The present invention relates to tools for petroleum wells generally, including wells accessing heavy crude. In particular, the present invention relates to a tubing anchor catcher and its use in a system for reducing movement, which may be caused by a downhole pump, within in a well conduit.
A tubing string is used within a petroleum well to position downhole tools proximal to one or more underground geological formations that contain petroleum fluids of interest. The tubing string may also be referred to as production tubing or a production string. The tubing string is made up of sections of individual pipe joints that are typically threadedly connected to each other. The tubing string extends within a bore of the well. The well bore is typically completed with casing or liners. The completed well bore may also be referred to as a well conduit. The tubing string can carry various downhole tools into the well conduit. For example, downhole tools can be used for various purposes including anchoring the tubing string within the wellbore at a desired location and to limit movement of the tubing string. Downhole tools can also be used to stimulate and capture production of petroleum fluids. The tubing string is also the primary conduit for conducting the petroleum fluids to the surface.
Known tubing anchors use either a combination of right and left hand threads, or are limited to one thread orientation. Examples of such tubing anchors are shown in U.S. Pat. No. 3,077,933 to Bigelow and in Canadian patent no. 933,089 to Conrad. Disadvantages of such tubing anchors include the expense of manufacturing the threaded portions, the threads may be susceptible to corrosion and the threads may be difficult to, or unable to, unset if they become filled with sand or corroded. With the new technology of fracing, the industry has adopted a heavier weight casing to be able to handle the bends and ‘S’ curves that are drilled today. A heavier weight casing wall makes the interior diameter of the casing smaller. This change in diameter, combined with the wells drilled with deviations and horizontal applications, makes the setting of the older design (multiple revolutions) tubing anchor catchers and packers hard to set as it is hard to feel, or detect, at surface when the tools is set due to the friction on the side walls and having to workout the tubing twist going around bends in the well bore.
Another type of tubing anchor shown in U.S. Pat. No. 5,771,969 and corresponding Canadian patent no. 2,160,647 to Garay avoids the aforementioned threads and instead uses a helical bearing to transform rotational movement into linear movement for setting and unsetting the tubing anchor. The helical bearing also accommodates shear pins for secondary unsetting if required. The use of one component, namely the helical bearing, to perform several functions has the advantage over the previous prior art of being less expensive to manufacture and less susceptible to seizing.
The present invention provides a tubing anchor catcher that acts to reduce or stop movement of a tubing string within a wellbore. The tubing anchor catcher may also catch the tubing string and hold the tubing string in place if a part of the tubing string disconnects or fails above tubing anchor catcher.
One example embodiment of the present invention provides a tubing anchor catcher tool that is positionable within a well conduit for preventing movement of a tubing string. The tool comprises: a mandrel that is connectible at either end to the tubing string, the mandrel comprising a groove; a first cone element that is slidably mountable on to the mandrel, the first cone element comprising a first conical surface; a drag body that is slidably mountable on the mandrel, the drag body comprising a drag member that is sized for frictionally engaging an inner surface of the well conduit, a pin for engaging the groove, and a second conical surface; a biasing member that is slidably mountable on the mandrel adjacent the drag body for engaging the first cone element when the biasing member is compressed; and a slip cage that is slidably mountable on the mandrel, the slip cage comprising a slip that is adapted for engaging the inner surface of the well conduit when the mandrel is rotated a quarter turn relative to the drag body and the conical surface is disposed underneath the slip. Wherein when the second cone element is engaged, the second cone element is slidably moveable underneath the slip.
Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings, wherein:
The tubing anchor catcher 10 has an upper end 10A and a lower end 10B. The tubing anchor catcher 10 may comprise of a drag body 40, a slip cage 60 and a biasing member 94, all of which are mounted about the external surface of the mandrel 20. The drag body 40 houses a drag means, in the form of one or more drag blocks 42, for spacing the tubing anchor catcher 10 away from the inner wall 13 of the conduit 12. The drag blocks 42, for example three or four drag blocks 42, may be generally evenly spaced circumferentially about the tubing anchor catcher 10. Each drag block 42 has a drag spring to urge the outer surface 46 of the drag block against the well conduit's inner wall. Upper and lower drag retaining rings 48, 50 keep the drag blocks 42 removably mounted within the drag body 40. In addition to keeping the tubing anchor catcher 10 spaced from the well conduit 12, the contact of the drag block surface 46 the well conduit's 12 inner wall or surface 13 causes friction that urges the drag body 40 to remain stationary while the mandrel 20 moves within the rest of the tubing anchor catcher 10.
As will be discussed further, the drag body 40 is connected to the mandrel 20 by one or more pins 88 that extends inwardly from the drag body's 40 inner surface to engage an externally facing groove 80 that is on the outer surface of the mandrel 20. As described further below, in one example embodiment, the pins 88 are made from a shearable material.
The slip cage 60, which may also be referred to as a slip retainer, is also mounted on the mandrel 20 adjacent the drag body 40. In particular, the slip cage 60 is mounted on the mandrel 20 above the drag body 40 (i.e. in direction 17). The slip cage 60 may house one or more radially, movable slips 62. For example, three slips 62 are depicted as being evenly spaced about the slip cage 60, although this is not intended to be limiting as the tubing anchor catcher 10 described herein may operate with one or more slips 62. Each slip 62 has an outer surface with teeth 63 for gripping the inner wall 13 upon contact. The teeth 63 may comprise upward gripping teeth 63B and downward gripping teeth 63A. The slip 62 may also have an inner surface with opposed, outwardly inclined edges with an upper edge 64A and a lower edge 64B. A fastener in the form of a socket head cap screw 65 is fastened to the drag body 40 and is located within each of a plurality of associated elongate slots 66 that are defined by the slip cage 60 and spaced circumferentially thereabout, preferably between each slip 62. The cap screw 65 is adapted to contact upper and lower shoulders 68A, B at each end of the associated slots 66, which forms a stop means to prevent the slip cage 60, and the drag body 40, from longitudinally separating.
A cone element 70 is mounted about the mandrel 20 at an upper end of the slip cage 60. The cone element 70 comprises an upper edge 70A and a lower edge 70B. The lower edge 70B forms a first conical surface whose inclined surface wedges under the slips 62 when the tubing anchor catcher 10 is moved into a set position. Likewise, an upper edge of the drag body 40 forms a second conical surface 54 whose inclined surface also wedges under the slips 62 when the tubing anchor catcher 10 is moved into a set position. However, the first and second conical surfaces 70B, 54 may not actively contact the slips in the unset position. A slip spring 76 urges each slip 62 radially inwardly into the slip cage 60 and away from the well conduit 12 while in the unset position (
As depicted in
As seen in
In this embodiment, when viewed in vertical elevation with the top of mandrel 20 upwards, groove 80 is in the shape of a reverse “C”, although this is not intended to be a literal graphical description of shapes that will work, as other shapes will work other than exact C-shapes as may mirror images of the groove 80.
To release the slips 62, the tubing string and, therefore, the mandrel 20 can be manipulated at surface. For example, the mandrel 20 can be moved relative to the rest of the tubing anchor catcher 10, so that the pin 88 moves out of shoulder 82. As shown in
When the tubing anchor catcher 10 is in the set position and in the event of a break in the tubing string, etc, which may cause the tubing string to fall down into the well (i.e., in direction 16), the tension in the tubing string is lost. This causes the weight of the tubing string to bear on the upper safety sub 14A, which will bear on the biasing member 94. The biasing member 94 will compress, from the weight of the tubing string above, and act against the upper edge 70A of the cone 70. This action causes the upper teeth 64A to more directly engage and bite into the inner surface 13 of the well conduit 12. For example, the greater the amount of tubing string weight that compresses the spring 94, the harder, or more directly, the upper teeth 64A will engage the inner surface 13 of the well conduit 12. When the downwardly gripper teeth 64A are more directly engaged into the inner surface 13 of the well conduit 12, the upper teeth 64A can hold the weight of the tubing string above the tubing anchor catcher 10, for example, until such time that the tubing string can be recovered at surface.
If it is not possible to move pin 88 in the groove 80 so as to unset slips 62, for example due to packing of sand or other materials into the groove 80, the slips 62 may be unset by applying a sufficient upward tension on the tubing string and the mandrel 20. In one embodiment, the upward tension is of a sufficient amplitude to shear the pins 88, which form the primary connection between the drag body 40 and the mandrel 20. Then the mandrel 20 may move upward (i.e. in the direction of arrow 17), relative to the drag body 40, which causes the second conical surface 54 of the drag body 40 to move out from under the slips 62. This allows the slips 62 to retract from contacting the inner surface of the well conduit. When the slips 62 are retracted, the tubing anchor catcher 10 may be pulled out of the well conduit 12. For example, the pin 65 may engage the lower shoulder 68B of the slot 66 so that the slip cage 60, and the drag body 40 do not separate. Alternatively, or additionally, the lower edge of the catcher body 40 may engage the lower safety sub 14b as the tubing string is pulled upwards towards the surface (i.e. in direction 17).
The tubing anchor catchers 10, 100 are thus designed to anchor the tubing string from movement longitudinally along the well (in both directions, up and down the well) and from rotating. The anchoring is achieved by simple setting and release procedures that require relatively little movement of the tubing string. In this instance, setting is achieved by a small pull and left hand rotation of the mandrel 20 (via the tubing string) that is adequate for the pins 88, 188 to travel the short distances within the groove 80. Further, both tubing anchor catchers 10, 100 can prevent a broken tubing string from falling into the well bore by the compression of the spring 94 causing the downward gripping teeth 63A to grip the inner surface 13 of the well conduit 12, as described above.
In one optional embodiment of the present invention, the slips 62 may be configured to center either or both of the tubing anchor catchers 10, 100 within the well conduit 12 by radially extending from the slip cage 60 (see
This optional embodiment of the tubing anchor catchers 10, 100 may permit capillary cable to be carried downhole via the large by-pass spaces 78. In particular, the fact that the tubing anchor catchers 10, 100 is set and unset by longitudinal motion and a limited, quarter turn, permits its use with the capillary cable since the tubing anchor catchers 10, 100 may avoid wrapping of the cable around the tubing anchor catchers 10, 100. In contrast, prior art anchors that require multiple full (360 degree) rotations—between two to nine full rotations for setting and unsetting—cause an undesirable wrapping of the cable around the anchor, which can damage the cable. Alternately, the cables must be pre-wrapped when inserted with these prior art anchors, so that they unwrap as the anchor is twisted during setting, which is tedious and undesirable.
Optionally, the drag blocks 42 may be hardened, in comparison to prior art drag blocks, for a longer operational life. The slips 62 may optionally be made of solid high strength metal for superior durability and grip on the well conduit wall 13, and Inconel™ type springs 76 are employed for improved resistance to H2S and CO2. Further, the surface of the mandrel 20 may optionally be coated with Teflon® for improved resistance to H2S and CO2, and to help maintain mandrel strength.
While the above disclosure describes certain examples of the present invention, various modifications to the described examples will also be apparent to those skilled in the art. The scope of the claims should not be limited by the examples provided above; rather, the scope of the claims should be given the broadest interpretation that is consistent with the disclosure as a whole.
This application claims priority from Canadian Patent Application No. 2,854,409 filed Jun. 14, 2014 entitled Quarter Turn Torque Anchor and Catcher. This application is also a continuation-in-part of United States patent application Ser. No. 14/311,322 filed Jun. 22, 2014 and entitled Quarter Turn Torque Anchor and Catcher, which is itself a continuation-in-part of U.S. patent application Ser. No. 13/716,075 filed on Dec. 14, 2012 and entitled Quarter Turn Tension Torque Anchor. The entire disclosures of these priority documents and all related applications or patents are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 14311322 | Jun 2014 | US |
Child | 14705846 | US | |
Parent | 13716075 | Dec 2012 | US |
Child | 14311322 | US |