The present invention relates to a quick connector for connecting tubular bodies such as pipes, hoses, tubes, and plumbing pipes to each other.
For example, plural pipes, hoses, tubes, etc. are routed in an internal combustion engine system, a brake system, and a fuel supply system (e.g., in a radiator) of an automobile. Connection between these members is made via a connector. Among such connectors is a quick connector which is equipped with a wire retainer and configured so as to enable one-touch, simple connection.
Among conventional quick connectors of this kind is one that is equipped with a socket that is to be connected to one tubular body and has slits extending in the circumferential direction and a wire retainer that is attached to the socket from outside and portions of which project inward through the slits beyond the inner circumferential surface of the socket. The other tubular body to be connected is formed with a flange having a tapered surface whose height decreases as the position goes in the direction in which the other tubular body is inserted into the socket. When the other tubular body to be connected is inserted into the socket, the wire retainer is pushed out and expanded from inside by the tapered surface of the flange. When the wire retainer has gone over the flange, the wire retainer recovers elastically and engages with a base-side portion of the flange, whereby the other tubular body is prevented from coming off and the two tubular bodies are connected to each other.
However, the above quick connector cannot be employed in a case that the flange provided in the other tubular body to be connected is not formed with, on the destination side of the push-in direction, a tapered surface capable of pushing out and expanding the wire retainer.
The following Patent document 1 discloses, as a quick connector that enables connection of pipes, a fluid quick connector which is equipped with a tubular portion having a flange, a tubular housing formed with apertures (slits), a retainer having projections that project through the apertures of the housing, and a sleeve that is set in the housing so as to move between a first position and a second position according to the engagement with the tubular portion while the tubular portion is being inserted into the housing. Nail-shaped projections project from the outer circumferential surface of the sleeve.
The sleeve is inserted into the housing, the projections of the outer circumferential surface of the sleeve are engaged with the inner circumferential surface of the housing by frictional forces, whereby the sleeve is held at the first position. Furthermore, the retainer is attached to the outer circumferential surface of the housing through apertures and increased in outer diameter by the sleeve (see FIG. 4 of Patent document 1). When the tubular portion is inserted into the sleeve in this state, the sleeve is pushed by the flange. When the sleeve is pushed to the second position, the retainer recovers to the original shape (i.e., reduced in diameter) and engages with the flange of the tubular portion. Thus, the tubular portion is engaged with and held by the housing (see FIG. 7 of Patent document 1).
Patent document 1: JP-A-2006-189156
However, in the fluid quick connector of the above Patent document 1, the sleeve is held at the first position merely in such a manner that the projections provided on the outer circumferential surface of the sleeve are engaged with the inner circumferential surface of the housing by frictional forces. This may cause an event that the sleeve is moved unexpectedly from the first position to the second position in the housing before insertion of the tubular body into the housing. If the sleeve is moved to the second position in the housing in this manner, the retainer is reduced in diameter and hence the tubular body cannot be inserted into the housing.
An object of the present invention is therefore to provide a quick connector capable of being applied reliably to also a tubular body in which a flange does not have a tapered surface capable of pushing and expanding a retainer on the destination side of a push-in direction.
To attain the above object, the invention provides a quick connector for connecting a second tubular body to a first tubular body having a tubular tip portion and a flange provided on an outer circumferential surface of the tip portion, characterized by comprising a tubular socket to which the second tubular body is to be connected on the side of one end and into which the first tubular body is inserted on the side of the other end; a wire retainer attached to an outer circumferential surface of the socket; and a guide member which is set inside an inner circumferential surface of the socket, the quick connector further characterized in that the guide member is set so as to be movable from a first position in the socket to a second position that is closer to the one end of the socket than the first position is; that the socket is formed with slits that extend in the circumferential direction; that the wire retainer has lock portions which project beyond the inner circumferential surface of the socket through the slits and engage with the flange in a state that the guide member is located at the second position, and thereby prevent the first tubular body from coming off; that a tip portion of the first tubular body can be inserted into the guide member, an inner circumferential surface of the guide member is formed with an engagement portion with which the flange of the first tubular body engages, an outer circumferential surface of the guide member is formed with, by a pair of walls opposed to each other in the axial direction, a holding recess in which the lock portions of the wire retainer are fitted in a state that the guide member is located at the first position, and of the pair of walls of the holding recess a wall located on the side of the other end of the socket is formed with a tapered guide surface that extends outward as the position goes to the other end of the socket; and that the engagement portion is located closer to the other end of the socket than the holding recess is, and the tapered guide surface guides the wire retainer as it goes over the flange when the first tubular body is inserted.
In the above-described invention, when the first tubular body is inserted into the socket from the inner circumference at its other end starting from a state that the guide member is held at the first position in the socket, the flange engages with the engagement portion of the guide member, whereby the guide member is moved toward the second position. When the lock portions of the wire retainer have gone over the flange while being guided by the tapered guide surface, the lock portions engage with a portion, located on the side of the other end of the socket, of the flange. As a result, the first tubular body is prevented from coming off the socket and the first tubular body and the second tubular body can be connected to each other via the socket.
As a result, even in a case that the outer circumferential surface of the flange of the first tubular body is not tapered in the direction in which the first tubular body is inserted into the quick connector (i.e., the flange is shaped like a mere ring-shaped plate), the guide member guides the lock portions of the wire retainer then they go over the flange. This increases the versatility of the quick connector.
Furthermore, since the lock portions of the wire retainer are fitted into the holding recess of the guide member, an unexpected movement of the guide member 40 can be restricted in a temporarily held state and the guide member being in the temporarily held state can be prevented from moving to the second position.
Part (A) is a side view in the state of
An embodiment of a quick connector according to the present invention will be hereinafter described with reference to
As shown in
As shown in
Although in this embodiment a tubular body 7 which is separate from the first tubular body 1 is to be connected to a base-side outer circumferential surface of the first tubular body 1, naturally it is not always necessary to connect a separate tubular body to the first tubular body 1 (i.e., the first tubular body itself is made a long tubular body formed with a flange).
Example tubular bodies to be connected to each other via the quick connector 10 are pipes, hoses, tubes, etc. used in an internal combustion engine system, a brake system, and a fuel supply system (e.g., in a radiator) of an automobile; however, other tubular bodies may be connected to each other via the quick connector 10. In the invention, the term “tubular body” means a body that is tubular such as a pipe, a hose, a tube, or the like. For convenience of description, the separate tubular body 7 that is connected to the first tubular body 1 and the second tubular body 5 are omitted in
As shown in
The socket 20 is approximately shaped like a cylinder that is open on the side of one end 21 and on the side of the other end 22 in the axial direction. The socket 20 has, on the side of the one end 21, a portion to which the second tubular body 5 is to be connected and has, on the side of the other end 22, an opening 23 into which the first tubular body 1 is to be inserted.
As shown in part (B) of
The socket 20 is formed with slits 27 which extend in the circumferential direction. In this embodiment, as shown in
The shape of the socket is not limited to the above shape, and the slits may be formed not in pair.
The wire retainer 30, which is formed by bending a wire, is attached to the outer circumferential surface of the socket 20. In a state that the guide member 40 is set in the socket 20 at a second position (see part (C) of
As shown in
Each lock portion 33 has a small bent portion 33a at a halfway position in its extension direction, and a tip portion 33b of each lock portion 33 in its extension direction is bent from the other portion of the lock portion 33 toward the opening 23 of the socket 20.
It suffices that the wire retainer be bent so as to assume, for example, a loop shape. There are no particular limitations on the shape of the wire retainer except that it should be inserted in the slits formed in the socket and has the lock portions that project into the inside space of the socket through the slits.
Next, the guide member 40 will be described in detail. When the first tubular body 1 is inserted into the inner circumferential surface of the socket 20, the guide member 40 is placed on the tip side, in the insertion direction, of the flange 3 of the first tubular body 1 and covers the tip surface 3a of the flange 3 and its guide surface is set on the outer circumferential surface of the flange 3. As such, the guide member 40 serves as a member that allows the first tubular body 1 to be pushed into the socket 20 without the flange 3's being caught on the lock portions 33 of the wire retainer 30 and guides the lock portions 33 when they go over the flange 3.
As shown in
The tip portion 2 of the first tubular body 1 can be inserted into the guide member 40. The inner circumferential surface of the guide member 40 is formed with an engagement portion 55 with which the flange 3 of the first tubular body 1 is to engage. The outer circumferential surface of the guide member 40 is formed with a holding recess 41 by a pair of walls 45 and 47 that are opposed to each other in the axial direction. Of the pair of walls 45 and 47 of the holding recess 41, the wall 47 which is set on the side of the other end 22 of the socket 20 has a tapered guide surface 43 which extends outward and toward the other end 22 of the socket 20.
A more specific description will be made with reference to
As shown in
Furthermore, the guide wall 47 whose outer circumferential surface is the tapered guide surface 43 extends in the circumferential direction in such a manner as to be divided into two portions by cuts 49, and thereby given proper elasticity. In this embodiment, as shown in
Each guide wall 47 has a base portion 51 whose outer circumferential surface is a tapered guide surface 43 and a tip portion 53 which extends along the axis C2 of the guide member 40 from the tip, in its extension direction, of the base portion 51. The tip portions 53 of the guide walls 47 come into elastic contact with the inner circumferential surface of the socket 20 in a state that the guide member 40 is inserted in the inner circumferential surface of the socket 20 (see
Furthermore, as shown in part (C) of
As shown in part (C) of
Furthermore, as shown in part (C) of
In this quick connector 10, as shown in part (C) of
The engagement portions 55 have such an inclination angle as to conform to the tapered shape of the tip surface 3a of the flange 3 of the first tubular body 1 (see part (A) of
In this embodiment, as shown in part (C) of
The shape of the guide members is not limited to the above shape. It suffices that each guide member be shaped in such a manner that its inner surface is formed with an engagement portion with which the flange of the first tubular body is to engage and, in a state that the guide member is located at the first position in the socket, the outer circumferential surface of the guide member be formed with a holding recess in which the associated lock portion of the wire retainer is to be fitted and whose wall on the side of the other end of the socket serve as a tapered guide surface.
When the first tubular body 1 is inserted into the guide member 40 having the above structure that is located at the first position in the socket 20 (see
In this embodiment, as shown in
In this state, the tip portion 2 of the first tubular body 1 is inserted into the socket 20 from its opening 23 located at the other end 22. As a result, as shown in part (A) of
When the first tubular body 1 is further inserted into the inner circumferential surface of the socket 20, the guide member 40 which is engaged with the flange 3 is pushed inward so as to move from the first position to the second position. As a result, as shown in part (B) of
Next, an example use method of the first tubular body 1 having the above configuration will be described.
First, as shown in
Then the pair of lock portions 33 of the wire retainer 30 are registered with the pair of slits 27, whereby the holding recess 41 of the guide member 40 is positioned with respect to the pair of lock portions 33 of the wire retainer 30. In this state, the wire retainer 30 is pushed into the socket from its outer circumferential surface. The pair of lock portions 33 of the wire retainer 30 are caused to project beyond the inner circumferential surface of the socket 20, whereby the pair of lock portions 33 are fitted into the holding recess 41 of the guide member 40. The guide member 40 can thus be held by the socket 20 at the first position.
In the above-described manner, in the quick connector 10, the pair of lock portions 33 of the wire retainer 30 are fitted into the holding recess 41 of the guide member 40 in a state that the guide member 40 is located at the first position in the socket 20. This makes it possible to restrict an unexpected movement of the guide member 40 from the first position in the socket 20 and to prevent the guide member 40 from getting out of the temporarily held state and moving to the second position in the socket 20
In this embodiment, as described above, the tip portions 53 of the respective guide walls 47 whose outer circumferential surfaces are formed so as to be in elastic contact with the tapered guide surfaces 43 in a state that the guide member 40 is inserted in the inner circumferential surface of the socket 20 (see
As described above, the tip portion 2 of the first tubular body 1 is inserted into the socket 20 from its opening 23 located at the other end 22 in a state that the guide member 40 is held at the first position in the socket 20 (see
At this time, in this embodiment, as shown in
The inner circumferential surface of each guide wall 47 which is formed with the tapered guide surface 43 includes the tapered surface (in this example, engagement portion 55) that goes outward gradually as the position goes toward the opening 23, located at the other end, of the socket 20 and is shaped so as to cover the outer circumferential surface of the flange 3 of the first tubular body 1. Thus, even if the first tubular body 1 is inserted obliquely with respect to the axis C3 (see
When the first tubular body 1 is further inserted into the inner circumferential surface of the socket 20 from the above-mentioned state shown in part (A) of
When the pair of lock portions 33 of the wire retainer 30 have gone over the top of the flange 3 of the first tubular body 1 with the tapered guide surfaces 43 of the guide member 40 interposed between them, the pair of lock portions 33 recover elastically and engage with the base-side surface 3b of the flange 3 of the first tubular body 1 (see
As described above, in the quick connector 10, even if the flange 3 of the first tubular body 1 which is inserted into the inner circumferential surface of the socket is not formed with a tapered surface having such an inclination angle as to be able to push and expand the wire retainer 30 from inside, the tapered guide surfaces 43 of the guide member 40 can guide the lock portions 33 of the wire retainer 30 so that it goes over the flange 3 of the first tubular body 1. As a result, even if the tip surface 3a of the flange 3 of the first tubular body 1 is not formed with a tapered surface, it suffices to prepare a guide member like the guide member 40 employed in the invention. This increases the versatility of the quick connector 10.
In the embodiment, as shown in part (C) of
Incidentally, when it is desired to disconnect the first tubular body 1 and the second tubular body 5 for such a reason as maintenance or replacement of a component, first, the base portion 31 of the wire retainer 30 is lifted up to establish a state that the pair of lock portions 33 have been pulled out of the pair of slits 27 so as not to project beyond the inner circumferential surface of the socket 20. As a result, the pair of lock portions 33 of the wire retainer 30 are unlocked from the base-side end surface 3b of the flange 3 of the first tubular body 1, and hence the first tubular body 1 can be pulled out through the opening 23, located at the other end 22, of the socket 20 and the first tubular body 1 and the second tubular body 5 can be disconnected from each other.
The invention is not limited to the above-described embodiment, and various modified embodiments are possible without departing from the spirit and scope of the invention. Such embodiments are also included in the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2016-212288 | Oct 2016 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/038299 | 10/24/2017 | WO | 00 |