carbon double bond in the ring thereof and no aromaticity, and non-limiting examples thereof may be a cyclopentenyl group, a cyclohexenyl group, and a cycloheptenyl group. The term “C3-C10 cycloalkenylene group” as utilized herein refers to a divalent group having substantially the same structure as the C3-C10 cycloalkenyl group.
The term “C1-C10 heterocycloalkenyl group” as utilized herein refers to a monovalent cyclic group of 1 to 10 carbon atoms, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms, and having at least one carbon-carbon double bond in the cyclic structure thereof. Non-limiting examples of the C1-C10 heterocycloalkenyl group may include a 4,5-dihydro-1,2,3,4-oxatriazolyl group, a 2,3-dihydrofuranyl group, and a 2,3-dihydrothiophenyl group. The term “C1-C10 heterocycloalkenylene group” as utilized herein refers to a divalent group having substantially the same structure as the C1-C10 heterocycloalkenyl group.
The term “C6-C60 aryl group” as utilized herein refers to a monovalent group having a carbocyclic aromatic system of 6 to 60 carbon atoms, and the term “C6-C60 arylene group” as utilized herein refers to a divalent group having a carbocyclic aromatic system of 6 to 60 carbon atoms. Non-limiting examples of the C6-C60 aryl group may be a phenyl group, a pentalenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a heptalenyl group, a naphthacenyl group, a picenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, and an ovalenyl group. When the C6-C60 aryl group and the C6-C60 arylene group each include two or more rings, the rings may be condensed with each other.
The term “C1-C60 heteroaryl group” as utilized herein refers to a monovalent group having a heterocyclic aromatic system of 1 to 60 carbon atoms, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms. The term “C1-C60 heteroarylene group” as utilized herein refers to a divalent group having a heterocyclic aromatic system of 1 to 60 carbon atoms, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms. Non-limiting examples of the C1-C60 heteroaryl group may be a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, a benzoquinolinyl group, an isoquinolinyl group, a benzoisoquinolinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthrolinyl group, a phthalazinyl group, and a naphthyridinyl group. When the C1-C60 heteroaryl group and the C1-C60 heteroarylene group each include two or more rings, the rings may be condensed with each other.
The term “monovalent non-aromatic condensed polycyclic group” as utilized herein refers to a monovalent group (for example, having 8 to 60 carbon atoms) having two or more rings condensed to each other, only carbon atoms as ring-forming atoms, and no aromaticity in its entire molecular structure as a whole. Non-limiting examples of the monovalent non-aromatic condensed polycyclic group may be an indenyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, an indenophenanthrenyl group, and an indeno anthracenyl group. The term “divalent non-aromatic condensed polycyclic group” as utilized herein refers to a divalent group having substantially the same structure as the monovalent non-aromatic condensed polycyclic group described above.
The term “monovalent non-aromatic condensed heteropolycyclic group” as utilized herein refers to a monovalent group (for example, having 1 to 60 carbon atoms) having two or more rings condensed to each other, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms, and having non-aromaticity in its entire molecular structure as a whole. Non-limiting examples of the monovalent non-aromatic condensed heteropolycyclic group may be a pyrrolyl group, a thiophenyl group, a furanyl group, an indolyl group, a benzoindolyl group, a naphthoindolyl group, an isoindolyl group, a benzoisoindolyl group, a naphthoisoindolyl group, a benzosilolyl group, a benzothiophenyl group, a benzofuranyl group, a carbazolyl group, a dibenzosilolyl group, a dibenzothiophenyl group, a dibenzofuranyl group, an azacarbazolyl group, an azafluorenyl group, an azadibenzosilolyl group, an azadibenzothiophenyl group, an azadibenzofuranyl group, a pyrazolyl group, an imidazolyl group, a triazolyl group, a tetrazolyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group, an isothiazolyl group, an oxadiazolyl group, a thiadiazolyl group, a benzopyrazolyl group, a benzimidazolyl group, a benzoxazolyl group, a benzothiazolyl group, a benzoxadiazolyl group, a benzothiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an imidazotriazinyl group, an imidazopyrazinyl group, an imidazopyridazinyl group, an indeno carbazolyl group, an indolocarbazolyl group, a benzofurocarbazolyl group, a benzothienocarbazolyl group, a benzosilolocarbazolyl group, a benzoindolocarbazolyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a benzonaphthosilolyl group, a benzofurodibenzofuranyl group, a benzofurodibenzothiophenyl group, and a benzothienodibenzothiophenyl group. The term “divalent non-aromatic condensed heteropolycyclic group” as utilized herein refers to a divalent group having substantially the same structure as the monovalent non-aromatic condensed heteropolycyclic group described above.
The term “C6-C60 aryloxy group” as utilized herein indicates —OA102 (wherein A102 is a C6-C60 aryl group), and the term “C6-C60 arylthio group” as utilized herein indicates —SA103 (wherein Atos is a C6-C60 aryl group).
The term “C7-C60 arylalkyl group” utilized herein refers to -A104A105 (where A104 may be a C1-C54 alkylene group, and A105 may be a C6-C59 aryl group), and the term C2-C60 heteroarylalkyl group” utilized herein refers to -A106A107 (where A106 may be a C1-C59 alkylene group, and A107 may be a C1-C59 heteroaryl group).
The term “R10a” as utilized herein refers to:
The term “heteroatom” as utilized herein refers to any atom other than a carbon atom. Non-limiting examples of the heteroatom may be O, S, N, P, Si, B, Ge, Se, and a combinations thereof.
The term “third-row transition metal” utilized herein includes hafnium (Hf), tantalum (Ta), tungsten (W), rhenium (Re), osmium (Os), iridium (Ir), platinum (Pt), gold (Au), and/or the like.
The term “Ph” as utilized herein refers to a phenyl group, the term “Me” as utilized herein refers to a methyl group, the term “Et” as utilized herein refers to an ethyl group, the term “tert-Bu” or “But” as utilized herein refers to a tert-butyl group, and the term “OMe” as utilized herein refers to a methoxy group.
The term “biphenyl group” as utilized herein refers to “a phenyl group substituted with a phenyl group.” In other words, the “biphenyl group” is a substituted phenyl group having a C6-C60 aryl group as a substituent.
The term “terphenyl group” as utilized herein refers to “a phenyl group substituted with a biphenyl group.” In other words, the “terphenyl group” is a substituted phenyl group having, as a substituent, a C6-C60 aryl group substituted with a C6-C60 aryl group.
* and *′ as utilized herein, unless defined otherwise, each refer to a binding site to a neighboring atom in a corresponding formula or moiety.
Hereinafter, compounds according to one or more embodiments and light-emitting devices according to one or more embodiments will be described in more detail with reference to the following Synthesis Examples and Examples. The wording “B was utilized instead of A” utilized in describing Synthesis Examples refers to that an identical molar equivalent of B was utilized in place of A.
CuI, GaI3, and InI3 were added to a 3-neck flask at a molar ratio of 2:5:4, and oleylamine (OLA) and trioctylamine solution, which are to be utilized as solvents and ligands, were added thereto at a ratio (e.g., molar ratio) of 1:1. The resultant solution was degassed for 30 minutes in a vacuum condition at 120° C. Separately, S powder and Se powder were each dissolved in OLA to obtain 1 M precursor solutions. Each of the S-OLA solution and the Se-OLA solution were added to the solution in which Cu, Ga, and In precursors were stirred under a nitrogen (N2) or argon (Ar) condition. The total injection of S precursor and Se precursor was three times the Ga in a molar ratio, and the injection ratio (e.g., injection molar ratio) of the S precursor to the Se precursor was 9:1. The temperature of the mixed solution was raised to 220° C. and reacted for 2 hours to synthesize a CIGS core.
In a N2 atmosphere of 120° C., a solution of zinc chloride in acetone and a solution of S-OLA in acetone were respectively injected into the synthesized CIGS core by a magnification of 1.5 times, in a molar ratio, the Group III element added when synthesizing the CIGS core. The temperature was raised to 240° C. and the mixture was reacted for 2 hours. Subsequently, the reaction was terminated after the reaction mixture was subjected to a surface post-treatment with an alkyl thiol and alkyl phosphine solution.
A core was synthesized in substantially the same manner as in synthesizing Quantum dot 1 except that the injection amounts of the S precursor and the Se precursor are as shown in Table 1. For reference, quantum dots in which the molar ratio of Cu is less than 0.05 are rarely formed in the Formula shown in Table 1.
The method of synthesizing Quantum dot 6 is substantially the same as that of synthesizing Quantum dot 1 except that the molar ratio of CuI, GaI3, and InI3 is 4:5:4.
The photoluminescence wavelength of the photoluminescence (PL) spectrum of Quantum dots 1 to 6 was each measured by utilizing an instrument, FluoroMax of Horiba. As the FWHM, a section that is half the maximum value of the PL spectrum was measured. Results thereof are shown in Table 2.
From Table 2, the FWHMs of Quantum dots 1 to 4 were found to be significantly less than the FWHMs of Quantum dots 5 and 6.
According to one or more embodiments of the present disclosure, the quantum dot has a narrow FWHM from red light to near infrared ray, and a light-emitting device and apparatus including the quantum dot may have improved efficiency.
In the present disclosure, when particles are spherical, “diameter” indicates a particle diameter or an average particle diameter, and when the particles are non-spherical, the “diameter” indicates a major axis length or an average major axis length. The diameter (or size) of the particles may be measured utilizing a scanning electron microscope or a particle size analyzer. As the particle size analyzer, for example, HORIBA, LA-950 laser particle size analyzer, may be utilized. When the size of the particles is measured utilizing a particle size analyzer, the average particle diameter (or size) is referred to as D50. D50 refers to the average diameter (or size) of particles whose cumulative volume corresponds to 50 vol % in the particle size distribution (e.g., cumulative distribution), and refers to the value of the particle size corresponding to 50% from the smallest particle when the total number of particles is 100% in the distribution curve accumulated in the order of the smallest particle size to the largest particle size.
In the present disclosure, the emission spectra of given quantum dots (particles of the quantum dot or quantum dot particles) may have the shape of a Gaussian curve. The width of the Gaussian curve may be defined as the full width at half-maximum (FWHM) and may correspond to the size distribution of the particles of the quantum dot. For example, a smaller FWHM corresponds to a narrower quantum dot nanocrystal size distribution.
As utilized herein, the terms “substantially,” “about,” or similar terms are used as terms of approximation and not as terms of degree, and are intended to account for the inherent deviations in measured or calculated values that would be recognized by those of ordinary skill in the art. “About” as used herein, is inclusive of the stated value and means within an acceptable range of deviation for the particular value as determined by one of ordinary skill in the art, considering the measurement in question and the error associated with measurement of the particular quantity (i.e., the limitations of the measurement system). For example, “about” may mean within one or more standard deviations, or within ±30%, 20%, 10%, 5% of the stated value.
Any numerical range recited herein is intended to include all sub-ranges of the same numerical precision subsumed within the recited range. For example, a range of “1.0 to 10.0” is intended to include all subranges between (and including) the recited minimum value of 1.0 and the recited maximum value of 10.0, that is, having a minimum value equal to or greater than 1.0 and a maximum value equal to or less than 10.0, such as, for example, 2.4 to 7.6. Any maximum numerical limitation recited herein is intended to include all lower numerical limitations subsumed therein and any minimum numerical limitation recited in this specification is intended to include all higher numerical limitations subsumed therein. Accordingly, Applicant reserves the right to amend this specification, including the claims, to expressly recite any sub-range subsumed within the ranges expressly recited herein.
The light-emitting device, the light-emitting apparatus, the electronic apparatus, or any other relevant devices or components according to embodiments of the present disclosure described herein may be implemented utilizing any suitable hardware, firmware (e.g., an application-specific integrated circuit), software, or a combination of software, firmware, and hardware. For example, the various components of the device may be formed on one integrated circuit (IC) chip or on separate IC chips. Further, the various components of the device may be implemented on a flexible printed circuit film, a tape carrier package (TCP), a printed circuit board (PCB), or formed on one substrate. Further, the various components of the device may be a process or thread, running on one or more processors, in one or more computing devices, executing computer program instructions and interacting with other system components for performing the various functionalities described herein. The computer program instructions are stored in a memory which may be implemented in a computing device using a standard memory device, such as, for example, a random access memory (RAM). The computer program instructions may also be stored in other non-transitory computer readable media such as, for example, a CD-ROM, flash drive, or the like. Also, a person of skill in the art should recognize that the functionality of various computing devices may be combined or integrated into a single computing device, or the functionality of a particular computing device may be distributed across one or more other computing devices without departing from the scope of the embodiments of the present disclosure.
It should be understood that embodiments described herein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each embodiment should typically be considered as available for other similar features or aspects in other embodiments. While one or more embodiments have been described with reference to the drawings, it will be understood by those of ordinary skill in the art that one or more suitable changes in form and details may be made therein without departing from the spirit and scope as defined by the following claims and equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
10-2023-0009025 | Jan 2023 | KR | national |