Quick-connect prosthetic heart valve and methods

Abstract
A heart valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The prosthetic valve has a base stent that is deployed at a treatment site, and a valve component configured to quickly connect to the base stent. The base stent may take the form of a self- or balloon-expandable stent that expands outward against the native valve with or without leaflet excision. The valve component has a non-expandable prosthetic valve and a self- or balloon-expandable coupling stent for attachment to the base stent, thereby fixing the position of the valve component relative to the base stent. The prosthetic valve may be a commercially available to valve with a sewing ring and the coupling stent attaches to the sewing ring. The system is particularly suited for rapid deployment of heart valves in a conventional open-heart surgical environment. A catheter-based system and method for deployment is provided.
Description
FIELD OF THE INVENTION

The present invention generally relates to prosthetic valves for implantation in body channels. More particularly, the present invention relates to prosthetic heart valves configured to be surgically implanted in less time than current valves.


BACKGROUND OF THE INVENTION

In vertebrate animals, the heart is a hollow muscular organ having four pumping chambers as seen in FIG. 1: the left and right atria and the left and right ventricles, each provided with its own one-way valve. The natural heart valves are identified as the aortic, mitral (or bicuspid), tricuspid and pulmonary, and are each mounted in an annulus comprising dense fibrous rings attached either directly or indirectly to the atrial and ventricular muscle fibers. Each annulus defines a flow orifice.


The atria are the blood-receiving chambers, which pump blood into the ventricles. The ventricles are the blood-discharging chambers. A wall composed of fibrous and muscular parts, called the interatrial septum separates the right and left atria (see FIGS. 2 to 4). The fibrous interatrial septum is a materially stronger tissue structure compared to the more friable muscle tissue of the heart. An anatomic landmark on the interatrial septum is an oval, thumbprint sized depression called the oval fossa, or fossa ovalis (shown in FIG. 4).


The synchronous pumping actions of the left and right sides of the heart constitute the cardiac cycle. The cycle begins with a period of ventricular relaxation, called ventricular diastole. The cycle ends with a period of ventricular contraction, called ventricular systole. The four valves (see FIGS. 2 and 3) ensure that blood does not flow in the wrong direction during the cardiac cycle; that is, to ensure that the blood does not back flow from the ventricles into the corresponding atria, or back flow from the arteries into the corresponding ventricles. The mitral valve is between the left atrium and the left ventricle, the tricuspid valve between the right atrium and the right ventricle, the pulmonary valve is at the opening of the pulmonary artery, and the aortic valve is at the opening of the aorta.



FIGS. 2 and 3 show the anterior (A) portion of the mitral valve annulus abutting the non-coronary leaflet of the aortic valve. The mitral valve annulus is in the vicinity of the circumflex branch of the left coronary artery, and the posterior (P) side is near the coronary sinus and its tributaries.


The mitral and tricuspid valves are defined by fibrous rings of collagen, each called an annulus, which forms a part of the fibrous skeleton of the heart. The annulus provides peripheral attachments for the two cusps or leaflets of the mitral valve (called the anterior and posterior cusps) and the three cusps or leaflets of the tricuspid valve. The free edges of the leaflets connect to chordae tendineae from more than one papillary muscle, as seen in FIG. 1. In a healthy heart, these muscles and their tendinous chords support the mitral and tricuspid valves, allowing the leaflets to resist the high pressure developed during contractions (pumping) of the left and right ventricles.


When the left ventricle contracts after filling with blood from the left atrium, the walls of the ventricle move inward and release some of the tension from the papillary muscle and chords. The blood pushed up against the under-surface of the mitral leaflets causes them to rise toward the annulus plane of the mitral valve. As they progress toward the annulus, the leading edges of the anterior and posterior leaflet come together forming a seal and closing the valve. In the healthy heart, leaflet coaptation occurs near the plane of the mitral annulus. The blood continues to be pressurized in the left ventricle until it is ejected into the aorta. Contraction of the papillary muscles is simultaneous with the contraction of the ventricle and serves to keep healthy valve leaflets tightly shut at peak contraction pressures exerted by the ventricle.


Various surgical techniques may be used to repair a diseased or damaged valve. In a valve replacement operation, the damaged leaflets are excised and the annulus sculpted to receive a replacement valve. Due to aortic stenosis and other heart valve diseases, thousands of patients undergo surgery each year wherein the defective native heart valve is replaced by a prosthetic valve, either bioprosthetic or mechanical. Another less drastic method for treating defective valves is through repair or reconstruction, which is typically used on minimally calcified valves. The problem with surgical therapy is the significant insult it imposes on these chronically ill patients with high morbidity and mortality rates associated with surgical repair.


When the valve is replaced, surgical implantation of the prosthetic valve typically requires an open-chest surgery during which the heart is stopped and patient placed on cardiopulmonary bypass (a so-called “heart-lung machine”). In one common surgical procedure, the diseased native valve leaflets are excised and a prosthetic valve is sutured to the surrounding tissue at the valve annulus. Because of the trauma associated with the procedure and the attendant duration of extracorporeal blood circulation, some patients do not survive the surgical procedure or die shortly thereafter. It is well known that the risk to the patient increases with the amount of time required on extracorporeal circulation. Due to these risks, a substantial number of patients with defective valves are deemed inoperable because their condition is too frail to withstand the procedure. By some estimates, about 30 to 50% of the subjects suffering from aortic stenosis who are older than 80 years cannot be operated on for aortic valve replacement.


Because of the drawbacks associated with conventional open-heart surgery, percutaneous and minimally-invasive surgical approaches are garnering intense attention. In one technique, a prosthetic valve is configured to be implanted in a much less invasive procedure by way of catheterization. For instance, U.S. Pat. No. 5,411,552 to Andersen et al. describes a collapsible valve percutaneously introduced in a compressed state through a catheter and expanded in the desired position by balloon inflation. Although these remote implantation techniques have shown great promise for treating certain patients, replacing a valve via surgical intervention is still the preferred treatment procedure. One hurdle to the acceptance of remote implantation is resistance from doctors who are understandably anxious about converting from an effective, if imperfect, regimen to a novel approach that promises great outcomes but is relatively foreign. In conjunction with the understandable caution exercised by surgeons in switching to new techniques of heart valve replacement, regulatory bodies around the world are moving slowly as well. Numerous successful clinical trials and follow-up studies are in process, but much more experience with these new technologies will be required before they are completely accepted.


Accordingly, there is a need for an improved device and associated method of use wherein a prosthetic valve can be surgically implanted in a body channel in a more efficient procedure that reduces the time required on extracorporeal circulation. It is desirable that such a device and method be capable of helping patients with defective valves that are deemed inoperable because their condition is too frail to withstand a lengthy conventional surgical procedure. The present invention addresses these needs and others.


SUMMARY OF THE INVENTION

Various embodiments of the present application provide prosthetic valves and methods of use for replacing a defective native valve in a human heart. Certain embodiments are particularly well adapted for use in a surgical procedure for quickly and easily replacing a heart valve while minimizing time using extracorporeal circulation (i.e., bypass pump).


In one embodiment, a method for treating a native aortic valve in a human heart to replaces the function of the aortic valve, comprises: 1) accessing a native valve through an opening in a chest; 2) advancing an expandable base stent to the site of a native aortic valve, the base stent being radially compressed during the advancement; 3) radially expanding the base stent at the site of the native aortic valve; 4) advancing a valve component within a lumen of the base stent; and 5) expanding a coupling stent on the valve component to mechanically couple to the base stent in a quick and efficient manner.


In one variation, the base stent may comprise a metallic frame. In one embodiment, at least a portion of the metallic frame is made of stainless steel. In another embodiment, at least a portion of the metallic frame is made of a shape memory material. The valve member may take a variety of forms. In one preferred embodiment, the valve component comprises biological tissue. In another variation of this method, the metallic frame is viewed under fluoroscopy during advancement of the prosthetic valve toward the native aortic valve.


The native valve leaflets may be removed before delivering the prosthetic valve. Alternatively, the native leaflets may be left in place to reduce surgery time and to provide a stable base for fixing the base stent within the native valve. In one advantage of this method, the native leaflets recoil inward to enhance the fixation of the metallic frame in the body channel. When the native leaflets are left in place, a balloon or other expansion member may be used to push the valve leaflets out of the way and thereby dilate the native valve before implantation of the base stent. The native annulus may be dilated between 1.5-5 mm from their initial orifice size to accommodate a larger sized prosthetic valve.


In accordance with a preferred aspect, a prosthetic heart valve system comprises a base stent adapted to anchor against a heart valve annulus and defining an orifice therein, and a valve component connected to the base stent. The valve component includes a prosthetic valve defining therein a non-expandable, non-collapsible orifice, and an expandable coupling stent extending from an inflow end thereof. The coupling stent has a contracted state for delivery to an implant position and an expanded state configured for outward connection to the base stent. The base stent may also be expandable with a contracted state for delivery to an implant position adjacent a heart valve annulus and an expanded state sized to contact and anchor against the heart valve annulus. Desirably, the base stent and also the coupling stent are plastically expandable.


In one embodiment, the prosthetic valve comprises a commercially available valve having a sewing ring, and the coupling stent attaches to the sewing ring. The contracted state of the coupling stent may be conical, tapering down in a distal direction. The coupling stent preferably comprises a plurality of radially expandable struts at least some of which are arranged in rows, wherein the distalmost row has the greatest capacity for expansion from the contracted state to the expanded state. Still further, the strut row farthest from the prosthetic valve has alternating peaks and valleys, wherein the base stent includes apertures into which the peaks of the coupling stent may project to interlock the two stents. The base stent may include a plurality of radially expandable struts between axially-oriented struts, wherein at least some of the axially-oriented struts have upper projections that demark locations around the stent.


A method of delivery and implant of a prosthetic heart valve system is also disclosed herein, comprising the steps of

    • advancing a base stent to an implant position adjacent a heart valve annulus;
    • anchoring the base stent to the heart valve annulus;
    • providing a valve component including a prosthetic valve having a non-expandable, non-collapsible orifice, the valve component further including an expandable coupling stent extending from an inflow end thereof, the coupling stent having a contracted state for delivery to an implant position and an expanded state configured for outward connection to the base stent;
    • advancing the valve component with the coupling stent in its contracted state to an implant position adjacent the base stent; and
    • expanding the coupling stent to the expanded state in contact with and connected to the base stent.


The base stent may be plastically expandable, and the method further comprises advancing the expandable base stent in a contracted state to the implant position, and plastically expanding the base stent to an expanded state in contact with and anchored to the heart valve annulus, in the process increasing the orifice size of the heart valve annulus by at least 10%, or by 1.5-5 mm. Desirably, the prosthetic valve of the valve component is selected to have an orifice size that matches the increased orifice size of the heart valve annulus. The method may also include mounting the base stent over a mechanical expander, and deploying the base stent at the heart valve annulus using the mechanical expander.


One embodiment of the method further includes mounting the valve component on a holder having a proximal hub and lumen therethrough. The holder mounts on the distal end of a handle having a lumen therethrough, and the method including passing a balloon catheter through the lumen of the handle and the holder and within the valve component, and inflating a balloon on the balloon catheter to expand the coupling stent. The valve component mounted on the holder may be packaged separately from the handle and the balloon catheter. Desirably, the contracted state of the coupling stent is conical, and the balloon on the balloon catheter has a larger distal expanded end than its proximal expanded end so as to apply greater expansion deflection to the coupling stent than to the prosthetic valve.


In the method where the coupling stent is conical, the coupling stent may comprise a plurality of radially expandable struts at least some of which are arranged in rows, wherein the row farthest from the prosthetic valve has the greatest capacity for expansion from the contracted state to the expanded state.


The method may employ a coupling stent with a plurality of radially expandable struts, wherein a row farthest from the prosthetic valve has alternating peaks and valleys. The distal end of the coupling stent thus expands more than the rest of the coupling stent so that the peaks in the row farthest from the prosthetic valve project outward into apertures in the base stent. Both the base stent and the coupling stent may have a plurality of radially expandable struts between axially-oriented struts, wherein the method includes orienting the coupling stent so that its axially-oriented struts are out of phase with those of the base stent to increase retention therebetween.


Another aspect described herein is a system for delivering a valve component including a prosthetic valve having a non-expandable, non-collapsible orifice, and an expandable coupling stent extending from an inflow end thereof, the coupling stent having a contracted state for delivery to an implant position and an expanded state. The delivery system includes a valve holder connected to a proximal end of the valve component, a balloon catheter having a balloon, and a handle configured to attach to a proximal end of the valve holder and having a lumen for passage of the catheter, wherein the balloon extends distally through the handle, past the holder and through the valve component. In the system, the prosthetic valve is preferably a commercially available valve having a sewing ring to which the coupling stent attaches.


The contracted state of the coupling stent in the delivery system may be conical, tapering down in a distal direction. Furthermore, the balloon catheter further may include a generally conical nose cone on a distal end thereof that extends through the valve component and engages a distal end of the coupling stent in its contracted state. Desirably, the handle comprises a proximal section and a distal section that may be coupled together in series to form a continuous lumen, wherein the distal section is adapted to couple to the hub of the holder to enable manual manipulation of the valve component using the distal section prior to connection with the proximal handle section. Preferably, the balloon catheter and proximal handle section are packaged together with the balloon within the proximal section lumen.


Alternatively, the valve component mounted on the holder is packaged separately from the handle and the balloon catheter.


A further understanding of the nature and advantages of the present invention are set forth in the following description and claims, particularly when considered in conjunction with the accompanying drawings in which like parts bear like reference numerals.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be explained and other advantages and features will appear with reference to the accompanying schematic drawings wherein:



FIG. 1 is an anatomic anterior view of a human heart, with portions broken away and in section to view the interior heart chambers and adjacent structures;



FIG. 2 is an anatomic superior view of a section of the human heart showing the tricuspid valve in the right atrium, the mitral valve in the left atrium, and the aortic valve in between, with the tricuspid and mitral valves open and the aortic and pulmonary valves closed during ventricular diastole (ventricular filling) of the cardiac cycle;



FIG. 3 is an anatomic superior view of a section of the human heart shown in FIG. 2, with the tricuspid and mitral valves closed and the aortic and pulmonary valves opened during ventricular systole (ventricular emptying) of the cardiac cycle;



FIG. 4 is an anatomic anterior perspective view of the left and right atria, with portions broken away and in section to show the interior of the heart chambers and associated structures, such as the fossa ovalis, coronary sinus, and the great cardiac vein;



FIGS. 5A-5H are sectional views through an isolated aortic annulus showing a portion of the adjacent left ventricle and aorta, and illustrating a number of steps in deployment of an exemplary prosthetic heart valve system of the present invention;



FIG. 5A shows a deflated balloon catheter having a base stent thereon advanced into position at the aortic annulus;



FIG. 5B shows the balloon on the catheter inflated to expand and deploy the base stent against the aortic annulus;



FIG. 5C shows the deployed base stent in position within the aortic annulus;



FIG. 5D shows a valve component mounted on a balloon catheter advancing into position within the base stent;



FIG. 5E shows the valve component in a desired implant position at the aortic annulus and within the base stent, with the balloon catheter advanced farther to displace a nose cone out of engagement with a coupling stent;



FIG. 5F shows the balloon on the catheter inflated to expand and deploy a valve component coupling stent against the base stent;



FIG. 5G shows the deflated balloon on the catheter along with the nose cone being removed from within the valve component;



FIG. 5H shows the fully deployed prosthetic heart valve of the present invention;



FIG. 6 is an exploded view of an exemplary system for delivering the prosthetic heart valve of the present invention;



FIG. 7 is an assembled view of the delivery system of FIG. 6 showing a nose cone extending over a distal end of a valve component coupling stent;



FIG. 8 is a view like FIG. 7 but with a balloon catheter displaced distally to disengage the nose cone from the coupling stent;



FIG. 9 is an assembled view of the delivery system similar to that shown in FIG. 7 and showing a balloon inflated to expand the valve component coupling stent;



FIG. 10 is an exploded elevational view of several components of the introducing system of FIG. 9, without the balloon catheter, valve component and holder;



FIGS. 11A and 11B are perspective views of an exemplary valve component assembled on a valve holder of the present invention;



FIG. 11C is a side elevational view of the assembly of FIGS. 11A and 11B;



FIGS. 11D and 11E are top and bottom plan views of the assembly of FIGS. 11A and 11B;



FIGS. 12A-12B illustrate an exemplary coupling stent in both a flat configuration (12A) and a tubular expanded configuration (12B);



FIGS. 13A-13B illustrate an alternative coupling stent having a discontinuous upper end in both flat and tubular expanded configurations;



FIG. 14-17 are plan views of a still further alternative coupling stent;



FIG. 18A-18B are flat and tubular views of an exemplary base stent with upper position markers and a phantom coupling stent superimposed thereover;



FIG. 19 is a flat view of an alternative base stent with a coupling stent superimposed thereover;



FIG. 20 is a sectional view of a coupling stent within a base stent illustrating one method of interlocking; and



FIG. 21-23 is a perspective view of a device for delivering and expanding a base stent with mechanical fingers.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention attempts to overcome drawbacks associated with conventional, open-heart surgery, while also adopting some of the techniques of newer technologies which decrease the duration of the treatment procedure. The prosthetic heart valves of the present invention are primarily intended to be delivered and implanted using conventional surgical techniques, including the aforementioned open-heart surgery. There are a number of approaches in such surgeries, all of which result in the formation of a direct access pathway to the particular heart valve annulus. For clarification, a direct access pathway is one that permits direct (i.e., naked eye) visualization of the heart valve annulus. In addition, it will be recognized that embodiments of the two-stage prosthetic heart valves described herein may also be configured for delivery using percutaneous approaches, and those minimally-invasive surgical approaches that require remote implantation of the valve using indirect visualization.


One primary aspect of the present invention is a two-stage prosthetic heart valve wherein the tasks of implanting a tissue anchor first and then a valve member are distinct and certain advantages result. The exemplary two-stage prosthetic heart valve of the present invention has an expandable base stent secured to tissue in the appropriate location using a balloon or other expansion technique. A hybrid valve member that has non-expandable and expandable portions then couples to the base stent in a separate or sequential operation. By utilizing an expandable base stent, the duration of the initial anchoring operation is greatly reduced as compared with a conventional sewing procedure utilizing an array of sutures. The expandable base stent may simply be radially expanded outward into contact with the implantation site, or may be provided with additional anchoring means, such as barbs. The operation may be carried out using a conventional open-heart approach and cardiopulmonary bypass. In one advantageous feature, the time on bypass is greatly reduced due to the relative speed of implanting the expandable base stent.


For definitional purposes, the term “base stent,” refers to a structural component of a heart valve that is capable of attaching to tissue of a heart valve annulus. The base stents described herein are most typically tubular stents, or stents having varying shapes or diameters. A stent is normally formed of a biocompatible metal wire frame, such as stainless steel or Nitinol. Other base stents that could be used with valves of the present invention include rigid rings, spirally-wound tubes, and other such tubes that fit tightly within a valve annulus and define an orifice therethrough for the passage of blood, or within which a valve member is mounted. It is entirely conceivable, however, that the base stent could be separate clamps or hooks that do not define a continuous periphery. Although such devices sacrifice some dynamic stability, and speed and ease of deployment, these devices could be configured to work in conjunction with a particular valve member.


A distinction between self-expanding and balloon-expanding stents exists in the field. A self-expanding stent may be crimped or otherwise compressed into a small tube and possesses sufficient elasticity to spring outward by itself when a restraint such as an outer sheath is removed. In contrast, a balloon-expanding stent is made of a material that is substantially less elastic, and indeed must be plastically expanded from the inside out when converting from a compressed diameter to an expanded. It should be understood that the term balloon-expanding stents encompasses plastically-expandable stents, whether or not a balloon is used to actually expand it. The material of the stent plastically deforms after application of a deformation force such as an inflating balloon or expanding mechanical fingers. Both alternatives will be described below. Consequently, the term “balloon-expandable stent” should be considered to refer to the material or type of the stent as opposed to the specific expansion means.


The term “valve member” refers to that component of a heart valve that possesses the fluid occluding surfaces to prevent blood flow in one direction while permitting it in another. As mentioned above, various constructions of valve members are available, including those with flexible leaflets and those with rigid leaflets or a ball and cage arrangement. The leaflets may be bioprosthetic, synthetic, or metallic.


A primary focus of the present invention is a two-stage prosthetic heart valve having a first stage in which a base stent secures to a valve annulus, and a subsequent second stage in which a valve member connects to the base stent. It should be noted that these stages can be done almost simultaneously, such as if the two components were mounted on the same delivery device, or can be done in two separate clinical steps, with the base stent deployed using a first delivery device, and then the valve member using another delivery device. It should also be noted that the term “two-stage” refers to the two primary steps of anchoring structure to the annulus and then connecting a valve member, which does not necessarily limit the valve to just two parts.


Another potential benefit of a two-stage prosthetic heart valve, including a base stent and a valve member, is that the valve member may be replaced after implantation without replacing the base stent. That is, an easily detachable means for coupling the valve member and base stent may be used that permits a new valve member to be implanted with relative ease. Various configurations for coupling the valve member and base stent are described herein.


It should be understood, therefore, that certain benefits of the invention are independent of whether the base stent is expandable or not. That is, various embodiments illustrate an expandable base stent coupled to a hybrid valve member that has non-expandable and expandable portions. However, the same coupling structure may be utilized for a non-expandable base stent and hybrid valve member. Therefore, the invention should be interpreted via the appended claims.


As a point of further definition, the term “expandable” is used herein to refer to a component of the heart valve capable of expanding from a first, delivery diameter to a second, implantation diameter. An expandable structure, therefore, does not mean one that might undergo slight expansion from a rise in temperature, or other such incidental cause. Conversely, “non-expandable” should not be interpreted to mean completely rigid or a dimensionally stable, as some slight expansion of conventional “non-expandable” heart valves, for example, may be observed.


In the description that follows, the term “body channel” is used to define a blood conduit or vessel within the body. Of course, the particular application of the prosthetic heart valve determines the body channel at issue. An aortic valve replacement, for example, would be implanted in, or adjacent to, the aortic annulus. Likewise, a mitral valve replacement will be implanted at the mitral annulus. Certain features of the present invention are particularly advantageous for one implantation site or the other. However, unless the combination is structurally impossible, or excluded by claim language, any of the heart valve embodiments described herein could be implanted in any body channel.



FIGS. 5A-5H are sectional views through an isolated aortic annulus AA showing a portion of the adjacent left ventricle LV and ascending aorta with sinus cavities S. The two coronary sinuses CS are also shown. The series of views show snapshots of a number of steps in deployment of an exemplary prosthetic heart valve system of the present invention, which comprises a two-component system. A first component is a base stent that is deployed against the native leaflets or, if the leaflets are excised, against the debrided aortic annulus AA. A second valve component fits within the base stent and anchors thereto. Although two-part valves are known in the art, this is believed to be the first that utilizes a stent within a stent in conjunction with a non-expandable valve.



FIG. 5A shows a catheter 20 having a balloon 22 in a deflated state near a distal end with a tubular base stent 24 crimped thereover. The stent 24 is shown in a radially constricted, undeployed configuration. The catheter 20 has been advanced to position the base stent 24 so that it is approximately axially centered at the aortic annulus AA.



FIG. 5B shows the balloon 22 on the catheter 20 inflated to expand and deploy the base stent 24 against the aortic annulus AA, and FIG. 5C shows the deployed base stent in position after deflation of the balloon 22 and removal of the catheter 20. The stent 24 provides a base within and against a body lumen (e.g., a valve annulus). Although a stent is described for purposes of illustration, any member capable of anchoring within and against the body lumen and then coupling to the valve component may be used. In a preferred embodiment, the base stent 24 comprises a plastically-expandable cloth-covered stainless-steel tubular stent. One advantage of using a plastically-expandable stent is the ability to expand the native annulus to receive a larger valve size than would otherwise be possible with conventional surgery. Desirably, the left ventricular outflow tract (LVOT) is significantly expanded by at least 10%, or for example by 1.5-5 mm, and the surgeon can select a valve component 30 with a larger orifice diameter relative to an unexpanded annulus. On the other hand, the present invention could also use a self-expanding base stent 24 which is then reinforced by the subsequently implanted valve component 30. Because the valve component 30 has a non-compressible part, the prosthetic valve 34, and desirably a plastically-expandable coupling stent 36, it effectively resists recoil of the self-expanded base stent 24.


With continued reference to FIG. 5B, the stent 24 has a diameter sized to be deployed at the location of the native valve (e.g., along the aortic annulus). A portion of the stent 24 may expand outwardly into the respective cavity adjacent the native valve. For example, in an aortic valve replacement, an upper portion may expand into the area of the sinus cavities just downstream from the aortic annulus. Of course, care should be taken to orient the stent 24 so as not to block the coronary openings. The stent body is preferably configured with sufficient radial strength for pushing aside the native leaflets and holding the native leaflets open in a dilated condition. The native leaflets provide a stable base for holding the stent, thereby helping to securely anchor the stent in the body. To further secure the stent to the surrounding tissue, the lower portion may be configured with anchoring members, such as, for example, hooks or barbs (not shown).


As will be described in more detail below, the prosthetic valve system includes a valve component that may be quickly and easily connected to the stent 24. It should be noted here that the base stents described herein can be a variety of designs, including having the diamond/chevron-shaped openings shown or other configurations. The material depends on the mode of delivery (i.e., balloon- or self-expanding), and the stent can be bare strut material or covered to promote ingrowth and/or to reduce paravalvular leakage. For example, a suitable cover that is often used is a sleeve of fabric such as Dacron.


One primary advantage of the prosthetic heart valve system of the present invention is the speed of deployment. Therefore, the base stent 24 may take a number of different configurations as long as it does not require the time-consuming process of suturing it to the annulus. For instance, another possible configuration for the base stent 24 is one that is not fully expandable like the tubular stent as shown. That is, the base stent 24 may have a non-expandable ring-shaped orifice from which an expandable skirt stent or series of anchoring barbs deploy.



FIG. 5D shows a valve component 30 mounted on a balloon catheter 32 advancing into position within the base stent 24. The valve component 30 comprises a prosthetic valve 34 and a coupling stent 36 attached to and projecting from a distal end thereof. In its radially constricted or undeployed state, the coupling stent 36 assumes a conical inward taper in the distal direction. The catheter 32 extends through the valve component 30 and terminates in a distal nose cone 38 which has a conical or bell-shape and covers the tapered distal end of the coupling stent 36. Although not shown, the catheter 32 extends through an introducing cannula and valve holder.


When used for aortic valve replacement, the prosthetic valve 34 preferably has three flexible leaflets which provide the fluid occluding surfaces to replace the function of the native valve leaflets. In various preferred embodiments, the valve leaflets may be taken from another human heart (cadaver), a cow (bovine), a pig (porcine valve) or a horse (equine). In other preferred variations, the valve member may comprise mechanical components rather than biological tissue. The three leaflets are supported by three commissural posts. A ring is provided along the base portion of the valve member.


In a preferred embodiment, the prosthetic valve 34 partly comprises a commercially available, non-expandable prosthetic heart valve, such as the Carpentier-Edwards PERIMOUNT Magna® Aortic Heart Valve available from Edwards Lifesciences of Irvine, Calif. In this sense, a “commercially available” prosthetic heart valve is an off-the-shelf (i.e., suitable for stand-alone sale and use) prosthetic heart valve defining therein a non-expandable, non-collapsible orifice and having a sewing ring capable of being implanted using sutures through the sewing ring in an open-heart, surgical procedure. The particular approach into the heart used may differ, but in surgical procedures the heart is stopped and opened, in contrast to beating heart procedures where the heart remains functional. To reiterate, the terms “non-expandable” and “non-collapsible” should not be interpreted to mean completely rigid and dimensionally stable, merely that the valve is not expandable/collapsible like some proposed minimally-invasively or percutaneously-delivered valves.


An implant procedure therefore involves first delivering and expanding the base stent 24 at the aortic annulus, and then coupling the valve component 30 including the valve 34 thereto. Because the valve 34 is non-expandable, the entire procedure is typically done using the conventional open-heart technique. However, because the base stent 24 is delivered and implanted by simple expansion, and then the valve component 30 attached thereto by expansion, both without suturing, the entire operation takes less time. This hybrid approach will also be much more comfortable to surgeons familiar with the open-heart procedures and commercially available heart valves.


Moreover, the relatively small change in procedure coupled with the use of proven heart valves should create a much easier regulatory path than strictly expandable, remote procedures. Even if the system must be validated through clinical testing to satisfy the Pre-Market Approval (PMA) process with the FDA (as opposed to a 510 k submission), the acceptance of the valve component 30 at least will be greatly streamlined with a commercial heart valve that is already approved, such as the Magna® Aortic Heart Valve.


The prosthetic valve 34 is provided with an expandable coupling mechanism in the form of the coupling stent 36 for securing the valve to the base stent 24. Although the coupling stent 36 is shown, the coupling mechanism may take a variety of different forms, but eliminates the need for connecting sutures and provides a rapid connection means.


In FIG. 5E the valve component 30 has advanced to a desired implant position at the aortic annulus AA and within the base stent 24. The prosthetic valve 34 may include a suture-permeable ring 42 that desirably abuts the aortic annulus AA. More preferably, the sewing ring 42 is positioned supra-annularly, or above the narrowest point of the aortic annulus AA, so as to allow selection of a larger orifice size than a valve placed intra-annularly. With the aforementioned annulus expansion using the base stent 24, and the supra-annular placement, the surgeon may select a valve having a size one or two increments larger than previously conceivable. As mentioned, the prosthetic valve 34 is desirably a commercially available heart valve having a sewing ring 42. The balloon catheter 32 has advanced relative to the valve component 30 to displace the nose cone 38 out of engagement with the coupling stent 36. A dilatation balloon 40 on the catheter 30 can be seen just beyond the distal end of the coupling stent 36.



FIG. 5F shows the balloon 40 on the catheter 32 inflated to expand and deploy the coupling stent 36 against the base stent 24. The balloon 40 is desirably inflated using controlled, pressurized, sterile physiologic saline. The coupling stent 36 transitions between its conical contracted state and its generally tubular expanded state. Simple interference between the coupling stent 36 and the base stent 24 may be sufficient to anchor the valve component 30 within the base stent, or interacting features such as projections, hooks, barbs, fabric, etc. may be utilized.


Because the base stent 24 expands before the valve component 30 attaches thereto, a higher strength stent (self- or balloon-expandable) configuration may be used. For instance, a relatively robust base stent 24 may be used to push the native leaflets aside, and the absent valve component 30 is not damaged or otherwise adversely affected during the high-pressure base stent deployment. After the base stent 24 deploys in the body channel, the valve component 30 connects thereto by deploying the coupling stent 36, which may be somewhat more lightweight requiring smaller expansion forces. Also, the balloon 40 may have a larger distal expanded end than its proximal expanded end so as to apply more force to the coupling stent 36 than to the prosthetic valve 34. In this way, the prosthetic valve 34 and flexible leaflets therein are not subject to high expansion forces from the balloon 40. Indeed, although balloon deployment is shown, the coupling stent 36 may also be a self-expanding type of stent. In the latter configuration, the nose cone 38 is adapted to retain the coupling stent 36 in its constricted state prior to position in the valve component 30 within the base stent 24.


As noted above, the base stents described herein could include barbs or other tissue anchors to further secure the stent to the tissue, or to secure the coupling stent 36 to the base stent 24. Further, the barbs could be deployable (e.g., configured to extend or be pushed radially outward) by the expansion of a balloon. Preferably, the coupling stent 36 is covered to promote in-growth and/or to reduce paravalvular leakage, such as with a Dacron tube or the like.



FIG. 5G shows the deflated balloon 40 on the catheter 32 along with the nose cone 38 being removed from within the valve component 30. Finally, FIG. 5H shows the fully deployed prosthetic heart valve system of the present invention including the valve component 30 coupled to the base stent 24 within the aortic annulus AA.



FIG. 6 is an exploded view, and FIGS. 7 and 8 are assembled views, of an exemplary system 50 for delivering the prosthetic heart valve of the present invention. Modified components of the delivery system 50 are also shown in FIGS. 9 and 10. The delivery system 50 includes a balloon catheter 52 having the balloon 40 on its distal end and an obturator 54 on a proximal end. The obturator 54 presents a proximal coupling 56 that receives a luer connector or other such fastener of a Y-fitting 58. The aforementioned nose cone 38 may attach to the distalmost end of the catheter 52, but more preferably attaches to a wire (not shown) inserted through the center lumen of the balloon catheter 52.


The catheter 52 and the nose cone 38 pass through a hollow handle 60 having a proximal section 62 and a distal section 64. A distal end of the distal handle section 64 firmly attaches to a hub 66 of a valve holder 68, which in turn attaches to the prosthetic heart valve component 30. Details of the valve holder 68 will be given below with reference to FIGS. 11A-11E.


The two sections 62, 64 of the handle 60 are desirably formed of a rigid material, such as a molded plastic, and coupled to one another to form a relatively rigid and elongated tube for manipulating the prosthetic valve component 30 attached to its distal end. In particular, the distal section 64 may be easily coupled to the holder hub 66 and therefore provide a convenient tool for managing the valve component 30 during pre-surgical rinsing steps. For this purpose, the distal section 64 features a distal tubular segment 70 that couples to the holder hub 66, and an enlarged proximal segment 72 having an opening on its proximal end that receives a tubular extension 74 of the proximal handle section 62. FIG. 6 shows an O-ring 76 that may be provided on the exterior of the tubular extension 74 for a frictional interference fit to prevent the two sections from disengaging. Although not shown, the distal tubular segment 70 may also have an O-ring for firmly coupling to the holder hub 66, or may be attached with threading or the like. In one preferred embodiment, the balloon 40 on the catheter 52 is packaged within the proximal handle section 62 for protection and ease of handling. Coupling the proximal and distal handle sections 62, 64 therefore “loads” the system 50 such that the balloon catheter 52 may be advanced through the continuous lumen leading to the valve component 30.



FIGS. 9 and 10 illustrate a delivery system 50 similar to that shown in FIG. 7, but with alternative couplers 77 on both the proximal and distal handle sections 62, 64 in the form of cantilevered teeth that snap into complementary recesses formed in the respective receiving apertures. Likewise, threading on the mating parts could also be used, as well as other similar expedients. FIG. 9 shows the balloon 40 inflated to expand the valve component coupling stent 36.


In a preferred embodiment, the prosthetic valve component 30 incorporates bioprosthetic tissue leaflets and is packaged and stored attached to the holder 68 but separate from the other introduction system 50 components. Typically, bioprosthetic tissue is packaged and stored in a jar with preservative solution for long shelf life, while the other components are packaged and stored dry.


When assembled as seen in FIGS. 7-9, an elongated lumen (not numbered) extends from the proximal end of the Y-fitting 58 to the interior of the balloon 40. The Y-fitting 58 desirably includes an internally threaded connector 80 for attachment to an insufflation system, or a side port 82 having a luer fitting 84 or similar expedient may be used for insufflation of the balloon 40.



FIGS. 7 and 8 show two longitudinal positions of the catheter 52 and associated structures relative to the handle 60 and its associated structures. In a retracted position shown in FIG. 7, the balloon 40 primarily resides within the distal handle section 64. FIG. 7 illustrates the delivery configuration of the introduction system 50, in which the surgeon advances the prosthetic valve component 30 from outside the body into a location adjacent the target annulus. The nose cone 38 extends around and protects a distal end of the conical undeployed coupling stent 36. This configuration is also seen in FIG. 5D, albeit with the holder 68 removed for clarity. Note the spacing S between the proximal coupling 56 and the proximal end of the handle 60.


As explained above with respect to FIGS. 5A-5H, the surgeon advances the prosthetic valve component 30 into its desired implantation position at the valve annulus, and then advances the balloon 40 through the valve component and inflates it. To do so, the operator converts the delivery system 50 from the retracted configuration of FIG. 7 to the deployment configuration of FIG. 8, with the balloon catheter 40 displaced distally as indicated by the arrow 78 to disengage the nose cone 38 from the coupling stent 36. Note that the proximal coupling 56 now contacts the proximal end of the handle 60, eliminating the space S indicated in FIG. 7.


It should be understood that the prosthetic valve component 30 may be implanted at the valve annulus with a pre-deployed base stent 24, as explained above, or without. The coupling stent 36 may be robust enough to anchor the valve component 30 directly against the native annulus (with or without leaflet excision) in the absence of the base stent 24. Consequently, the description of the system 50 for introducing the prosthetic heart valve should be understood in the context of operating with or without the pre-deployed base stent 24.


Prior to a further description of operation of the delivery system 50, a more detailed explanation of the valve component 30 and valve holder 68 is necessary. FIGS. 11A-11E show a number of perspective and other views of the exemplary valve component 30 mounted on the delivery holder 68 of the present invention. As mentioned, the valve component 30 comprises the prosthetic valve 34 having the coupling stent 36 attached to an inflow end thereof. In a preferred embodiment, the prosthetic valve 34 comprises a commercially available off-the-shelf non-expandable, non-collapsible commercial prosthetic valve. Any number of prosthetic heart valves can be retrofit to attach the coupling stent 36, and thus be suitable for use in the context of the present invention. For example, the prosthetic valve 34 may be a mechanical valve or a valve with flexible leaflets, either synthetic or bioprosthetic. In a preferred embodiment, however, the prosthetic valve 34 includes bioprosthetic tissue leaflets 86 (FIG. 11A). Furthermore, as mentioned above, the prosthetic valve 34 is desirably a Carpentier-Edwards PERIMOUNT Magna® Aortic Heart Valve (e.g., model 3000TFX) available from Edwards Lifesciences of Irvine, Calif.


The coupling stent 36 preferably attaches to the ventricular (or inflow) aspect of the valve's sewing ring 42 during the manufacturing process in a way that preserves the integrity of the sewing ring and prevents reduction of the valve's effective orifice area (EOA). Desirably, the coupling stent 36 will be continuously sutured to sewing ring 42 in a manner that maintains the outer contours of the sewing ring. Sutures may be passed through apertures or eyelets in the stent skeleton, or through a cloth covering that in turn is sewn to the skeleton. Other connection solutions include prongs or hooks extending inward from the stent, ties, Velcro, snaps, adhesives, etc. Alternatively, the coupling stent 36 may be more rigidly connected to rigid components within the prosthetic valve 34. During implant, therefore, the surgeon can seat the sewing ring 42 against the annulus in accordance with a conventional surgery. This gives the surgeon familiar tactile feedback to ensure that the proper patient-prosthesis match has been achieved. Moreover, placement of the sewing ring 42 against the outflow side of the annulus helps reduce the probability of migration of the valve component 30 toward the ventricle.


The coupling stent 36 may be a pre-crimped, tapered, 316L stainless steel balloon-expandable stent, desirably covered by a polyester skirt 88 to help seal against paravalvular leakage and promote tissue ingrowth once implanted within the base stent 24 (see FIG. 5F). The coupling stent 36 transitions between the tapered constricted shape of FIGS. 11A-11E to its flared expanded shape shown in FIG. 5F, and also in FIG. 10.


The coupling stent 36 desirably comprises a plurality of sawtooth-shaped or otherwise angled, serpentine or web-like struts 90 connected to three generally axially-extending posts 92. As will be seen below, the posts 92 desirably feature a series of evenly spaced apertures to which sutures holding the polyester skirt 88 in place may be anchored. As seen best in FIG. 5F, the stent 36 when expanded flares outward and conforms closely against the inner surface of the base stent 24, and has an axial length substantially the same as the base stent. Anchoring devices such as barbs or other protuberances from the coupling stent 36 may be provided to enhance the frictional hold between the coupling stent and the base stent 24.


It should be understood that the particular configuration of the coupling stent, whether possessing straight or curvilinear struts 90, may be modified as needed. There are numerous stent designs, as described below with reference to FIGS. 12-17, any of which potentially may be suitable. Likewise, although the preferred embodiment incorporates a balloon-expandable coupling stent 36, a self-expanding stent could be substituted with certain modifications, primarily to the delivery system. The same flexibility and design of course applies to the base stent 24. In a preferred embodiment, both the base stent 24 and the coupling stent 36 are desirably plastically-expandable to provide a firmer anchor for the valve 34; first to the annulus with or without native leaflets, and then between the two stents. The stents may be expanded using a balloon or mechanical expander as described below.


Still with reference to FIGS. 11A-11E, the holder 68 comprises the aforementioned proximal hub 66 and a thinner distal extension 94 thereof forming a central portion of the holder. Three legs 96a, 96b, 96c circumferentially equidistantly spaced around the central extension 94 and projecting radially outward therefrom comprise inner struts 98 and outer commissure rests 100. The prosthetic valve 34 preferably includes a plurality, typically three, commissures 102 that project in an outflow direction. Although not shown, the commissure rests 100 preferably incorporate depressions into which fit the tips of the commissures 102.


In one embodiment, the holder 68 is formed of a rigid polymer such as Delrin or polypropylene that is transparent to increase visibility of an implant procedure. As best seen in FIG. 11E, the holder 68 exhibits openings between the legs 96a, 96b, 96c to provide a surgeon good visibility of the valve leaflets 86, and the transparency of the legs further facilitates visibility and permits transmission of light therethrough to minimize shadows. Although not described in detail herein, FIG. 11E also illustrate a series of through holes in the legs 96a, 96b, 96c permitting connecting sutures to be passed through fabric in the prosthetic valve 34 and across a cutting guide in each leg. As is known in the art, severing a middle length of suture that is connected to the holder 68 and passes through the valve permits the holder to be pulled free from the valve when desired.



FIGS. 11C and 11D illustrate a somewhat modified coupling stent 36 from that shown in FIGS. 11A and 11B, wherein the struts 90 and axially-extending posts 92 are better defined. Specifically, the posts 92 are somewhat wider and more robust than the struts 90, as the latter provide the stent 36 with the ability to expand from the conical shape shown to a more tubular configuration. Also, a generally circular reinforcing ring 104 abuts the valve sewing ring 42. Both the posts 92 and the ring 104 further include a series of through holes 106 that may be used to secure the polyester skirt 88 to the stent 36 using sutures or the like. A number of variants of the coupling stent 36 are also described below.



FIGS. 12A-12B illustrate the exemplary coupling stent 36 in both a flat configuration (12A) and a tubular configuration (12B) that is generally the expanded shape. As mentioned, the web-like struts 90 and a reinforcing ring 104 connect three generally axially-extending posts 92. A plurality of evenly spaced apertures 106 provide anchors for holding the polyester skirt 88 (see FIG. 11B) in place. In the illustrated embodiment, the web-like struts 90 also include a series of axially-extending struts 108. An upper end of the coupling stent 36 that connects to the sewing ring of the valve and is defined by the reinforcing ring 104 follows an undulating path with alternating arcuate troughs 110 and peaks 112. As seen from FIG. 11C, the exemplary prosthetic valve 34 has an undulating sewing ring 42 to which the upper end of the coupling stent 36 conforms. In a preferred embodiment, the geometry of the stent 36 matches that of the undulating sewing ring 42. Of course, if the sewing ring of the prosthetic valve is planar, then the upper end of the coupling stent 36 will also be planar. It should be noted also that the tubular version of FIG. 12B is an illustration of an expanded configuration, although the balloon 40 may over-expand the free (lower) end of the stent 36 such that it ends up being slightly conical.



FIGS. 13A and 13B show an alternative coupling stent 120, again in flattened and tubular configurations, respectively. As with the first embodiment, the coupling stent 120 includes web-like struts 122 extending between a series of axially-extending struts 124. In this embodiment, all of the axially-extending struts 124 are substantially the same thin cross-sectional size. The upper or connected end of the stent 120 again includes a reinforcing ring 126, although this version is interrupted with a series of short lengths separated by gaps. The upper end defines a plurality of alternating troughs 128 and peaks 130, with lengths of the reinforcing ring 126 defining the peaks. The axially-extending struts 124 are in-phase with the scalloped shape of the upper end of the stent 120, and coincide with the peaks and the middle of the troughs.


The gaps between the lengths making up the reinforcing ring 126 permit the stent 120 to be matched with a number of different sized prosthetic valves 34. That is, the majority of the stent 120 is expandable having a variable diameter, and providing gaps in the reinforcing ring 126 allows the upper end to also have a variable diameter so that it can be shaped to match the size of the corresponding sewing ring. This reduces manufacturing costs as correspondingly sized stents need not be used for each different sized valve.



FIG. 14 is a plan view of a still further alternative coupling stent 132 that is very similar to the coupling stent 120, including web-like struts 134 connected between a series of axially-extending struts 136, and the upper end is defined by a reinforcing ring 138 formed by a series of short lengths of struts. In contrast to the embodiment of FIGS. 13A and 13B, the peaks of the undulating upper end have gaps as opposed to struts. Another way to express this is that the axially-extending struts 136 are out-of-phase with the scalloped shape of the upper end of the stent 132, and do not correspond to the peaks and the middle of the troughs.



FIG. 15 illustrates an exemplary coupling stent 140 again having the expandable struts 142 between the axially-extending struts 144, and an upper reinforcing ring 146. The axially-extending struts 144 are in-phase with peaks and troughs of the upper end of the stent. The reinforcing ring 146 is a cross between the earlier-described such rings as it is continuous around its periphery but also has a variable diameter. That is, the ring 146 comprises a series of lengths of struts 148 of fixed length connected by thinner bridge portions 150 of variable length. The bridge portions 150 are each formed with a radius so that they can be either straightened (lengthened) or bent more (compressed). A series of apertures 152 are also formed in an upper end of the stent 142 provide anchor points for sutures or other attachment means when securing the stent to the sewing ring of the corresponding prosthetic valve.


In FIG. 16, an alternative coupling stent 154 is identical to the stent 140 of FIG. 15, although the axially-extending struts 156 are out-of-phase with the peaks and troughs of the undulating upper end.



FIG. 17 shows a still further variation on a coupling stent 160, which has a series of expandable struts 162 connecting axially-extending struts 164. As with the version shown in FIGS. 12A and 12B, the web-like struts 162 also include a series of axially-extending struts 166, although these are thinner than the main axial struts 164. A reinforcing ring 168 is also thicker than the web-like struts 162, and features one or more gaps 170 in each trough such that the ring is discontinuous and expandable. Barbs 172, 174 on the axially extending struts 164, 166 may be utilized to enhance retention between the coupling stent 160 and a base stent with which it cooperates, or with annular tissue in situations where there is no base stent, as explained above.


As mentioned above, the two-component valve systems described herein utilize an outer or base stent (such as base stent 24) and a valve component having an inner or valve stent (such as coupling stent 36). The valve and its stent advance into the lumen of the pre-anchored outer stent and the valve stent expands to join the two stents and anchor the valve into its implant position. It is important that the inner stent and outer stent be correctly positioned both circumferentially and axially to minimize subsequent relative motion between the stents. Indeed, for the primary application of an aortic valve replacement, the circumferential position of the commissures of the valve relative to the native commissures is very important. A number of variations of coupling stent that attach to the valve component have been shown and described above. FIGS. 18-20 illustrate exemplary base stents and cooperation between the two stents.



FIGS. 18A and 18B show an exemplary embodiment of a base stent 180 comprising a plurality of radially-expandable struts 182 extending between a plurality of generally axially-extending struts 184. In the illustrated embodiment the struts 182 form chevron patterns between the struts 184, although other configurations such as serpentine or diamond-shaped could also be used. The top and bottom rows of the radially-expandable struts 182 are arranged in apposition so as to form a plurality of triangular peaks 186 and troughs 188. The axial struts 184 are in-phase with the troughs 188.


The flattened view of FIG. 18A shows four axial projections 190 that each extend upward from one of the axial struts 184. Although four projections 190 are shown, the exemplary base stent 180 desirably has three evenly circumferentially spaced projections, as seen around the periphery in the tubular version of FIG. 18B, providing location markers for the base stent. These markers thus make it easier for the surgeon to orient the stent 180 such that the markers align with the native commissures. Furthermore, as the valve component advances to within the base stent 180, the visible projections 190 provide reference marks such that the inner stent can be properly oriented within the base stent. In this regard the projections 190 may be differently colored than the rest of the stent 180, or have radiopaque indicators thereon.


The length of the projections 190 above the upper row of middle struts 182 may also be calibrated to help the surgeon axially position the stent 180. For example, the distance from the tips of the projections 190 to the level of the native annulus could be determined, and the projections 190 located at a particular anatomical landmark such as just below the level of the coronary ostia.


An undulating dashed line 192 in FIG. 18A represents the upper end of the inner or coupling stent 140, which is shown in phantom superimposed over the base stent 180. As such, the dashed line 192 also represents an undulating sewing ring, and it bears repeating that the sewing ring could be planar such that the upper end of the coupling stent is also planar. The coupling stent 140 includes axially-extending struts that are in-phase with the respective peaks and troughs of the scalloped upper end of the stent. In the illustrated combination, the peaks of the scalloped upper end of the coupling stent (dashed line 192) correspond rotationally (are in-phase) with the axial struts 184 that have the projections 190. Therefore, because the coupling stent 140 axial struts are in-phase with the peaks of the upper end thereof, they are also in-phase with the axial struts 184 of the base stent 180. Conversely, a coupling stent may have axial struts out-of-phase with peaks of the upper end thereof, in which case the respective axial struts of the two stents are also out-of-phase.



FIG. 19 shows an alternative base stent 200 that generally has the same components as the base stent 180 of FIG. 18A, but the axial struts 184 extend between the peaks 186 of the outer rows of middle struts 182. In the earlier embodiment, the axial struts 184 extended between the troughs 188. The coupling stent 154 of FIG. 16 is shown in phantom superimposed over the base stent 200 to illustrate how the axial struts of the two stents are now out-of-phase to increase interlocking therebetween.


The stent 200 also exhibits different rows of middle struts 182. Specifically, a first row 202a defines V's having relatively shallow angles, a second row 202b defines V's with medium angles, and a third row 202c defined V's with more acute angles. The different angles formed by the middle struts 182 in these rows helps shape the stent into a conical form when expanded. There is, the struts in the third row 202c which is farthest from the prosthetic valve have the greatest capacity for expansion to accommodate the transition from the collapsed conical shape of the stent to the expanded tubular shape.


Those of skill in the art will understand that there are many ways to increase retention between the two stents. For example, the peaks and troughs of the web-like expandable struts on the two stents could be oriented out-of-phase or in-phase. In a preferred embodiment the peaks and troughs of the two stents are out of phase so that expansion of the inner stent causes its peaks to deform outwardly into the troughs of the outer stent, and thereby provide interlocking structure therebetween. The variations described above provide a number of permutations of this cooperation.


Additionally, axial projections on one or both of stents could be bent to provide an interference with the other stent. For example, the lower ends of the axial struts 108 in the stent 36 shown in FIG. 12A could be bent outward by expansion of a non-uniform shaped balloon such that they extend in voids within the outer stent. Likewise, the embodiment of FIG. 17 illustrates barbs 172, 174 that can be bent outward into interference with the corresponding base stent. Strut ends or barbs that transition from one position to another to increase retention between the two stents can be actuated by mechanical bending, such as with a balloon, or through an automatic shape change upon installation within the body. Namely, some shape memory alloys such as Nitinol can be designed to undergo a shape change upon a temperature change, such that they assume a first shape at room temperature, and a second shape at body temperature.



FIG. 20 illustrates a simplified means for increasing retention between the two stents. An inner valve stent 210 fits within an outer base stent 212 such that a lower end 214 thereof extends below the outer stent. By over-expansion of the balloon within the inner stent 210, the lower end 214 is caused to bend or wrap outward to prevent relative upward movement of the inner stent within the outer stent.



FIG. 21 is a perspective view of a device 220 for delivering and expanding a base stent 222 with a mechanical expander 224. In the illustrated embodiment, the expander 224 includes a plurality of spreadable fingers 226 over which the base stent 22 is crimped. The device 220 includes a syringe-like apparatus including a barrel 230 within which a plunger 232 linearly slides. The fingers 226 are axially fixed but capable of pivoting or flexing with respect to the barrel 230. The distal end of the plunger 232 has an outer diameter that is greater than the diameter circumscribed by the inner surfaces of the spreadable fingers 226. Preferably there is a proximal lead-in ramp on the inside of the fingers 226 such that distal movement of the plunger 232 with respect to the barrel 230 gradually cams the fingers outward. The two positions of the plunger 232 are shown in FIGS. 21 and 23.


As an alternative to simple linear movement of the plunger 232, it may also be threadingly received within the barrel 230. Still further, the plunger 232 may be formed in two parts freely rotatable with respect to one another, with a proximal part threadingly received within the barrel 230 while a distal part does not rotate with respect to the barrel and merely cams the fingers 226 outward. Still further, a mechanical linkage may be used instead of a camming action whereby levers hinged together create outward movement of the fingers 226. And even further still, a hybrid version using an inflatable balloon with mechanical parts mounted on the outside of the balloon may be utilized. Those of skill in the art will understand that numerous variants on this mechanism are possible, the point being that balloon expansion is not only vehicle.


Desirably, the fingers 226 have a contoured exterior profile such that they expand the base stent 222 into a particular shape that better fits the heart valve annulus. For instance, the base stent 222 may be expanded into an hourglass shape with wider upper and lower ends and a smaller midsection, and/or an upper end may be formed with a tri-lobular shape to better fit the aortic sinuses. In the latter case, the tri-lobular shape is useful for orienting the base stent 222 upon implant, and also for orienting the coupling stent of the valve component that is received therewithin.


In another advantageous feature, the two-component valve system illustrated in the preceding figures provides a device and method that substantially reduces the time of the surgical procedure as compared with replacement valves that are sutured to the tissue after removing the native leaflets. For example, the stent 24 of FIGS. 5-9 may be deployed quickly and the valve component 30 may also be quickly attached to the stent. This reduces the time required on extracorporeal circulation and thereby substantially reduces the risk to the patient.


In addition to speeding up the implant process, the present invention having the pre-anchored stent, within which the valve and its stent mount, permits the annulus to be expanded to accommodate a larger valve than otherwise would be possible. In particular, clinical research has shown that the left ventricular outflow tract (LVOT) can be significantly expanded by a balloon-expandable stent and still retain normal functioning. In this context, “significantly expanding” the LVOT means expanding it by at least 10%, more preferably between about 10-30%. In absolute terms, the LVOT may be expanded 1.5-5 mm depending on the nominal orifice size. This expansion of the annulus creates an opportunity to increase the size of a surgically implanted prosthetic valve. The present invention employs a balloon-expandable base stent, and a balloon-expandable valve stent. The combination of these two stents permits expansion of the LVOT at and just below the aortic annulus, at the inflow end of the prosthetic valve. The interference fit created between the outside of the base stent and the LVOT secures the valve without pledgets or sutures taking up space, thereby allowing for placement of the maximum possible valve size. A larger valve size than would otherwise be available with conventional surgery enhances volumetric blood flow and reduces the pressure gradient through the valve.


It will be appreciated by those skilled in the art that embodiments of the present invention provide important new devices and methods wherein a valve may be securely anchored to a body lumen in a quick and efficient manner. Embodiments of the present invention provide a means for implanting a prosthetic valve in a surgical procedure without requiring the surgeon to suture the valve to the tissue. Accordingly, the surgical procedure time is substantially decreased. Furthermore, in addition to providing a base stent for the valve, the stent may be used to maintain the native valve in a dilated condition. As a result, it is not necessary for the surgeon to remove the native leaflets, thereby further reducing the procedure time.


It will also be appreciated that the present invention provides an improved system wherein a valve member may be replaced in a more quick and efficient manner. More particularly, it is not necessary to cut any sutures in order to remove the valve. Rather, the valve member may be disconnected from the stent (or other base stent) and a new valve member may be connected in its place. This is an important advantage when using biological tissue valves or other valves having limited design lives.


While the invention has been described in its preferred embodiments, it is to be understood that the words which have been used are words of description and not of limitation. Therefore, changes may be made within the appended claims without departing from the true scope of the invention.

Claims
  • 1. A prosthetic heart valve system, comprising: a base stent adapted to anchor against a heart valve annulus and defining an orifice therein; anda valve component including a non-expandable, non-collapsible prosthetic valve, the valve component further including an expandable coupling stent extending from an inflow end thereof, the coupling stent having a contracted state for delivery to an implant position and an expanded state configured for outward connection to the base stent, wherein the prosthetic valve comprises a sewing ring surrounding an inflow end, and wherein an outflow end of the coupling stent is continuously sutured to the sewing ring.
  • 2. The system of claim 1, wherein the base stent is expandable and has a contracted state for delivery to an implant position adjacent a heart valve annulus and an expanded state sized to contact and anchor against the heart valve annulus.
  • 3. The system of claim 2, wherein the base stent is plastically expandable.
  • 4. The system of claim 1, wherein the coupling stent is plastically expandable.
  • 5. The system of claim 1, wherein the contracted state of the coupling stent is conical, tapering down in a distal direction.
  • 6. The system of claim 5, wherein the coupling stent comprises a plurality of radially expandable struts at least some of which are arranged in rows, and wherein the distalmost row has the greatest capacity for expansion from the contracted state to the expanded state.
  • 7. The system of claim 1, wherein the coupling stent comprises a plurality of radially expandable struts, and a row farthest from the prosthetic valve has alternating peaks and valleys, and wherein the base stent includes apertures into which the peaks of the coupling stent may project to interlock the two stents.
  • 8. The system of claim 1, wherein the base stent includes a plurality of radially expandable struts between axially-oriented struts, and at least some of the axially-oriented struts have upper projections that demark locations around the stent.
  • 9. The system of claim 1, wherein both the base stent and the coupling stent have a plurality of radially expandable struts between axially-oriented struts, and wherein the coupling stent is rotated so that its axially-oriented struts are out of phase with those of the base stent to increase retention therebetween.
  • 10. The system of claim 1, wherein the coupling stent is self-expandable.
  • 11. The system of claim 1, wherein the coupling stent is covered with fabric to promote tissue in-growth and/or to reduce paravalvular leakage.
  • 12. The system of claim 1, wherein the outflow end of the coupling stent includes a plurality of apertures through which sutures are passed to attach the coupling stent to the sewing ring.
  • 13. The system of claim 12, wherein the outflow end of the coupling stent is defined by a reinforcing ring having the plurality of apertures evenly spaced therealong.
  • 14. The system of claim 1, wherein the sewing ring is undulating and the outflow end of the coupling stent follows an undulating path with alternating arcuate troughs and peaks so as to conform to the undulating sewing ring.
  • 15. The system of claim 1, wherein the outflow end of the coupling stent includes a continuous reinforcing ring that comprises a series of lengths of struts of fixed length connected by thinner bridge portions of variable length.
  • 16. The system of claim 15, wherein the bridge portions are each formed with a radius so that they can be either straightened or bent more to, respectively, widen or narrow the reinforcing ring.
  • 17. The system of claim 15, further including a series of apertures formed in the reinforcing ring that provide anchor points for sutures when securing the stent to the sewing ring.
  • 18. The system of claim 1, wherein the coupling stent has an axial length substantially the same as the base stent.
  • 19. The system of claim 1, wherein the coupling stent has web-like struts extending between a series of axially-extending struts.
  • 20. The system of claim 19, wherein the outflow end of the coupling stent defines a plurality of alternating troughs and peaks, and wherein at least some of the axially-extending struts are in-phase with the peaks and the middle of the troughs.
  • 21. The system of claim 19, wherein the outflow end of the coupling stent defines a plurality of alternating troughs and peaks, and wherein at least some of the axially-extending struts are out-of-phase with the peaks and the middle of the troughs.
  • 22. The system of claim 1, wherein an outflow end of the coupling stent includes an interrupted reinforcing ring comprising a series of short lengths separated by gaps.
  • 23. The system of claim 22, wherein the outflow end of the coupling stent defines a plurality of alternating troughs and peaks, with short lengths of the interrupted reinforcing ring defining the peaks and the middle of the troughs.
  • 24. The system of claim 1, wherein the base stent is expandable and has a contracted state for delivery to an implant position adjacent a heart valve annulus and an expanded state sized to contact and anchor against the heart valve annulus, the base stent having a plurality of expandable web-like struts extending between a series of axially-extending struts, and the coupling stent also having a plurality of expandable web-like struts extending between a series of axially-extending struts, and wherein when the coupling stent is expanded outward into contact with the base stent the coupling stent axial struts are in-phase with the base stent axial struts.
  • 25. The system of claim 1, wherein the base stent is expandable and has a contracted state for delivery to an implant position adjacent a heart valve annulus and an expanded state sized to contact and anchor against the heart valve annulus, the base stent having a plurality of expandable web-like struts extending between a series of axially-extending struts, and the coupling stent also having a plurality of expandable web-like struts extending between a series of axially-extending struts, and wherein when the coupling stent is expanded outward into contact with the base stent the coupling stent axial struts are out-of-phase with the base stent axial struts.
Parent Case Info

The present application claims priority under 35 U.S.C. §119(e) to U.S. provisional application No. 61/139,398 filed Dec. 19, 2008.

US Referenced Citations (322)
Number Name Date Kind
3143742 Cromie Aug 1964 A
3320972 High May 1967 A
3371352 Raible et al. Mar 1968 A
3409013 Henry Nov 1968 A
3546710 Ivanov et al. Dec 1970 A
3574865 Hamaker Apr 1971 A
3628535 Ostrowsky et al. Dec 1971 A
3755823 Hancock Sep 1973 A
3839741 Haller Oct 1974 A
3997923 Possis Dec 1976 A
4035849 Angell Jul 1977 A
4078468 Civitello Mar 1978 A
4079468 Liotta et al. Mar 1978 A
4084268 Ionescu et al. Apr 1978 A
4106129 Carpentier et al. Aug 1978 A
4172295 Batten Oct 1979 A
4217665 Bex Aug 1980 A
4218782 Rygg Aug 1980 A
4259753 Liotta et al. Apr 1981 A
RE30912 Hancock Apr 1982 E
4343048 Ross et al. Aug 1982 A
4364126 Rosen et al. Dec 1982 A
4388735 Ionescu et al. Jun 1983 A
4441216 Ionescu et al. Apr 1984 A
4451936 Carpentier Jun 1984 A
4470157 Love Sep 1984 A
4501030 Lane Feb 1985 A
4506394 Bedard Mar 1985 A
4535483 Klawitter et al. Aug 1985 A
4605407 Black et al. Aug 1986 A
4626255 Reichart et al. Dec 1986 A
4629459 Ionescu et al. Dec 1986 A
4680031 Alonso Jul 1987 A
4702250 Ovil et al. Oct 1987 A
4705516 Barone Nov 1987 A
4725274 Lane et al. Feb 1988 A
4731074 Rousseau et al. Mar 1988 A
4778461 Pietsch et al. Oct 1988 A
4790843 Carpentier et al. Dec 1988 A
4851000 Gupta Jul 1989 A
4865600 Carpentier et al. Sep 1989 A
4888009 Lederman et al. Dec 1989 A
4914097 Oda et al. Apr 1990 A
4960424 Grooters Oct 1990 A
4993428 Arms Feb 1991 A
5010892 Colvin et al. Apr 1991 A
5032128 Alonso Jul 1991 A
5037434 Lane Aug 1991 A
5147391 Lane Sep 1992 A
5163955 Love et al. Nov 1992 A
5258023 Reger Nov 1993 A
5316016 Adams et al. May 1994 A
5326370 Love et al. Jul 1994 A
5326371 Love et al. Jul 1994 A
5332402 Teitelbaum Jul 1994 A
5376112 Duran Dec 1994 A
5396887 Imran Mar 1995 A
5397351 Pavcnik et al. Mar 1995 A
5423887 Love et al. Jun 1995 A
5425741 Lemp et al. Jun 1995 A
5431676 Dubrul et al. Jul 1995 A
5449384 Johnson Sep 1995 A
5449385 Religa et al. Sep 1995 A
5469868 Reger Nov 1995 A
5476510 Eberhardt et al. Dec 1995 A
5488789 Religa et al. Feb 1996 A
5489297 Duran Feb 1996 A
5489298 Love et al. Feb 1996 A
5500016 Fisher Mar 1996 A
5533515 Coller et al. Jul 1996 A
5549665 Vesely et al. Aug 1996 A
5562729 Purdy et al. Oct 1996 A
5571215 Sterman et al. Nov 1996 A
5573007 Bobo Nov 1996 A
5578076 Krueger Nov 1996 A
5584803 Stevens et al. Dec 1996 A
5618307 Donlon et al. Apr 1997 A
5626607 Malecki et al. May 1997 A
5628789 Vanney May 1997 A
5693090 Unsworth et al. Dec 1997 A
5695503 Krueger Dec 1997 A
5713952 Vanney Feb 1998 A
5716370 Williamson et al. Feb 1998 A
5728064 Burns et al. Mar 1998 A
5728151 Garrison et al. Mar 1998 A
5735894 Krueger Apr 1998 A
5752522 Murphy May 1998 A
5755782 Love et al. May 1998 A
5766240 Johnson Jun 1998 A
5776187 Krueger et al. Jul 1998 A
5800527 Jansen et al. Sep 1998 A
5814097 Sterman et al. Sep 1998 A
5814098 Hinnenkamp et al. Sep 1998 A
5824064 Taheri Oct 1998 A
5840081 Andersen et al. Nov 1998 A
5848969 Panescu et al. Dec 1998 A
5855563 Kaplan et al. Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5865801 Houser Feb 1999 A
5891160 Williamson et al. Apr 1999 A
5895420 Mirsch et al. Apr 1999 A
5902308 Murphy May 1999 A
5908450 Gross et al. Jun 1999 A
5919147 Jain Jul 1999 A
5921934 Teo Jul 1999 A
5921935 Hickey Jul 1999 A
5924984 Rao Jul 1999 A
5957949 Leonhardt et al. Sep 1999 A
5972004 Williamson et al. Oct 1999 A
5984959 Robertson et al. Nov 1999 A
5984973 Girard et al. Nov 1999 A
6010531 Donlon et al. Jan 2000 A
6042607 Williamson et al. Mar 2000 A
6066160 Colvin et al. May 2000 A
6074418 Buchanan et al. Jun 2000 A
6081737 Shah Jun 2000 A
6083179 Oredsson Jul 2000 A
6099475 Seward Aug 2000 A
6106550 Magovern et al. Aug 2000 A
6110200 Hinnenkamp Aug 2000 A
6117091 Young et al. Sep 2000 A
6162233 Williamson et al. Dec 2000 A
6168614 Andersen et al. Jan 2001 B1
6176877 Buchanan et al. Jan 2001 B1
6197054 Hamblin, Jr. Mar 2001 B1
6217611 Klostermeyer Apr 2001 B1
6231561 Frazier et al. May 2001 B1
6241765 Griffin Jun 2001 B1
6245102 Jayaraman Jun 2001 B1
6283127 Sterman et al. Sep 2001 B1
6287339 Vazquez et al. Sep 2001 B1
6290674 Roue et al. Sep 2001 B1
6312447 Grimes Nov 2001 B1
6312465 Griffin et al. Nov 2001 B1
6328727 Frazier et al. Dec 2001 B1
6371983 Lane Apr 2002 B1
6402780 Williamson, IV et al. Jun 2002 B2
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6468305 Otte Oct 2002 B1
6582462 Andersen et al. Jun 2003 B1
6585766 Huynh et al. Jul 2003 B1
6652578 Bailey et al. Nov 2003 B2
6682559 Myers et al. Jan 2004 B2
6685739 DiMatteo Feb 2004 B2
6719789 Cox Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6764508 Roehe et al. Jul 2004 B1
6767362 Schreck Jul 2004 B2
6786925 Schoon et al. Sep 2004 B1
6790229 Berreklouw Sep 2004 B1
6790230 Beyersdorf Sep 2004 B2
6805711 Quijano Oct 2004 B2
6893459 Macoviak May 2005 B1
6893460 Spenser et al. May 2005 B2
6908481 Cribier Jun 2005 B2
6939365 Fogarty et al. Sep 2005 B1
7011681 Vesely Mar 2006 B2
7025780 Gabbay Apr 2006 B2
7070616 Majercak et al. Jul 2006 B2
7097659 Woolfson et al. Aug 2006 B2
7101396 Artof et al. Sep 2006 B2
7147663 Berg et al. Dec 2006 B1
7153324 Case et al. Dec 2006 B2
7195641 Palmaz et al. Mar 2007 B2
7201771 Lane Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7238200 Lee et al. Jul 2007 B2
7252682 Seguin Aug 2007 B2
7261732 Justino Aug 2007 B2
RE40377 Williamson, IV et al. Jun 2008 E
7422603 Lane Sep 2008 B2
7513909 Lane et al. Apr 2009 B2
7556647 Drews et al. Jul 2009 B2
20010039435 Roue et al. Nov 2001 A1
20010039436 Frazier et al. Nov 2001 A1
20010041914 Frazier et al. Nov 2001 A1
20010041915 Roue et al. Nov 2001 A1
20010049492 Frazier et al. Dec 2001 A1
20020026238 Lane et al. Feb 2002 A1
20020032481 Gabbay Mar 2002 A1
20020058995 Stevens May 2002 A1
20020123802 Snyders Sep 2002 A1
20020138138 Yang Sep 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020188348 DiMatteo Dec 2002 A1
20020198594 Schreck Dec 2002 A1
20030014104 Cribier Jan 2003 A1
20030023300 Bailey et al. Jan 2003 A1
20030023303 Palmaz et al. Jan 2003 A1
20030036795 Andersen et al. Feb 2003 A1
20030040792 Gabbay Feb 2003 A1
20030055495 Pease et al. Mar 2003 A1
20030109924 Cribier Jun 2003 A1
20030114913 Spenser et al. Jun 2003 A1
20030130729 Paniagua et al. Jul 2003 A1
20030149478 Figulla et al. Aug 2003 A1
20030167089 Lane Sep 2003 A1
20030236568 Hojeibane Dec 2003 A1
20040019374 Hojeibane et al. Jan 2004 A1
20040034411 Quijano Feb 2004 A1
20040044406 Woolfson et al. Mar 2004 A1
20040106976 Bailey et al. Jun 2004 A1
20040122514 Fogarty et al. Jun 2004 A1
20040122516 Fogarty et al. Jun 2004 A1
20040167573 Williamson, IV et al. Aug 2004 A1
20040186563 Lobbi Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040193261 Berreklouw Sep 2004 A1
20040206363 McCarthy Oct 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040225355 Stevens Nov 2004 A1
20040236411 Sarac Nov 2004 A1
20040260389 Case et al. Dec 2004 A1
20040260390 Sarac Dec 2004 A1
20050010285 Lambrecht et al. Jan 2005 A1
20050027348 Case et al. Feb 2005 A1
20050033398 Seguin Feb 2005 A1
20050043760 Fogarty et al. Feb 2005 A1
20050043790 Seguin Feb 2005 A1
20050060029 Le et al. Mar 2005 A1
20050065594 DiMatteo Mar 2005 A1
20050065614 Stinson Mar 2005 A1
20050075584 Cali Apr 2005 A1
20050075713 Biancucci et al. Apr 2005 A1
20050075717 Nguyen et al. Apr 2005 A1
20050075718 Nguyen et al. Apr 2005 A1
20050075719 Bergheim Apr 2005 A1
20050075720 Nguyen et al. Apr 2005 A1
20050075724 Svanidze et al. Apr 2005 A1
20050080454 Drews et al. Apr 2005 A1
20050096738 Cali et al. May 2005 A1
20050137682 Justino Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137687 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137692 Haug et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050159811 Lane Jul 2005 A1
20050165479 Drews et al. Jul 2005 A1
20050182486 Gabbay Aug 2005 A1
20050192665 Spenser et al. Sep 2005 A1
20050203616 Cribier Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050203618 Sharkawy et al. Sep 2005 A1
20050216079 MaCoviak Sep 2005 A1
20050222674 Paine Oct 2005 A1
20050234546 Nugent Oct 2005 A1
20050240263 Fogarty et al. Oct 2005 A1
20050251252 Stobie Nov 2005 A1
20050261765 Liddicoat Nov 2005 A1
20050283231 Haug et al. Dec 2005 A1
20060025857 Bergheim et al. Feb 2006 A1
20060052867 Revuelta et al. Mar 2006 A1
20060058871 Zakay et al. Mar 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060074484 Huber Apr 2006 A1
20060085060 Campbell Apr 2006 A1
20060095125 Chinn May 2006 A1
20060122634 Ino et al. Jun 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060154230 Cunanan et al. Jul 2006 A1
20060167543 Bailey et al. Jul 2006 A1
20060195184 Lane et al. Aug 2006 A1
20060195185 Lane et al. Aug 2006 A1
20060195186 Drews et al. Aug 2006 A1
20060207031 Cunanan et al. Sep 2006 A1
20060241745 Solem Oct 2006 A1
20060246888 Bender et al. Nov 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060271172 Tehrani Nov 2006 A1
20060271175 Woolfson et al. Nov 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20060287719 Rowe et al. Dec 2006 A1
20070005129 Damm et al. Jan 2007 A1
20070010876 Salahieh et al. Jan 2007 A1
20070016285 Lane et al. Jan 2007 A1
20070016286 Herrmann et al. Jan 2007 A1
20070016288 Gurskis et al. Jan 2007 A1
20070043435 Seguin et al. Feb 2007 A1
20070078509 Lotfy Apr 2007 A1
20070078510 Ryan Apr 2007 A1
20070100440 Figulla et al. May 2007 A1
20070129794 Realyvasquez Jun 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070142907 Moaddeb et al. Jun 2007 A1
20070150053 Gurskis et al. Jun 2007 A1
20070156233 Kapadia et al. Jul 2007 A1
20070162103 Case Jul 2007 A1
20070162107 Haug et al. Jul 2007 A1
20070162111 Fukamachi Jul 2007 A1
20070179604 Lane Aug 2007 A1
20070185565 Schwammenthal et al. Aug 2007 A1
20070198097 Zegdi Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070203576 Lee et al. Aug 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070225801 Drews et al. Sep 2007 A1
20070233237 Krivoruchko Oct 2007 A1
20070239266 Birdsall Oct 2007 A1
20070239269 Dolan Oct 2007 A1
20070239273 Allen Oct 2007 A1
20070255398 Yang et al. Nov 2007 A1
20070260305 Drews et al. Nov 2007 A1
20070265701 Gurskis et al. Nov 2007 A1
20070270944 Bergheim et al. Nov 2007 A1
20070288089 Gurskis et al. Dec 2007 A1
20080033543 Gurskis et al. Feb 2008 A1
20080119875 Ino et al. May 2008 A1
20080319543 Lane Dec 2008 A1
20090036903 Ino et al. Feb 2009 A1
20090192599 Lane et al. Jul 2009 A1
20090192602 Kuehn Jul 2009 A1
20090192603 Ryan Jul 2009 A1
20090192604 Gloss Jul 2009 A1
20090192605 Gloss et al. Jul 2009 A1
20090192606 Gloss et al. Jul 2009 A1
Foreign Referenced Citations (34)
Number Date Country
84395 Jul 1983 EP
96721 Dec 1983 EP
125393 Nov 1984 EP
143246 Jun 1985 EP
179562 Apr 1986 EP
1171059 Jan 2002 EP
2056023 Mar 1981 GB
2069843 Sep 1981 GB
2254254 Oct 1992 GB
2279134 Dec 1994 GB
1116573 Jul 1985 SU
8900840 Feb 1989 WO
9115167 Oct 1991 WO
9212690 Aug 1992 WO
9213502 Aug 1992 WO
9219184 Nov 1992 WO
9219185 Nov 1992 WO
9517139 Jun 1995 WO
9528899 Nov 1995 WO
9640006 Dec 1996 WO
9709933 Mar 1997 WO
9709944 Mar 1997 WO
9727799 Aug 1997 WO
9741801 Nov 1997 WO
9742871 Nov 1997 WO
9806329 Feb 1998 WO
9911201 Mar 1999 WO
9915112 Apr 1999 WO
9951169 Oct 1999 WO
0032105 Jun 2000 WO
0040176 Jul 2000 WO
0060995 Oct 2000 WO
WO0154625 Feb 2001 WO
2006086135 Aug 2006 WO
Related Publications (1)
Number Date Country
20100161036 A1 Jun 2010 US
Provisional Applications (1)
Number Date Country
61139398 Dec 2008 US