Quantum dot solar cell

Information

  • Patent Grant
  • 8227687
  • Patent Number
    8,227,687
  • Date Filed
    Thursday, January 28, 2010
    14 years ago
  • Date Issued
    Tuesday, July 24, 2012
    12 years ago
Abstract
A solar cell is disclosed that may include a quantum dot, an electron conductor, and a bifunctional ligand disposed between the quantum dot and the electron conductor. The bifunctional ligand may include a first anchor group that bonds to the quantum dot and a second anchor group that bonds to the electron conductor. The solar cell may include a hole conductor that is configured to reduce the quantum dot once the quantum dot absorbs a photon and ejects an electron through the bifunctional ligand and into the electron conductor. The hole conductor may be a p-type polymer.
Description
TECHNICAL FIELD

The disclosure relates generally to solar cells and more particularly to quantum dot solar cells.


SUMMARY

The disclosure relates generally to solar cells. In an illustrative but non-limiting example, the disclosure relates to a solar cell that includes a quantum dot layer, an electron conductor layer, an optional bifunctional ligand layer that is disposed between the quantum dot layer and the electron conductor layer, and a polymeric hole conductor layer that is secured relative to the quantum dot layer. The polymeric hole conductor layer may include a substituted quinoline moiety.


In an illustrative but non-limiting example, the disclosure relates to a solar cell that includes a quantum dot, an electron conductor and a bifunctional ligand that joins the quantum dot and the electron conductor. The illustrative solar cell also includes a hole conductor that is of the formula




embedded image



where n is an integer ranging from about 6 to about 12.


In another illustrative but non-limiting example, the disclosure relates to a solar cell that includes a quantum dot, an electron conductor and a hole conductor. The hole conductor may include a substituted quinoline moiety. In some cases, a bifunctional ligand may be disposed between the quantum dot and the electron conductor. In this illustrative embodiment, the bifunctional ligand may be selected from the group of




embedded image


The above summary is not intended to describe each disclosed embodiment or every implementation of the disclosure. The Figures and Description which follow more particularly exemplify these illustrative embodiments.





BRIEF DESCRIPTION OF THE FIGURES

The following description should be read with reference to the drawings, in which like elements in different drawings are numbered in like fashion. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the disclosure. The disclosure may be more completely understood in consideration of the following detailed description of various embodiments in connection with the accompanying drawings, in which:



FIG. 1 is a schematic cross-sectional side view of an illustrative but non-limiting example of a solar cell; and



FIG. 2 is a schematic cross-sectional side view of another illustrative but non-limiting example of a solar cell.





While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.


DESCRIPTION

The following description should be read with reference to the drawings, in which like elements in different drawings are numbered in like fashion. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. Although examples of construction, dimensions, and materials are illustrated for the various elements, those skilled in the art will recognize that many of the examples provided have suitable alternatives that may be utilized.



FIG. 1 is a schematic cross-sectional side view of an illustrative solar cell 10. In the illustrative example shown in FIG. 1, there may be a three-dimensional intermingling or interpenetration of the layers forming solar cell 10, but this is not required. The illustrative solar cell 10 includes a quantum dot layer 12. Quantum dot layer 12 may schematically represent a single quantum dot. In some cases, quantum dot layer 12 may be considered as representing a large number of individual quantum dots. In the illustrative embodiment of FIG. 1, a bifunctional ligand layer 14 is provided, and may schematically represent a single bifunctional ligand, such as those discussed below. In some cases, bifunctional ligand layer 14 may represent a large number of individual bifunctional ligands, with at least some of the bifunctional ligands within bifunctional ligand layer 14 bonded to corresponding quantum dots within quantum dot layer 12. The illustrative solar cell 10 of FIG. 1 also includes an electron conductor layer 16. In some cases, electron conductor layer 16 may be an n-type conductor as discussed below. The illustrative solar cell 10 may further include a hole conductor layer 18. As discussed below, the hole conductor layer 18 may be a p-type conducting electrode layer.


Quantum dot layer 12 may include one quantum dot or a plurality of quantum dots. Quantum dots are typically very small semiconductors, having dimensions in the nanometer range. Because of their small size, quantum dots may exhibit quantum behavior that is distinct from what would otherwise be expected from a larger sample of the material. In some cases, quantum dots may be considered as being crystals composed of materials from Groups II-VI, III-V, or IV-VI materials. The quantum dots employed herein may be formed using any appropriate technique. Examples of specific pairs of materials for forming quantum dots include, but are not limited to, MgO, MgS, MgSe, MgTe, CaO, CaS, CaSe, CaTe, SrO, SrS, SrSe, SrTe, BaO, BaS, BaSe, BaTe, ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, HgO, HgS, HgSe, HgTe, Al2O3, Al2S3, Al2Se3, Al2Te3, Ga2O3, Ga2S3, Ga2Se3, Ga2Te3, In2O3, In2S3, In2Se3, In2Te3, SiO2, GeO2, SnO2, SnS, SnSe, SnTe, PbO, PbO2, PbS, PbSe, PbTe, AN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs and InSb.



FIG. 2 is a schematic cross-sectional side view of an illustrative solar cell that is similar to solar cell 10 (FIG. 1). In some cases, a reflective and/or protecting layer may be disposed over the hole conductor layer, as shown. The reflective and/or protecting layer may be a conductive layer. In some instances, the reflective and/or protecting layer may include a Pt/Au/C film as both catalyst and conductor, but this is not required. Alternatively, or in addition, a flexible and optically transparent substrate, shown at the lower side (in the illustrated orientation) of FIG. 2, may be an electron conductor such as an n-type electron conductor. The n-type electron conductor may be transparent or at least substantially transparent to at least some wavelengths of light within the visible portion of the electromagnetic spectrum.


In some cases, the n-type electron conductor may include or be formed so as to take the form of a structured pattern or array, such as a structured nano-materials or other structured pattern or array, as desired. The structured nanomaterials may include clusters or arrays of nanospheres, nanotubes, nanorods, nanowires, nano-inverse opals, or any other suitable nanomaterials or shapes as desired. The quantum dots are shown electrically coupled to or otherwise disposed on the electron conductor. In at least some embodiments, the quantum dots may be disposed over and “fill in” the structured pattern or array of the electron conductor, as shown in FIG. 2.


It is contemplated that the electron conductor may be formed of any suitable material. In some cases, the electron conductor layer 16 may be an n-type electron conductor. In some instances, the electron conductor layer 16 may be metallic, such as TiO2 or ZnO. In some cases, electron conductor layer 16 may be an electrically conducting polymer such as a polymer that has been doped to be electrically conductive or to improve its electrical conductivity.


As described with respect to FIG. 1, solar cell 10 may include a bifunctional ligand layer 14. In some cases, bifunctional ligand layer 14 may include a single bifunctional ligand or a large number of bifunctional ligands. A bifunctional ligand may, in some cases, be considered as improving electron transfer by reducing the energy barriers for electron transfer. A bifunctional ligand may provide a conduit so that electrons which are ejected by the quantum dots can travel to and through the electron conductor. A bifunctional ligand may, for example, secure the quantum dot relative to the electron conductor and/or any other related structure.


A variety of bifunctional ligands may be used. In an illustrative but non-limiting example, a bifunctional ligand may be 2-[2-ethoxycarbonylmethylsulfanyl)ethyl]-1,3-thiazolidine-4-carboxylic acid, which has the structure:




embedded image


Another illustrative but non-limiting example of a suitable bifunctional ligand is 2-acetylamino-3-benzylsulfanyl propanoic acid, which has the structure:




embedded image


Another illustrative but non-limiting example of a suitable bifunctional ligand is isocysteine, which has the structure:




embedded image


Another illustrative but non-limiting example of a suitable bifunctional ligand is 2-[(2-oxothiolan-3-yl)carbamoylmethylsulfanyl]acetic acid, which has the structure:




embedded image


Another illustrative but non-limiting example of a suitable bifunctional ligand is phytic acid, which has the structure:




embedded image


Another illustrative but non-limiting example of a suitable bifunctional ligand is pentetic acid, which has the structure:




embedded image


As discussed with respect to FIG. 1, the illustrative solar cell 10 may include a hole conductor layer 18. A variety of hole conductor materials are contemplated. For example, hole conductor layer 18 may be formed of a p-type electrically conductive polymer. In some instances, hole conductor layer 18 may be formed of or otherwise include:




embedded image



as a repeating unit, where n is an integer ranging from about 6 to about 12. In some cases, such a material may be formed via a Williamson ether synthesis process by combining an appropriate hydroxy-terminated alkyl thiophene with 5-chloromethyl-8-hydroxy quinoline in the presence of sodium hydride.


Another illustrative but non-limiting example of a polymeric material suitable for forming hole conductor 18 may be formed by combining poly(3,6-hydroxyhexyl thiophene) with 5-chloromethyl-8-hydroxy quinoline in the presence of sodium hydride to provide the following structure as a repeating unit:




embedded image


Another illustrative but non-limiting example of a polymeric material suitable for forming hole conductor 18 may be formed by combining poly(3,11-hydroxyundecyl thiophene) with 5-chloromethyl-8-hydroxy quinoline in the presence of sodium hydride to provide the following structure as a repeating unit:




embedded image


Another illustrative but non-limiting example of a polymeric material suitable for forming hole conductor 18 may be formed by combining poly(3,12-hydroxydodecyl thiophene) with 5-chloromethyl-8-hydroxy quinoline in the presence of sodium hydride to provide the following structure as a repeating unit:




embedded image


A particular example solar cell may have the following structure: an electron conductor including TiO2; a bifunctional ligand including 2-[2-(ethoxycarbonylmethylsulfanyl)ethyl]-1,3-thiazolidine-4-carboxylic acid; CdSe and/or other quantum dots; and a hole conductor including poly(3,6-hydroxyhexyl thiophene) functionalized with 5-chloromethyl-8-hydroxyquinoline as pendant group.


Another particular example solar cell may have the following structure: an electron conductor including TiO2; a bifunctional ligand including 2-acetylamino-3-benzylsulfanyl-propanoic acid; CdSe and/or other quantum dots; and a hole conductor including poly(3,6-hydroxyhexyl thiophene) functionalized with 5-chloromethyl-8-hydroxyquinoline as pendant group.


Another particular example solar cell may have the following structure: an electron conductor including TiO2; a bifunctional ligand including isocysteine; CdSe and/or other quantum dots; and a hole conductor including poly(3,6-hydroxyhexyl thiophene) functionalized with 5-chloromethyl-8-hydroxyquinoline as pendant group.


Another particular example solar cell may have the following structure: an electron conductor including TiO2; a bifunctional ligand including 2-[(2-oxothiolan-3-yl)carbamoylmethylsulfanyl]acetic acid; CdSe and/or other quantum dots; and a hole conductor including poly(3,6-hydroxyhexyl thiophene) functionalized with 5 chloromethyl-8-hydroxylquinoline as pendant group.


Another particular example solar cell may have the following structure: an electron conductor including TiO2; a bifunctional ligand including phytic acid; CdSe and/or other quantum dots; and a hole conductor including poly(3,6-hydroxyhexyl thiophene) functionalized with 5-chloromethyl-8-hydroxyquinoline as pendant group.


Another particular example solar cell may have the following structure: an electron conductor including TiO2; a bifunctional ligand including pentetic acid; CdSe and/or other quantum dots; and a hole conductor including poly(3,6-hydroxyhexyl thiophene) functionalized with 5-chloromethyl-8-hydroxyquinoline as pendant group.


Another particular example solar cell may have the following structure: an electron conductor including TiO2; a bifunctional ligand including 2-[2-(ethoxycarbonylmethylsulfanyl)ethyl]-1,3-thiazolidine-4-carboxylic acid; CdSe and/or other quantum dots; and a hole conductor including poly(3,11-hydroxyundecyl thiophene) with 5-chloromethyl-8-hydroxyquinoline as pendant group.


Another particular example solar cell may have the following structure: an electron conductor including TiO2; a bifunctional ligand including 2-acetylamino-3 benzylsulfanyl-propanoic acid; CdSe and/or other quantum dots; and a hole conductor including poly(3,11-hydroxyundecyl thiophene) with 5-chloromethyl-8-hydroxyquinoline as pendant group.


Another particular example solar cell may have the following structure: an electron conductor including TiO2; a bifunctional ligand including isocysteine; CdSe and/or other quantum dots; and a hole conductor including poly(3,11-hydroxyundecyl thiophene) with 5-chloromethyl-8-hydroxyquinoline as pendant group.


Another particular example solar cell may have the following structure: an electron conductor including TiO2; a bifunctional ligand including 2-[(2-oxothiolan-3-yl)carbamoylmethylsulfanyl]acetic acid; CdSe and/or other quantum dots; and a hole conductor including poly(3,11-hydroxyundecyl thiophene) with 5-chloromethyl-8-hydroxyquinoline as pendant group.


Another particular example solar cell may have the following structure: an electron conductor including TiO2; a bifunctional ligand including phytic acid; CdSe and/or other quantum dots; and a hole conductor including poly(3,11-hydroxyundecyl thiophene) with 5-chloromethyl-8-hydroxyquinoline as pendant group.


Another particular example solar cell may have the following structure: an electron conductor including TiO2; a bifunctional ligand including pentetic acid; CdSe and/or other quantum dots; and a hole conductor including poly(3,11-hydroxyundecyl thiophene) with 5-chloromethyl-8-hydroxyquinoline as pendant group.


Another particular example solar cell may have the following structure: an electron conductor including TiO2; a bifunctional ligand including 2-[2-(ethoxycarbonylmethylsulfanyl)ethyl]-1,3-thiazolidine-4-carboxylic acid; CdSe and/or other quantum dots; and a hole conductor including poly(3,12-hydroxydodecyl thiophene) with 5-chloromethyl-8-hydroxyquinoline as pendant group.


Another particular example solar cell may have the following structure: an electron conductor including TiO2; a bifunctional ligand including 2-acetylamino-3 benzylsulfanyl-propanoic acid; CdSe and/or other quantum dots; and a hole conductor including poly(3,12-hydroxydodecyl thiophene) with 5-chloromethyl-8-hydroxyquinoline, as pendant group.


Another particular example solar cell may have the following structure: an electron conductor including TiO2; a bifunctional ligand including isocysteine; CdSe and/or other quantum dots; and a hole conductor including poly(3,12-hydroxydodecyl thiophene) with 5-chloromethyl-8 hydroxyquinoline, as pendant group.


Another particular example solar cell may have the following structure: an electron conductor including TiO2; a bifunctional ligand including 2-[(2-oxothiolan-3-yl)carbamoylmethylsulfanyl]acetic acid; CdSe and/or other quantum dots; and a hole conductor including poly(3,12-hydroxydodecyl thiophene) with 5-chloromethyl-8-hydroxyquinoline, as pendant group.


Another particular example solar cell may have the following structure: an electron conductor including TiO2; a bifunctional ligand including phytic acid; CdSe and/or other quantum dots; and a hole conductor including poly(3,12-hydroxydodecyl thiophene) with 5-chloromethyl-8-hydroxyquinoline as pendant group.


Another particular example solar cell may have the following structure: an electron conductor including TiO2; a bifunctional ligand including pentetic acid; CdSe and/or other quantum dots; and a hole conductor including poly(3,12-hydroxydodecyl thiophene) with 5-chloromethyl-8-hydroxyquinoline as pendant group. These are merely examples and are not intended to be limiting in any way.


The disclosure should not be considered limited to the particular examples described above, but rather should be understood to cover all aspects of the invention as set out in the attached claims. Various modifications, equivalent processes, as well as numerous structures to which the invention can be applicable will be readily apparent to those of skill in the art upon review of the instant specification.

Claims
  • 1. A solar cell, comprising: a quantum dot layer comprising a plurality of quantum dots;an electron conductor layer;a bifunctional ligand layer disposed between the quantum dot layer and the electron conductor layer; anda polymeric hole conductor layer secured relative to the quantum dot layer, the polymeric hole conductor layer comprising monomers having a substituted quinoline moiety disposed at a terminal end thereof.
  • 2. The solar cell of claim 1, wherein the bifunctional ligand layer comprises
  • 3. The solar cell of claim 1, wherein the bifunctional ligand layer comprises
  • 4. The solar cell of claim 1, wherein the bifunctional ligand layer comprises
  • 5. The solar cell of claim 1, wherein the bifunctional ligand layer comprises
  • 6. The solar cell of claim 1, wherein the bifunctional ligand layer comprises
  • 7. The solar cell of claim 1, wherein the bifunctional ligand layer comprises
  • 8. The solar cell of claim 1, wherein the polymeric hole conductor layer comprises
  • 9. The solar cell of claim 1, wherein the polymeric hole conductor layer comprises
  • 10. The solar cell of claim 1, wherein the polymeric hole conductor layer comprises
  • 11. The solar cell of claim 1, wherein the polymeric hole conductor layer comprises
  • 12. A solar cell, comprising: a quantum dot;an electron conductor;a bifunctional ligand disposed between the quantum dot and the electron conductor, the bifunctional ligand bonded to the quantum dot and the electron conductor; anda hole conductor secured relative to the quantum dot layer, the hole conductor comprising
  • 13. The solar cell of claim 12, wherein the bifunctional ligand comprises
  • 14. The solar cell of claim 12, wherein the bifunctional ligand comprises
  • 15. The solar cell of claim 12, wherein the bifunctional ligand comprises
  • 16. The solar cell of claim 12, wherein the bifunctional ligand comprises
  • 17. The solar cell of claim 12, wherein the bifunctional ligand comprises
  • 18. The solar cell of claim 12, wherein the bifunctional ligand comprises
  • 19. A solar cell, comprising: a quantum dot;an electron conductor;a bifunctional ligand disposed between the quantum dot and the electron conductor, the bifunctional ligand being selected from the group consisting of
  • 20. The solar cell of claim 19, wherein the hole conductor comprises
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. §119 to U.S. Provisional Application Ser. No. 61/149,891 entitled “QUANTUM DOT SOLAR CELL” filed Feb. 4, 2009, the entirety of which is incorporated herein by reference.

US Referenced Citations (48)
Number Name Date Kind
4427749 Graetzel et al. Jan 1984 A
4927721 Gratzel et al. May 1990 A
5677545 Shi et al. Oct 1997 A
6278056 Sugihara et al. Aug 2001 B1
6566595 Suzuki May 2003 B2
6861722 Graetzel et al. Mar 2005 B2
6919119 Kalkan et al. Jul 2005 B2
6936143 Graetzel et al. Aug 2005 B1
7032209 Kobayashi Apr 2006 B2
7042029 Graetzel et al. May 2006 B2
7091136 Basol Aug 2006 B2
7202412 Yamanaka et al. Apr 2007 B2
7202943 Chang et al. Apr 2007 B2
7268363 Lenhard et al. Sep 2007 B2
7462774 Roscheisen et al. Dec 2008 B2
7563507 Emrick et al. Jul 2009 B2
7655860 Parsons Feb 2010 B2
20050028862 Miteva et al. Feb 2005 A1
20060021647 Gui et al. Feb 2006 A1
20060169971 Cho et al. Aug 2006 A1
20060263908 Hirai Nov 2006 A1
20070025139 Parsons Feb 2007 A1
20070028959 Lee et al. Feb 2007 A1
20070062576 Duerr et al. Mar 2007 A1
20070119048 Li et al. May 2007 A1
20070120177 McGregor et al. May 2007 A1
20070122927 Li et al. May 2007 A1
20070123690 Parham et al. May 2007 A1
20070243718 Shiratori et al. Oct 2007 A1
20080110494 Reddy May 2008 A1
20080264479 Harris et al. Oct 2008 A1
20090114273 Kamat May 2009 A1
20090159120 Wang et al. Jun 2009 A1
20090159124 Mihaila et al. Jun 2009 A1
20090159131 Zheng et al. Jun 2009 A1
20090159999 Zheng et al. Jun 2009 A1
20090211634 Serban et al. Aug 2009 A1
20090260682 Serban et al. Oct 2009 A1
20090260683 Serban et al. Oct 2009 A1
20090283142 Serban et al. Nov 2009 A1
20090308442 Liu Dec 2009 A1
20100006148 Zheng et al. Jan 2010 A1
20100012168 Mihaila et al. Jan 2010 A1
20100012191 Serban et al. Jan 2010 A1
20100043874 Liu Feb 2010 A1
20100116326 Gur et al. May 2010 A1
20100193025 Serban et al. Aug 2010 A1
20100326499 Liu Dec 2010 A1
Foreign Referenced Citations (10)
Number Date Country
1473745 Nov 2004 EP
1689018 Aug 2006 EP
1936644 Jun 2008 EP
2008177099 Jul 2008 JP
WO 2004017345 Feb 2004 WO
WO 2006073562 Jul 2006 WO
WO 2006099386 Sep 2006 WO
WO 2006119305 Nov 2006 WO
WO 2007098378 Aug 2007 WO
WO 2007100600 Sep 2007 WO
Related Publications (1)
Number Date Country
20100193026 A1 Aug 2010 US
Provisional Applications (1)
Number Date Country
61149891 Feb 2009 US