This invention relates to avoiding lifting a hatch cover on a ship as a quay crane picks up a container.
Crane safety is a primary concern at shipyard where container handling quay cranes are used. One dangerous event occurs when the quay crane lifts a container that has not been properly decoupled from a hatch cover on a ship. The crane tends to lift both the container both the container and the hatch cover, which may also have other containers still on it, which may spill off, possibly being damaged themselves, possibly further sliding off the ship and landing on the dock, where the container may injure or kill people. Averting these dangerous events can save lives and reduce damage done to containers, ships and docks in shipyards.
Another dangerous event occurs when the quay crane lifts a container that has not been properly decoupled from its chassis and the truck driving it. The crane tends to lift both the chassis and the truck. Averting these dangerous events can save lives and reduce damage done to containers, chassis and trucks in container handling environments such as shipyards and container stacks.
Another problem, while not dangerous leads to added overhead in the management of quay cranes. Optical Character Recognition (OCR) systems employed to identify containers often get confused and fail to recognize a hatch cover, which do not have a container identifying code. This leads to added expense, while it has to be separately confirmed that the lifted object is a hatch cover and not a container.
Averting lifting a hatch cover with a container on a ship, averting lifting a truck and chassis when lifting the container from the chassis, and/or eliminating confusing a hatch cover for a container are problems that need solution.
A safety device is claimed and disclosed for a quay crane configured to lift a container from a hatch cover on a ship. The safety device is configured to avert the hatch cover being lifted as shown in
The safety device may include a processor configured to respond to at least one signal to create the indication that the container failed to decouple from the hatch cover and to generate an alert in response to the indication when the container is being lifted off of the ship. The alert may include an audio alert, a visual alert, an engine stop signal, a ship alert, and a management system alert. The alert may contribute to any combination of averting the hatch cover being lifted, and/or warning at least one person the hatch cover is coupled to the container being lifted, and/or shutting down at least one equipment involved in lifting the container, and/or informing the ship and/or a management system that the hatch cover is coupled to the container being lifted.
The alert may be sent to the quay crane operational center, or cab, where it may trigger an hoist motor or engine shutdown to avert lifting the hatch cover, by stopping a spreader from lifting the container still coupled to the hatch cover. The crane operator situated in the cab may also be alerted by a visual alert message and/or an audio alert message. People on the loading platform of the dock, particularly those near the quay crane may be alerted by visual and/or audio alerts.
The indication that the hatch cover failed to decouple from the container being lifted may be created in several ways, and may be based upon one or more of a hatch cover movement estimate, a spreader load weight estimate, a hoist position, a hoist velocity, and a hoist motor power consumption. Any of these may be based upon the signals the processor may have received through interactions with a Programmable Logic Controller (PLC) interface, and/or a relay interface, and/or a wireline communications interface compatible with at least one wireline communications standard, and/or a wireless communications interface compatible with at least one wireless modulation-demodulation scheme.
At least one motion sensor may be configured to send the signal that at least partly creates the hatch cover movement estimate. The motion sensor may be configured to couple to the quay crane, and in some embodiments may be further configured to couple to the trolley and/or the cab of the quay crane. The motion sensor may include at least one source configured to produce an emission that reflects off of the hatch cover to create a reflection and at least one receiver configured to receive the reflection to at least partly create the hatch cover movement estimate. The emission may include at least one of an ultrasonic component, a microwave component, an infrared component, and a visible light component. The source and/or receiver for the visible light component may be a laser. The microwave component may involve a radar.
The processor may include at least one instance of a finite state machine, and/or a computer instructed by a program system including program steps residing in a memory accessibly coupled to the computer and/or an inferential engine.
The apparatus being claimed and disclosed also includes a computer readable memory and/or a server. The computer readable memory is configured for accessible coupling to the computer and includes the program system and/or an installation package to configure the memory in the processor with the program system. The server may be configured to communicate with the computer the program system and/or the installation package.
The safety device may also be configured to avert lifting a truck when the container fails to decouple from the chassis carrying the container and pulled by the truck. The quay crane may also be configured to avert a container identification failure event for an Optical Character Recognition (OCR) system associated with the crane in response to the quay crane lifting the hatch cover off of the ship.
This invention relates to avoiding lifting a hatch cover on a ship as a quay crane picks up a container. A safety device is claimed and disclosed for a quay crane configured to lift a container from a hatch cover on a ship. The safety device may be configured to avert the hatch cover being lifted as shown in
Referring more specifically to the Figures with reference numbers,
Note that in some embodiments, the safety device 90 may be configured to use at least one motion sensor 300 that may contribute to estimating the movement 25 of the hatch cover 24. In certain situations, the motion sensor may be configured to couple to the quay crane 16. For example, the motion sensor may be configured to couple to the trolley 9 and/or to the cab 8.
The hatch cover 24 is being lifted because the container is being lifted by the spreader 20. A first motion sensor 300, as shown in
The indication that the container 22 failed to decouple from the hatch cover 24 may further include a second indication that the hatch cover is still coupled to at least one other container as shown in
The processor 100 may at least one instance of at least one of a finite state machine 102, a computer 104 accessibly coupled 105 with a memory 106 containing a program system 200 including program steps to instruct the computer, and an inferential engine 101.
Several of these terms will now be discussed briefly. The finite state machine 102 may receive at least one input, maintain-update at least one state and generate at least one output based upon a value of at least one of the input and the state. The computer 104 may include at least one data processor and at least one instruction processor with each of the data processors instructed by at least one of the instruction processors. The inferential engine 101 may maintain at least one inferential rule and infer from the inferential rule at least one fact.
The indication 192 that the container 22 failed to decouple from the hatch cover 24 may be based upon one or more of a hatch cover movement estimate 194, a spreader load weight estimate 196, a hoist position 74, a hoist velocity 76, and a hoist motor power consumption 198, any or all of which may be included in a machine state 70.
The alert 130 may be generated by the processor 100 and may be sent to not only the person 6 and the cab 8 shown in
The motion sensors 300 may be coupled to the quay crane 16 and/or the OCR system 320 may communicate with the safety device 90 to contribute to the hatch cover movement estimate 194.
The motion sensor 300 may generate at least one sensor signal 310. In situations where multiple motion sensors may be installed for examples by coupling to two ends of the trolley 9, one of these sensors, for example the second motion sensor may generate a second sensor signal 312 that may either include a sensor image 314 generating by an imaging device 308 and/or the sensor image may be separately generated and sent to the safety device 90 and/or the processor 100. The processor may use the sensor image to determine if the truck 2 is coupled to the chassis 3 as well as at least partly determine a truck motion estimate. In certain embodiments, the processor may store more than one sensor reading and/or sensor image to create the hatch cover movement estimate and/or the truck motion estimate.
The wireline communications standard may include a version of at least one of a Synchronous Serial Interface (SSI) protocol, an Ethernet protocol, a Serial Peripheral Interface (SPI), an RS-232 protocol, an Inter-IC (I2C) protocol, an Universal Serial Bus (USB) protocol, a Controller Area Network (CAN) protocol, a Firewire protocol, the Institute for Electrical and Electronic Engineers (IEEE) 1394 communications standard, an RS-485, and/or an RS-422 protocol.
The wireless modulation-demodulation scheme may include at least one of a Time Division Multiple Access (TDMA) scheme, a Frequency Division Multiple Access scheme (FDMA), a Spread Spectrum Scheme including at least one of a Code Division Multiple Access (CDMA) scheme, a Frequency Hopping Multiple Access (FHMA) scheme, a Time Hopping Multiple Access (THMA) scheme, and/or an Orthogonal Frequency Division Multiple access (OFDM) scheme.
The hoist motor state sensor 176 may contribute to the hoist position 74, the hoist velocity 76 and/or the hoist motor power 198. The hoist motor state sensor may include multiple sensors, such as an electrical voltage or current measurement circuit and an optical shaft encoder. A hoist motor state sensor may read a gray scale coded wheel mounted in the hoist drum or on its axle that is used to calculate the hoist position 74 and the hoist velocity 76.
The load cell sensor 179 may contribute to the spreader load weight 196 and may use a strain gauge, possibly coupled to the hoist cable and the spreader 20.
The machine state sensor 170 may further include at least one instance of at least one of the following: A spreader state sensor for the spreader state.
The next Figure shows a flowchart of some details of the program system 200 instructing the processor 100. These flowcharts show some method embodiments, which may include arrows signifying a flow of control and/or state transitions as well as sometimes position data, supporting various implementations. These may include a program operation, or program thread, executing upon the computer 104 or states of the finite state machine 102. Each of these program steps may at least partly support the operation to be performed. The operation of starting a flowchart refers to entering a subroutine or a macroinstruction sequence in the computer or of a possibly initial state or condition of the finite state machine. The operation of termination in a flowchart refers to completion of those operations, which may result in a subroutine return in the computer or possibly return the finite state machine to a previous condition or state. A rounded box with the word “Exit” in it denotes the operation of terminating a flowchart.
The preceding embodiments provide examples and are not meant to constrain the scope of the following claims.
This application claims priority to Provisional U.S. Patent Application No. 61/180,113 entitled “Hatch Detection Safety System” by inventors Henry King and Toni Takehara, filed May 20, 2009; and this application is also a continuation in part of U.S. patent application Ser. No. 12/748,354, entitled “GANTRY CRANE TRUCK JOSTLE PREVENTION AND/OR HATCH COVER DETECTION” by the same inventors and filed Mar. 26, 2010, which claims priority to Provisional U.S. Patent Application No. 61/163,838 entitled “Crane Anti-Jostle System and Methods” by the same inventors, filed Mar. 26, 2009, with all of these documents incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61180113 | May 2009 | US | |
61163838 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12748354 | Mar 2010 | US |
Child | 12784475 | US |