All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
Cable assemblies and comprising a cable having pairs of twisted conductors with regions at spaced intervals that are untwisted and adapted for snap connection to an adapted connector. These assemblies are configured to allow convenient connection without requiring a separate tool while reducing or eliminating electromagnetic cross-talk for high speed signal transmission. Also described herein are quick-connect cable assemblies are configured to allow convenient connection without requiring a separate tool while reducing or eliminating electromagnetic cross-talk for high speed signal transmission.
Twisted pair cabling is a type of wiring in which two conductors of a single circuit are twisted together for the purposes of canceling out electromagnetic interference from external sources; for instance, electromagnetic radiation from unshielded twisted pair (UTP) cables, and crosstalk between neighboring pairs.
The twist rate (also called pitch of the twist, usually defined in twists per meter) makes up part of the specification for a given type of cable. When nearby pairs have equal twist rates, the same conductors of the different pairs may repeatedly lie next to each other, partially undoing the benefits of differential mode. For this reason it is commonly specified that, at least for cables containing small numbers of pairs, the twist rates may differ. In contrast to shielded or foiled twisted pair (typically F/UTP or S/FTP cable shielding), UTP (unshielded twisted pair) cable is not surrounded by any shielding. UTP is the primary wire type for telephone usage and is very common for computer networking, especially as patch cables or temporary network connections due to the high flexibility of the cables. Unshielded twisted pair (UTP) cables are found in many Ethernet networks and telephone systems. For urban outdoor telephone cables containing hundreds or thousands of pairs, the cable may be divided into small but identical bundles. Each bundle consists of twisted pairs that have different twist rates. The bundles are in turn twisted together to make up the cable. Pairs having the same twist rate within the cable can still experience some degree of crosstalk. Wire pairs are selected carefully to minimize crosstalk within a large cable. UTP cable is also the most common cable used in computer networking. Modern Ethernet, the most common data networking standard, can use UTP cables. Twisted pair cabling is often used in data networks for short and medium length connections because of its relatively lower costs compared to optical fiber and coaxial cable. A solid-core cable uses one solid wire per conductor and in a four pair cable there would be a total of eight solid wires. Stranded conductor uses multiple wires wrapped around each other in each conductor and in a four pair with seven strands per conductor cable, there would be a total of 56 wires (2 per pair×4 pairs×7 strands). Solid core cable is intended for permanently installed runs. It is less flexible than stranded cable and is more prone to failure if repeatedly flexed. Stranded cable is used for fly leads at patch panel and for connections from wall-ports to end devices, as it resists cracking of the conductors.
Connectors are designed differently for solid core than for stranded. Use of a connector with the wrong cable type can lead to unreliable cabling. Plugs designed for solid and stranded core are readily available, and some vendors even offer plugs designed for use with both types. The punch-down blocks on patch-panel and wall-port jacks are designed for use with solid core cable.
Twisted pair's susceptibility to electromagnetic interference greatly depends on the pair twisting schemes (sometimes patented by the manufacturers) staying intact during the installation. As a result, twisted pair cables usually have stringent requirements for maximum pulling tension as well as minimum bend radius. This fragility of twisted pair cables makes the installation practices an important part of ensuring the cable's performance. Different pairs within the cable may have different delays, due to different twist rates used to minimize crosstalk between the pairs. This can degrade image quality when multiple pairs are used to carry components of a video signal. Differences between the two wires in a pair may also cause coupling between the common mode and the differential mode. Differential to common mode conversion produces common mode currents that can cause external interference and can produce common mode signals in other pairs. Common mode to differential mode conversion can produce differential mode signals from common mode interference from other pairs or external sources. Imbalance can be caused by asymmetry between the two conductors of the pair from each other and in relationship to other wires and the shield. Some sources of asymmetry are differences in conductor diameter and insulation thickness. In telephone jargon, the common mode is called longitudinal and the differential mode is called metallic.
One variant of twist a standard ribbon cable is twisted ribbon cable, in which adjacent pairs of conductors are bonded and twisted together. The twisted pairs are then lightly bonded to each other in a ribbon format. Periodically along the ribbon there are short sections with no twisting to enable connectors and PCB headers to be terminated using the usual ribbon cable IDC techniques.
In general, there is an increase in demand for cable and connection systems to transmit digital signals at high speeds. However, connecting to existing twisted cables is time consuming and requires multiple steps. It would be beneficial to provide twisted-cabling systems that allow for quick and easy connection to a connector, e.g., such as an RS-232 cable connector or any other connector.
In addition, there is an increase in demand for cable and connection systems to transmit digital signals at high speeds. However, connecting to existing cables, such as twisted cables, is time consuming and requires multiple steps. It would be beneficial to provide cabling systems that allow for quick and easy connection to a connector.
Described herein are apparatuses (including systems and devices) and methods of using them that address these needs.
Described herein are quick-connected twisted pair cable system. These systems are configured to allow quick connection between the twisted pair cable and a quick plug connector to form a twisted-pair cable with a connector (e.g., plug) that may be used to connect electronic equipment. These connectors may be attached without the need for separate cutting, stripping and coupling steps and/or equipment.
In particular, the apparatuses (e.g., devices, systems, cables, connectors, etc.) described herein may include quick-connect twisted pair cable that extends in an elongate length (e.g., 1 meter or more, 2 meters or more, 3 meters or more, 4 meters or more, 5 meters or more, 6 meters or more, 7 meters or more, 8 meters or more, etc.). The quick-connect twisted pair cable typically includes tubular regions that are separated at intervals by flattened regions to which the connector may be connected, cutting the quick-connect twisted pair cable and attaching the connector at this flattened region, as will be described.
For example, a quick-connect twisted pair cable may include: a plurality of pairs of insulated wires; and an outer insulating cover forming an elongate body having a plurality of flattened regions alternating between tubular body regions, wherein the tubular body regions have lengths that are greater than 5 times the length of the flattened regions; wherein the pair of wires of each of the plurality of pairs of insulated wires are wrapped around each other within the tubular body regions and not wrapped around each other in the flattened regions.
The insulated wires may generally include a conductive core (e.g., metal, polymer, etc.) surrounded by an insulating outer cover. The insulating outer cover may be a dielectric material. The insulating outer cover may be sprayed onto the conductive wire, or otherwise attached. The pairs of insulating wires may be matched, as is known in other twisted pair cables, e.g., carrying input/output.
The outer insulating cover may be formed of a material that is compliant. The insulating outer cover may be electrically insulating and may be hollow, providing one or more passages for the pairs of insulated wires. The tubular body regions may be configured to be generally tubular (e.g., having a generally oval or rounded cross-section); the flattened regions may have a generally rectangular cross-section. In general, the diameter (e.g., average diameter) transvers to the long axis of the cable of tubular region is greater than the diameter of the flattened region (e.g., the diameter of the tubular region may be greater than 40%, 50%, 60%, 70%, 80%, 90%, 100%, 120%, 130%, etc. of the diameter of the flattened region).
The tubular body regions may have a length (e.g., average length, or minimum length) of greater than 30 cm. In some variations, the tubular body regions have a minimum length of 1 meter. In some variations, the tubular body regions have a length of between 0.5 meters and 3 meters. Thus, the flattened regions may be separated from each other by a regular or irregular distance. For example, the length of the tubular body regions may vary.
Any appropriate number of pairs of insulated (twisted) wires may be used. For example, the plurality of pairs of insulated wires may comprise 4 or more pairs.
Any length of cable may be configured as described herein. In some variations, the outer insulating cover extend for greater than 3 meters (e.g., 5 meters or more, 7 meters or more, 10 meter or more, 15 meters or more 20 meters or more, 30 meters or more 50 meters or more, 100 meters or more, etc.).
In general, the length of each flattened region is much less than the length of the tubular region(s). For example, the length of the flattened regions may be less than 25% the length of the tubular region, less than 20% the length of the tubular region, less than 15% the length of the tubular region, less than 10% the length of the tubular region, less than 7% the length of the tubular region, less than 5% the length of the tubular region, less than 4% the length of the tubular region, less than 3% the length of the tubular region, less than 2% the length of the tubular region, etc. For example, the flattened regions may have an average length that is 5 cm or less (e.g., 4 cm or less, 3 cm or less, 2 cm or less, etc.). Alternatively or additionally, the tubular body regions may have lengths that are, on average, greater than 10 times the length of the flattened regions.
Any of the quick-connect twisted pair cables described herein may include a projecting guide or alignment region extending from the outer insulating region, and particularly the flattened region. For example, the flattened region may have a guide projection extending from one side. The guide portion may be a keying projection that aligns with a channel or key in the connector, or it may be configured as a stop that limits movement of the connector when attaching/coupling to the flattened region.
The quick connect twisted pair cable of claim 1, wherein the pair of wires of each of the plurality of pairs of insulated wires within the tubular body are wrapped around each other with a pitch of at least 10 turns per meter.
Also described herein are systems for quick-connecting a twisted pair cable. Any of these systems may include a quick-connect twisted pair cable, which may be of any of the variations described above, and a quick plug connector. For example, a system may include: a quick-connect twisted pair cable comprising: a plurality of pairs of insulated wires; an outer insulating cover forming an elongate body having a plurality of flattened regions alternating between tubular body regions, wherein the tubular body regions have lengths that are greater than 5 times the length of the flattened regions; wherein the pair of wires of each of the plurality of pairs of insulated wires are wrapped around each other within the tubular body regions and not wrapped around each other in the flattened regions; and a quick plug connector configured to clip onto one of the flattened regions, the quick plug connector having a cutter for cutting the quick-connect twisted pair cable, and a plurality of prongs, wherein each prong is configured to be placed in electrical contact with one of the insulated wires from the plurality of pairs of insulated wires.
Any of these systems may include a lock on the quick plug connector configured to lock the quick plug connector onto the quick-connect twisted pair cable after cutting it. The quick plug connector may have a cutter (e.g., blade, cutting element, etc.) that cuts though the flattened region, including the wires and the outer cover) and/or a plurality of pins or prongs or other electrical elements that make electrical contact between the pins of the connector and the insulated wires. In some variations the quick plug connector includes a stripping element to strip the insulation from a portion of the wires.
Any of the quick plug connectors described herein may be configured as know connectors (standard connectors), such as RJ-45 connectors.
Also described herein are methods of connecting, forming and/or operating any of the apparatuses described herein. For example, described herein are methods of connecting a quick plug connector to a quick-connect twisted pair cable, the method comprising: closing the quick plug connector over a target flattened region of a quick-connect twisted pair cable, wherein the quick-connect twisted pair cable comprises: a plurality of pairs of insulated wires, an outer insulating cover forming an elongate body having a plurality of flattened regions, including the target flattened region, alternating between tubular body regions, wherein the tubular body regions have lengths that are greater than 5 times the lengths of the plurality of flattened regions, further wherein the pair of wires of each of the plurality of pairs of insulated wires are wrapped around each other within the tubular body regions and not wrapped around each other in the flattened regions; cutting, with the quick plug connector, the target flattened region of a quick-connect twisted pair cable; and making electrical contact between the plurality of pairs of insulated wires in the target flattened region and a plurality of prongs on the quick plug connector. The method may include locking the quick plug connector onto the flattened region of the quick-connect twisted pair cable.
In general, any of these methods may include removing the portion of the quick-connect twisted pair cable not attached locked onto the quick plug connector, e.g., after cutting the cable at the flattened region.
Any of these methods may include stripping, with the quick plug connector, an insulator from each of the insulated wires of the plurality of pairs of insulated wires.
Any of these methods may include placing the quick-connect twisted pair cable into the quick plug connector, e.g., before closing the connector. Closing may comprise moving a hinged jaw over the quick-connect twisted pair cable at the target flattened region.
Cutting the target flattened region may occur when the quick plug connector is closed over the quick-connect twisted pair cable.
Making electrical contact may comprise driving a plurality of pins in the quick plug connector into the target flattened region, wherein each pin is in electrical contact with a prong of the quick plug connector.
Also described herein are quick connected Ethernet cable systems. These systems are configured to allow quick connection between the twisted pair cable segments to obtain an Ethernet cable with the desirable length that may be used to connect electronic equipment. These cables may be attached without the need for separate cutting, and stripping steps and/or equipment, and or special assembly. The special termination end on the cable segment allows Ethernet cable to route through small holes in wall with ease.
In one aspect, the disclosure provides a quick connect Ethernet cable segment having a predetermined length and a diameter. The cable segment includes a quick plug attached to a first end of a plurality of pairs of insulated wires and configured to adapt to a standard Ethernet port; a connector attached to a second end of the plurality of pairs of insulated wires, said connector having a cross-section comprising a plurality of slots, wherein the cross-section has a cross-sectional length, which is less than the predetermined length of the cable segment and about the same as the diameter of the cable segment; an outer insulation layer wrapped around the connector to shield the connector from interference; and wherein the connector is configured for coupling with a second Ethernet cable segment to extend the Ethernet cable.
In another aspect, the disclosure provides an Ethernet cable to both provide power and transmit optical signals between devices. The cable includes a quick connect Ethernet cable segment having a predetermined length and a diameter comprising: a quick plug attached to a first end of a plurality of pairs of insulated wires and configured to adapt to a standard Ethernet port; a connector attached to a second end of the plurality of pairs of insulated wires, said connector having a cross-section comprising a plurality of slots, wherein the cross-section has a cross-sectional length, which is less than the predetermined length of the cable and about the same as the diameter of the quick connect Ethernet cable segment; a second cable segment comprising an adaptor attached to a first end of a plurality of pairs of insulated wires and a quick plug attached to a second end of the plurality of wires and configured to adapt to a second standard Ethernet port, wherein the adaptor comprises a plurality of protrusion members engaged with the plurality of slots.
In yet another aspect, the disclosure provides a method for forming an Ethernet cable having a predetermined length and a diameter to both provide power and transmit optical signals between devices. The method includes providing a first Ethernet cable segment comprising quick plug attached to a first end of the first Ethernet cable segment and a connector attached to a second end of the first Ethernet cable segment; and joining the connector with an adaptor attached to a first end of a second Ethernet cable segment to form the Ethernet cable with the predetermined length, wherein the connector has a cross-section comprising a plurality of slots, wherein the cross-section has a cross-sectional length, which is less than the length of the first Ethernet cable segment and about the same as the diameter of the first Ethernet cable segment.
In general, any of the cables and cable systems described herein may be used with any element or component of each of these various cables and cable systems described herein.
The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
In general, descried herein are method and apparatuses (e.g., devices, systems, etc., including cabling adapted to allow easy coupling and formation of a connector at or along a length of the cable.
Prior to the methods and apparatuses described herein, forming a connection in a twisted pair cabling required multiple steps and a variety of tools operating on the twisted pair cabling. An example of this is illustrated in
As shown in
In general, the quick-connect twisted pair cables described herein may include a plurality of pairs of insulated wires within an elongate (e.g., insulated) body. The elongate body is formed to have alternating region of tubular regions and flattened regions, within which a plurality of pair of insulated wires extend; the wires in each pair are twisted around each other in the tubular regions and untwisted (e.g., parallel in a plane) in the flattened regions. The elongate body is formed, at least in part, by an outer insulating cover. A connector (e.g., a quick plug connector) may be attached at one of the flattened regions, cutting the cable at this connection and making electrical connection with the connector pins. The connector and cable together are configured so that the connector may be attached without requiring additional cutting, stripping and connecting steps. The spacing between the flattened regions may be between, e.g., 20 cm and 5 meters (e.g., between 30 cm and 5 meters, etc., less than 2 meters, less than 1.5 meters, less than 1.1 meters, less than 1 meter, less than 90 cm, less than 80 cm, less than 70 cm, less than 60 cm, less than 50 cm, etc.). The tubular body regions may have lengths that are greater than 5 times the length of the flattened regions.
For example,
In
In
As mentioned, the thickness (e.g., the height perpendicular to the long axis of the cable) of the tubular region is typically larger than the thickness of the flattened region, as shown in
In
Any of the methods (including user interfaces) described herein may be implemented as software, hardware or firmware, and may be described as a non-transitory computer-readable storage medium storing a set of instructions capable of being executed by a processor (e.g., computer, tablet, smartphone, etc.), that when executed by the processor causes the processor to control perform any of the steps, including but not limited to: displaying, communicating with the user, analyzing, modifying parameters (including timing, frequency, intensity, etc.), determining, alerting, or the like.
In general, also descried herein are method and quick connect cable segments and adaptors to allow easy coupling and formation of an Ethernet cable with a desirable length. The pre-made Ethernet cable segment (which may include any of the cables described above) may have a special termination end, which has the advantage of routing through small holes in walls.
Prior to the methods and quick connect cables described herein, forming a connection in a twisted pair cabling required multiple steps and a variety of tools operating on the twisted pair cabling.
In any of these variations, the connector 106 may be shielded (RF shielded) even despite the narrow diameter. For example, the quick connector may have an outer insulation layer 108 wrapped around the connector to shield the connector from interference. As shown in
The quick connector 106 on the distal end of the length of cable may be keyed (e.g., with one or more slots) for connection in a particular orientation. Alternatively in some variations the connector is not keyed, but is configured to be attached in a variety of orientations. In some variation, it may be connected quickly and easily in any orientation and the mapping of which of the pairs of wires (twisted wires) connect to which of the end of the wire(s) at the opposite end of the connected cable may be determined at one end of the cable by additional circuitry, including one or more switches (not shown).
In some variations, the slots or openings on the cable at the quick connector are arranged in a circle, grid, loop or spiral pattern. In
As mentioned, the standard connector 102 on the opposite end of the cable may be configured adaptable to a standard Ethernet port or socket. The quick plug can be a modular connector such as a registered jack. Non-limiting exemplary modular connectors include RJ connectors, such as RJ45, RJ9, RJ11 and RJ22 connectors. Other modular connectors may be used include RJ49, RJ61, RJ14 and RJ25. In some embodiments, the quick plug is an RJ-45 connector.
The cable segment can have various length, for example, from about 1 cm to over 500 m. In some instances, the first cable segment can be from about 0.5 m to about 5 m, from about 0.5 m to about 10 m, from about 0.5 m to about 20 m, from about 0.5 m to about 30 m, from about 1 m to about 20 m, from about 5 m to about 10 m, from about 5 m to about 20 m, or from about 5 m to about 30 m. Depending on the specific applications, the cable segment can be about 0.01 m, about 0.05 m, about 0.1 m, about 0.5 m, about 1 m, about 2 m, about 3 m, about 4 m, about 5 m, about 6 m, about 7 m, about 8 m, about 9 m, about 10 m, about 11 m, about 12 m, about 13 m, about 14 m, about 15 m, about 16 m, about 17 m, about 18 m, about 19 m, about 20 m, about 22 m, about 25 m, about 28 m, about 30 m or about 50 m.
The connector can be a small diameter jack. The cross-section of the connector can have various shapes, such as circle, oval, square, rhombus, parallelogram, trapezoid, kite, pentagon, hexagon, heptagon, octagon, nonagon, decagon, irregular pentagon, irregular hexagon, irregular heptagon, irregular octagon, irregular nonagon, irregular decagon or a combination thereof. In one embodiment, the connector has a modified circular shape.
The cross-section of the connector has a plurality of slots. The slots can have a rectangular, a circular or an oval shape. The distance between the two adjacent slots can be the same or different on the cross-section. In some embodiments, the cross-section has 2, 3, 4, 5, 6, 7 or 8 slots for coupling with an adaptor of another Ethernet cable segment. The slots can have the same dimension or different sizes. In one embodiment, the cross-section has seven slots, wherein six of the seven slots have the same size and one of the seven slots has a different size.
The length of the cross-section of the connector is less than the predetermined length of the cable segment. The length of the cross-section is about the same as the diameter of the cable segment. The cable segment can have various diameter or ross-section length. For example, the diameter of the cable segment or the length of the cross-section of the connector is at least about 1 mm, 2 mm, or 3 mm. In some instances, the diameter of the cable segment or the length of the cross-section of the connector can be less than about 10 mm, about 9 mm, about 8 mm, about 7 mm, about 6 mm, about 5 mm, about 4 mm, or about 3 mm. In some embodiments, the diameter of the cable segment or the length of the cross-section of the connector is about 3 mm, about 4 mm, about 5 mm, about 6 mm, about 7 mm, about 8 mm, about 9 mm or about 10 mm. In other embodiments, the diameter of the cable segment or the length of the cross-section of the connector is about 1.0 cm, about 1.1 cm, about 1.2 cm, about 1.3 cm, about 1.4 cm, or about 1.5 cm.
The plurality of insulated wires can include 4 or more pairs of wires, for example, 4, 5, 6, 7, or 8 pairs of wires. Typically, the pairs of wires are twisted cable wires.
To shield the connector from the interference, such as electromagnetic interference, electromagnetic cross-talk, noise, spurious emissions, electrical noise, electronic interference, the connector has an outer insulation layer, which can be in direct contact with the connector or through an intermediate layer. The outer insulation layer is generally wrapped around the connector. Various interference materials can be used. For example, the insulation layer can be made of a metallic material or a mix of polymers and metallic materials.
In some variations, an intermediate cable may be used to extend cable which includes a connector complimentary to the connector on the first length of cable, e.g., shown in
The intermediate cable may be any appropriate length, as discussed above, and the distal end of the cable may be a standard connector or, preferably, it may be another quick connect connector having a narrow diameter, similar to those discussed above (an example of which is shown in
In some variations the maximum outer diameter (cross-sectional diameter) of an intermediate, complementary, connector may be the same or less than the maximum diameter of the rest of the cable (e.g., the region distal and/or proximal to the connectors). Alternatively, the connector may have a larger diameter, as shown in
An Ethernet cable can be readily formed by connecting two (or more, e.g., using one more intermediate cables) cable segments together. Thus, provided herein is an Ethernet cables with a desirable variable (e.g., modular predetermined) lengths, which can provide power and transmit optical signals between devices. The Ethernet cable typically consists of a jack (e.g., a standard connector) at a first end and a quick connector at the opposite end; this may be mated to one or more additional length of cable via connection to the quick connector. In some variations the distal end may be terminated in a second cable extension (such as shown in
Also described herein are methods for forming an Ethernet cable from two or more lengths of the cables having one or more narrow-diameter quick connector(s) as described above. Generally, the method may include connecting two or more cable segments together to provide an Ethernet cable having a desirable length and standard Ethernet jacks (e.g., RJ45) at opposite ends of the cable. For example, the first Ethernet cable segment can have a standard Ethernet jack on one end and a narrow-diameter quick connector on the other end. The second Ethernet cable segment can have a narrow-diameter quick connector (configured as complementary to the narrow-diameter quick connector on the first cable) on one end and a standard Ethernet jack on the other end. The cable can be installed by joining the first narrow-diameter quick connector of the first cable segment with the complimentary narrow-diameter quick connect connector (e.g., narrow-diameter quick connect adaptor) of the second cable segment. Thus, provided herein is method of forming an Ethernet cable, which includes providing a first Ethernet cable segment comprising a standard Ethernet jack on a first end, a narrow-diameter quick connect on the second end of the cable segment, passing the narrow-diameter quick connector through a narrow diameter opening or channel, then mating the narrow-diameter quick connect connector with a second length of cable having a complementary connector (e.g., an adaptor) at one end and a standard Ethernet jack at the opposite end to form the Ethernet cable with the predetermined length. The narrow diameter quick connect connector may have a narrow cross-section and may include either a plurality of slots or openings and/or a plurality of protrusions/pins/blades configured extending therefrom, or some combination of these). The narrow-diameter quick connect connector may mate with a complimentary connector, which may be a narrow-diameter connector or an adapter such as shown in
In some embodiments, the connector of the quick connector (complimentary connector) for the second segment may have a diameter that is greater than, narrower or the same as the diameter of the first Ethernet cable segment. In certain instances, the diameter of end of the second Ethernet cable segment from the narrow-diameter quick connector to just before the standard Ethernet jack is about the same as the narrowest diameter of the first Ethernet cable segment. In
When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.
Terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.
Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms “upwardly”, “downwardly”, “vertical”, “horizontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.
Although the terms “first” and “second” may be used herein to describe various features/elements (including steps), these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising” means various components can be co-jointly employed in the methods and articles (e.g., compositions and apparatuses including device and methods). For example, the term “comprising” will be understood to imply the inclusion of any stated elements or steps but not the exclusion of any other elements or steps.
In general, any of the apparatuses and methods described herein should be understood to be inclusive, but all or a sub-set of the components and/or steps may alternatively be exclusive, and may be expressed as “consisting of” or alternatively “consisting essentially of” the various components, steps, sub-components or sub-steps.
As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical values given herein should also be understood to include about or approximately that value, unless the context indicates otherwise. For example, if the value “10” is disclosed, then “about 10” is also disclosed. Any numerical range recited herein is intended to include all sub-ranges subsumed therein. It is also understood that when a value is disclosed that “less than or equal to” the value, “greater than or equal to the value” and possible ranges between values are also disclosed, as appropriately understood by the skilled artisan. For example, if the value “X” is disclosed the “less than or equal to X” as well as “greater than or equal to X” (e.g., where X is a numerical value) is also disclosed. It is also understood that the throughout the application, data is provided in a number of different formats, and that this data, represents endpoints and starting points, and ranges for any combination of the data points. For example, if a particular data point “10” and a particular data point “15” are disclosed, it is understood that greater than, greater than or equal to, less than, less than or equal to, and equal to 10 and 15 are considered disclosed as well as between 10 and 15. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.
Although various illustrative embodiments are described above, any of a number of changes may be made to various embodiments without departing from the scope of the invention as described by the claims. For example, the order in which various described method steps are performed may often be changed in alternative embodiments, and in other alternative embodiments one or more method steps may be skipped altogether. Optional features of various device and system embodiments may be included in some embodiments and not in others. Therefore, the foregoing description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the invention as it is set forth in the claims.
The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. As mentioned, other embodiments may be utilized and derived there from, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is, in fact, disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
This patient application claims priority to U.S. provisional patent application No. 62/615,378, filed on Jan. 9, 2018 (titled “QUICK CONNECTING TWISTED PAIR CABLES”) and U.S. provisional patent application No. 62/682,773, filed on Jun. 8, 2018 (titled (“QUICK CONNECTING CABLES”), each of which is herein incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/012910 | 1/9/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/139993 | 7/18/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4527451 | Davis | Jul 1985 | A |
4764939 | Rogers | Aug 1988 | A |
5010642 | Takahashi | Apr 1991 | A |
5131006 | Kamerman et al. | Jul 1992 | A |
5151920 | Haagh et al. | Sep 1992 | A |
5295154 | Meier et al. | Mar 1994 | A |
5406260 | Cummings et al. | Apr 1995 | A |
5422887 | Diepstraten et al. | Jun 1995 | A |
5428636 | Meier | Jun 1995 | A |
5435029 | Carlson, Jr. | Jul 1995 | A |
5481794 | Fischer | Jan 1996 | A |
5504746 | Meier | Apr 1996 | A |
5546397 | Mahany | Aug 1996 | A |
5549021 | Bower, Jr. | Aug 1996 | A |
5606151 | Siekierka | Feb 1997 | A |
5706428 | Boer et al. | Jan 1998 | A |
5740366 | Mahany et al. | Apr 1998 | A |
5844893 | Gollnick et al. | Dec 1998 | A |
5893302 | Strom | Apr 1999 | A |
5936542 | Kleinrock | Aug 1999 | A |
5940771 | Gollnick et al. | Aug 1999 | A |
6130892 | Short et al. | Oct 2000 | A |
6194992 | Short et al. | Feb 2001 | B1 |
6247230 | Hart | Jun 2001 | B1 |
6337990 | Koshino | Jan 2002 | B1 |
6374311 | Mahany et al. | Apr 2002 | B1 |
6563786 | Nee | May 2003 | B1 |
6636894 | Short et al. | Oct 2003 | B1 |
6665536 | Mahany | Dec 2003 | B1 |
6697415 | Mahany | Feb 2004 | B1 |
6714559 | Meier | Mar 2004 | B1 |
6789110 | Short et al. | Sep 2004 | B1 |
6795852 | Kleinrock et al. | Sep 2004 | B1 |
6810426 | Mysore et al. | Oct 2004 | B2 |
6857009 | Ferreria et al. | Feb 2005 | B1 |
6868399 | Short et al. | Mar 2005 | B1 |
7020082 | Bhagavath et al. | Mar 2006 | B2 |
7073245 | Alexander | Jul 2006 | B2 |
7088727 | Short et al. | Aug 2006 | B1 |
7117526 | Short | Oct 2006 | B1 |
7194554 | Short et al. | Mar 2007 | B1 |
7197556 | Short et al. | Mar 2007 | B1 |
7229309 | Carroll | Jun 2007 | B2 |
7231224 | Chesson | Jun 2007 | B1 |
7295812 | Haapoja et al. | Nov 2007 | B2 |
7386002 | Meier | Jun 2008 | B2 |
7413478 | Kleinschmidt | Aug 2008 | B2 |
7415760 | Elias | Aug 2008 | B2 |
7448896 | Malak | Nov 2008 | B2 |
7457646 | Mahany et al. | Nov 2008 | B2 |
7739383 | Short et al. | Jun 2010 | B1 |
7752334 | Paunikar et al. | Jul 2010 | B2 |
7826426 | Bharghavan et al. | Nov 2010 | B1 |
7978376 | Divine | Jul 2011 | B2 |
8006104 | Sivertsen | Aug 2011 | B1 |
8077113 | Syed et al. | Dec 2011 | B2 |
8190708 | Short et al. | May 2012 | B1 |
8335272 | Roberts | Dec 2012 | B2 |
8449326 | Holland | May 2013 | B2 |
8483188 | Walton et al. | Jul 2013 | B2 |
8638651 | Michaelis | Jan 2014 | B2 |
8896286 | Abuelsaad | Nov 2014 | B2 |
8966690 | Stokes | Mar 2015 | B2 |
9337551 | Uchida | May 2016 | B2 |
9391440 | Gardner | Jul 2016 | B1 |
9520692 | Valenti | Dec 2016 | B2 |
9774142 | Rust | Sep 2017 | B1 |
9870773 | German | Jan 2018 | B2 |
9923288 | Bertrand | Mar 2018 | B2 |
10050389 | Scherer | Aug 2018 | B2 |
11245234 | Lachelli | Feb 2022 | B2 |
20050287873 | Carroll | Dec 2005 | A1 |
20070259568 | Mackillop | Nov 2007 | A1 |
20100328852 | Johnson | Dec 2010 | A1 |
20120282822 | Elias | Nov 2012 | A1 |
20180226743 | Pepe | Aug 2018 | A1 |
20200176932 | Anderson | Jun 2020 | A1 |
20210065933 | Pera | Mar 2021 | A1 |
Number | Date | Country |
---|---|---|
2014093173 | May 2014 | JP |
WO9840990 | Sep 1998 | WO |
WO0131855 | May 2001 | WO |
WO0131886 | May 2001 | WO |
WO0186877 | Nov 2001 | WO |
WO2008042804 | Apr 2008 | WO |
WO2011005710 | Jan 2011 | WO |
WO2017184323 | Oct 2017 | WO |
Number | Date | Country | |
---|---|---|---|
20210065933 A1 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
62682773 | Jun 2018 | US | |
62615378 | Jan 2018 | US |