Positive temperature coefficient of resistance resistor/overload (PTCR/OL) assemblies have many uses in industry. The resistance of PTCR/OL assemblies increases with a rise in temperature of the device. Essentially, these assemblies operate normally under normal temperature or electrical current conditions. However, when the ambient temperature in the assemblies or the current flow through the assemblies increases to a level where heat is produced, the resistance of the assemblies increases to limit the flow of current. PTCR/OL assemblies have numerous uses in electronic circuit boards and larger commercial and consumer equipment, such as relays, generators, motors and compressors.
It is desirable to simplify the manufacture of these assemblies and their installation on the equipment of which they comprise a part. Because the equipment in which PTCR/OL assemblies are used is often bulky and heavy, it may be difficult to install the PTCR/OL assembly onto the equipment during manufacture due to size and location restraints. Similarly, removing a failed PTCR/OL assembly and installing a new assembly in situ is often hampered by equipment size and location and the position of the PTCR/OL assembly on the equipment. Thus, the need arose for PTCR/OL assemblies that could be easily installed during equipment manufacture, and easily replaced in situ in the event of a failure.
Because the equipment on which PTCR/OL assemblies are used tend to be subject to vibration, designs have evolved that ensure the assemblies remain securely attached to the equipment, and that connection mechanisms remain securely connected during use, and will not vibrate loose over time. For electrical connections, there is a dual need of making a connection that will remain secure, and keeping electrical connections sufficiently isolated to prevent undesirable contact or short-circuit during operation due to equipment vibration. In order to achieve these operational objectives of ensuring secure connections and proper electrical contact, the electrical connection mechanisms designed are often difficult to install, remove, or reconnect when assembling or replacing the PTCR/OL assembly, and may require the use of special tools.
One aspect of the present invention, accordingly, provides a PTCR/OL assembly which has an electrical connection that can be easily connected, disconnected, and reconnected, but which is secure enough to prevent disconnection of the electrical connection from the PTCR/OL assembly due to vibration or movement of the mechanism during operation, and which will keep the electrical connections properly isolated during operation.
Another aspect of the present invention provides a method for electrically connecting a PTCR/OL assembly to the equipment with which it is used. The method includes providing an electrical connection that can be secured on the PTCR/OL assembly during operation to prevent disconnection of the electrical connection during shipping or operation, but which can be disconnected without the need for special tools in order to remove the PTCR/OL when desired.
Another aspect of the present invention provides a PTCR/OL assembly with a PTCR/OL device that has an angle protruding out from the side for use in securing certain types of electrical plugs, the PTCR/OL having at least one male conductive terminal in a socket, each terminal being connected to a terminal plate, and an electrically isolated plug having a female conductive element for connecting to each male conductive terminal on the PTCR/OL, and one female wire receptacle for each female conductive element for connecting a wire capable of conducting electrical current.
Yet another aspect of the present invention provides a method for connecting a PTCR/OL device to electrically conductive wire, the PTCR/OL having an angle protruding outwardly from the body in a plane parallel to the top of the device, adjacent to the at least one socket in the PTCR/OL. A male conductive terminal protrudes into each socket, the terminal connected to a terminal plate in the PTCR/OL. A plug assembly with at least one electrically isolated female conductive element is inserted into the at least one socket on the PTCR/OL such that the at least one female conductive element on the plug assembly is fittingly engaged on the corresponding male conductive terminal in the socket. At least one electrically conductive wire is inserted into each electrically isolated female wire receptacle in the plug to connect the PTCR/OL device.
Additionally, because the PTCR/OL assembly is used with various pieces of equipment that use different types of electrical connectors, another aspect of the present invention is that with only minor modifications which can be made easily during manufacture, it is possible to configure various models of PTCR/OL such that they can be connected to numerous pieces of equipment, making it easier to manufacture a different PTCR/OL for each customer requirement.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
In the discussion of the FIGURES, the same reference numerals will be used throughout to refer to the same or similar components. In the interest of conciseness, various other components known to the art, such as compressors, generators, relays, and the like on which PCTR/OL assemblies are commonly used, have not been shown or discussed, except insofar as necessary to describe the present invention.
In the following discussion, numerous specific details are set forth to provide a thorough understanding of the present invention. However, it will be obvious to those skilled in the art that the present invention may be practiced without such specific details.
Referring to
In
As can be clearly seen in
When it is desired to electrically disconnect the PTCR/OL assembly 200 from the equipment, the locking tab 214 can be unlocked by flexing the arm into which the locking tab 214 is incorporated until the locking tab 214 is released from under the angle 218 on the PTCR/OL 202. By pulling the plug 204 fully away from the PTCR/OL 202, the electrical connection can be disconnected. In order to electrically reconnect the PTCR/OL assembly 200 to the equipment, the plug 204 should be aligned with the sockets 210, 212, and the locking tab 214 aligned with the angle 218 on the PTCR/OL 202. The plug 204 should be pushed into the sockets 210, 212 until the locking tab 214 snaps into place under the angle 218 and the female connections on the plug 204 are securely connected to the terminals 220, 222 on the PTCR/OL 202. In addition to requiring only a single step, no special tools are required to electrically connect or disconnect the plug 204 and attached wires 206 from the PTCR/OL 202. Also, because deep wells are not required to ensure electrical isolation during operation due to the fact that the plug 204 offers an extra degree of electrical isolation not seen in the old individual wires 104, 106, less material is required to manufacture the PTCR/OL 202.
In another embodiment of the present invention shown in
As can be seen in more detail in
As shown in
The single piece pressure plate 322 and neutral terminal 114 used in the prior art is shown in detail in FIG. 10. However, the present invention utilizes a single PTCR/OL 200 that has neutral connection terminals 222 of varying shapes and sizes, depending on the particular arrangement used. One method of doing this is to make different plates 322 for each arrangement of PTCR/OL 200 developed. However, to reduce the cost and number of parts that must be manufactured, inspected and stocked, it was determined that it would be desirable to develop a single pressure plate 322 to which a variety of different types of connection terminals 222 could be attached. This was especially practical for the neutral terminal pressure plate 322, because it already served a dual purpose as it existed in the PTCR/OL 200 to form the holder for the PTC sensor 500 when used with second pressure plate 322a, and would have to continue to be manufactured in its present form. If the same pressure plate 322 could be used in the present invention with a variety of electrical connection terminals 222 without necessitating extensive rework, great savings in cost and efficiency could be recognized.
As shown in
It is understood that the present invention can take many forms and embodiments. Having described the present invention by reference to certain of its preferred embodiments, it is noted that the embodiments disclosed are illustrative rather than limiting in nature and that a wide range of variations, modifications, changes, and substitutions are contemplated in the foregoing disclosure and, in some instances, some features of the present invention may be employed without a corresponding use of the other features. Many such variations and modifications may be considered obvious and desirable by those skilled in the art based upon a review of the foregoing description of preferred embodiments. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3167736 | Temple | Jan 1965 | A |
3914727 | Fabricius | Oct 1975 | A |
3988709 | McKinnon et al. | Oct 1976 | A |
4213112 | Alman et al. | Jul 1980 | A |
4387412 | Woods et al. | Jun 1983 | A |
4571017 | Fujita | Feb 1986 | A |
4791272 | Thaler et al. | Dec 1988 | A |
4925398 | Samejima et al. | May 1990 | A |
5006950 | Allina | Apr 1991 | A |
5134888 | Zylka et al. | Aug 1992 | A |
5166628 | Henninger | Nov 1992 | A |
5314347 | Colleran et al. | May 1994 | A |
5595497 | Wood | Jan 1997 | A |
5611706 | Makita et al. | Mar 1997 | A |
5617287 | Allina | Apr 1997 | A |
5718596 | Inaba et al. | Feb 1998 | A |
5769650 | Aoyama et al. | Jun 1998 | A |
5945903 | Reddy et al. | Aug 1999 | A |
5949324 | Segler et al. | Sep 1999 | A |
5998763 | Mattis et al. | Dec 1999 | A |
6074234 | Hasegawa | Jun 2000 | A |
6126474 | Doye et al. | Oct 2000 | A |
6132233 | Fukuda | Oct 2000 | A |
6325656 | Fukuda et al. | Dec 2001 | B1 |
6361349 | Hung | Mar 2002 | B1 |
6383003 | Corona | May 2002 | B1 |
6402943 | Bohlender | Jun 2002 | B1 |
6459590 | Malnati | Oct 2002 | B2 |
6558180 | Nishimoto | May 2003 | B2 |
6659783 | Copper et al. | Dec 2003 | B2 |
20010046803 | Kodama | Nov 2001 | A1 |
Number | Date | Country |
---|---|---|
3311811 | Oct 1984 | DE |
0606752 | Jul 1994 | EP |
2199451 | Jul 1986 | GB |
53-106945 | Sep 1978 | JP |
62-174581 | Jul 1987 | JP |
Number | Date | Country | |
---|---|---|---|
20030071713 A1 | Apr 2003 | US |