The invention is further explained in the description that follows with reference to the drawings illustrating, by way of non-limiting examples, various embodiments of the invention wherein:
The present invention for a novel heat exchanger and related TLE tube is now described in specific terms sufficient to teach one of skill in the practice the invention herein. In the description that follows, numerous specific details are set forth by way of example for the purposes of explanation and in furtherance of teaching one of skill in the art to practice the invention. It will, however, be understood that the invention is not limited to the specific embodiments disclosed and discussed herein and that the invention can be practiced without such specific details and/or substitutes therefor. The present invention is limited only by the appended claims and may include various other embodiments which are not particularly described herein but which remain within the scope and spirit of the present invention.
One of the key aspects of the present invention is the use of a fin profile having alternating concave and convex surfaces on the process side of the TLE tube. Further, it is preferred that the fins are aligned with the center line (longitudinal axis) of the tube as opposed to twisting or spiraling the fins within the interior of the TLE tube. Through the use of the finned process tube of the present invention, various advantages may be obtained. For example, stagnant and low flow zones are reduced and/or eliminated as are recirculation eddies. As such, fouling problems are mitigated. Further, increased heat transfer function is obtained with the desirable result that tubes can be shortened while still meeting the required heat transfer characteristics for the furnace and process.
In one embodiment of the present invention, a heat exchanger tube is provided. The heat exchanger tube has a longitudinal axis, an interior surface defining the flow area of the tube, and an interior circumference in a plane perpendicular to the longitudinal axis; wherein the interior surface comprises a plurality of axially extending grooves aligned with the longitudinal axis; the grooves formed along the length of the tube and formed as a series of alternating concave and convex surfaces along at least a portion of the interior circumference; and wherein the length of the perimeter of the interior surface in the plane is at least about twenty percent longer than the interior perimeter of a circular tube having substantially the same flow area as the heat exchanger tube.
In a preferred embodiment, each of concave 120 and convex 130 surfaces are of similar size and shape to one another such that each of the concave 120 surfaces has a concave nadir 160 and each of said convex 130 surfaces has a convex pinnacle 150, and wherein each of said convex pinnacles 150 are located at substantially the same distance from said longitudinal axis 140 and each of said convex nadirs 160 are located at the same distance from said longitudinal axis 140. In a preferred embodiment, all concave surfaces 120 and convex surfaces 130 have the same radius.
The thickness of the tube wall 170 is determined by the steam pressure in the quench exchanger, which is in turn, determined by the particular application. For example, in one embodiment a typical wall thickness for a tube on the order of about 2 to about 3 inches (about 50 to 76 mm) inside diameter (measured from valley to opposing valley of the fins) may have a wall thickness of about 0.3 to about 0.5 inches (about 7.6 to 12.7 mm). In another embodiment, a typical wall thickness for a tube on the order of about 2 to about 6 inches (about 50 to about 152 mm) inside diameter may have a wall thickness of about 0.2 to about 0.6 inches (about 5.1 to 15.2 mm).
As will be readily skilled in the art, the teachings of the present invention may alternatively be applied to tubes of larger or small diameters and the number of fins per unit of diameter may also be increased or decreased as desired for the particular application. That being said, typical dimensions for the inside diameter of the exchanger tube may be in the range of about 2 inches to about 3 inches (about 50 to about 76 mm) for single pass and U-tube type radiant coil units.
For units which are close coupled to serpentine radiant coils, the corresponding exchanger tube inside diameter (measured from valley to opposing valley of the fins) may lie in the range of about 3 inches to 6 about inches (about 76 to about 152 mm) depending upon the diameter of the radiant coil. When used in connection with shell and tube type exchangers, or double pipe units in a bundle arrangement, the corresponding exchanger tube inner diameter may be in the range of about 1.5 inches to about 2.5 inches (about 38 to about 64 mm). Of course, larger and smaller sizes may also be used without departing from the scope or spirit of the present invention.
With specific reference to
The tube illustrated in
Turning now to
As can be seen from
Turning now to
In the embodiment illustrated by
An example of an application of the teachings of the present invention along with the achieved benefits thereof is now discussed. In this case, an older steam cracking furnace employs a four-pass serpentine radiant coil with each of the four radiant outlet tubes having an inside diameter of about 5.25 inches (133 mm). Prior to employing the teachings of the present invention, the four outlet passes are manifolded together and fed to a circular quench exchanger of the type shown in FIGS. 4 and 5 of the Herrmann paper, discussed above. In this state, the furnace experiences an undesirably long “unfired residence time” due to the time required for manifolding and the time required for the effluent to traverse the inlet chamber of the quench exchanger.
It is desirable to use a close-coupled double-pipe quench exchanger to quench the effluent from each of the four radiant passes. The geometrical constraints imposed by the existing furnace limit the length of the double-pipe quench exchanger to a maximum of thirty feet. Using a conventional, circular quench exchanger tube profile, the predicted outlet temperature from the double pipe exchanger is about 1190° F. (645° C.), which provides insufficient operating margin from the practical upper limit of about 1200 to about 1250° F. (about 650° C. to about 675° C.).
By using an internally finned quench exchanger tube such as the one described in connection with
The tubes and the extended surface feature of the present invention as described above may be incorporated into a variety of quench exchanger types and designs. For example and without limitation, the teachings herein may be applied to double pipe exchangers and shell and tube type exchangers. In the case of double pipe units, the design may be linear arrangements or arrangements with multiple units positioned in a bundle with a common inlet changer and a common outlet chamber. If arranged as a linear unit, the unit may be close coupled to the radiant coil to minimize adiabatic time between leaving the furnace fired zone and entering the quench exchanger.
When used as a linear, close coupled unit, it is preferable that one or more radiant tubes be included with one or more radiant tubes feeding each quench exchanger tube. It is preferable in this case that if the radiant coil is a single pass coil, 2 or 4 radiant tubes feed each quench exchanger tube. Alternatively, if the radiant coil is a two-pass or U-tube coil, it is preferable that one or two radiant coil feeds each quench exchanger tube. Further, if the radiant coil is a serpentine coil, it is preferred that one radiant coil feeds each quench exchanger tube.
In the event that the TLE tube of the present invention is incorporated into a shell and tube type exchanger or a double pipe exchanger with multiple double pipe units mounted together in a bundle with a common inlet chamber, multiple radiant coils can be fed to multiple quench exchanger tubes regardless of the radiant coil type.
The teachings of the present invention have particular application to processes with light feeds such as gas and naphtha cracking applications. Additionally, the TLE tubes and the heat exchanger incorporating said tubes may have application in other processes such as gas-oil and other heavy feed based processes. This includes, by way of example and not limitation, gas-oil cracking applications, other heavy feed applications including atmospheric and vacuum gas-oils as well as virgin and hydro-treated gas-oils (to include both mildly hydro-treated gas-oils and severely hydro-cracked gas-oils). Other feeds may include, for example, crude oil and crude oil fractions from which non-volatile components have been removed. Further, the invention may also have application to feeds comprising field condensates with high final boiling points (e.g. above about 600° F. (315° C.).
The foregoing disclosure of the preferred embodiments of the present invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many variations and modifications of the embodiments described herein will be apparent to one of ordinary skill in the art in light of the above disclosure. The scope of the invention is to be defined only by the claims, and by their equivalents.
This application claims priority to and benefit of Provisional application filed on Sep. 13, 2006, U.S. Ser. No. 60/844,186.
Number | Date | Country | |
---|---|---|---|
60844186 | Sep 2006 | US |