The present disclosure relates to methods, systems, and techniques for generating and using relationship queries and, in particular, to methods, systems, and techniques for generating and using query templates to facilitate in the formulation and processing of relationship queries.
A relationship query language, such as In Fact® Query Language (IQL), which supports queries that express relationships between entities such as persons, places, or things using actions or events, is often difficult for many users to learn. One reason is that the syntax for such queries may be unfamiliar, and users may be accustomed to keyword matching based search systems. Even when relationship queries are supported, it has been found that often user queries are simple keywords rather than complex relationship expressions. This trend is not expected to change in the near term.
In addition, many third party applications exist which leverage more advanced users' abilities to tag or label “items” (such as web pages, images, etc.) that users have discovered by browsing web pages, using keyword search engines or through other discovery means. In some of these applications, the tags or labeled items may form a focus for a community that uses the application. For example, social networking sites typically allow users to create or use existing “tags” or “labels” (e.g., words that are used as keys for finding or relocating information) and to assign them to various electronic data, such as url-locatable (e.g., web) pages. Other users of the same social networking site can then locate related information (such as other url pages) by specifying one or more of the defined tags or labels.
Embodiments described herein provide enhanced computer- and network-based methods, systems and techniques for generating and using query templates for specifying, triggering, and/or facilitating the processing of relationship queries, such as those formed using Infact® Query Language (“IQL”) (alternatively referred to as Insightful® Query Language in some documentation). Example embodiments provide a Query Template System (“QTS”), which enables users, a system, program code, or other people or code that understands a relationship query language, such as IQL, to define search tips (i.e., predefined searches) through the generation of query templates that can be used by other users or code, for example that may not understand IQL, to perform relationship searches using IQL. For example, a user who doesn't know IQL can select a description of a query (e.g., a link to a query template) using some type of user interface, thereby causing one or more query templates to be invoked or triggered, which in turn causes the associated relationship search specification to be executed by an appropriate relationship search engine. Query templates may also be invoked or triggered by users and/or code that understands the underlying query language, for example to provide an easier or alternative interface to executing relationship queries.
Other interfaces for triggering query templates are also possible, including those that automatically present results without requiring any interaction from a user. For example, interfaces can be programmed to automatically present the search results of various query templates that are related to the entities, topics, or concepts being perused by a user, by triggering related query templates in the background and displaying the results of their associated relationship searches automatically.
Relationship queries typically entail searches for how one or more specified entities, entity types, ontology paths, topics, concepts, actions, action types, or events relate to other such entities, entity types, topics, concepts, ontology paths, actions, action types, or events. Thus, relationship searches often result in more meaningful information about how what is found relates to what was entered in a query by attempting to better understand what was intended by the query and to obtain more relevant results. In contrast, keyword searches simply perform exact or partial (substring) matches of words or phrases in a document and typically cannot determine grammatical clause based related information. For example, a relationship search on the entity “Hillary Clinton” in relation to activities she's been doing in “Chicago” (e.g., expressed as ‘*>attack>Hillary Clinton˜Chicago’ using IQL) may result in matching document segments that show how the document segment relates. For example, the document segment:
Relationship searching is an integral part of the examples used herein. Accordingly, this description presumes some familiarity with InFact®, the InFact® Query Language (IQL), and the InFact® query processing architecture as an example architecture for processing relationship queries. Additional information on relationship searches generally and on the InFact® system, IQL, and example components that can be implemented and integrated to process IQL is provided in U.S. Patent Publication No. 2005/0267871A1, published on Dec. 1, 2005, herein incorporated by reference in its entirety. Although this description refers primarily to IQL, it is to be understood that the concepts and techniques described herein are applicable to other relationship query languages as they are or become available.
In some embodiments of the QTS, various query template editors can be provided to create, delete and/or edit query templates. Some embodiments of the QTS also enable a system or code that is capable of processing query language expressions, such as IQL, to automatically tag or otherwise label queries and to automatically generate and store query templates. Query templates can be automatically generated, for example, as part of a navigation tip system, when the query “tip” is invoked, executed, displayed, or at some other time. Additional information on the InFact® navigation tip system is found in U.S. Patent Publication No. 2007/0156669, published on Jul. 5, 2007, which is herein incorporated by reference in its entirety.
Once one or more query templates are defined they can be stored in a data repository so that keyword search engines, third party applications and/or code, for example even code that does not understand IQL, can automatically retrieve desired/matching relationship query templates and present them, for example as search tips to aid users or to augment or enhance information that the keyword search engine, third party application, and/or code is presenting. For example, a news reporting tool (such as a client-side portal or widget) can integrate tagged or labeled relationship queries (e.g., by presenting links to query templates directly or indirectly) to automatically enhance or augment, with the results of the relationship queries, information that is being presented to users. For example, links to query templates such as represented by urls, pathnames, question, or icons, etc. that represent related information can be presented so that the user who read the article can find other pertinent information by selecting the link representation.
In addition, query templates can be incorporated into code that understands the relationship search language or that has the ability to pass relationship search language expressions such as IQL to an IQL system for processing. Also, users may run relationship searches produced by the QTS (by triggering query templates) and can incorporate the results of such searches into other applications. Also, users or code may “subscribe” to query templates associated with particular tags or to streamed downloading of query templates, such as through an RSS feed. Other incorporation or embedding scenarios are also contemplated.
Query templates have one or more associated attributes that indicate the associated relationship query and typically one or more attributes related to defining input or how the query template is triggered (e.g., keys or triggers) and defining output or how the query template returns query results.
Example embodiments described herein provide applications, tools, data structures and other support to implement a Query Template System to be used for query templates associated with relationship queries. As discussed, “relationship query” is used generally as an example of search queries where query templates are particular useful. Other uses of query templates—such as to define better input and output specifications for complex keyword searching are also possible. Also, although the examples described herein often refer to IQL, the techniques described herein can also be used with other query languages. In addition, the concepts and techniques described are applicable to other forms of applications, code, and interfaces, including other types of client-side applications, other web-clients, plug-ins, etc., and generally, other code, whether a standalone executable or module. Also, although certain terms are used primarily herein, other terms could be used interchangeably to yield equivalent embodiments and examples. Although the techniques of query templates and the QTS are generally applicable to any type of interface, the phrase “user interface” or “interface” is used generally to imply any type of method, technique or object used to trigger behavior in a computing system. In addition, terms may have alternate spellings which may or may not be explicitly mentioned, and all such variations of terms are intended to be included.
In the following description, numerous specific details are set forth, such as data formats and code sequences, etc., in order to provide a thorough understanding of the described techniques. The embodiments described also can be practiced without some of the specific details described herein, or with other specific details, such as changes with respect to the ordering of the code flow, different code flows, etc. Thus, the scope of the techniques and/or functions described are not limited by the particular order, selection, or decomposition of steps described with reference to any particular block or routine.
As mentioned, there are several methods for creating query templates, including some performed typically by more advanced users and some performed automatically. In some embodiments, a query template editor, such as QT editor 401 of
For example, suppose the user executes the query: [company]>buy>[company] to find information about all entities that are companies and that have bought other entities that are also considered companies, and decides it is a good query. The user may then click on a button Add to Library from the results window. The user is then prompted to enter a description of the query and tags for the query template. The user then enters: “Corporate Acquisitions by Company” for the Description field, and enters the tags: “corporate acquisitions, company acquisitions, and company buyouts”. In addition, the user may be prompted to modify the associated IQL to account for input and output. For example, the user may change the IQL to express input and output specifications such as: user([company])>buy>display([company]).
As described above, the function “user( )” indicates to the IQL processing system that user input is desired that meets the form of any requirements specified within the parentheses of the function, and that this input is to be used in the associated relationship query. In this example, the user input is valid if it specifies a “company,” which is an entity tag defined by the IQL processing system. The function “display( )” indicates to the IQL processing system that the results of running the associated query will display all matching results that are companies bought by one of the companies specified by the user. Thus, the associated IQL is “[company]>buy>[company]”, where the first entity (the buyer(s)) is specified by the user, and the bought entities are displayed as a result. The user may then submit the query template which is then added to the query template library.
In other embodiments, users, third parties, etc. may utilize one or more separate editors for creating, deleting, and editing query templates.
In addition to creating, deleting, and editing query templates by means of a query template editor, the QTS may in some embodiments be capable of automatically creating query templates. For example, using the navigation tip system described in U.S. Patent Publication No. 2007/0156669, published on Jul. 5, 2007, the user may select a presented tip, thereby causing the QTS to automatically generate and store a related query template.
In
For example, using the process of
IQL: user([person/name])< >*< >[person/name]
Description: People related to Any Person
Tags: people
may then be entered into the query template library/index. In some embodiments, the system maintains mappings between actual OntologyPaths (e.g., a “person/name” or “organization”) and their more colloquial counterparts, which may be used as tags. For example, in this example ‘people’ is a tag for the OntologyPath ‘person/name.’
As another example, suppose a user searches for “Ronald Reagan.” A tip which reads: ‘Ronald Reagan related to Jimmy Carter’ appears. The user then clicks on this tip. A query template with the attributes:
IQL: user([person/name])< >*< >Jimmy Carter
Description: People related to Jimmy Carter
Tags: people, jimmy carter
may then be entered into the query template library/index.
Once defined, query templates may be stored for later retrieval in a data repository such as the QT Data Repositories 420 in
Query templates may be retrieved in a variety of manners. For example, (if stored as above) a user may enter keywords into a standard search engine which are matched against the description and tag attributes of the indexed query templates. A list of query templates that match the keywords may then be returned by the system. The user may then select any of the query templates to execute their corresponding queries. In some embodiments, the corresponding queries are executed and results returned in conjunction with or instead of the list of query attributes.
Query templates may also be presented to a user automatically when they browse material on a web-page, through a portal, widget, application, etc. For example, the user may navigate to a social network site that ranks tags not only by popularity, but perhaps also by the number of query templates that include that tag. When a tag is selected by the user (e.g., using the ordinary interface), the user is presented with a list of query template descriptions ranked in part by usage popularity that are associated with the selected tag.
For example, the tags: Corporate, Entertainment, and Crime might be displayed on a site, where Corporate is associated with 5200 query templates, Entertainment is associated with 3000 query templates and Crime is associated with 159 query templates. Once the user clicks on a given tag, the user is presented with a list of query templates ranked in part by popularity. For example, when the user clicks on the ‘Corporate’ tag, the user may be presented with the following list:
Corporate Acquisitions by City
Corporate Acquisitions by Company
Corporate Layoffs by Industry
. . . [all or a portion of the 5200 items]
In this case, Corporate Acquisitions by City may have been used by users a total of 100,239 times, Corporate Acquisitions by Company may have been used by users a total of 52,103 times, and Corporate Layoffs by Industry a total of 10,234 times. In one embodiment, the query templates are presented in a ranked order based upon their popularity of use.
Query Templates may also be presented automatically when a user browses to a specific location, including for example, reading a news article, which contains one or more entities or ontology path specifications. When query templates have attributes such as those stored in
Referring back to
The computing system 1100 may comprise one or more server and/or client computing systems and may span distributed locations. In addition, each block shown may represent one or more such blocks as appropriate to a specific embodiment or may be combined with other blocks. Moreover, the various blocks of the Query Template System 1110 may physically reside on one or more machines, which use standard (e.g., TCP/IP) or proprietary interprocess communication mechanisms to communicate with each other.
In the embodiment shown, computer system 1100 comprises a computer memory (“memory”) 1101, a display 1102, one or more Central Processing Units (“CPU”) 1103, Input/Output devices 1104 (e.g., keyboard, mouse, CRT or LCD display, etc.), other computer-readable media 1105, and one or more network connections 1106. The QTS 1110 is shown residing in memory 1101. In other embodiments, some portion of the contents, some of, or all of the components of the QTS 1110 may be stored on or transmitted over the other computer-readable media 1105. The components of the Query Template System 1110 preferably execute on one or more CPUs 1103 and manage the generation and use of query templates, as described herein. Other code or programs 1130 and potentially other data repositories, such as data repository 1120, also reside in the memory 1110, and preferably execute on one or more CPUs 1103. Of note, one or more of the components in
In a typical embodiment, the QTS 1110 includes one or more user interfaces such as a QT Editor 1111, one or more QT dispatchers 1112 for request processing, one or more QT creation and index managers 1113, one or more query template searcher 1114 (or tip searchers) and other components. In at least some embodiments, the query template processing (executing the queries associated with the query templates) is provided external to the QTS and is available, potentially, over one or more networks 1150. Other and/or different modules may be implemented. In addition, the QTS may interact via a network 1150 with application or client code on client computing systems 1160 to search for query templates, one or more query template editor computing systems or client-code 1155, and/or one or more third-party information provider systems 1165, such as to provide additional query templates from external systems (e.g., through import functions). Also, of note, the QT data repositories and indexes 1115 may be provided external to the QTS as well, for example in a Lucene index accessible over one or more networks 1150. Other data repositories 1116 may also be used by the QTS.
In an example embodiment, components/modules of the QTS 1110 are implemented using standard programming techniques. However, a range of programming languages known in the art may be employed for implementing such example embodiments, including representative implementations of various programming language paradigms, including but not limited to, object-oriented (e.g., Java, C++, C#, Smalltalk, etc.), functional (e.g., ML, Lisp, Scheme, etc.), procedural (e.g., C, Pascal, Ada, Modula, etc.), scripting (e.g., Perl, Ruby, Python, JavaScript, VBScript, etc.), declarative (e.g., SQL, Prolog, etc.), etc.
The embodiments described above use well-known or proprietary synchronous or asynchronous client-server computing techniques. However, the various components may be implemented using more monolithic programming techniques as well, for example, as an executable running on a single CPU computer system, or alternately decomposed using a variety of structuring techniques known in the art, including but not limited to, multiprogramming, multithreading, client-server, or peer-to-peer, running on one or more computer systems each having one or more CPUs. Some embodiments are illustrated as executing concurrently and asynchronously and communicating using message passing techniques. Equivalent synchronous embodiments are also supported by a QTS implementation.
In addition, programming interfaces to the data stored as part of the QTS 1110 (e.g., in the data repositories 1115 and 1116) and to the query template retrieval functions and processing functions available through the other QTS components can be available by standard means such as through C, C++, C#, and Java APIs; libraries for accessing files, databases, or other data repositories; through scripting languages such as XML; or through Web servers, FTP servers, or other types of servers providing access to stored data. The data repositories 1115 and 1116 may be implemented as one or more database systems, file systems, or any other method known in the art for storing such information, or any combination of the above, including implementation using distributed computing techniques.
Also the example QTS 1110 may be implemented in a distributed environment comprising multiple, even heterogeneous, computer systems and networks. For example, in one embodiment, the QT editor 1111, the QT dispatcher 1112, and the QT data repository 1115 are all located in physically different computer systems. In another embodiment, various modules of the QTS 1110 are hosted each on a separate server machine and may be remotely located from the tables which are stored in the data repositories 1115 and 1116. Also, one or more of the modules may themselves be distributed, pooled or otherwise grouped, such as for load balancing, reliability or security reasons. Different configurations and locations of programs and data are contemplated for use with techniques described herein. A variety of distributed computing techniques are appropriate for implementing the components of the illustrated embodiments in a distributed manner including but not limited to TCP/IP sockets, RPC, RMI, HTTP, Web Services (XML-RPC, JAX-RPC, SOAP, etc.) etc. Other variations are possible. Also, other functionality could be provided by each component/module, or existing functionality could be distributed amongst the components/modules in different ways, yet still achieve the functions of a QTS.
Furthermore, in some embodiments, some or all of the components of the QTS may be implemented or provided in other manners, such as at least partially in firmware and/or hardware, including, but not limited to one or more application-specific integrated circuits (ASICs), standard integrated circuits, controllers (e.g., by executing appropriate instructions, and including microcontrollers and/or embedded controllers), field-programmable gate arrays (FPGAs), complex programmable logic devices (CPLDs), etc. Some or all of the system components and/or data structures may also be stored (e.g., as software instructions or structured data) on a computer-readable medium, such as a hard disk, a memory, a network, or a portable media article to be read by an appropriate drive or via an appropriate connection. The system components and data structures may also be transmitted via generated data signals (e.g., as part of a carrier wave or other analog or digital propagated signal) on a variety of computer-readable transmission mediums, such as media 1105, including wireless-based and wired/cable-based mediums, and may take a variety of forms (e.g., as part of a single or multiplexed analog signal, or as multiple discrete digital packets or frames). Such computer program products may also take other forms in other embodiments. Accordingly, embodiments of this disclosure may be practiced with other computer system configurations.
All of the above U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, including but not limited to U.S. Provisional Patent Application No. 60/894,876, entitled “QUERY TEMPLATE AND LABELED NAVIGATION TIP SYSTEM AND METHODS,” filed Mar. 14, 2007; U.S. patent application Ser. No. 11/012,089, entitled “METHOD AND SYSTEM FOR EXTENDING KEYWORD SEARCHING TO SYNTACTICALLY AND SEMANTICALLY ANNOTATED DATA,” filed Dec. 13, 2004; and U.S. patent application Ser. No. 11/601,612, entitled “EXTENDING KEYWORD SEARCHING TO SYNTACTICALLY AND SEMANTICALLY ANNOTATED DATA”, filed Nov. 16, 2006, are incorporated herein by reference, in their entirety.
From the foregoing it will be appreciated that, although specific embodiments have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the present disclosure. For example, the methods, systems, and techniques for creating and using query templates discussed herein are applicable to other architectures other than a client-server architecture. Also, the methods and systems discussed herein are applicable to differing protocols, communication media (optical, wireless, cable, etc.) and devices (such as wireless handsets, electronic organizers, personal digital assistants, portable email machines, game machines, pagers, navigation devices such as GPS receivers, etc.).
Number | Name | Date | Kind |
---|---|---|---|
4839853 | Deerwester et al. | Jun 1989 | A |
5301109 | Landauer et al. | Apr 1994 | A |
5317507 | Gallant | May 1994 | A |
5325298 | Gallant | Jun 1994 | A |
5331556 | Black, Jr. et al. | Jul 1994 | A |
5377103 | Lamberti et al. | Dec 1994 | A |
5619709 | Caid et al. | Apr 1997 | A |
5634051 | Thomson | May 1997 | A |
5778362 | Deerwester | Jul 1998 | A |
5794050 | Dahlgren et al. | Aug 1998 | A |
5794178 | Caid et al. | Aug 1998 | A |
5799268 | Boguraev | Aug 1998 | A |
5857179 | Vaithyanathan et al. | Jan 1999 | A |
5884302 | Ho | Mar 1999 | A |
5933822 | Braden-Harder et al. | Aug 1999 | A |
5950189 | Cohen et al. | Sep 1999 | A |
6006221 | Liddy et al. | Dec 1999 | A |
6006225 | Bowman et al. | Dec 1999 | A |
6026388 | Liddy et al. | Feb 2000 | A |
6061675 | Wical | May 2000 | A |
6064951 | Park et al. | May 2000 | A |
6122647 | Horowitz et al. | Sep 2000 | A |
6178416 | Thompson et al. | Jan 2001 | B1 |
6192360 | Dumais et al. | Feb 2001 | B1 |
6202064 | Julliard | Mar 2001 | B1 |
6246977 | Messerly et al. | Jun 2001 | B1 |
6363373 | Steinkraus | Mar 2002 | B1 |
6411962 | Kupiec | Jun 2002 | B1 |
6460029 | Fries et al. | Oct 2002 | B1 |
6484162 | Edlund et al. | Nov 2002 | B1 |
6510406 | Marchisio | Jan 2003 | B1 |
6584464 | Warthen | Jun 2003 | B1 |
6601026 | Appelt et al. | Jul 2003 | B2 |
6728707 | Wakefield et al. | Apr 2004 | B1 |
6732097 | Wakefield et al. | May 2004 | B1 |
6732098 | Wakefield et al. | May 2004 | B1 |
6738765 | Wakefield et al. | May 2004 | B1 |
6741988 | Wakefield et al. | May 2004 | B1 |
6745161 | Arnold et al. | Jun 2004 | B1 |
6757646 | Marchisio | Jun 2004 | B2 |
6859800 | Roche et al. | Feb 2005 | B1 |
6862710 | Marchisio | Mar 2005 | B1 |
6904433 | Kapitskaia et al. | Jun 2005 | B2 |
6910003 | Arnold et al. | Jun 2005 | B1 |
6996575 | Cox et al. | Feb 2006 | B2 |
7051017 | Marchisio | May 2006 | B2 |
7054854 | Hattori et al. | May 2006 | B1 |
7171349 | Wakefield et al. | Jan 2007 | B1 |
7283951 | Marchisio et al. | Oct 2007 | B2 |
7398201 | Marchisio et al. | Jul 2008 | B2 |
7403938 | Harrison et al. | Jul 2008 | B2 |
7451135 | Goldman et al. | Nov 2008 | B2 |
7788084 | Brun et al. | Aug 2010 | B2 |
8112402 | Cucerzan et al. | Feb 2012 | B2 |
8122016 | Lamba et al. | Feb 2012 | B1 |
8412557 | Lloyd et al. | Apr 2013 | B1 |
20020007267 | Batchilo et al. | Jan 2002 | A1 |
20020010574 | Tsourikov et al. | Jan 2002 | A1 |
20020059161 | Li | May 2002 | A1 |
20020078041 | Wu | Jun 2002 | A1 |
20020078045 | Dutta | Jun 2002 | A1 |
20020091671 | Prokoph | Jul 2002 | A1 |
20020120651 | Pustejovsky et al. | Aug 2002 | A1 |
20030004716 | Haigh et al. | Jan 2003 | A1 |
20030101182 | Govrin et al. | May 2003 | A1 |
20030115065 | Kakivaya et al. | Jun 2003 | A1 |
20030115191 | Copperman et al. | Jun 2003 | A1 |
20030233224 | Marchisio et al. | Dec 2003 | A1 |
20040010508 | Fest et al. | Jan 2004 | A1 |
20040044669 | Brown et al. | Mar 2004 | A1 |
20040103090 | Dogl et al. | May 2004 | A1 |
20040125877 | Chang et al. | Jul 2004 | A1 |
20040167870 | Wakefield et al. | Aug 2004 | A1 |
20040167883 | Wakefield et al. | Aug 2004 | A1 |
20040167884 | Wakefield et al. | Aug 2004 | A1 |
20040167885 | Wakefield et al. | Aug 2004 | A1 |
20040167886 | Wakefield et al. | Aug 2004 | A1 |
20040167887 | Wakefield et al. | Aug 2004 | A1 |
20040167907 | Wakefield et al. | Aug 2004 | A1 |
20040167908 | Wakefield et al. | Aug 2004 | A1 |
20040167909 | Wakefield et al. | Aug 2004 | A1 |
20040167910 | Wakefield et al. | Aug 2004 | A1 |
20040167911 | Wakefield et al. | Aug 2004 | A1 |
20040221235 | Marchisio et al. | Nov 2004 | A1 |
20040243388 | Corman et al. | Dec 2004 | A1 |
20050027704 | Hammond et al. | Feb 2005 | A1 |
20050076365 | Popov et al. | Apr 2005 | A1 |
20050108001 | Aarskog | May 2005 | A1 |
20050108262 | Fawcett, Jr. et al. | May 2005 | A1 |
20050138018 | Sakai et al. | Jun 2005 | A1 |
20050144064 | Calabria et al. | Jun 2005 | A1 |
20050149494 | Lindh et al. | Jul 2005 | A1 |
20050177805 | Lynch et al. | Aug 2005 | A1 |
20050197828 | McConnell et al. | Sep 2005 | A1 |
20050210000 | Michard | Sep 2005 | A1 |
20050216443 | Morton et al. | Sep 2005 | A1 |
20050234879 | Zeng et al. | Oct 2005 | A1 |
20050267871 | Marchisio et al. | Dec 2005 | A1 |
20060149734 | Egnor et al. | Jul 2006 | A1 |
20060279799 | Goldman | Dec 2006 | A1 |
20070143300 | Gulli et al. | Jun 2007 | A1 |
20070156669 | Marchisio et al. | Jul 2007 | A1 |
20070209013 | Ramsey et al. | Sep 2007 | A1 |
20080005651 | Grefenstette et al. | Jan 2008 | A1 |
20080010270 | Gross | Jan 2008 | A1 |
20080059456 | Chowdhury et al. | Mar 2008 | A1 |
20080097985 | Olstad et al. | Apr 2008 | A1 |
20080235203 | Case et al. | Sep 2008 | A1 |
20080288456 | Omoigui | Nov 2008 | A1 |
20090076886 | Dulitz et al. | Mar 2009 | A1 |
20090144609 | Liang et al. | Jun 2009 | A1 |
20090187467 | Fang et al. | Jul 2009 | A1 |
20090228439 | Manolescu et al. | Sep 2009 | A1 |
20100010994 | Wittig et al. | Jan 2010 | A1 |
20130124510 | Guha | May 2013 | A1 |
Number | Date | Country |
---|---|---|
0 280 866 | Sep 1988 | EP |
0 597 630 | Jul 2002 | EP |
20080111822 | Dec 2008 | KR |
WO 0014651 | Mar 2000 | WO |
0057302 | Sep 2000 | WO |
WO 0122280 | Mar 2001 | WO |
WO 0227536 | Apr 2002 | WO |
WO 0233583 | Apr 2002 | WO |
0180177 | Oct 2002 | WO |
WO 2004053645 | Jun 2004 | WO |
Entry |
---|
Cass, “A Fountain of Knowledge,” IEEE Spectrum Online, URL: http://www.spectrum.ieee.org/WEBONLY/publicfeature/jan04/0104compl.html, download date Feb. 4, 2004, 8 pages. |
Feldman et al., “Text Mining at the Term Level,” Proc. of the 2nd European Symposium on Principles of Data Mining and Knowledge Discover, Nantes, France, 1998. |
Ilyas et al., “A Conceptual Architecture for Semantic Search Engine,” IEEE, INMIC, 2004, pp. 605-610. |
Liang et al., “Extracting Statistical Data Frames from Text,” SIGKDD Explorations, Jun. 2005, vol. 7, No. 1, pp. 67-75. |
Littman et al., “Automatic Cross-Language Information Retrieval using Latent Semantic Indexing,” In Grefenstette, G., editor, Cross Language Information Retrieval. Kluwer, 1998. |
Nagao et al., “Semantic Annotation and Transcoding: Making Web Content More Accessible,” IEEE Multimedia, IEEE Computer Society, US. 8(2):69-81, Apr. 2001. |
Pohlmann et al., “The Effect of Syntactic Phrase Indexing on Retrieval Performance for Dutch Texts,” Proceedings of RIAO, pp. 176-187, Jun. 1997. |
Abraham, “FoXQ—XQuery by Forms,”Human Centric Computing Languages and Environments, Proceedings 2003 IEEE Symposium, Oct. 28-31, 2003, Piscataway, New Jersey, pp. 289-290. |
Jayapandian et al., “Automating the Design and Construction of Query Forms,” Data Engineering, Proceedings of the 22nd International Conference IEEE, Atlanta, Georgia, Apr. 3, 2006, pp. 125-127. |
Kaiser, “Ginseng—A Natural Language User Interface for Semantic Web Search,” University of Zurich, Sep. 16, 2004, URL=http://www.ifi.unizh.ch/archive/mastertheses/DA—Arbeiten—2004/Kaiser—Christian.pdf, pp. 1-84. |
Nguyen et al., “Accessing Relational Databases from the World Wide Web,” SIGMOD Record, ACM USA, Jun. 1996, vol. 25, No. 2, pp. 529-540. |
Rasmussen, “WDB—A Web Interface to Sybase,” Astronomical Society of the Pacific Conference Series, Astron. Soc. Pacific USA, Sep. 25, 1994, vol. 77, pp. 72-75. |
Sneiders, “Automated Question Answering Using Question Templates That Cover the Conceptual Model of the Database,” Natural Language Processing and Information Systems, 6th International Conference on Applications of Natural Language to Information Systems, Revised Papers (Lecture Notes in Computer Science vol. 2553), Springer-Verlag, Berlin, Germany, 2002, vol. 2553, pp. 235-239. |
Wu et al. “A Stacked, Voted, Stacked Model for Named Entity Recognition.” CONLL '03 Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL. 2003. pp. 200-203. vol. 4. |
Dekai Wu, A Stacked, Voted, Stacked Model for Named Entity Recognition, 2003, pp. 1-4. |
Number | Date | Country | |
---|---|---|---|
20090019020 A1 | Jan 2009 | US |
Number | Date | Country | |
---|---|---|---|
60894876 | Mar 2007 | US |