Exemplary embodiments of the invention generally relate to investment casting, and more particularly, to a core for forming a passage in an investment casting mold.
Investment casting is a commonly used technique for forming metallic components having complex shapes and geometries, especially hollow components such as those used in aerospace applications for example. The production of an investment cast part generally involves producing a ceramic casting mold having an outer ceramic shell with an inside surface corresponding to the shape of the part, and one or more ceramic cores positioned within the outer ceramic shell, corresponding to interior passages to be formed within the part. Molten alloy is introduced into the ceramic casting mold and is then allowed to cool and to harden. The outer ceramic shell and ceramic core(s) are then removed to reveal a cast part having a desired external shape and hollow interior passages in the shape of the ceramic core(s).
In comparison to other processes, for example sand casting or permanent mold casting, investment casting provides flexibility while maintaining tight tolerances. In particular, controlled solidification investment casting (CSIC) uses rapid directional cooling to enhance microstructure and mechanical properties. CSIC, therefore, may be useful for an expanded range of applications, particularly in the aerospace industry. However, investment casting is limited by the design of passages within the mold. Unlike a sand core used in a sand casting process, the ceramic cores used in CSIC are difficult to remove or destroy without affecting the molded part. As a result, the process of designing passages severely restricts the use of CSIC for applications requiring complex cored passages.
According to yet another embodiment of the invention, a method for manufacturing a composite core for forming a passage in an investment casting mold is provided including arranging a core element adjacent an interior surface of a generally hollow structural element to form a preform. Slurry having particles of varying sizes is layered about the structural element. Heat is then applied to the preform.
According to another embodiment, a method of forming a passage in a cast component is provided including arranging a composite core into an interior of a mold. Material of the component is then poured into the mold. The material is cured to form the component. A force is then applied to an exposed portion of the composite core such that the composite core deforms inside the component.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
With reference now to
The composite core 20 is formed using a preform 30, illustrated in more detail in
An example of the structural element 40, shown in
The core element 50 acts as a base to support the outer shell element 60 as it is formed about the structural element 40. The core element 50 is made from a material configured to melt during the formation of the composite core 20, prior to the casting process, or during the casting process. In one embodiment, the core element 50 is a wax core, the contour of which is substantially similar to a passage being formed in a mold. In another embodiment, the core element 50 is a metallic mesh or foil, for example made from the same material as the working metal to be poured into the investment casting mold. The metallic mesh or foil 50 is bonded to the interior surface 44 of the structural element 40, such as through a brazing process for example. The gauge of the foil or mesh 50 is selected to support the shell element 60 as it is formed about the structural element 40. Once the metallic mesh or foil 50 and the structural element 40 are coupled, the contour of the preform 30 may be altered to a desired shape.
After the preform 30 is assembled, the outer shell element 60 is formed, for example through a shelling process. As illustrated in
After layering the slurry 62 about the structural element 40, the slurry 62 is hardened, such as by firing the preform 30 in an oven or kiln for example. Heat causes the slurry 62 to strengthen and solidify into a cured, rigid, shell element 60. The core element 50 is designed to melt, or otherwise degrade during the making of the composite core 20, or during the formation of the finished component. Therefore, application of heat transforms the preform 30 to a composite core 20, having a generally hollow cross section that allows the structural element 40 and the shell element 60 to be easily removed. When the composite core 20 is formed, the outer surface 64 of the shell element 60 may be substantially uniform, or alternatively, may include slight variations, such as waves or grooves for example.
Referring now to
The composite core 20 may be constructed to create a complex cored passage within an investment casting mold, thereby expanding the range of applications to which controlled solidification investment casting (CSIC) may be applied. Further, by incorporating waves or grooves into the outer surface 64 of the shell element 60, the passage 82 can have specific patterns such as rifling. The rapid and directional solidification of the investment casting process will result in high quality castings having enhanced microstructures. Because a significant portion of the CSIC process is automated, more stringent quality control measures may be implemented to improve and stabilize the casting process. Forming parts that were previously too complex using a CSIC process will reduce both scrap rates and production cycle time.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
This application is a divisional of U.S. patent application Ser. No. 13/747,653, filed Jan. 23, 2013, the disclosure of which is incorporated by reference herein in its entirety.
This invention was made with Government support under N00019-06-C-0081 awarded by the Department of the Navy. The Government has certain rights in this invention.
Number | Date | Country | |
---|---|---|---|
Parent | 13747653 | Jan 2013 | US |
Child | 15051311 | US |