The present invention relates to a quarter turn tubing anchor catcher and its use in a system with a downhole reciprocating rod pump or progressive cavity pump, within in a well conduit.
A tubing string is used for producing hydrocarbons and to position downhole tools proximal to one or more underground geological formations that contain petroleum fluids of interest. The tubing string may also be referred to as production tubing or a production string. The tubing string is made up of sections of individual pipe joints that are typically threaded together. The tubing string extends within a bore of the well. The well bore is typically completed with casing or liners. The completed well bore may also be referred to as a well conduit. The tubing string can carry various downhole tools into the well conduit. For example, downhole tools can be used for various purposes including anchoring the tubing string and reciprocating rod pump within the wellbore at a desired location and to limit movement of the tubing string.
Tubing anchor catchers are used to limit movement axially and radially in both directions. Prior art tubing anchor catchers comprise threads or helical bearings that require multiple full (i.e. 360 degree) rotations of the mandrel to either set or unset the tubing anchor catcher. Disadvantages of such tubing anchors catchers include the expense of manufacturing the threaded portions, the threads may be susceptible to corrosion and the threads may be difficult to, or unable to, unset if they become filled with sand or corroded. With the new technology of fracing, the industry has adopted a heavier weight casing to be able to handle the bends and ‘S’ curves that are drilled today. A heavier weight casing wall makes the interior diameter of the casing smaller. This change in diameter, combined with the wells drilled with deviations and horizontally, makes the setting of the older design (multiple revolutions) tubing anchor catchers difficult.
Applicant's U.S. application entitled Quarter Turn Tension Torque Anchor and assigned U.S. application Ser. No. 13/716,075 has improved on these designs by providing a means for transferring a short longitudinal movement into actuation of conical surfaces to extend the slips into gripping engagement with the well conduit. However the apparatus and method of U.S. Ser. No. 13/716,075 do not provide a means to stop downward movement of the tubing string and attached equipment downhole when tubing joints above such apparatus unexpectedly come apart.
It is therefore desirable to have a tubing anchor catcher that further improves on these prior designs. Particularly, there is a need for a tubing anchor catcher that avoids the prior art threads and helical bearing that require multiple full rotations of the tubing anchor catcher's mandrel to either set or unset the tool. The tubing anchor catcher should not need to translate rotational movement into linear movement to engage the slips with the well conduit, but rather should directly transfer a short longitudinal movement to extend the slips into gripping engagement with the well conduit. The tubing anchor catcher should requirement only a limited rotation. Also, the tubing anchor catcher should have a simple and effective means to stop the tubing string from downward movement if tubing joints above such apparatus unexpectedly come apart.
The present invention provides a tubing anchor catcher that acts to stop movement of a tubing string within a wellbore in both directions axially and radially. The tubing anchor catcher may also catch the tubing string if a part of the tubing string above the tubing anchor catchers disconnects.
One example embodiment of the present invention provides a tubing anchor catcher tool that is positionable within a well conduit for preventing movement of a tubing string. The tool comprises: a mandrel that is connectible at either end to the tubing string, the mandrel comprising a groove; a first cone element that is slidably mountable on to the mandrel, the first cone element comprising a first conical surface; a drag body that is slidably mountable on the mandrel, the drag body comprising a drag member that is sized for frictionally engaging an inner surface of the well conduit, a pin for engaging the groove, and a second conical surface; a biasing member that is slidably mountable on the mandrel adjacent the drag body for engaging the first cone element when the biasing member is compressed; and a slip cage that is slidably mountable on the mandrel, the slip cage comprising a slip or slips that are adapted for engaging the inner surface of the well conduit when one or more of the conical surfaces are disposed underneath the slip or slips.
Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings, wherein:
The tubing anchor catcher 10 has an upper end 10A and a lower end 10B. The tubing anchor catcher 10 may comprise of a drag body 40, a slip cage 60 and a biasing member 94, all of which are mounted about the external surface of the mandrel 20. The biasing member 94 can be for example, a coiled spring. The drag body 40 houses a drag means, in the form of one or more drag springs or drag blocks 42, for spacing the tubing anchor catcher 10 away from the inner wall 13 of the conduit 12. The drag blocks 42, for example three or four drag blocks 42, may be generally evenly spaced circumferentially about the tubing anchor catcher 10. Each drag block 42 has a drag block spring 44 to urge the outer surface 46 of the drag block against the well conduit's inner wall. Upper and lower drag retaining rings 48, 50 keep the drag blocks 42 removably mounted within the drag body 40. In addition to keeping the tubing anchor catcher 10 spaced from the well conduit 12, the contact of the drag block surface 46 the well conduit's 12 inner wall or surface 13 causes friction that urges the drag body 40 to remain stationary while the mandrel 20 moves within the rest of the tubing anchor catcher 10.
As will be discussed further, the drag body 40 is connected to the mandrel 20 by one or more drive pins 88 that extends inwardly from the drag body's 40 inner surface to engage an externally facing groove 80 that is on the outer surface of the mandrel 20. As described further below, in one example embodiment, the drive pins 88 are made from a shearable material.
The slip cage 60, which may also be referred to as a slip retainer, is also mounted on the mandrel 20 adjacent the drag body 40. In particular, the slip cage 60 is mounted on the mandrel 20 above the drag body 40 (i.e. in direction 16). The slip cage 60 may house one or more movable slips 62. For example, three slips 62 are depicted as being evenly spaced about the slip cage 60, although this is not intended to be limiting as the tubing anchor catcher 10 described herein may operate with one or more slips 62. Each slip 62 has an outer surface with teeth 63 for gripping the inner wall 13 upon contact. The teeth 63 comprise upward gripping teeth 63B and downward gripping teeth 63A. One or more fasteners in the form of a cap pin or cap screw 65 is fastened to the drag body 40 and is each located within one of a plurality of associated elongate slots 66 that are defined by the slip cage 60 and spaced circumferentially thereabout, preferably between each slip 62. The cap screw 65 is adapted to travel within associated slots 66, to permit movement of the slip cage 60 relative to the drag body 40 and to prevent the slip cage 60, and the drag body 40, from longitudinally separating.
A cone element 70 is mounted about the mandrel 20 at an upper end of the slip cage 60. The cone element 70 comprises an upper edge 70A and a lower edge 70B. The lower edge 70B forms a first conical surface whose inclined surface wedges under the slip or slips 62 when the tubing anchor catcher 10 is moved into a set position. Likewise, an upper edge of the drag body 40 forms a second conical surface 54 whose inclined surface also wedges under the slip or slips 62 when the tubing anchor catcher 10 is moved into a set position. When the tool is in the unset position, the first and second conical surfaces 70B, 54 do not actuate the slip or slips 62. A slip spring 76 urges each slip 62 radially inwardly into the slip cage 60 and away from the well conduit 12 while in the unset position (
As depicted in
The operation of the tubing anchor catcher may now be described with reference to all figures, including
Groove 80 is in the shape of a “C”, although this is not intended to be a literal graphical description of shapes that will work, as other shapes will work other than exact C-shapes as may mirror images of the groove 80.
To release the slip or slips 62, the tubing string and, therefore, the mandrel 20 can be manipulated at surface. For example, the mandrel 20 can be moved relative to the rest of the tubing anchor catcher 10, so that the drive pin 88 is relocated out of shoulder 82. As shown in
When the tubing anchor catcher 10 is in the set position and in the event of a break in the tubing string, etc, which may cause the tubing string to fall down into the well (i.e., in direction 17), the tension in the tubing string is lost. This causes the weight of the tubing string to bear on the upper safety sub 14A, which will bear on the biasing member 94. The biasing member 94 will compress, from the weight of the tubing string above, and act against the upper edge 70A of the cone 70. This action causes the downwardly gripping upper teeth 63A to more directly engage and bite into the inner surface 13 of the well conduit 12. For example, the greater the amount of tubing string weight that compresses the biasing member 94, the harder, or more directly, the upper teeth 63A will engage the inner surface 13 of the well conduit 12. When the upper teeth 63A are more directly engaged into the inner surface 13 of the well conduit 12, the upper teeth 63A can hold the weight of the tubing string above the tubing anchor catcher 10, for example, until such time that the tubing string can be recovered from the well. The drag blocks 42 are still in frictional contact with the inner surface 13 of the well conduit 12 and the lower conical surface 54 is still wedged under the slip or slips 62.
An alternate means of un-setting the tubing anchor catcher is now described. If it is not possible to relocated drive pin 88 in a location in the groove 80 so as to unset the slip or slips 62, for example due to packing of sand or other materials into the groove 80, the slip or slips 62 may be unset by applying a sufficient upward tension on the tubing string and the mandrel 20. In one embodiment, the upward tension is of a sufficient amplitude to shear the drive pins 88, which form the primary connection between the drag body 40 and the mandrel 20. Then the mandrel 20 may then move upward (i.e. in the direction of arrow 16), relative to the drag body 40, which causes upper cone 70 to move up and out from under the slip or slips 62, which then allows slip or slips 62 to move inwardly as they move away from the second conical surface 54 of the drag body 40. This allows the slip or slips 62 to retract from contacting the inner surface of the well conduit. When the slip or slips 62 are retracted, the tubing anchor catcher 10 may be pulled out of the well conduit 12. At this time the cap 65 may engage the lower shoulder 68B of the slot 66 so that, even though the slip cage 60 is furthest away from the drag body 40, the slip cage 60 and the drag body 40 do not separate. Alternatively, or additionally, the lower edge of the drag body 40 may engage the lower safety sub 14b as the tubing string is pulled upwards towards the surface (i.e. in direction 16).
The tubing anchor catchers 10, 100 are thus designed to anchor the tubing string from movement longitudinally along the well (in both directions, up and down the well) and from rotating. The anchoring is achieved by simple setting and release procedures that require relatively little movement of the tubing string. In this instance, setting is achieved by a small pull and right hand rotation of the mandrel 20 (via the tubing string) that is adequate for the drive pins 88, 188 to travel the short distances within the groove 80. Further, both tubing anchor catchers 10, 100 can prevent a broken tubing string from falling into the well bore by the compression of the biasing member 94 causing the downward gripping teeth 63A to grip the inner surface 13 of the well conduit 12, as described above.
The slip or slips 62 and the diameter of the anchor cathcer 10, 100 may be configured to provide one or more by-pass spaces 78 between the tubing anchor catchers 10, 100 and the inner surface 13 of the well conduit 12, which may create high flow areas for fluids (e.g. gas) and solids (e.g. sand) to pass by the tubing anchor catchers 10, 100.
This optional embodiment of the tubing anchor catchers 10, 100 configured with by-pass spaces 78 may permit lines, tubes and cables such as capillary cable to be carried downhole via the large by-pass spaces 78. In particular, the fact that the tubing anchor catchers 10, 100 is set and unset by longitudinal motion and a quarter turn, permits its use with the capillary cable since the tubing anchor catchers 10, 100 may avoid wrapping of the cable around the tubing anchor catchers 10, 100. In contrast, prior art anchors require multiple full (360 degree) rotations—between two to nine full rotations for setting and unsetting—and cause an undesirable wrapping of the cable around the tubing anchor catcher as it is set, which can damage the cable. Alternately, the cables must be pre-wrapped when installed with these prior art tubing anchors catchers, so that they unwrap as the tubing anchor catcher is rotated during setting, which is tedious and undesirable. Also, if cable is required to be pre-wrapped then on setting the tool, the unwrapped extra cable becomes available to jam between the tool and the well conduit and it may be damaged, break or otherwise interfere with reliable wellbore operations.
Optionally, the drag blocks 42 may be hardened, in comparison to prior art drag springs, for a longer operational life. The slip or slips 62 may optionally be made with carbide inserts for teeth for superior durability and grip on the well conduit wall 13, and Inconel™ type springs 76 are employed for improved resistance to H2S and CO2. Further, the surface of the mandrel 20 may optionally be coated with Teflon® for improved resistance to H2S and CO2, and to help maintain mandrel strength.
While the above disclosure describes certain examples of the present invention, various modifications to the described examples will also be apparent to those skilled in the art. The scope of the claims should not be limited by the examples provided above; rather, the scope of the claims should be given the broadest interpretation that is consistent with the disclosure as a whole.
This application claims priority from Canadian Patent Application No. 2,854,409 filed Jun. 14, 2014 entitled Quarter Turn Tubing Anchor and Catcher. This application is also a continuation-in-part of United States patent application Ser. No. 14/311,322 filed Jun. 22, 2014 and entitled Quarter Turn Tubing Anchor and Catcher, which is itself a continuation-in-part of U.S. patent application Ser. No. 13/716,075 filed on Dec. 14, 2012 and entitled Quarter Turn Tension Torque Anchor. The entire disclosures of these priority documents and all related applications or patents are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3077933 | Bigelow | Feb 1963 | A |
3314480 | Scott | Apr 1967 | A |
3332494 | Scott | Jul 1967 | A |
3489211 | Kammerer, Jr. | Jan 1970 | A |
3494418 | Young | Feb 1970 | A |
3526277 | Scott | Sep 1970 | A |
5146993 | Gambertoglio | Sep 1992 | A |
5148866 | Greenlee | Sep 1992 | A |
5311939 | Pringle | May 1994 | A |
5350013 | Jani | Sep 1994 | A |
5771969 | Garay | Jun 1998 | A |
7255172 | Johnson | Aug 2007 | B2 |
7654334 | Manson | Feb 2010 | B2 |
20060225877 | Brookey et al. | Oct 2006 | A1 |
20120160523 | Burgos | Jun 2012 | A1 |
20130213635 | Carro | Aug 2013 | A1 |
20130319683 | Aldridge | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
933089 | Sep 1973 | CA |
2160647 | May 2002 | CA |
Number | Date | Country | |
---|---|---|---|
20150233199 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14311322 | Jun 2014 | US |
Child | 14705846 | US | |
Parent | 13716075 | Dec 2012 | US |
Child | 14311322 | US |