The present disclosure generally relates to hydraulic systems and, more particularly, relates to couplings for hydraulic hoses and tubes of hydraulics systems.
Hydraulics are used in numerous applications. For example, with earth moving, construction, and agricultural equipment, various implements and attachments are powered by hydraulic cylinders. Using a track-type tractor as an example, the blade, bucket or other implement on the front of the loader are attached to boom arms swingably attached to the chassis of the track-type tractor. Movement of the boom arms and implements are powered by hydraulic cylinders. The hydraulic cylinders are in turn in fluid communication with a hydraulic fluid pump powered by an engine mounted on the chassis. Accordingly, it can be seen that multiple couplings are needed when communicating the hydraulic fluid from the pump to the cylinders.
While effective, and used for decades, the couplings between the various tubes and hoses of the hydraulic system are particularly prone to leakage. Such leakage necessarily detrimentally affects the efficiency of the machine, adds cost to operation of the machine, and disturbs the environment.
In light of the foregoing, it has been known to provide robust couplings between the hydraulic conduits of such hydraulic systems. Such robust couplings typically include a plurality of threaded bolts connecting fittings attached to the adjacent hydraulic hoses. The inclusion of multiple bolts, typically four, thus makes it a fairly time consuming process to connect and disconnect conduits. In addition, current couplings are rotationally sensitive in that the mating halves of the coupling must be symmetrically aligned before the bolts can be attached. This also adds to the time involved with changing conduits. Moreover, leakage from such robust connectors continues to be problematic.
With respect to patented technology, U.S. Pat. No. 7,490,388 discloses a clamp for connecting a duct to a base surface which includes a hinged clamp assembly sized so as to circumscribe the ducts being joining. A threaded bolt removably connects the two halves of the clamp together. However, such a device does not provide any sealing capability whatsoever.
Accordingly, it can be seen that a need exists for a hydraulic fluid line coupling system with improved resistance to leakage, reduced reliance on rotational orientation of the coupling components, quick assembly and disassembly, and which is designed for reduced likelihood of accidental pressure discharge.
In accordance with one aspect of the disclosure, hydraulic fluid line coupling system is disclosed which may comprise a female fitting, a male fitting, and a spring clip securing the male fitting against the female fitting.
In accordance for another aspect of the disclosure, a method of sealing a hydraulic fluid line coupling system is disclosed which may comprise inserting a male fitting into a female fitting, sealing the male fitting to the female fitting using first and second elastomeric rings, and securing the male fitting to the female fitting using a spring clip.
In accordance with yet another aspect of the disclosure, a machine is disclosed which may comprise a chassis, engine mounted on the chassis, a hydraulic fluid pump powered by the engine, a hydraulic cylinder in fluid the communication with the hydraulic fluid pump, a plurality of a hydraulic fluid tubes connecting the hydraulic fluid pump and the hydraulic cylinder and a, hydraulic fluid line coupling system connecting the plurality of the hydraulic fluid tubes together, each hydraulic fluid line coupling system including a male fitting, a female fitting, a first and second elastomeric seals between the male and female fittings, and a spring clip securing the male fitting to the female fitting.
These are other aspects and features of the present disclosure will be more readily understood when read in light of the following detailed description when taken in conjunction with the accompany drawings.
While the present disclosure is susceptible to various modifications and alternative construction, certain illustrative embodiments that are shown and described below in detail. However, it is to be understood that the present disclosure is not limited to the specific embodiments disclosed, but instead includes all modifications, alternatives, constructions, and equivalents thereof.
Referring now to drawings, and with specific reference to
With respect to the machine 20, it is shown to include a chassis 22 on which is mounted an engine 24. The machine 20 further includes first and second tracks 26 laterally flanking the machine, although in other embodiments, the form of locomotion may be provided in alternative formats such as, but not limited to, wheels. In addition, the chassis 22 supports an operator cabin 28.
As also illustrated in
Turning now to
The hydraulic fluid line coupling system 42 is shown, in
As shown in
With respect to the female fitting 50, it is also shown in detail in
With respect to the spring clip 52, it is shown best in
Finally, also depicted in
When assembled, the hydraulic fluid line coupling system 42 joins the first tube 44 and second tube 46, as shown best in
In addition, the second elastomeric radial seal 56 is received within the second internal radial groove 72 such that when the male fitting 48 is thoroughly received within the female fitting 50, the second elastomeric radial seal 56 is compressed therein as well. So as to facilitate fluid tight engagement between the male and female fittings 48 and 50, it will be noted that the tapered rim 68 is provided so as to draw the male fitting fully against a stop 86 of the female fitting 50 when the hydraulic fluid line coupling system 42 is assembled. A back-up ring or rings could be associated with the second radial seal 56 as well.
While the first and second elastomeric seal 54 and 56 provide the redundant sealing capabilities guarding against leaks, the improved ability of the hydraulic fluid line coupling system 42 against accidental pressure discharge is provided in part by way of the spring clip 52. As shown best in
Not only does the hydraulic fluid line coupling system 42 of the present disclosure provide for improved sealing and accidental pressure discharge prevention, but as will be noted, all of the components described above are not reliant on any particular rotational orientation so as to be effective. This is in marked contrast to prior art couplings which required the connecting components of the coupling to be rotated in a particular orientation before being connected. In so doing, the speed with which the coupling 42 can be assembled and disassembled is greatly improved.
Referring now to
Starting with a step 100, the method includes attaching the male fitting 48 to the first tube 44. This may be done as by crimping, welding, blazing or the like. Similarly, in a second step 102, the female fitting 50 is attached to the second tube 46. Once the male and female fittings 48 and 50 are attached to the tubes 44 and 46, the first and second elastomeric seals 54 and 56 are placed within the female fitting 50 as indicated in steps 104 and 106. In a next step 108, the male fitting 48 is then inserted into the female fitting 50 until rib 62 engages shoulder 76 with the first and second elastomeric seals 54 and 56 being compressed there between. In order to secure the tubes 44 and 46 together, the spring clip 52 is then locked into the third internal circumferential groove 74 of the female fitting 50 as indicated in a step 110.
While the foregoing sets forth a method steps for connecting the first and the second tubes 44 and 46, it is to be understood that the method of the present disclosure also includes a method for quickly disassembling the hydraulic fluid line coupling system 42 as well. In so doing, in a step 112, the hydraulic fluid line coupling system 42 is disassembled simply by removing the spring clip 52 and conducting the steps 100 through 110 in reverse order, as noted in step 116.
In operation, the present disclosure can find industrial applicability, in a number of different settings. For example, in the construction of earth moving machines, multiple hydraulic fluid tubes are routed in and around the machine. As each of those tubes needs to be interconnected, the present disclosure sets forth a coupling for doing so in a reliable sealed manner without any reliance upon the rotational orientation of the components. In addition, it does so quickly, at a minimal of cost, and with greatly improved ability to prevent accidental pressure discharge.
With respect to improved sealing capability, such is set forth by providing redundant seals in the form of first and second elastomeric seals between the male and female fitting of the coupling. In so doing, if one seal were to degrade or even fail, the second seal will be able to continue to provide leakage prevention.
With respect to avoiding rotational orientation reliance, it can be seen that each of the components of the coupling are provided in symmetric fashion such that regardless of the rotational orientation of the components the coupling can be assembled and disassembled with ease.
With respect to speed of assembly and disassembly, as opposed to prior art devices which both require a specific rotation orientation to be operable, and multiple fasteners for providing the seal, the present disclosure provides a single spring clip which simply needs to be squeezed for the coupling to be disassembled.
Finally, with regard to prevention of accidental pressure discharge, as the assembly is connected by way of a spring clip biased outwardly and locked into a receiving groove of the female fitting by a set screw, the likelihood of the coupling coming apart and causing accidental pressure discharge is greatly reduced.