The present invention relates to streaming audio/video media, and more particularly to portable devices for providing streaming media over the Internet or a private network.
As the use of the Internet has become ubiquitous, more services are being offered online. This includes not only interactive services for which the Internet is widely known, such as email, online shopping, online banking, and customized information services, but has also come to include services that have traditionally been non-interactive, such as the provision of radio programming and television programming. Streaming media, in primitive forms, has been present on the Internet for some time. However, as greater numbers of users gain access to high speed data lines through school, through work, or through a home based broadband solution, more people will come to see the Internet in general, and streaming media in particular, as a viable alternative for the delivery of media content. This includes daily programming such as typically appears on network broadcasting stations as well as special event programming such as movies and sporting events.
Streaming media delivery is both promising and problematic. With traditional media delivery vehicles such as broadcasting and cable or satellite feeds, users typically must plan to be available when the broadcast is available or make other arrangements on their own. However with streaming media and Internet content, users expect delivery to be at their discretion. This can raise a variety of issues for providers as they attempt to deal with what is essentially replicating the broadcast event for every viewer. In addition to current and ongoing programming, providers are faced with the problem of legacy programming that may prove valuable if it can be provided more or less on-demand when viewers so request. The vast amount of programming currently available, as well as the large volume of non-digital legacy programming, can create problems associated with the scale or size of a given operation as well as with the technical difficulties involved in the delivery.
In addition to digitally encoding legacy programming, economies may be gained by providing a real-time digital stream corresponding to a filmed or taped event as the event is occurring. In this way, an event need not be filmed or recorded in a traditional manner and then converted to an appropriate digital format. Live coverage of an event could be provided directly in a streaming digital format. The event would be “broadcast” over a packet-based network. For some events, it may be possible to skip the traditional filming entirely and simply provide coverage in a digital streaming format. Of course, the digital stream could also be archived for later viewing or retrieval. The digital streaming broadcast model may also appeal to those without sufficient capital to invest in traditional recording or broadcasting equipment. Home videos, for example, could be captured and streamed directly over the Internet.
Therefore what is needed is a system and method for dealing with the issues discussed above and related issues.
It is also desirable to facilitate the use of streaming media encoders in a variety of conditions. In some circumstances, e.g., when the encoder is stationary, the use of wired microphones, wired internet connections and/or grid power may be acceptable, whereas in other circumstances, e.g., when the encoder is mobile, the use of wireless microphones, wireless internet connections and/or battery power is preferable. Permanently mounting and connecting the accessory devices necessary to provide such wireless or battery capabilities to a portable media encoder may result in increased weight and complexity that is not always required. Further, it is desirable to have the ability to quickly change between different suites of accessory devices without individually mounting and connecting them.
A need therefore exists, for a quick-connect accessory mount that facilitates quickly mounting and connecting accessory devices to a portable media encoder without individually mounting and connecting them, and vice-versa.
The present invention disclosed and claimed herein comprises, in one aspect thereof, a quick-change accessory mount for a portable media encoder having a housing, a video input port disposed on the housing to receive video signals, an audio input port disposed on the housing to receive audio signals, a digital output port disposed on the housing for transmitting, in a streamable format, digital information corresponding to received video and audio signals, an encoding processor enclosed within the housing for converting the received video and audio signals into a streamable digital format for transmitting through the digital output port. The quick-change accessory mount includes a substantially rigid frame having an upper surface and a lower surface. The frame is adapted for releaseable connection to the portable media encoder housing. A circuitry holder supports circuitry thereupon, the circuitry holder being affixed to the frame and having an upper portion extending above the upper surface of the frame and a lower portion extending below the lower surface of the frame. A substantially non-rigid cover is attached around the periphery of the frame and forms an enclosure for holding accessory devices mounted on the upper surface of the frame. A plurality of upper connectors operably interconnect via the circuitry to a plurality of lower connectors. The upper connectors are disposed on the upper portion of the circuitry holder and are operably accessible from within the enclosure. The lower connectors are disposed on the lower portion of the circuitry holder and are operably connectable to a video input port, audio input port, and digital output port on the portable media encoder housing when the portable media encoder housing is connected to the frame. Accessories mounted within the enclosure are operably connectable to the portable media encoder when the frame is connected to the encoder housing.
The present invention disclosed and claimed herein comprises, in another aspect thereof, a quick-change accessory mount for a portable media encoder having a video input port, an audio input port, a digital output port for transmitting streamable format digital information corresponding to received video and audio signals, and an encoding processor for converting the received video and audio signals into a streamable digital format for transmitting through the digital output port. The accessory mount comprises a frame having an upper surface and a lower surface and adapted for releaseable attachment to a portable media encoder. A flexible cover is attached to the frame forming an enclosure above the upper surface of the frame. Circuitry operably connects a plurality of upper connectors disposed within the enclosure and lower connectors disposed below the lower surface of the frame. At least one accessory device is mounted within the enclosure on the upper surface of the frame and releaseable operably connected to at least one of the upper connectors, the accessory device being selected from the group consisting of a quick-release battery mount, a wireless microphone receiver, and a wireless ethernet bridge. The lower connectors are adapted to operably connect with the video input port, audio input port, and digital output port of a portable media encoder when the frame is attached to the portable media encoder, whereby the accessory device mounted in the enclosure is operably connectable to the portable media encoder when the frame is connected to the encoder housing.
The present invention disclosed and claimed herein comprises, in a further aspect thereof, a quick-change accessory mount for a portable media encoder having a video input port, an audio input port, a digital output port for transmitting streamable format digital information corresponding to received video and audio signals, and an encoding processor for converting the received video and audio signals into a streamable format digital information. The accessory mount comprises a frame having a mounting portion and a circuitry housing portion. The mounting portion has an upper surface, a lower surface, and attachment structures for releaseably engaging a portable media encoder. The circuitry housing portion including a plurality of upper connectors disposed proximate to the upper surface of the mounting portion, a plurality of lower connectors disposed proximate to the lower surface of the frame, and circuitry operably connecting each of the upper connectors to one of the lower connectors. A cover is attached to the frame forming an enclosure above the upper surface of the frame and enclosing the upper connectors. The lower connectors are positioned on the circuitry housing portion so as to operably connect with the video input port, audio input port, and digital output port of a portable media encoder when the attachment structures engage the portable media encoder, whereby accessory device(s) mounted on the mounting portion and operably connected to the upper connectors within the enclosure may be releaseably operably connected to the portable media encoder via the circuitry and lower connectors when the accessory mount is engaged to the portable media encoder.
For a more complete understanding of the present invention and the advantages thereof, reference is now made to the following description taken in conjunction with the accompanying Drawings in which:
Referring now to the drawings, wherein like reference numbers are used herein to designate like elements throughout the various views, embodiments of the present invention are illustrated and described, and other possible embodiments of the present invention are described. The figures are not necessarily drawn to scale, and in some instances the drawings have been exaggerated and/or simplified in places for illustrative purposes only. One of ordinary skill in the art will appreciate the many possible applications and variations of the present invention based on the following examples of possible embodiments of the present invention.
Referring now to
The collapsible handle 115 may be made from a metal, an alloy, a plastic, or other material. The collapsible handle 115 may be configured so as to be static discharge resistant in order to protect the portable media encoder 100 from static discharges. In some embodiments the collapsible handle 115 may be coated with a rubber or plastic to improve grip and/or provide additional insulation. The collapsible handle 115 may be adapted to close or collapse flush with the front panel 110 of the portable media encoder 100 when not in use. The collapsible handle 115 may be mounted to the portable media encoder 100 on internal hinges or slides providing means for collapsing the handle 115.
The display screen 120 may be an LED display such as a four line by twenty character textual display, a black and white or color liquid crystal display (LCD) screen, with or without a back light, or another type of display screen suitable for use with the portable media encoder 100. The size of the display screen 120 may be chosen to fit the needs of the user. In the present embodiment, the display screen 120 is sized proportionately to fit the front panel 110 such that the display screen 120 is viewable on the front panel 110 without hinges, swivels, or other adjustments. In some embodiments, the display screen may be capable of displaying graphics and other high resolution information. The display screen 120 may be contact sensitive such that user selections may be input directly into the display screen 120. In operation the display screen 120 may provide a textual indication of nominal behavior of the portable media encoder 100. The display screen 120 may also provide alarm information content in the event of an alarm being generated by the portable media encoder 100. The display screen 120 can be also used to provide operational cues to a user who may be configuring the portable media encoder 100 through one of the menu systems described below. In some embodiments, the display screen 120 may be used to display communications from a remotely-located director or operator to the local user of the portable media encoder 100.
The buttons and controls provided on the front panel 110 of the portable media encoder 100 may be electromechanical push buttons or may be pressure-sensitive solid-state buttons. In some embodiments, the buttons will be sealed for protection against dirt or other debris encountered in various operating environments of the portable media encoder 100. Some of these buttons may perform a specific, predetermined operation in every situation in which they are used, while others buttons may be context sensitive. One example of a context sensitive button is the information button 122. The information button 122 may be clearly marked with an easily identifiable symbol such as ‘i’, as shown in
The menu button 124 provides user access to a series of menus and interactive services provided by the portable media encoder 100. The entry button 126 and up and down selection buttons 128, 130, respectively, are provided to aid in user interaction with the portable media encoder 100. The record or encode button 132, as well as the stop button 134, may also be used in the context of the menu system provided with the portable media encoder 100. The encode button 132 and the stop button 134 are used generally to start and stop the encoding process. A volume up button or key 136 as well as a volume down button 138 are provided for the convenience of a user monitoring the encoded audio stream via the headphone jack 140. The headphone jack 140 may be a standard 2.5 mm stereo jack or a jack of another type or size depending upon the needs of the user and the configuration of the portable media encoder 100. Corresponding to the left and right audio channels produced by the portable media encoder 100 are audio level meters 142, 144, respectively. The audio level meters 142 and 144 may be a series of light emitting diodes (LED's) designed to illuminate incrementally according to the amplitude of the encoded audio signal. In some embodiments the LED's may be different colors. For example, green LED's may be used for low amplitude signals while red LED's may be used for high amplitude signals.
One or more preprogrammed buttons such as an ‘A’ button 146, a ‘B’ button 148, and a ‘C’ button 150 may be provided to allow the portable media encoder 100 to be started with a reduced amount of configuration information provided by the user. In one embodiment, the user may be able to connect the portable media encoder 100 to proper input and output sources and begin an encoding session by pressing the ‘A’ button 146. The ‘A’ button 146 may be tied to specific encoding configuration information stored within the portable media encoder 100. Such configuration information may include, but is not limited to, source type, output type, frame rate, resolution, and other parameters. Similarly, the ‘B’ button 148 and the ‘C’ button 150 may be associated with a different set of parameters that may be commonly used with the portable encoder 100. Indicator lights 152, 154, and 156 associated with the ‘A’ button 146, the ‘B’ button 148, and the ‘C’ button 150, respectively, may be set to illuminate when the portable media encoder 100 is operating under one of the preprogrammed modes accessed via the preprogrammed buttons 146, 148, 150. The indicator lights 152, 154, and 156, as well as the other indicator lights described herein, may be light emitting diodes (LEDs), incandescent bulbs, or other electro-luminescent devices adequately visible to the user.
A main power button 160 may be provided as well as a power indicator 162. An alarm indicator 180 may illuminate when the encoder 100 is in an alarm state. Information corresponding to alarm states may also be provided on the display screen 120, as will be described in greater detail below. In some embodiments, the portable media encoder 100 may be remotely controllable, for example, via a network. When the portable media encoder 100 is being remotely controlled, a network control indicator 182 may be illuminated. Other indicators may reflect the current operational status of the portable media encoder may be provided, such as video signal indicator 184. The video signal indicator 184 may illuminate when a video signal is detected as being input to the portable media encoder 100. Indicator lights may also be associated with the media port 170, such as the docking light 188 and the transfer indicator 190. The docking light 188 illuminates when a portable storage device is inserted into the media port 170 and has become recognized by the portable media encoder 100. The portable media encoder 100 may provide the capability of streaming or archiving encoded streams to a portable storage device attached to the media port 170. The portable media encoder 100 provides an indication that this is occurring via illumination of the transfer indicator 190.
The portable media encoder 100 is capable of receiving signals from a plurality of different source types and converting the various source types into a plurality of different encoded media formats. The various format types which may be encoded by the portable media encoder 100 include, but are not limited to, Windows Media® format from Microsoft Corporation of Redmond, Wash., Real Media® format from Real Networks, Inc., of Seattle, Wash., Flash Video® format from Macromedia, Inc., of San Francisco, Calif., QuickTime® format by Apple Computer, Inc., of Cupertino, Calif., and various standards from the Motion Pictures Expert Group (MPEG). In some modes of operation, the portable media encoder 100 provides real-time streaming of the encoded files over an Internet connection. In addition to the preprogrammed buttons 146, 148, 150, the portable media encoder 100 may also be configured manually via the menu buttons 124, 126, 128, 130, or may be configured remotely via a network interface.
The full functionality of the media port 170 will be described in greater detail below. However, it may be appreciated from
In some embodiments, configuration information may be provided via the USB port 195 or via the removable media port 170. The USB port 195 may accept a media storage device such as a USB flash drive or USB-enabled hard disk drive. Configuration information may be stored on the USB device and automatically loaded into the portable media encoder 100. In some embodiments, new or altered menu systems may be provided by a USB device attached to the USB port 195. Upgrades to the configuration, the operating system, or programming of the media encoder 100 itself may also be provided via a USB device. The information provided by a USB device may either be retained in the encoder 100 or may be available only when the USB device is connected to the portable media encoder 100. In a similar manner as the USB port 195, the media port 170 may accept a media device storage device capable of providing configuration or upgrade information to the portable media encoder 100.
Referring now to
The rear panel 205 provides a plurality of input and output connections for the portable media encoder 100. The portable media encoder 100 may be powered through the rear panel 205 using an alternating current (AC) power connection 215 or a direct current (DC) power connection 220. The AC power connection 215 may be adapted to accept a standard power cord connectable to a standard 120 volt (V) wall outlet. A 12 V auxiliary source may also be used to power the portable media encoder 100 by connecting to the DC power connector 220. Either the AC power connector 215 or the DC power connector 220 may be adapted to interfit with any type of power cord that is provided and the present disclosure is not meant to be limited to the specific embodiments shown. A power indicator light 240, which may be a red LED, may also be provided to provide a visual indication that the portable media encoder 100 is powered. A drive activity indicator 242, which may be a yellow LED, may also be provided proximate the power indicator 240. The drive activity indicator 242 may illuminate when an internal storage device for the portable media encoder 100 is active.
In the present embodiment, the inputs into the portable media encoder 100 will be analog inputs. These inputs may include both video and audio. A composite video input 222 and an S-video input 224 may be provided. Unbalanced audio inputs may be accepted by the left unbalanced audio input 226 and the right unbalanced audio input 228. The unbalanced audio inputs of
The output from the portable media encoder 100 may be provided on one or more ethernet connections 234, 236. In other embodiments, other digital outputs may be used, such as a wireless digital output. In the embodiment shown, ethernet connection 234 is a 1 gigabit (Gb) connection while ethernet connection 236 is a 100 megabit (Mb) connection. Other embodiments may provide different speeds of ethernet connections and the present disclosure is not meant to be limited to the examples shown. It is also not necessary that ethernet ports be provided as outputs at all. As stated, output from the portable media encoder 100 may also be provided via a media port 170 on the front panel 110 of the portable media encoder 100. Similar in function to the front USB port 195, a second USB port 262 on the rear panel 205 may be used to provide output from the portable media encoder 100. The USB port 262 may also be used as an input device to the portable media encoder 100. A USB storage device may be attached USB port 262 to provide updated programming or control instructions to the portable media encoder 100. Input/output devices such as a keyboard or mouse may be connected to the portable media encoder 100 via the USB ports 195, 262. However, a separate keyboard port 246 and mouse port 248 may be provided. The keyboard port 246 and mouse port 248 are PS/2 type connectors in the embodiment shown, although other types of connectors may be used. In some embodiments a VGA output 250 may also be used to attach a separate view screen to aid in configuring, operating, or updating the portable media encoder 100. An alarm output 260 may also be provided on the rear panel 205 to provide an indication of an alarm condition occurring within the portable media encoder 100. The alarm output 260 may provide an electrical signal indicating an alarm to a remote location independent of the other output means such as ethernet connections 234, 236.
A dock connector 270 may also be provided on the rear panel 205 of the portable media encoder 100. The dock connector 270 functions as a data and communications bus to the internal components of the portable media encoder 100. The dock connector 270 may be used to provide control information, programming data, and control inputs to the portable media encoder 100. The dock connector 270 may also be used to provide input signals to, and receive output signals from, the portable media encoder 100. In this manner, the dock connector 270 could be used to expand the existing range of input and output options for the portable media encoder 100. The dock connector 270 may be used to replicate all of the discrete connectors on back panel 205 through a single integrated connection as to allow connection of the encoder 100 into a docking station or a rack mount with out requiring the connection of numerous discrete cables. The docking connector may be an edge connector, a multi-pin connector, or another suitable connector. Internally, the dock connector may be connected to a main logic board 301 (of
Referring now to
A main logic board or motherboard 304 may be provided for interconnection and control of the other components within the case 301 of the portable media encoder 100. The motherboard 304 may also serve to encode the input data stream or streams captured by the capture card 330. The motherboard 304 may handle encoding, compression, storage, transmission, and other operations for the captured input streams. These operations may be hardware or software driven, or a combination of both. In this manner, the motherboard 304 serves as an encoding processor. Some embodiments of the portable media encoder 100 may also have separate specialized processors specifically designed for capture and/or encoding of the input streams.
In some embodiments, the motherboard 304 may be a commercially available, off-the-shelf motherboard such as one suitable for use in a personal computer. The motherboard 304 may include a central processor unit (CPU) 306 and various banks of random access memory (RAM) 308. A non-volatile storage device 310 may be attached to the motherboard 304 to provide operating system and control information. In some embodiments the non-volatile storage device 310 may be a hard disk drive although in other embodiments other non-volatile storage means such as flash drives may be used. When the non-volatile storage device 310 is active, the motherboard 304 may cause the disk activity indicator 242 (of
A daughter board 312 may be used to provide functionality not available on the motherboard 304 or to increase ease of assembly or manufacturing of the portable media encoder 100. In the present embodiment, the daughter board 312 includes a USB controller 314. The USB controller 314 may be adapted to provide access to one or more of the USB ports such as USB port 195 or USB port 262. In other embodiments, the USB controller 314 may be located on the motherboard 304. The daughter board 312 also provides an audio amplifier 316. The audio amplifier 316 maybe configured to provide the audio output to the audio output jack 140. In some embodiments, the audio amplifier 316 provides the control for the audio level meters 142, 144. In other embodiments, a separate device on the daughter board 312 and/or motherboard 304 provides the functionality of the audio level meters 142, 144. The audio amplifier also interconnects with the volume control buttons 136, 138 on the front panel 100 for determining the output volume of the audio output jack 140.
Connected to the motherboard 304 and/or the daughter board 312 is a media adapter 318. In one embodiment, the media adapter 318 is powered and/or controlled by the USB controller 314 on the daughter board 312. There media adapter 318 serves to provide a data and power interface to the removable storage device 320. The media adapter 318 may be specific to the removable media device 320. However, by providing a different media adapter 318, additional kinds of removable storage devices 320 may be utilized by the portable media encoder 100. The removable storage device 320 may be a removeable hard disk drive, a flash drive, a personal music or video player, a personal digital assistant (PDA), a cell phone, or another device capable of receiving and storing data. In the embodiment shown in
A network adapter 324 may also interface with the motherboard 304. The network adapter 324 may be a commercially available ethernet card. In other embodiments, network connectivity may be integrated into the motherboard 304. The network adapter 324 provides the ethernet ports 234, 236. Two ethernet ports are provided in the present embodiment but the present disclosure is not meant to be so limited. In some embodiments, one ethernet port may be used for providing output from the portable media encoder 100 while the other may be used for remotely-controlling the portable media encoder. The ethernet ports 234, 236 may be 100 Mb ports, 1 Gb ports, or ports of other speeds.
A separate video capture card 330 may be utilized by the motherboard 304 to capture the audio and/or video input streams for encoding on the motherboard 304. In some embodiments, the captured input streams will be digitized prior to being sent to the motherboard 304 for encoding, compression, storage, transmission, and other operations. As can be seen from
The portable media encoder 100 may be powered through the AC connection 215 or the DC connection 220. When the portable media encoder 100 is powered via the AC connection 215, an AC power converter 342 receives and conditions the alternating current from the AC connector 215 and converts it to the appropriate direct or alternating current and voltage needed by the various components of the portable media encoder 100 such as the motherboard 304. Similarly, a DC power converter 340 receives power from the DC power connection 220 and converts it to the appropriate current and voltage for the internal components of the portable media encoder 100.
The motherboard 304 provides the functionality to operate the power indicator LED 240 and the activity LED indicator 242. The motherboard 304 may use information obtained from the non-volatile storage device 310, the power converters 340, 342 and/other componentry within the portable media encoder 100 in order to properly control the indicators 240, 242. The motherboard 304 may also provide an interface to the dock connector 270. The connection between the dock connector 270 and the motherboard 304 may be made by a ribbon cable or other suitable connector.
Referring now to
Referring now to
On the face 501 of the rack mount 500 are confidence monitors 510 and 512. The confidence monitor 510 may correspond to the portable media encoder 100 mounted in the portable media encoder receptacle 502 while the confidence monitor 512 may correspond to the portable media encoder 101 mounted in the portable media encoder receptacle 504. The confidence monitors 510, 512 serve to provide a visual confirmation that the portable media encoders 100, 101 are producing an encoded video stream. In the embodiment shown, the confidence monitor 510 may be activated by the button 520, labeled ‘1’, and corresponding to portable media encoder receptacle 502, while the confidence monitor 512 may be activated by pressing the button 530, labeled ‘2’, and corresponding to the portable media encoder receptacle 504. Indicator lights 522 and 532 are also provided corresponding to confidence monitors 510 and 512, respectively. The indicator lights may be LED's and may indicate to a user whether either or both of the confidence monitors 510, 512 are active. Brightness controls may also be provided through brightness control buttons 525 and 527 associated with confidence monitor 510 and brightness control buttons 535, 537 associated with confidence monitor 512. A confidence monitor power switch 540 corresponding to the power supply for both confidence monitors 510, 512 may also be provided. An indicator light 532 indicates whether power is supplied to the confidence monitors 510, 512.
An encoder control panel 550 may also be provided to allow a user to access the additional features of the rack mount 500. A master power button 552 and associated indicator light 554 may be provided. An encoder selection button 560 may be provided and is operable to activate the portable media encoder 100 located in portable media encoder receptacle 502. Similarly, an encoder selection button 580 activates the portable media encoder 101 located in the portable media encoder receptacle 504. Indicator lights 562 and 582 provide a visual indication that the respective portable media encoders 100, 101 are active. The rack enclosure 500 may provide a redundant mode whereby both of the portable media encoders 100, 101 may be utilized to encode the same audiovisual input stream. The redundant mode may be activated in the embodiment shown by pressing the redundant mode selection button 570. A redundant mode selection indicator 572 provides visual confirmation that the portable media encoders 100, 101 are operating redundantly. Substantially identical output streams may be provided from the portable media encoders 100, 101 when operating in a redundant mode. Furthermore, either of the portable media encoders 100 may be removed or may become disabled, even during operation, without affecting the output from the rack enclosure 500. The operating status of the portable media encoders 100, 101 may be ascertained by information provided by the portable media encoders themselves (e.g., information on the displays 120). As described, indication of the operating state of the portable media encoders 100 may also be provided by the confidence monitors 510,512 and the various indicator lights appearing on the front panels 110 of the portable media encoders 100, 101.
Referring now to
Like the back panel of the portable media encoders 100, 101 it can be seen that the rear rack panels 605, 610 of the rack enclosure 400 provide both composite video inputs 620, VGA video inputs 624 and S-video inputs 622. Similarly, right and left unbalanced audio inputs are provided, 630 and 632, respectively, as well as left and right balanced audio inputs 634, 636, respectively. As with the portable media encoders 100, 101, the rear rack panels 605, 610 provide unbalanced audio input by RCA-style connectors. Balanced audio input is provided by XLR-type connectors. Outputs may be provided on ethernet connectors 642, 644 and on a VGA connection 640. Keyboard connections are provided via PS2 ports 650 and mouse connections are provided via PS2 ports 652. USB ports 660 may also be provided on the rear rack panels 605, 610 to provide input/output functionality as well as downloading and upgrade functionality to the portable media encoders 100, 101.
Referring now to
From the view shown in
Referring now to
The digitized output 820 from the portable media encoder 100 may be distributed over a network 825. The network 825 may be a local area network, a wide area network, or a distributed computer network such as the Internet. In one embodiment, the portable media encoder 100 provides a streaming audio/video source that may be provided directly to one or more of a plurality of recipients. These recipients may include a user with a portable personal computer 840, a desktop computer 850, or another appliance capable of receiving streaming media over the Internet, such as the Internet protocol television set 860. Thus, the portable media encoder 100 may be used at an event location 810 to provide live coverage to the plurality of users 840, 850, and 860. In another embodiment, the portable media encoder 100 may provide the digitized audio and video information to a remote server 830. The feed to the remote server 830 may be in addition to, or instead of, the feed directly to the users 840, 850, and 860. The remote server 830 may provide a device or location for archiving the output of the portable media encoder 100 for later retrieval. In this manner, the users 840, 850, and 860 may be able to retrieve the streamed event information from the remote server 830 after the event has ended.
Referring now to
Referring now to
Referring now to
The flow diagram 1100 of
In the event that the user chooses the set up option at step 1120, a series of choices may then be presented to the user via the display screen 120 allowing for set up and configuration of the network parameters used by the portable media encoder 100. Following the selection of the set up option at step 1120, at step 1122 the user may be asked to provide an Internet protocol (IP) address of a host system that will be receiving the streaming output. Such a host system may be the remote server 830 of
If a user of the portable media encoder 100 interacts with the portable media encoder 100 to select the encode option at step 1130, the portable media encoder 100 may respond by providing an encode list at step 1132. The encode list may correspond to a number of encoding types or profiles that are preset and available for selection when operating the portable media encoder 100. At step 1134 the user interacts with the menu system via the arrow buttons 128, 130, as previously described, to select the appropriate encoding profile. The profile may include source type, output type, frame rate, resolution, and other parameters. At step 1136 the selection is confirmed. Confirmation may be via pressing the enter button 126, for example.
If a user of the portable media encoder selects the monitor option at step 1140, a sub-menu may be presented by the portable media encoder 100. The sub-menu may provide additional choices such as health information at step 1142, system information at step 1144, and session information at step 1146. Each of these selections will offer additional information corresponding to the chosen selection. For example, if the user selects health information at step 1142, at step 1148 the encoder will provide information corresponding to the health of the encoder system. Such health information may include central processing unit utilization rate, memory capacity, hard drive capacity, and other information. If system information is selected at step 1144, information may be provided such as the IP address of one or more network adapters in the portable media encoder and/or information corresponding to the connected host. If session information is selected at step 1146, information may be provided corresponding to a current encoding session such as the IP address being used, the current port, the number of viewers of the session, the number of lost data packets, and the band width or bit rate of the session.
If a user selects the protect option at step 1150, the display 120 of the portable media encoder 100 may display that a locking option is being provided by the media encoder. The locking option may allow the front control panel to be locked out from further purposeful or inadvertent changes by the user or others. A confirmation step may be required at step 1154. In some embodiments, the portable media encoder 100 may be unlocked by a predetermined series of button presses on the front panel 110. In other embodiments, the device may be unlocked by moving the lockout switch 211 located on the rear panel 205 of the portable media encoder 100 as shown in
A user may select the log option at step 1160, which may provide detailed logging information corresponding to the current or previous encoding sessions. The user may be presented with a list of the current and/or previous encoding sessions and may be required to select which session's logging information is desired at step 1162. The logged information may then be displayed at step 1164. Such logged information may include, but is not limited to, the time and date of the selected entry, the file name of the selected entry, the file size, and the success or failure of the session. At step 1166 the user may be provided with the option of viewing the logged information for the next logged session in the provided list.
At step 1170, a user may choose to export one or more stored encoding sessions. A stored encoding session may include the digitized version of the information captured by the input ports on the rear panel 205 of the portable media encoder 100. The encoding session may have been stored internally within the portable media encoder, on an internal hard disk drive, for example, or may have been stored on an attached external storage device. At step 1172, a user interacts with the menu system to select the appropriate file for exporting. At step 1174, the user selects the appropriate output device to receive the exported encoding session. Such an output device may include an attached memory or storage device which may operate through a USB port, such as USB port 195 or USB port 262, or through the media port 170 of the portable media encoder 100. At step 1176, the user selects the option to store, thereby confirming the choice. The portable media encoder 100 may then proceed to export the selected file to the selected storage device.
Referring now to
Referring now to
The portable media encoder 1300 includes a housing 1308 having attachment structures configured to facilitate the easy attachment of a quick-change accessory mount. In the embodiment illustrated in
Referring now to
The quick-change accessory mount 1500 includes a frame 1502 having an upper surface 1504 and a lower surface 1506. Preferably, the frame 1502 is substantially rigid. A circuitry holder 1508 is attached to the frame 1502 and has an upper portion 1510 extending above the upper surface 1504 and a lower portion 1512 extending below the lower surface 1506. A plurality of upper connectors 1514 disposed on the upper portion 1510 and a plurality of lower connectors 1516 disposed on the lower portion 1512 are electrically connected via circuitry 1518 (
Referring now specifically to
The frame 1502 is preferably formed of any rigid material, however, light-weight materials are most preferred to enhance portability of the device. In one preferred embodiment, the frame 1502 is formed from anodized aluminum sheet having a thickness of about 0.090 inches. In other embodiments, the frame 1502 may be formed of composite materials, such as carbon fiber/epoxy or fiberglass/epoxy and metals or metal alloys, such as aluminum, titanium, magnesium, and steel.
The frame 1502 may include attachment structures that facilitate mounting the quick-change accessory mount on a portable media encoder. Preferably, the attachment structures on the quick-change accessory mount will cooperate with the attachment structures on the portable media encoder. In the embodiment illustrated, the attachment features on the quick-change accessory mount 1500 include rounded corners 1534 on the lateral sides of the frame, and a rail 1536 located on the inside edge of each side. The attachment features may further include a lip 1538 extending from the front of the frame 1502.
As previously described, the circuitry holder 1508 is attached to the frame 1502 and positions the upper connectors 1514 and lower connectors 1516 on their respective upper and lower sides of the frame. The circuitry holder 1508 is preferably a single printed circuit board (PCB), but may comprise multiple PCBs, discrete wiring, cables, or a combination of these elements. The circuitry holder 1508 may be enclosed in a circuitry housing 1540 to provide structural support and protection. In the illustrated embodiment, the circuitry housing 1540 is a sheet aluminum box attached to the back end of the frame 1502. It will be appreciated that other materials may be used for the circuitry housing, including metals, alloys, plastics, and composites, and further that the housing may be positioned at different locations on the frame in other embodiments.
Locking or latching structures may also be provided on the quick-change accessory mount to releaseably secure the device to a portable media encoder. The locking structures may be positioned on either the frame 1502, the circuitry housing 1540, or both. In the illustrated embodiment, the locking structures comprised thumb screws 1542 extending through the lower portion of the circuitry housing 1540, however, other known latching or securing mechanisms may be used in other embodiments.
The upper connections 1514 may be a variety of discrete and/or multi-pin connectors selected to provide convenient interfaces with the accessory devices installed in the quick-change accessory mount. In the illustrated embodiment, the upper connectors include audio RCA jacks 1544, XLR balanced audio jacks 1546, ethernet RJ45 connectors 1548, +12 VDC output jacks 1550, +5 VDC output jacks 1552, and multi-voltage DC input jacks (from the battery) 1554. It will be appreciated that other types of connections may be used in other embodiments.
The lower connectors 1516 may be a variety of discrete and/or multi-pin connectors selected to provide convenient interfaces to the input and output ports, power and control circuits on the associated portable media encoder. In the illustrated embodiment, the lower connectors 1516 comprise a single multi-pin connector compatible with the flex dock port 1306 on the back panel of the portable media encoder 1300. The circuitry 1518 (shown in stylized form in
The flexible cover 1520 of the illustrated embodiment may be attached to the periphery of the frame 1502 and/or circuitry housing 1540 using hold-down bars 1558 and 1560, which are screwed down over the cover material (not shown) to capture it against the respective frame or housing. In other embodiments, the cover 1520 may be secured to the frame using adhesives or other known techniques.
The various accessory devices, e.g., devices 1526, 1528, and 1530 are operatively removably connected to the upper connectors 1514 using appropriate patch cables or adaptor cables (not shown). Once connected to the upper connectors, the accessory devices are operationally connected via the circuitry 1518 to the lower connectors 1516. In this manner, the accessory devices inside the quick-change accessory mount 1500 may be operationally connected to the input and output ports, power and control circuits of the portable media encoder 1300 when the accessory device is mounted.
Referring now specifically to
The non-rigid cover 1520 may have additional features designed to improve functionality of the quick-change accessory mount 1500. For example, a business card holder 1572 may be disposed on the upper cover 1566. As another example, the lower cover 1568 may be formed with slit openings 1574 (shown in phantom) covered or partially covered by pleats 1576 formed in the fabric cover.
Referring now specifically to
During the mounting operation, the multi-pin docking connector 1556 of the mount 1500 will operably engage the dock connector 1306 of the encoder 1300, thereby operably connecting the accessory devices installed in the enclosure 1522 to the input and output ports, power and control lines of the portable media encoder 1300. For example, if a +12 VDC battery is installed in the accessory mount, the power may be routed through connector 1554, circuitry 1518, and connectors 1556 and 1306 to the encoder 1300. The power may be used to power the encoder itself, but it may also be routed to a DC-to-DC convertor in the encoder for conversion to +12 VDC and +5 VDC. The +12 VDC and +5 VDC may then be routed back across the lower connectors and circuitry to the power jacks 1550 and 1552 for powering +12 VDC and +5 VDC accessory devices installed in the cavity 1522. Similarly, audio microphone signals received by the wireless microphone receiver 1528 may be transferred via jacks 1544 or 1546 to the encoder for processing into a digital output stream. The digital output stream may be routed back through the circuitry from the encoder to the accessory mount where it is available through RJ45 jack 1548. The ethernet signal available at jack 1548 may be routed to a wireless ethernet bridge 1530 for wireless broadcast of the encoded programming stream to a remote receiver. It will be appreciated that several quick-change accessory mount may be configured with different suites of accessories, allowing portable operation of the encoder 1300 in a number of different modes without requiring discrete devices to be connected and disconnected. Rather, it is only necessary to remove one quick-change accessory mount and replace it with another mount, with all connections being made automatically when mounting the accessory mount on the encoder.
It will be appreciated by those skilled in the art having the benefit of this disclosure that this invention provides portable media encoder and devices for use with such encoders. It should be understood that the drawings and detailed description herein are to be regarded in an illustrative rather than a restrictive manner, and are not intended to limit the invention to the particular forms and examples disclosed. On the contrary, the invention includes any further modifications, changes, rearrangements, substitutions, alternatives, design choices, and embodiments apparent to those of ordinary skill in the art, without departing from the spirit and scope of this invention, as defined by the following claims. Thus, it is intended that he following claims be interpreted to embrace all such further modifications, changes, rearrangements, substitutions, alternatives, design choices, and embodiments.
This application is a Continuation-in-Part of pending U.S. patent application Ser. No. ______ (Attorney Docket No. VWSI-27,509) filed Mar. 28, 2006 entitled “PORTABLE MEDIA ENCODER.” This application also claims the benefit of priority from U.S. Provisional Application No. 60/764,140 filed Jan. 31, 2006 entitled “PORTABLE MEDIA ENCODER SYSTEM” and from U.S. Provisional Application No. 60/782,497 filed Mar. 15, 2006 entitled “PORTABLE MEDIA ENCODER SYSTEM #2.”
Number | Date | Country | |
---|---|---|---|
60764140 | Jan 2006 | US | |
60782497 | Mar 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11391014 | Mar 2006 | US |
Child | 11399081 | Apr 2006 | US |