Not Applicable
Not Applicable
1. Field of Invention
This invention relates to automotive electrical systems, specifically how the electrical and computer systems can be controlled through the on-board diagnostics-II, OBD-II, standardized J1962 female connector where a quick-connect splice-free connector and controller can be easily connected and connection retained for communicating through the five protocols used with the OBD-II interface to remotely control motor vehicles eliminating the need to physically and manually splice wires within an automobile to integrate controller.
2. Prior Art
Controllers, namely remote control of vehicles dates back to a time where users first remotely started their vehicles with wires from afar to warm the engine before the occupant entered the vehicle as described in Phairr U.S. Pat. No. 4,392,059. As technology advanced, the technology became wireless and users could remotely start and control a vehicle through radio frequency technology transmitted by a handheld transmitter. Even now technology has advanced to such a point where users can connect to their vehicles and control various aspects with their computers, cell phones and other means from unlimited distances. Devices include remote starters, car alarms, telemetry devices, GPS, vehicle locators, etc. Although incredibly popular and convenient, the installation of such devices is far from convenient, requires expertise installers, and is time consuming. All of these devices have a controller which integrates with the vehicle through many connections in order to provide a desired result. With vehicle electrical systems becoming more advanced the task of integration has become dangerous and jeopardizes the vehicles computer system.
Installation of these controllers requires many wires to be spliced and exposed. The removal of the factory wire insulation by the installer to install the electrical equipment causes irreversible damage. Corrosion will take place with the wire being exposed to the elements. If any moisture is present in the vehicle, the moisture will collect near the splice. Corrosion will lead to poor electrical conductivity which will increase the resistance of the wire, which ultimately will affect voltage and amperage travel in the wire which will indefinitely lead to circuit failure or even electrical fire. The vehicle environment is prone to moisture, especially where these vehicle electronics such as GPS, remote starters and telemetry products are located and installed-under the dash by the foot pedals, which day in and day out collect moisture from the users' footwear on days with precipitation—snow or rain.
Splices for these hard connections are covered with electrical tape. With time, this tape can work loose, the installer can put an inadequate amount of tape on the splice, or may neglect to put any electrical tape on the splice, all of which expose the bare wire which could lead to an electrical short. Such a short could also lead to fire and serious damage. Aside from the conductivity shortcomings of manual spices, comes the variable of human error. Wires must be properly identified, insulation removed, and then taped. Vehicles vary by make and model and even by year which creates confusion and also complicates the installation process. Great expertise is needed as well as database resources. Any improper information could lead to the wrong wire being spiced which again could result in vehicle systems failure, fire, property damage and even death. A typical remote car starter consists of approximately 20 connections and takes a professional installer 2-4 hours to install. Complicate matters with telemetry features, GPS, vehicle locators, etc and the installation time increases. All of these variables lead to an incredibly inefficient method of outfitting a vehicle with a control device of any sort.
Proper vehicle functioning also relies on the aftermarket hardware and software being installed. If there is a failure with any of the installed electrical components, the vehicle may not start or operate properly. Typical remote starters bypass modules, telemetry units, and GPS devices contain many transistors, relays, and switches, etc to manually switch or bypass features. In Flick 7224083 an invention is described as: The remote start control system may include at least one device associated with starting an engine of the vehicle, a remote start transmitter, and a vehicle remote start controller connected to the data communications bus for communicating with the at least one vehicle devices associated with starting the engine of the vehicle. The remote start controller may be responsive to signals from the remote start transmitter. Flick has a noticeable improvement on the overall design of the remote car starter or controller with direct connection to the vehicle data bus, as it eliminates the manual switching and control of various components within the vehicle and instead communicates with the vehicle computer and has the vehicle computer execute. This reduces the number of splice points and mechanical failure of the system but still requires hard splicing. Hard splicing the data wires or computer wires on a vehicle can be dangerous as they are sensitive to electrical voltage. Sending improper signals or a slightly improper resistance value along this data line could result in “frying” or destroying the vehicle computer. Accidentally grounding your wire cutters, knife, or other install tool while making contact with the data wire could result in a terrific loss.
Nevertheless all vehicle controllers including remote starters, telemetry devices, GPS, and vehicle tracking equipment suffer from these disadvantages:
a) Their complicated design requires expertise installation and educated installers.
b) Installation is time consuming
c) Installation and integration requires hard splicing of wires
d) Human error during the installation process
e) Design of the device consists of many working components prone to failure, components that tax the electrical capabilities of the vehicle electrical system and alter the electrical paths of the signals themselves, which the vehicle was not engineered to support
f) Need for additional equipment to “bypass” vehicle features as a “makeshift” way of “fooling” the vehicle into working properly.
g) Inability to communicate with the vehicle computer system directly
Despite these pitfalls, remote car starters and alarms continue to sell in the millions each year, and new exciting technologies are on the horizon all of which could benefit from a quicker, more efficient and universal method of installation that could eliminate any hard splices, wire identification, and reduce the amount of hardware components. Ideally a universal connector could be employed or leveraged to eliminate wire splices, and provide universal connectivity to all vital wires in the vehicle electrical system including but not limited to battery voltage, ground, and signal ground and to the connection to the vehicle computer system.
Starting in 1996 the united states set forth specifications for monitoring and reporting engine performance in modern automobiles, and was called On-board diagnostics, OBD-II. The OBD-II specification provides for a standardized hardware interface with a female 16-pin (2×8) J1962 connector which is usually located on the driver's side of the passenger compartment near the center console. For the sake of simplicity we will refer to this as simply the OBD-II J1962 connector, and is female, but female will not be accompany this term each time it is referenced. There are five protocols in use with the OBD-II. Predetermined pin locations make for a uniform install with safe access to control and communicate with the vehicle computer, without the need to manufacture and try to make another universal connector.
The claimed invention leverages from the universal aspects of the OBD-II connector and standardized pin-out locations. A controller is linked with a OBD-II J1962 male connector where the connector mates with the ever popular OBD-II female connector found within vehicle and invention in a preferred embodiment utilizes a pass-through style OBD-II J1962 connector with a male end and a female end with an alternative locking mechanism. To date it is important to reference that the OBD-II J1962 connector has primarily been used to access vehicle data with diagnostic scan tools and is intended for short term connection. Invention establishes a connection at the OBD-II J1962 female connector with vital lines of communication with said invention controller. Quick-connect splice-free connector also retains a more permanent connection to control and communicate various functioning while the pass-through arrangement on the connector still grants access to the OBD-II connector for servicing.
The connector is advantageous in that it reduces installation effort saving time and also reduces human error and electrical shortcomings associated with making hard connections via splicing wires and tying in directly. Connector promotes clean, safe installation, with easy removal, as well as a means to securely retain connection, all the while allowing access to the OBD-II port for diagnostics and aftermarket accessories and or equipment. OBD-II provides direct access to all major electrical and communication lines of the vehicle in an easily accessible location without the need to create another connection within the vehicle. OBD-II connection on controller allows for a much cleaner and easier install with a plug and play style connection with all wires and connections aligning at the same location rather than going all different directions in the vehicle. OBD-II set protocols also establishes some uniformity which promotes efficiency of installation. Some instances won't even require interior panels to be removed for installation. Wires can exit the connector from one or multiple sides of the connector if required.
Device consisting of a controller coupled with a quick-connect splice-free connector that mates to the OBD-II J1962 female connector found within the vehicle to transmit data to vehicle where OBD-II connector provides direct access to vehicles electrical and computer system. Connector leverages from an alternative pass-through design to retain access to vehicle's OBD-II plug. Method of locking and securing quick connect to OBD-II plug.
1 pin number one
4 chassis ground pin
5 controller
7 retaining clip
8 pin number eight
9 pin number nine
11 wire housing
16 battery voltage pin
One embodiment of the quick-connector car controller is illustrated in
To install quick-connect splice-free connector, the male pins 1-16 on male front side of the connector must be inserted into female end of the OBD-II J1962 connector
Removal of the quick-connect splice-free connector would require the retaining clips to be disengaged and pressure applied toward the user until quick-connector was free of the OBD-II J1962 female connector.
The quick-connect splice-free connector establishes a connection between and direct integration of controller 5 with wires terminating at the OBD-II J192 female connector within the car where the pin-out locations are standardized regarding the pins electrical polarity and function, selected from the group of predetermined pin locations providing battery voltage, chassis ground, signal ground, J1850 Bus+, CAN High J-2284, ISO 9141-2 K Line, CAN LOW J-2284, and ISO 9141-2 L Line, and in accordance to these pin-outs, chassis ground pin 4 and battery voltage pin 16 are shown on
From the description above, a number of advantages of some of the embodiments on our quick-connect splice-free car controller become evident:
This application claims priority under 35 U.S.C. .sctn.119(e) of U.S. provisional patent application Ser. No. 61/027,816, filed 2008 Feb. 11 by the present inventor.
Number | Date | Country | |
---|---|---|---|
61027816 | Feb 2008 | US |