This disclosure relates to the field of laser technology, and in particular to a quantum well structure, a method for processing a chip, and a chip.
Distributed feedback (DFB) laser chip structures mainly include N electrodes, multilayer quantum well epitaxial structures, Bragg grating layers, ridge waveguides, and P-type electrodes. Primarily, population reversion is formed by the multilayer quantum well structure under the action of a forward current, so as to form excited radiation and generate laser light.
The multilayer quantum well structure is the key to generate laser light. According to the principle of laser light, a threshold current of a laser chip is mainly related to a quantum-well confinement parameter. When the quantum-well confinement parameter is larger, the threshold current of the laser chip is smaller. However, according to an existing quantum well structure and a processing process, the confinement parameter is relatively small, the threshold current of the chip is relatively larger, and a transmission rate of the laser chip is seriously affected.
To achieve the foregoing purpose of the present disclosure, following technical solutions are adopted in the present disclosure.
In a first aspect, a quantum well structure for a distributed feedback (DFB) laser chip is provided in implementations of the present disclosure, and includes multiple indium aluminum arsenide (InAlAs) quantum well layers and multiple indium aluminum gallium arsenide (InAlGaAs) quantum well layers. A thickness of each of the multiple InAlGaAs quantum well layers is the same as a thickness of each of the multiple InAlAs quantum well layers, and one InAlGaAs quantum well layer is disposed between two adjacent InAlAs quantum well layers. The thickness of each of the multiple InAlAs quantum well layers ranges from 0.4 nm to 0.6 nm, and the number of the multiple InAlAs quantum well layers ranges from 3 to 17.
In a second aspect, a method for processing a chip is provided in implementations of the present disclosure, and includes the following. A chip-layer group is processed on a substrate. Part of the chip-layer group is removed to form a waveguide region. A capping layer is processed by growth. The capping layer at the waveguide region is processed into a waveguide strip with an end surface facing the chip-layer group. Part of the waveguide strip attached to the chip-layer group is removed to define a gap between the waveguide strip and the chip-layer group. A waveguide cladding is removed. The waveguide cladding corresponding to the chip-layer group and the waveguide cladding corresponding to the gap are removed.
In a third aspect, a chip is provided in implementations of the present disclosure, and includes a substrate, a chip-layer group, a waveguide strip, and a waveguide cladding. The chip-layer group has a chip region and a waveguide region. The chip-layer group is disposed at the chip region of the substrate. The chip-layer group includes a buffer layer with a thickness of 1 μm-1.5 μm on the substrate, a lower graded-buffer-layer with a thickness of 10 nm-100 nm, a quantum well structure with a thickness of 10 nm-30 nm, an upper graded-buffer-layer with a thickness of 10 nm-100 nm, a grating layer, and a corrosion stop layer with a thickness of 10 nm-50 nm. The quantum well structure includes multiple InAlAs quantum well layers and multiple InAlGaAs quantum well layers. A thickness of each of the multiple InAlGaAs quantum well layers is the same as a thickness of each of the multiple InAlAs quantum well layers, and one InAlGaAs quantum well layer is disposed between two adjacent InAlAs quantum well layers. The thickness of each of the multiple InAlAs quantum well layers ranges from 0.4 nm to 0.6 nm, and the number of the multiple InAlAs quantum well layers ranges from 3 to 17. The waveguide strip is spaced apart from the chip-layer group and integrated at the waveguide region of the substrate, and is configured to guide a light spot of laser light emitted to be substantially circular. The waveguide cladding is deposited on the waveguide strip.
The accompanying drawings herein, which are incorporated into the specification and constitute a part of the specification, illustrate implementations consistent with the present disclosure and serve to explain the principles of the present disclosure together with the specification.
To explain technical solutions in implementations of the present disclosure or in the related art more clearly, the following will give a brief introduction to the accompanying drawings which are needed to be used in the description of implementations or the related art. Apparently, for those of ordinary skill in the art, other accompanying drawings can be obtained according to these accompanying drawings without creative efforts.
100—substrate; 200—chip-layer group; 300—waveguide strip; 400—capping layer; 500—waveguide cladding; 600—epitaxial layer; 700—contact epitaxial layer; 800—upper negative-electrode layer; 900—lower negative-electrode layer; 210—buffer layer; 220—lower graded-buffer-layer; 230—quantum-well-layer group; 240—upper graded-buffer-layer; 250—grating layer; 260—corrosion stop layer; 221—second lower-graded-layer; 241—second upper-graded-layer; 231—indium aluminum arsenide (InAlAs) quantum well layer; 232—indium aluminum gallium arsenide (InAlGaAs) quantum well layer.
In order to make a purpose, a technical solution, and an advantage of implementations of the present disclosure clearer, the technical solution of the implementations of the present disclosure will be described clearly and completely in conjunction with accompanying drawings in the implementations of the present disclosure. Obviously, described implementations are part of the implementations of the present disclosure, not all of the implementations. All other implementations obtained by those of ordinary skill in the art based on implementations of the present disclosure without creative efforts shall belong to the scope of protection of the present disclosure. Therefore, the following detailed description of the embodiments of the present disclosure provided in the accompanying drawings shall not be intended to limit the scope of protection of the present disclosure, but merely represent selected implementations of the present disclosure. All other implementations obtained by those of ordinary skill in the art based on implementations of the present disclosure without creative efforts shall belong to the scope of protection of the present disclosure.
A method for processing a chip, a chip, and a laser are provided in implementations. The chip is formed by the method for processing the chip. The laser is mounted with the chip. The method for processing the chip includes the following. A chip-layer group 200 is processed on the substrate 100. Part of the chip-layer group 200 is removed to form a waveguide region. A capping layer 400 is processed by growth. The capping layer 400 at the waveguide region is processed into a waveguide strip 300 with an end surface facing the chip-layer group 200. Part of the waveguide strip 300 attached to the chip-layer group 200 is removed to define a gap between the waveguide strip 300 and the chip-layer group 200. A waveguide cladding 500 is processed, and the waveguide cladding 500 corresponding to the chip-layer group 200 and the waveguide cladding 500 corresponding to the gap are removed. The waveguide strip 300 can shape laser light emitted by the chip-layer group 200, such that a light spot of the laser emitted is like a circle, the shape of the light spot emitted by the laser chip is improved, and coupling efficiency between the laser chip and an optical fiber is improved.
In implementations, a method for processing a chip includes the following.
At 1, referring to
Specifically, the chip-layer group 200 is processed on the substrate 100 by using a metal organic chemical vapor deposition (MOCVD) device as follows. In sequence, on the substrate 100, an indium phosphide (InP) buffer layer 210 with a thickness of 1 μm-1.5 μm is grown; an indium aluminum gallium arsenide (InAlGaAs) lower graded-buffer-layer 220 with a thickness of 10 nm-100 nm is grown; an indium aluminum arsenide (InAlAs)/InAlGaAs quantum-well-layer group 230 (i.e., a quantum well structure) with a thickness of 10 nm-30 nm is grown; an InAlGaAs upper graded-buffer-layer 240 with a thickness of 10 nm-100 nm is grown; a grating epitaxial layer with a thickness of 10 nm-50 nm is grown, and the grating epitaxial layer is processed by an electron beam grating-writing process to form a grating layer 250; and an indium gallium arsenide phosphide (InGaAsP) corrosion stop layer 260 with a thickness of 10 nm-50 nm is grown, and preferably, an InGaAsP corrosion stop layer with a thickness of 15 nm is processed by an MOCVD process.
As shown in
Referring to
The second lower-graded-layer 221 with a relatively thin thickness is grown first by the MBE process, so as to prepare for the subsequent MBE growth of the InAlAs quantum well layer and the InAlGaAs quantum well layer, such that it is avoided that when the InAlAs quantum well layer or InAlAs quantum well layer is grown directly, an Al element is oxidized during growth, thereby resulting in a failure of a device.
Multiple quantum well layers are processed by the MBE process, and each quantum well layer has a thickness of 0.4 nm-0.6 nm.
Specifically, an InAlAs quantum well layer 231 with a thickness of 0.5 nm and an InAlGaAs quantum well layer 232 with a thickness of 0.5 nm are alternately grown by the MBE process. Six InAlAs quantum well layers 231 are processed, five InAlGaAs quantum well layers 232 are processed, and one InAlAs quantum well layer 231 is on the outside of the multiple quantum well layers.
An upper-graded-layer group includes a first upper-graded-layer with a thickness of 50 nm and a second upper-graded-layer 241 with a thickness of 10 nm. The second upper-graded-layer 241 is processed on an outer InAlAs quantum well layer 231 by the MBE process, and the first upper-graded-layer is processed on the second upper-graded-layer 241 by the MOCVD process. The first upper-graded-layer and the first lower-graded-layer each are made of InAlxGaAs.
A relatively thin first upper-graded-layer is generated first by the MBE process, so that when transferred from an MBE device to an MOCVD device, oxidation failure of the InAlAs quantum well layer or the InAlGaAs quantum well layer can be avoided.
At 2, referring to
Specifically, with the aid of the MOCVD device, an InP capping layer 400 with a thickness of 0.5 μm-2 μm is processed by a vapor phase epitaxy (VPE) growth.
At 3, referring to
Specifically, the capping layer 400 at the waveguide region is processed into the waveguide strip 300 with a square cross section by a photoetching process and an ICP dry etching process. An edge length of the cross section of the waveguide strip 300 ranges from 0.5 μm to 2 μm. A refractive index of the waveguide strip 300 is 3.1. The gap between the waveguide strip 300 and the chip-layer group 200 is defined as d3, where d3 ranges from 1 μm to 5 μm.
At 4, referring to
Specifically, a SiO2 waveguide cladding 500 is deposited by using a plasma-enhanced chemical vapor deposition (PECVD) device, and a deposition thickness ranges from 2 μm to 3 μm. Since the refractive index of the waveguide strip 300 is 3.1 and a refractive index of the SiO2 waveguide cladding 500 is 1.46, the waveguide strip 300 can be made of an InP material, and the waveguide cladding 500 can be made of SiO2.
At 5, referring to
Specifically, a waveguide layer at an upper part of the chip-layer group 200 and a waveguide layer at a gap part are removed by the photoetching process and the wet etching process. In implementations, the waveguide layer at a region corresponding to the gap is removed in a vertical laser-emitting direction.
At 6, referring to
Specifically, an InP epitaxial layer 600 with a thickness of 1 μm-2 μm is first grown by using the MOCVD device, and then an indium gallium arsenide (InGaAs) contact epitaxial layer 700 with a thickness of 0.1 μm-0.3 μm is grown.
At 7, referring to
Specifically, the InP epitaxial layer 600 corresponding to the waveguide region and the InGaAs contact epitaxial layer 700 corresponding to the waveguide region are removed by the photoetching process and the wet etching process.
Then, in combination with an existing manufacturing process of a distributed feedback (DFB) laser chip, a backside thinning process and a polishing process are performed on a ridge waveguide, and a coating process is performed on a positive electrode, a negative electrode, a cleavage, and an end surface, so as to form a final DFB laser chip with a waveguide structure. In
In implementations, MOCVD is a new type of VPE growth technology developed on the basis of VPE growth. MOCVD means that organic compounds of group III elements and group II elements, hydrides of group V elements and group VI elements, etc., are used as materials of crystal growth source, and VPE is performed on the substrate 100 in a manner of a thermal decomposition reaction, so as to grow a variety of group III-V compound semiconductors and group II-VI compound semiconductors, and thin-layer single-crystal materials of polybasic solid solutions thereof. In represents chemical element indium, P represents chemical element phosphorus, Al represents chemical element aluminum, Ga represents chemical element gallium, As represents chemical element arsenic, the PECVD device is a plasma-enhanced chemical vapor deposition device, and the DFB laser is a distributed feedback laser.
A chip is processed by combining the MOCVD process and the MBE process, and the thickness of a quantum well layer is controlled to ranges from 0.4 nm to 0.6 nm by the MBE process, such that the thickness of a quantum well structure is reduced and the transmission rate of the chip is increased; and in the meanwhile, quantum-well confinement parameter Γ is increased, such that the threshold current of the chip is reduced, and the transmission rate of the chip is increased.
A quantum well structure is further provided in implementations. The quantum well structure includes an InAlAs quantum well layer 231 and an InAlGaAs quantum well layer 232. The InAlAs quantum well layer 231 is implemented as multiple InAlAs quantum well layers 231. Thickness of the InAlGaAs quantum well layer 232 is the same as the thickness of the InAlAs quantum well layer 231, and one InAlGaAs quantum well layer 232 is disposed between two adjacent InAlAs quantum well layers 231. The thickness of the InAlAs quantum well layer 231 ranges from 0.4 nm to 0.6 nm, and the number of (that is, how many) InAlAs quantum layers 231 ranges from 3 to 17. Quantum-well confinement parameter Γ is expressed by a following formula: Γ(2π2/λ2)(d/dw)(nra2−nrc2), where λ is a lasing wavelength, and d is a thickness of an active region, i.e., a thickness of the whole quantum well structure, dw is a thickness of a single-layer quantum well. In the solution of implementations, the quantum well structure is formed by alternately stacking quantum well layers of two materials, namely the InAlAs quantum well layer 231 and the InAlGaAs quantum well layer 232. The thickness of the InAlAs quantum well layer 231 is the same as the thickness of the InAlGaAs quantum well layer 232, so dw may be the thickness of the InAlAs quantum well layer 231 or the thickness of the InAlGaAs quantum well layer 232, nra is the refractive index of the InAlGaAs material, and nrc is the refractive index of the InAlAs material. For example, the number of InAlAs quantum well layers is 17, the number of InAlGaAs quantum well layers is 16, the thickness of the InAlAs quantum well layer is 0.6, and the value of d is 19.8 nm, and the ratio of d/dw is 33. According to the formula, it can be seen that under the condition that the value of d is constant, the value of d/dw can be increased by reducing the thickness of InAlAs quantum well layer and the thickness of the InAlAs quantum well layer, such that quantum-well confinement parameter Γ is increased, the threshold current of the chip is reduced, and the transmission rate of the chip is increased.
In the solution, the MOCVD process is combined with the MBE process. The MBE process is adopted to perform epitaxial growth of the quantum well layer, and the MOCVD process is adopted to process various epitaxial growth layers except the quantum well layer. The method for processing the chip includes the following. The buffer layer and the lower-graded-layer group are processed on the substrate in sequence. The multiple quantum well layers are processed by the MBE process. The thickness of each quantum well layer ranges from 0.4 nm to 0.6 nm. The upper-graded-layer group is processed. The capping layer, the corrosion stop layer, a top layer, a transition layer, and a contact layer are processed by the VPE grown. The thickness of the quantum well layer is controlled by the MBE process to range from 0.4 nm to 0.6 nm. Therefore, the thickness of the quantum well structure is reduced, such that the transmission rate of the chip is increased; and in the meanwhile, quantum-well confinement parameter Γ is increased, such that the threshold current of the chip is reduced, and the transmission rate of the chip is increased.
Referring to
In the solution, the thicknesses of the InAlAs quantum well layer 231 is the same as the thickness of the InAlGaAs quantum well layer 232. The thickness of the InAlAs quantum well layer 231 ranges from 0.4 nm to 0.6 nm. Preferably, the thickness of the InAlAs quantum well layer 231 and the thickness of the InAlGaAs quantum well layer 232 each are 0.5 nm. The number of the InAlAs quantum well layers 231 ranges from 3 to 17, preferably 6.
The thickness of the quantum well layer is defined as dw. Since the thicknesses of InAlAs quantum well layer 231 is the same as the thickness of the InAlGaAs quantum well layer 232, dw may be the thickness of InAlAs quantum well layer 231 or the thickness of the InAlGaAs quantum well layer 232. The thickness of the quantum well structure is defined as d. When the number of the InAlAs quantum well layers 231 is 6, the number of the InAlGaAs quantum well layers 232 is 5, and the thickness of the InAlAs quantum well layer 231 is 0.5 nm, the thickness d of the quantum well structure is 5.5 nm. In the InAlGaAs quantum well layer 232, a mass percentage of In is 53%, a mass percentage of Al is 36%, and a mass percentage of Ga and a mass percentage of As sum to 11%.
Quantum-well confinement parameter Γ is expressed by a following formula: Γ=(22/λ2)(d/dw)(nra2−nrc2), where λ is a lasing wavelength, nra is a refractive index of an InAlGaAs material, and nrc is a refractive index of an InAlAs material. Under the condition that the thickness of the quantum well structure is constant, when the thickness of the quantum well layer is reduced, a ratio of d/dw is increased, so a value of Γ is increased. With the increase of the quantum-well confinement parameter, the threshold current of the chip is reduced, thereby increasing the transmission rate of the chip.
A chip is further provided in implementations. As shown in
The foregoing quantum-well-layer group 230 (i.e., the quantum well structure) is adopted in the chip-layer group 200. The thickness of the InAlAs quantum well layer 231 and the thickness of the InAlGaAs quantum well layer 232 each are small, such that quantum-well confinement parameter Γ is increased, the threshold current of the chip is reduced, and the transmission rate is increased.
As shown in
According to a formula Δθ=2λ/a, Δθ is an emitting divergence angle of laser light, λ is an emitting wavelength, and a is a linewidth of an emitting end surface. Since the cross section of the waveguide strip 300 is square, a light spot of emitted from the waveguide strip 300 is like a circular light spot, thereby improving the coupling efficiency between the laser chip and the optical fiber.
A laser is further provided in implementations. The laser is mounted with the foregoing chip.
The quantum well structure, the method for processing the chip, the chip, and the laser are provided in implementations. The quantum well structure is processed by the MBE process, other epitaxial layers are processed by the MOCVD process except the quantum well structure. The quantum well structure includes quantum well layers formed by two materials, namely, the InAlAs quantum well layer 231 and the InAlGaAs quantum well layer 232. The InAlAs quantum well layer 231 and InAlGaAs quantum well layer 232 are alternately arranged, and the InAlAs quantum well layer 231 is one the outside of the quantum well structure. The thickness of the InAlAs quantum well layer 231 is the same as the thickness of the InAlGaAs quantum well layer 232. The thickness of the InAlAs quantum well layer 231 ranges from 0.4 nm to 0.6 nm. The number of InAlAs quantum well layers 231 ranges from 3 to 17. Quantum-well confinement parameter Γ is expressed by the following formula: Γ=(2π2/λ2)(d/dw)(nra2−nrc2), where λ is the lasing wavelength, nra is the refractive index of the InAlGaAs material, and nrc is the refractive index of the InAlAs material. The thickness of the quantum well layer is reduced by the MBE process, and under the condition that the thickness of the quantum well structure is constant, the ratio of the thickness d of the quantum well structure to the thickness dw of the single-layer quantum well layer is increased, so the value of Γ is increased. With the increase of the quantum-well confinement parameter, the threshold current of the chip is reduced, thereby increasing the transmission rate of the chip.
In the method for processing the chip, the chip-layer group is processed on the substrate, the part of the chip-layer group is removed to form the waveguide region, the capping layer is processed by the growth, the capping layer at the waveguiding region is processed into the waveguide strip with the end surface facing the chip-layer group, and the part of the waveguide strip attached to the chip-layer group is removed to define the gap between the waveguide strip and the chip-layer group. The waveguide strip can shape the laser light emitted by the chip-layer group, so that the light spot of the laser light emitted is like a circle, the shape of the light spot emitted by the laser chip is improved, and the coupling efficiency between the laser chip and the optical fiber is improved. The quantum-well-layer group in the chip-layer group adopts the foregoing quantum well structure.
The laser is mounted with the foregoing chip. The chip may only have the waveguide strip, or only have the foregoing quantum well structure, or simultaneously have the waveguide strip and the foregoing quantum well structure.
It should be noted that relational terms herein such as “first” and “second” are merely used to distinguish one entity or operation from another, and do not necessarily require or imply that any actual relationship or sequence exists between these entities or operations. In addition, the terms “include”, “comprise”, or any other variant is intended to cover a non-exclusive inclusion, so that a process, a method, an article, or a device that includes a list of elements not only includes those elements but also includes other elements that are not expressly listed, or further includes elements inherent to such a process, method, article, or device. An element preceded by “includes a . . . ” does not, without more constraints, preclude the presence of additional identical elements in the process, method, article, or device that includes the element.
The foregoing descriptions are merely specific implementations of the present disclosure, so that those skilled in the art can understand or implement the present disclosure. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other implementations without departing from the general inventive concept of the present disclosure. Therefore, the present disclosure will not be limited to implementations illustrated herein but is to be accorded the widest scope consistent with the principles and novel features applied herein.
Number | Date | Country | Kind |
---|---|---|---|
202011606707.9 | Dec 2020 | CN | national |
202011614713.9 | Dec 2020 | CN | national |
202023289626.9 | Dec 2020 | CN | national |
202023340352.1 | Dec 2020 | CN | national |
This application is a continuation of International Application No. PCT/CN2021/135908, filed Dec. 7, 2021, which claims priority to Chinese Patent Application No. 202011606707.9, filed Dec. 30, 2020, claims priority to Chinese Patent Application No. 202023289626.9, filed Dec. 30, 2020, claims priority to Chinese Patent Application No. 202011614713.9, filed Dec. 30, 2020, claims priority to Chinese Patent Application No. 202023340352.1, filed Dec. 30, 2020, the entire disclosures of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2021/135908 | Dec 2021 | US |
Child | 18217106 | US |