The present invention relates, in general, to fluid quick connectors which couple two fluid carrying components.
Snap-fit or quick connectors are employed in a wide range of applications, particularly, for joining fluid carrying conduits in automotive and industrial applications. Such quick connectors utilize retainers or lock elements for securing a tubular connector component, such as a conduit or endform, within a complimentary bore of another connector component or housing. Such retainers are typically of either the axially-displaceable or radially-displaceable type. The terms “axially-displaceable” or “radially-displaceable” are taken relative to the axial bore through the second component housing.
In a typical quick connector with an axially displaceable, retainer, the retainer is mounted within a bore in a housing of one connector component. The retainer has a plurality of radially and angularly extending legs which extend inwardly toward the axial center line of the bore in the housing. The tubular first component to be sealingly mounted in the bore in the second component includes a radially upset portion or flange which abuts an inner peripheral surface of the retainer legs. Seal and spacer members as well as a bearing or top hat are typically mounted in the bore ahead of the retainer to form a seal between the housing and the tubular conduit or endform when the endform is lockingly engaged with the retainer legs in the housing.
Radially displaceable retainers are also known in which the retainer is radially displaceable through aligned bores or apertures formed transversely to the main through bore in the housing. Examples of radially displaceable retainers are shown in U.S. Pat. Nos. 5,542,716, 5,730,481, 5,782,502, 5,863,077 and 5,951,063. The radially displaceable retainer is typically provided with a pair of depending legs which are sized and positioned to slip behind the radially upset portion or flange on the conduit only when the connector or conduit is fully seated in the bore in the housing. This ensures a positive locking engagement of the conduit with the housing as well as providing an indication that the conduit is fully seated since the radially displaceable retainer can be fully inserted into the housing only when the conduit has been fully inserted into the bore in the housing.
Regardless of the type of retainer, the housing component portion of a fluid connector typically includes an elongated stem having one or more annular barbs spaced from a first end. The barbs provide secure engagement with a hose or conduit which is forced over the barbs to connect the housing with one end of the conduit.
However, the above described fluid quick connects with either the axially displaceable or transversely displaceable retainers, make use of end endforms having an enlarged, annular bead or flange which are engaged by the retainer to lock the endform in the connector housing.
There are a large number of other fluid conduit applications which make use of smooth or constant diameter tubes without any annular flange or bead. Connectors for such cylindrical tubes typically make use of a metal washer having a plurality of flexible, radially extending grip fingers which contact the surface of the tube to create resistence to prevent pull-out or removal of the tube from the housing. However, this requires a significant insert force to urge the tube through the grip fingers which typically have a center opening smaller than the outer diameter of the tube and creates the potential for surface damage to the tube as the edges of the grip fingers scrape along the exterior surface of the tube during tube insertion.
Locking elements for smooth or constant diameter tubes are also in the form of a planar disk having an inner diameter opening slightly larger than the outer diameter of the tube. For locking purposes, the disk is pivoted to a non-perpendicular position with respect to the tube such that inner edges of the aperture in the disk forcibly engage and lock the tube in a fixed position in a surrounding housing.
However, it would be desirable to provide a fluid quick connect or for smooth, cylindrical conduits or endforms which has reduced insertion force as well as low potential for surface damage due to scraping of the exterior surface of the tube by the lock elements of the quick connect. It would also be desirable to provide a fluid quick connector for cylindrical tubular members which has increased locking capability or force upon increased removal force. At the same time, it would be desirable to provide a fluid quick connector for cylindrical tubular members which enables separation of the tube from the housing with a minimal pull-out force after disengagement of a locking mechanism from the tubular member.
A fluid quick connector has a disk retention retainer usable with smooth or constant diameter fluid carrying conduits or endforms.
In one aspect, the present fluid quick connector includes a housing having a through bore extending between first and second ends. A transverse bore is formed in the housing in communication with the through bore. A lock member is carried in the housing and has an aperture for receiving a first tubular member therethrough. A retainer is movable through the transverse bore in the housing. A lock engagement means or projection carried on the retainer engages and moves the lock member into an angular position in locked engagement with the first tubular member resisting axial separation of the first tubular member from the housing when the retainer is moved through the transverse bore in the housing to a latched position on the housing. The second end of the housing is adapted to be coupled to a second tubular member.
A method of fluidically coupling a first member to a second member is disclosed. The method includes the steps of:
The above-described fluid quick connect is advantageously used with smooth or constant diameter fluid conduits. The quick connector uses a locking element having an inner diameter bore larger than the outer diameter of the tubular member which extends therethrough so as to prevent scraping and damage to the exterior surface of the tubular member during insertion of the tubular member into the connector housing and through the locking element. The present quick connector uniquely utilizes a retainer which is transversely movable through the connector housing to a latched position. Simultaneous with such movement to the latched position, a projection on the retainer engages, pivots and holds the locking element in a non-perpendicular position with respect to the tubular member causing an inner edge portion of the locking element to forcibly engage the tubular member.
The present quick connector presents reduced or minimal insertion force loads while, at the same time, is capable of generating high pull-out force resistance to maintain the tubular member in the quick connector housing. At the same time, the movement of the locking element to the locked position occurs simultaneously with movement of the retainer to the latched position thereby simplifying use of the present quick connector. The lock projection on the retainer exerts a constant locking force on the lock member. Any pullout forces exerted on the tubular member increases the lock force to resist separation of the tubular member from the housing.
The various features, advantages and other uses of the present invention will become more apparent by referring to the following detailed description and drawing in which:
Referring to
The quick connector 10, in the following example, will be incorporated in a first component 12 and a second component 14 which are sealingly joinable and held in a sealed, locked position by a retainer means 16. Each of the first and second components 12 and 14, as described above, may be formed as the end portion or endform of a fluid operative device, such as a conduit, pump, fuel filter, etc., or as separate elements each of which receives and is fluidically coupled to a fluid operative device, such as a conduit, by means of conduit retention barbs, spin welds, etc.
The particular shape of the endform of the first and second components 12 and 14 can be integrally formed on the end of an elongated metal or plastic tube or on a stem extending outward from a fluid use device.
The first component 12 includes a housing 20 having an elongated, axially extending, internal stepped bore 22, shown in detail in
Although the first component 12 may have external barbs for receiving the end of a flexible, expandable conduit thereover, by way of example only, an external conduit 27 is sealingly attached to the second end 26 of the housing 12 by spin welding. This is effected by forming the second end 26 of the housing 12 and the inner diameter of the tube with complimentary, inner and outer surfaces, respectively, which, when one of the conduit 27 or the housing 20 is rotated at high speed relative to the other which is held in a fixed, non-rotatable position, generates frictional forces and heat to create a spin weld between the mating surfaces to sealingly and securely attach the conduit 27 to the housing 12.
As shown in
The stepped bore 22 includes a first bore portion 21 extending from an opening at the first end 24 of the housing 20 to a second smaller diameter second stepped bore portion 23. A third yet smaller diameter stepped bore portion 25 extends axially from one end of the second stepped bore portion 23 and communicates to a still smaller fourth stepped bore portion 27 which extends to the open second end 26 of the housing 20.
A top hat or bearing 34 is mounted in the second stepped bore portion 23 immediately adjacent the end of the first bore portion 21. A seal means 30 is also mounted in the second stepped bore portion 23 between one end of the top hat 34 and the third stepped bore portion 25. The seal means 30 may include one or more 0-ring seals 31 spaced by a rigid spacer member 33.
The inner diameters of the seal members 31 and 33 and the top hat 34 are sized to sealingly engage the outer diameter of a tip end 11 of the second component 14. The third stepped bore portion 25 has an inner diameter sized to snugly engage the outer diameter of the end portion 11 of the second component 14 when the second component 14 is fully inserted into the stepped bore 22 as described hereafter shown in
As shown in
A transverse aperture, generally in the form of a slot 50, is formed in the enlarged end portion 40 and extends inward from the side 42 into the first open end 24 of the housing 20. The slot 50 may extend completely through the sides 46 and 48.
A web 47 extends from one end of the enlarged end portion 42, a space portion of the housing 20. The web 47 divides the opening formed in the side edge 48 into a pair of circumferentially spaced apertures, one on each side of the web 47, between the web 47 and each of the edges 49 and 51 of the side 48. The purpose of the web 47 and the divided apertures in the side edge 48 will become more apparent hereafter.
The retainer means 16 is, by way of example only, depicted as a radially-displaceable retainer having side locking projections. The retainer 16 is preferably formed of a one-piece body of a suitable plastic, such as polyamide 12, for example. The retainer 16 has an end wall 60 which is characterized by an arcuate shape, again only by example. First and second side legs 62 and 64 project from opposite ends of the end wall 60. A hook-shaped latch projection 66 and 68 is formed adjacent the end of each of the side legs 62 and 64 for latching the retainer 16 to the housing 20 as described hereafter.
As shown in
A component engaging means 100 is defined by a pair of depending arms 102 and 104 which are spaced generally in parallel and extend from the end wall 70 of the retainer 16. Each arm 102 and 104 has an enlarged end 106 and 108 which is adapted to engage the constant diameter of the end portion 11 of the second component 14 and be urged radially outward enabling the arms 102 and 104 to slide around and then snap back into registry with the opposite side of the outer diameter of the tubular end 11 of the second component 14. An inner edge 110 between the arms 102 and 104 defines a generally circular cross section having a nominal inner diameter slightly longer than the outer diameter of the tubular end 11 of the second component 14. In this manner, the arms 102 and 104 define a barrier to entry of the second component 14 into the open end 24 of the housing 20, if the retainer 16 is inserted to the fully latched position prior to full insertion of the second component 14 into the bore 22 in the housing 20.
On the other hand, if the retainer 16 is separate from the housing 20 or in the shipping position shown in
Locking of the second component 14 in the first component or housing 12 is further enhanced by a lock means or element 120 which is in the form of a generally planar disk 122 having an inner diameter defined by an aperture 124 and an outer diameter 126. The aperture 124 can be a closed circular aperture or an aperture defined by a discontinuous edge.
As shown in
As shown in
The recess 130 is slightly larger than the outer dimensions and the axial thickness of the lock disk 122. This enables the lock disk 122 to exhibit angular movement with respect to a longitudinal axis extending through the recess 130 in the first component 12 from an nominal generally perpendicular position shown in
When the second component 14 is fully inserted into the bore in the first component 12 in sealing engagement with the seal rings and spacer elements 30 and the top hat 34, the retainer 16 can be urged to the fully latched position shown in
As shown in the
Referring now to
Yet another aspect of a lock projection 160 is shown in
Another aspect of a lock projection 170 is shown in
As the projection 170 extends over substantially the entire inner edge of the arms 102 and 104 and the adjoining end wall 60, the projection 170 provides a constant preload force on the lock disk 122 over at least 180° or more of the surface engagement between the lock disk 122 and the projection 170.
In
This non-angular position, shown in
As shown in
When it is necessary to separate the second component 14 from the first component 12, the retainer 16 is disengaged from the first component 12 by radially inward force exerted on the hook ends of the legs 62 and 64 of the retainer 16 while at the same time exerting a sliding force to move the retainer 16 relative to the first component 12 back to at least the shipping position shown in
In summary, the disclosed fluid connector for cylindrical conduits or endforms forcibly locks a cylindrical conduit or endform in a connector housing with minimal insertion forces, minimal potential for scraping and damaging the exterior surface of the tube during insertion and removal from the connector housing and at the same time, provides high pull-out forces sufficient to retain the tube or endform in the connector housing.