This application claims the benefit of priority under 35 U.S.C. § 119 of German Patent Application 10 2014 018 261.4 filed Dec. 11, 2014, the entire contents of which are incorporated herein by reference.
The present invention pertains to a quench-cooling system with a primary quench cooler as a double-tube heat exchanger and with a tube bundle heat exchanger as a secondary quench cooler with at least one tube bundle, wherein the tube bundle is enclosed by a casing, forming a casing space, which is formed between two tube sheets arranged at spaced locations from one another, with bundle tubes of the tube bundle being held between the tube sheets in the tube sheets on both sides, and wherein the tube sheet is designed on the side of the gas inlet or gas outlet with the bundle tubes as a membrane sheet or thin tube sheet.
Cracking furnaces are used in a two-stage cooling system in some plants for producing ethylene. A vertically arranged double-tube heat exchanger is usually provided in this case as a primary quench cooler and a conventional, vertically or horizontally arranged tube bundle heat exchanger as a secondary quench cooler.
Such a tube bundle heat exchanger is used as a process gas waste heat boiler for rapidly cooling reaction gases from cracking furnaces or chemical plant reactors while at the same time generating high-pressure steam as the cooling medium removing the generated heat.
A tube bundle heat exchanger is known from EP 0 417 428 B1, in which heat exchanger at least one tube bundle is enclosed by a casing, forming an interior space, which is formed between two tube sheets arranged at spaced locations from one another, wherein tubes of the tube bundles are held each on both sides in the tube sheets. The tube sheet is provided on the gas inlet side with open turn-outs concentrically enclosing the tubes and parallel cooling channels, which are in connection with one another and through which a cooling medium flows.
Further, a tube bundle heat exchanger is known from WO 01/48434 A1, which heat exchanger has a casing, which is under pressure, and a lower tube plate, which separates the interior space of the casing from an inlet distributor for the entry of the fluid to be cooled. The lower tube plate has passages for the fluid, and cleaning passages are arranged laterally close to the inner surface of the tube plate for connection to the outside of the casing, and said cleaning passages are intended for inserting a device through the casing in order to clean the tube plate at the foot of the tube bundle. Inspection passages may also be present close to the plate surface for a visual inspection of the zone to be cleaned.
High velocity of the flow of water over the tube sheet is very decisive in case of vertically arranged secondary quench coolers, in which the tube sheet at the gas inlet according or at the gas outlet represents the lowest point in the water system, in order to avoid harmful effects in respect to the tube sheet. Such effects arise, e.g., due to deposits as a consequence of corrosion and due to overheating as a consequence of the settling of solid particles on the tube sheet.
Small solid particles very frequently enter the water of the water flow arrangement of the quench cooler, especially during the start-up of such a plant, for example, for ethylene production. In addition, the water-side metal surfaces of the tube sheet, of the tubes and of the casing produce a layer of magnetite or Fe3O4. The magnetite layer protects the steel of the tube sheet and it always slowly regenerates itself from the metal surface at operating temperature, while a small quantity of particles consisting of magnetite is released into the water.
Besides the high velocity of the water flow, it is just as important to guide the water flow over the tube sheet away from sensitive areas of the tube sheet, e.g., the middle of the tube sheet with the highest heat flux, to areas in which effective blow-down can be employed.
The tube sheet of the secondary quench cooler is designed as a so-called membrane design and comprises a thin plate with a thickness of about 25 mm. The bundle tubes of the quench cooler are welded onto the thin plate.
No devices are provided on the plate for routing the water flow over the tube sheet of the gas inlet or of the gas outlet.
An object of the present invention is to provide a quench-cooling system with a medium flow arrangement, in which the flow of medium is routed over the tube sheet of the gas inlet side or the gas outlet side such that, depending on the connection of the secondary quench cooler, deposits are prevented from forming. Another object is to provide an access, through which the tube sheet can be inspected and, depending on the inspection, cleaned in a simple manner, to the medium flow arrangement on the tube sheet on the side of the gas inlet or of the gas outlet.
The stated object is accomplished by a quench-cooling system with a primary quench cooler as a double-tube heat exchanger and with a tube bundle heat exchanger as a secondary quench cooler with at least one tube bundle, wherein the tube bundle is enclosed by a casing, forming a casing room, which is formed between two tube sheets arranged at spaced locations from one another, between which tube sheets bundle tubes of the tube bundle are held in the tube sheets on both sides. The tube sheet on the side of the gas inlet or gas outlet is configured as a thin tube sheet of the membrane design with the bundle tubes. The thin tube sheet is provided with parallel cooling channels, which are in connection with one another and through which a cooling medium flows. The cooling channels are configured in a tunnel arrangement and arranged on a tube plate as a thin tube sheet. The cooling channels configured in the tunnel arrangement have a rectangular tunnel geometry. The cooling channels with the tunnel geometry are formed from the thin tube sheet, which separates a gas side from a water/steam side, and is connected to a ring flange, which is connected to the casing of the enclosed tube sheet; from parallel webs, which are arranged on the tube sheet, are connected to the tube sheet and separate individual water/steam flows from one another; and from a covering sheet, which is provided with openings (passages) for bundle tubes and which is connected to the webs and defines the flow in the tunnel arrangement of the cooling channels and prevents the flow from escaping into a casing room (or jacket space) enclosed by the casing of the enclosed tube bundle aside from a predetermined percentage. The cooling channels configured in the tunnel arrangement bring about an unambiguously directed flow from the inlet openings in the direction of the outlet openings of the cooling channels.
It proved to be particularly advantageous when at least two of the respective cooling channels in a tunnel arrangement show a change in the cross section of the cooling channels or of the tunnels due to a continuous reduction of the tunnel height from the inlet opening to the outlet opening by a predetermined angle α, which is formed between the vertical line of the outlet opening and the covering sheet.
Furthermore, it proved to be advantageous when the predetermined angle α formed between the vertical line of the outlet opening of a cooling channel and the covering sheet is in the range of greater than/equal to 90° to 110°, because the angle depends on the predetermined increase in the necessary velocity of the flow over predetermined areas of the tube sheet to be cooled.
It must be considered another advantage in another design of the quench-cooling system according to the present invention that inspection or cleaning nozzles are arranged, opposite each other and flush, at the level of the cooling channels in a tunnel arrangement on the outer surface side of the ring flange connected to the casing and that the inspection or cleaning nozzles communicate with the cooling channels in a tunnel arrangement via openings in the ring flange.
Furthermore, it was found to be advantageous when the inspection or cleaning nozzles associated with the cooling channels and arranged opposite each other and flush on the ring flange are equipped with covers and when the covers or individual covers of the respective inspection or cleaning nozzles located opposite each other are arranged removably as a opening for the water-side maintenance or inspection of the bundle tubes in the area of the cooling channels in a tunnel arrangement.
Furthermore, it was found to be advantageous in the quench-cooling system according to the present invention that the covers or individual covers of the respective opposite inspection or cleaning nozzles are arranged removably as a opening for cleaning out existing deposits in the area of the cooling channels in a tunnel arrangement with a water jet.
It was found to be advantageous in another embodiment of the quench-cooling system according to the present invention that the inspection or cleaning nozzles associated with the cooling channels and arranged opposite each other and flush on the ring flange communicate with a boiler blow-down tank arranged on one side at the level of the cooling channels in a tunnel arrangement via the openings in the ring flange and via welded-on drain pipes as a continuation of the openings on the ring flange.
Furthermore, it is especially advantageous that the inspection or cleaning nozzles are arranged on the outer side of the boiler blow-down tank, which outer side is located opposite the drain pipes.
If the quench-cooling system is provided with the boiler blow-down tank, it is advantageous that the inspection or cleaning nozzles are arranged directly on the ring flange opposite the side on which the boiler blow-down tank is arranged.
The preferred tunnel flow design ensures high velocity of flow of the medium over the tube sheet on the gas inlet side or the gas outlet side. Because of the high velocity of flow of the medium, solid particles cannot, in principle, settle on the tube sheet. Since settling of solid particles on the tube sheet does not essentially occur, overheating of the tube sheet and hot water corrosion cannot develop.
The tunnel flow arrangement has two decisive features. First, solid particles do not essentially settle because of the generated high velocity of flow of the medium through the advantageous tunnel flow arrangement, and, second, overheating of the tube sheet and hence hot water corrosion do not develop due to the provision of a guided intense cooling. The tunnel flow arrangement ensures a continuous and uniform flow of water to and along the tube sheet of the gas inlet side or of the gas outlet side of a vertically arranged secondary quench cooler, and solid particles and sludge are essentially prevented from settling on the water side.
The service life and reliability of a quench-cooling system is considerably increased in such a way due to the embodiment of the advantageous tunnel flow arrangement on the respective tube sheet.
In another embodiment of the quench-cooling system according to the present invention, provisions are advantageously made for ensuring continuous access, via the inspection and cleaning nozzles, with the covers removed, to each cooling channel arranged on the tube sheet, so that said cooling channel can then be cleaned by introducing water as a preferred medium under high pressure either from both sides or from only one side. The blow-down water always leaves the cooling channel on the opposite side, preferably via drain pipes, into the boiler blow-down tank provided.
Further advantages of the present invention are shown in the drawings on the basis of exemplary embodiments and will be described in more detail below.
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which preferred embodiments of the invention are illustrated.
In the drawings:
Referring to the drawings, quench-cooling systems, according to the invention, are schematically shown in
The flow arrangements of the two different primary and secondary quench coolers, which serve a common steam drum arranged in an elevated position, are the preferred embodiments in connection with the firebox of a cracking furnace. The quench coolers are arranged in most cases above the radiant section of the cracking furnace.
The quench-cooling system shown in
A gas inlet opening 11 for a gas stream according to the direction of the arrow is arranged at the lower end of the vertically arranged primary quench cooler 10. The gas stream leaves the vertically arranged primary quench cooler 10 at the upper end at the gas outlet opening 12 in a predetermined, cooled state. The cooled gas stream is fed to the secondary quench cooler 20 on the side of the gas inlet via a pipeline 17 arranged between the gas outlet opening 12 of the primary quench cooler 10 and a gas inlet 21 of an inlet header 22 of the horizontally arranged secondary quench cooler 20 in order to be cooled further, and it leaves the secondary quench cooler 20 on the opposite side at the gas outlet 23 of an outlet header 24.
The cooling medium, especially water, is fed to the primary quench cooler 10 from the steam drum 40 according to the direction of the arrow via a feed pipeline 15 above the gas inlet opening 11 at the cooling water inlet opening 13 and leaves the quench cooler 10 as a water/steam mixture via an uptake tube 16 under the gas outlet opening 12 at the cooling water outlet opening 14 back into the steam drum 40. The cooling medium is fed to the horizontally arranged secondary quench cooler 20 according to the direction of the arrow via a secondary feed pipeline 44 behind the inlet header 22 at the cooling water inlet 25 from the steam drum 40 and leaves the quench cooler as a water/steam mixture in front of the outlet header 24 via a cooling water outlet 26 and a secondary uptake tube 45 back to the steam drum.
Such quench-cooling systems may be used for the rapid cooling of reaction gas or cracked gas from a cracking furnace or a chemical plant reactor by means of a boiling and partially evaporating medium, especially water, which is under a high pressure.
The cooling medium, especially water, from the steam drum 40 is fed to the secondary quench cooler 20 in
In the arrangement shown in
As can be seen more clearly in
The medium of the water/steam mass flow flows, according to
While flowing through the tunnels or cooling channels 27, a small portion of the mass flow passes according to
The mass flows merge again behind the outlet openings 31 according to
The cooling channels 27 or tunnels, which are separated by webs 33 on the thin tube sheet 28, extend in parallel, are covered by the covering sheet 34 and are separated by webs 33 from one another, can be clearly seen in
The cooling channel 27 in a tunnel arrangement, which is shown in
In vertically arranged secondary quench coolers 20, the tunnel arrangement is always arranged at the deepest sites of the quench cooler on the water/steam side. It is not important in this connection whether it is the gas inlet or the gas outlet. The tunnel arrangement is arranged in horizontally arranged secondary quench coolers 20 on the side of the gas inlet 21 on the water/steam side.
The entire tunnel arrangement of the cooling channels 27 or tunnels is enclosed by the ring flange 35. A preferred rectangular tunnel geometry is formed essentially by three components:
The thin tube sheet 28, which separates the gas side from the water/steam side, is connected to the ring flange 35.
The webs 33, which separate the individual water/steam flows from one another, so that an unambiguously directed flow can be obtained from the inlet openings 30 in the direction of the outlet openings 31 of the cooling channels 27 or tunnels, wherein the webs are connected to the tube sheet 28.
The covering sheet 34, which ensures a definition of the flow in the tunnel arrangement of the cooling channels 27 and prevents essentially the flow from escaping, aside from an intended percentage, which passes through the ring clearances 19, into a casing room 36, which is enclosed by the casing 32 and which encloses the bundle tubes 29 of the tube bundle. The covering sheet 34 is connected, especially welded, to the webs 33.
An unambiguously directed flow from the inlet openings 30 in the direction of the outlet openings 31 of the cooling channels 27 is ensured with the cooling channels 27 being configured in a tunnel arrangement.
At the cooling water inlet 25, the cooling medium enters, according to the direction of the arrow, the inlet chamber 46, which extends over half of the circumference of the casing 32 and is defined essentially by the baffle plate 43, which is connected, preferably welded, to the tube sheet 28 along the inlet openings 30 of the cooling channels 27 and correspondingly to the casing 32 just above the cooling water inlet. From the inlet chamber 46, the cooling medium reaches the individual inlet openings 30 of the cooling channels 27 and leaves the cooling channels at the outlet openings 31 and enters the casing room 36. Furthermore, the arrows indicate that the tube sheet 28 may be arranged on the side of the gas inlet 21 or of the gas outlet 23, depending on the arrangement of the quench cooler.
The predetermined reduction of the cross section from the inlet opening 30 to the outlet opening 31 of the cooling channel 27 or tunnel is intended for increasing the velocity of flow of the water/steam mass flow. The increase in the velocity of flow of the mass flow, which is associated with the reduction of the cross section, is very essential for the more intense cooling of highly stressed parts of the tube sheet 28, above all of the middle of the tube sheet, for a longer service life of the quench cooler 20 and hence of the quench-cooling system.
The special design of the cooling channels 27 in a tunnel arrangement is necessary to rule out the formation of deposits on the inner side or water side of the tube sheet 28. To prevent deposits, the directed flow over the tube sheet has to have a defined velocity. Therefore, while maintaining the mass flow in the tunnels, the necessary velocity is to be adapted by changing the cross section of the tunnels. The change in the cross section of the tunnels is achieved by a continuous reduction of the tunnel height.
The separably arranged covers 38 of the inspection or cleaning nozzles 37 are provided as a opening or access for inspecting or cleaning the tunnel arrangement of the cooling channels 27. The covers 38 of the respective inspection or cleaning nozzles 37 located opposite each other are removed for inspection or cleaning. Any deposits that may be present can be detected by means of a measuring device through the inspection or cleaning nozzles 37 with the covers 38 removed. The detected deposits can be removed from one opening up to the opposite opening by means of a high-pressure water jet. The deposits to be removed with a high-pressure water jet are preferably fed to a boiler blow-down tank 39, which is attached on one side of the inspection or cleaning nozzles 37 and receives and draws off the blow-down water.
Detail Y is shown in
While specific embodiments of the invention have been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.
Number | Date | Country | Kind |
---|---|---|---|
10 2014 018 261 | Dec 2014 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3593779 | Tokumitsu | Jul 1971 | A |
3833058 | Gulich | Sep 1974 | A |
3913531 | von Hollen | Oct 1975 | A |
4700773 | Kehrer | Oct 1987 | A |
5035283 | Brucher | Jul 1991 | A |
5579831 | Brücher | Dec 1996 | A |
6334483 | Berglund et al. | Jan 2002 | B1 |
Number | Date | Country |
---|---|---|
361 953 | Apr 1981 | AT |
73 05 711 | Aug 1973 | DE |
44 45 687 | Jun 1996 | DE |
0034223 | Aug 1981 | EP |
0 417 428 | Sep 1993 | EP |
0148 434 | Jul 2001 | WO |
WO 0148434 | Jul 2001 | WO |
Entry |
---|
Translation of European patent document EP 0034223 A1 entitled Translation—EP 0034223 A1. |
Number | Date | Country | |
---|---|---|---|
20160169589 A1 | Jun 2016 | US |